000165343 001__ 165343
000165343 005__ 20260107201858.0
000165343 0247_ $$2doi$$a10.1016/j.earscirev.2025.105351
000165343 0248_ $$2sideral$$a147042
000165343 037__ $$aART-2025-147042
000165343 041__ $$aeng
000165343 100__ $$aRodríguez-López, Juan Pedro
000165343 245__ $$aLow-latitude glaciation in the Cretaceous greenhouse: reviewing the cryosphere reach during an archetypal hothouse Earth
000165343 260__ $$c2025
000165343 5060_ $$aAccess copy available to the general public$$fUnrestricted
000165343 5203_ $$aThe traditional "Hothouse–Icehouse" dichotomy and the prevailing "Cretaceous greenhouse" narrative fail to accurately represent the geological record. Geological evidence reveals an unknown Late Cretaceous glaciation (82.8–80.96 Ma, the Campanian Barrika glaciation), with tidewater glaciers grounded at an unusually low palaeolatitude (35°N), at a time when Mesozoic temperatures have been modelled near their highest. The Barrika glaciation constitutes the last known low-latitude glaciation on Earth since the Last Paleozoic Ice Age (LPIA), which reached 30°N. The Barrika glaciation is characterized by a remarkably well-preserved glaciomarine record of subtropical tidewater glaciers associated with outlets of an extensive ice cap in Iberia. Our multiproxy analysis reveals five distinct glaciomarine units, indicative of glacial advances and retreats with a 360-kyr spacing. Calving fronts of tidewater glaciers delivered large icebergs to the palaeo-Atlantic Ocean. This glaciation correlates with a peak of ultra-depleted δD ice-sheet-related meltwater signals from Antarctica and other independent indicators of global change. This discovery of a low-latitude glaciation during a purported 'hothouse' period fundamentally challenges simplified Cretaceous climate models. It underscores the critical need for refined paleoclimate proxies and integrated Earth system modelling to fully comprehend such transient yet significant glacial episodes. The robust multiproxy workflow developed for the Barrika glaciation offers a powerful tool for identifying other unknown glaciations in deep-time greenhouse stages. Despite its generally warm reputation, the 77.06-million-year-long Cretaceous Period surprisingly records the lowest latitudinal glaciation since the Paleozoic. Remarkably, 55% of this time shows evidence of meltwaters linked to Antarctic ice sheets, with ice-rafted debris and glacial deposits present for 53% of the period. Glendonites, indicators of cold conditions, are found in 24% of Cretaceous time, and glacio-eustasy played a significant role in short-term sea-level changes for a striking 86% of the period. Collectively, this evidence of an active Cretaceous cryosphere is strengthened by evidence of permafrost in plateaus and high-altitude deserts, coupled by robust geochemical palaeoclimate proxies. Our findings suggest that the conventional 'hothouse–icehouse' scheme applied on deep-time climate requires reconsideration, pointing instead to a much more complex Earth climate evolution that will require a thorough re-evaluation of geochemical proxies used during the Mesozoic.
000165343 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2022-136233NB-I00$$9info:eu-repo/grantAgreement/ES/DGA/E32-23R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-108705GB-I00
000165343 540__ $$9info:eu-repo/semantics/embargoedAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000165343 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000165343 700__ $$aFernández-Mendiola, Pedro Ángel
000165343 700__ $$ade Gea, Ginés A.
000165343 700__ $$0(orcid)0000-0003-0063-8752$$aArz, José A.$$uUniversidad de Zaragoza
000165343 700__ $$0(orcid)0000-0003-4632-533X$$aArenillas, Ignacio$$uUniversidad de Zaragoza
000165343 700__ $$0(orcid)0000-0001-7302-5901$$aGilabert, Vicente
000165343 700__ $$0(orcid)0000-0001-5091-9398$$aArlegui, Luis$$uUniversidad de Zaragoza
000165343 700__ $$0(orcid)0000-0003-2963-8422$$aSoria, Ana R.$$uUniversidad de Zaragoza
000165343 700__ $$aFernández, Vincent
000165343 700__ $$aAmidon, William
000165343 700__ $$aKylander-Clark, Andrew
000165343 700__ $$aFrigola, Jaime
000165343 700__ $$aCerdà-Domènech, Marc
000165343 700__ $$aGarber, Joshua
000165343 700__ $$aLópez-Martínez, Jerónimo
000165343 700__ $$aMurton, Julian B.
000165343 700__ $$0(orcid)0000-0002-9130-117X$$aLiesa, Carlos L.$$uUniversidad de Zaragoza
000165343 7102_ $$12000$$2655$$aUniversidad de Zaragoza$$bDpto. Ciencias de la Tierra$$cÁrea Paleontología
000165343 7102_ $$12000$$2428$$aUniversidad de Zaragoza$$bDpto. Ciencias de la Tierra$$cÁrea Geodinámica Interna
000165343 7102_ $$12000$$2280$$aUniversidad de Zaragoza$$bDpto. Ciencias de la Tierra$$cÁrea Estratigrafía
000165343 773__ $$g(2025), 105351 [107 pp.]$$pEarth-sci. rev.$$tEarth-Science Reviews$$x0012-8252
000165343 8564_ $$s8243776$$uhttps://zaguan.unizar.es/record/165343/files/texto_completo.pdf$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2027-11-28
000165343 8564_ $$s1685330$$uhttps://zaguan.unizar.es/record/165343/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2027-11-28
000165343 909CO $$ooai:zaguan.unizar.es:165343$$particulos$$pdriver
000165343 951__ $$a2026-01-07-18:52:48
000165343 980__ $$aARTICLE