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Abstract

Mountain meadows are key components of extensive livestock systems, yet their response
to management practices remains poorly quantified. This study assessed the effects of
cutting date, fertilization, and stocking rate on forage yield, quality (RFV), and protein
yield across three meadow types (extensive, semi-extensive, and intensive) in the Central
Spanish Pyrenees. Using Random Forest modeling and simulated scenarios, we evaluated
how each factor influenced productivity and nutritive value. Cutting date was the most
influential variable. Advancing the harvest improved forage quality (RFV) but reduced
yield. Conversely, delaying the harvest increased biomass at the expense of RFV. Protein
yield provided a more balanced metric: it remained stable or increased in intensive and
extensive meadows but declined sharply in semi-extensive systems when cutting was
delayed. Fertilization had a moderate effect, with semi-extensive meadows showing sig-
nificant yield reductions when fertilizer input was halved, while other systems remained
largely unaffected. Stocking rate had the least impact overall, although reduced grazing
led to declines in protein yield in semi-extensive and extensive meadows. These findings
suggest that cutting date should be prioritized in management decisions, while fertilization
and grazing intensity require context-specific adjustments. Random Forest modeling effec-
tively identified trade-offs and guided evidence-based strategies for sustainable mountain
meadow management.

Keywords: grassland; optimization; agricultural practices; forage quality

1. Introduction
Mountain meadows are a key part of livestock farming systems in many European

mountain regions, particularly in the Central Spanish Pyrenees [1]. These semi-natural
grasslands provide the bulk of forage resources for ruminants, they are grazed in autumn
and spring and mowed in late spring or early summer to obtain forage for winter [2].
Beyond their role in sustaining animal husbandry, they also contribute to biodiversity con-
servation, soil protection, and the maintenance of cultural landscapes [3]. Their persistence
is therefore tightly linked to the viability of mountain farming communities and the broader
sustainability of highland agroecosystems [4].

Despite their importance, mountain meadows face increasing challenges. Land aban-
donment, socio-economic transformations, and climate variability are reshaping traditional
management practices, often leading to declines in both productivity and forage quality [5].
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Farmers in these regions must balance the dual objective of maintaining sufficient yields
while ensuring adequate nutritive value to support animal performance [6,7]. Yet, while
the ecological and cultural significance of mountain meadows has been widely acknowl-
edged in literature, research explicitly focused on strategies to improve their productivity
and quality remains surprisingly scarce [8,9]. Most studies have emphasized biodiversity
conservation or land-use change, leaving a critical gap in applied agronomic knowledge
for sustaining livestock systems in these environments [10–13].

The productivity and quality of mountain meadows are influenced by a complex inter-
play of soil properties, climatic conditions, plant community composition, and management
practices such as mowing frequency, fertilization, and grazing regimes [14,15]. Traditional
agronomic approaches have provided valuable descriptive insights into these factors, but
they often rely on linear models that cannot fully capture the nonlinear interactions and
context-specific responses typical of mountain agroecosystems [16,17]. This limitation has
hindered the development of clear, evidence-based recommendations for improving forage
production in such heterogeneous landscapes [8].

In recent years, data-driven approaches and machine learning techniques have
emerged as promising tools to address these challenges [18,19]. By integrating diverse
datasets and identifying complex interactions, machine learning can provide robust
predictions and highlight the relative importance of different drivers of agricultural
performance [20]. Among these methods, Random Forest (RF) has gained particular
attention due to its predictive accuracy, resistance to overfitting, and ability to quantify
variable importance [21]. RF models are especially well-suited to ecological and agronomic
systems where multiple interacting factors shape outcomes, making them an ideal choice
for studying mountain meadows [22,23].

Although RF has been successfully applied in various agricultural contexts—such
as crop yield prediction, soil property mapping, and precision management—its use in
mountain forage systems remains limited [24,25]. This underutilization is striking given
the urgent need for practical, data-driven insights to support the sustainability of mountain
livestock farming. By applying RF models to long-term field data, researchers can move
beyond descriptive analyses and generate actionable recommendations for improving both
productivity and forage quality in these critical systems [26–28].

Among the diverse drivers of mountain meadow productivity, only three are directly
shaped by farmers’ management: cutting date, fertilization, and stocking rate [12,13,16].
As the sole controllable variables, their combined consideration provides the practical basis
for optimizing forage yield and quality [9,17,29].

This study represents a novel contribution by combining Random Forest modeling
with management scenario simulations, an approach not previously applied to mountain
meadow systems in the Central Pyrenees, and builds on previous work in which Ran-
dom Forest models were developed to predict yield and quality parameters of mountain
meadows [30]. Here, we extend this approach to explicitly evaluate how management
practices can be optimized to enhance both productivity and forage quality. Specifically,
we aim to provide evidence-based recommendations for improving the management of
mown meadows in the Central Spanish Pyrenees. In particular, we focus on the separate
effects of cutting date, fertilization, and stocking rate on forage yield and quality, providing
concrete evidence-based insights for local management practices.

2. Materials and Methods
2.1. Data Collection

The study was conducted in the central Spanish Pyrenees (42◦30′–42◦50′ N, 0◦10′–0◦40′ E),
a mountainous region characterized by diverse topography and varying altitudes.
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Fifteen meadows were selected across the Aragón, Gállego, Ara, Cinca, and Ésera val-
leys. Valleys were treated as blocks to ensure spatial independence and represent the range
of management practices. Data were collected over five years (2019, 2020, and 2022–2024).
Sampling was restricted to the 100 m2 central area of each meadow, consistent with the
vegetation inventories, to avoid edge effects and ensure representativeness. Within this
area, the experimental design followed a randomized block approach with six sampling
enclosures (40 × 60 cm; 0.24 m2) randomly placed as replicates. These enclosures were cut
once during the harvest window to obtain fresh biomass, ensuring comparability across
meadows and years. In total, 554 samples were collected, each meadow-year combination
treated as a replicate.

Management practices were recorded through structured farmer surveys, which
included information on (i) livestock type, number, and grazing schedule (used to calculate
stocking rate in livestock units, LU); (ii) fertilization type (organic, inorganic, or none),
rate, and frequency, with manure and slurry samples analyzed for nutrient content; and
(iii) mowing frequency outside experimental cuts.

Vegetation sampling was carried out between 20 May and 10 July, covering the period
from flowering onset to the farmers’ harvest. In each enclosure, aboveground biomass was
clipped at 5 cm height using a battery-powered hedge trimmer. The fresh material was
immediately weighed in the field, then frozen and subsequently oven-dried at 65 ◦C for
48 h to determine the proportion of dry matter (DM).

For forage quality, subsamples were oven-dried at 105 ◦C for 4 h. Nitrogen concentration
(N) was determined by the Kjeldahl method, crude protein (CP) was calculated as [31]:

CP = N × 6.25

Relative feed value (RFV) was derived from Acid Detergent Fiber (ADF) and Neutral
Detergent Fiber (NDF) according to [32]:

RFV =

(
(88.9 − (0.779 × ADF)× ( 120

NDF )
)

1.29

Protein yield was calculated as crude protein content (%) multiplied by DM yield.
Daily temperature (minimum, maximum, mean) and precipitation data were obtained

from AEMET stations (9446, 9789A, 9784P, 9814X, 9838A, 9838B, 9843A) covering the period
2019–2024, from January 1 to harvest.

Flora inventories were conducted during peak biomass using the Braun–Blanquet
method [33]. Cover-abundance of each species was visually estimated, and taxonomic
identification was carried out to species level. Biodiversity was quantified using the
Shannon index [34]:

H = −
S

∑
i=1

pi × lnpi

where pi is the proportional cover of species i, and S is the total number of species.
Meadows were classified as intensive, semi-extensive, or extensive based on fertil-

ization rate (kg N ha−1 year−1), grazing intensity (LU ha−1 year−1 or grazing days), and
mowing frequency [2].

Table 1 provides the intrinsic attributes of the studied mountain meadows, including
site location and soil characteristics, together with the management factors considered in
the experiment (fertilization regime, stocking rate, and cutting date).
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Table 1. Meadow characteristics [8].

Intensive Meadow Semi-Extensive Meadow Extensive Meadow

Altitude (m) 602–890 902–1290 1100–1612
GPS Range (approx.) 42.60–42.70 N; 0.10–0.25 E 42.55–42.75 N; 0.15–0.35 E 42.50–42.80 N; 0.20–0.40 E

Slope (%) 9.63 ± 4.13 18.6 ± 4.99 16.1 ± 5.35
Soil type (WRB) Haplic Regosol Haplic Phaeozem Haplic Phaeozem

Clay (%) 30.47 ± 4.87 23.62 ± 4.26 16.29 ± 5.04
Sand (%) 21.01 ± 7.92 40.50 ± 9.49 51.61 ± 9.88

pH 7.71 ± 0.3 6.94 ± 0.29 6.82 ± 0.41
Electric conductivity (dS/m) 0.23 ± 0.05 0.28 ± 0.06 0.21 ± 0.06

Organic matter (%) 3.78 ± 2.12 9.93 ± 3.58 9.25 ± 3.18

Fertilization type Compound NPK
(5-15-15) + urea (46% N)

Composted cattle
manure/cattle slurry

Composted cattle
manure/None

Fertilization frequency Yearly Yearly Rarely
Nitrogen kg ha−1 66.22 ± 37.77 214.71 ± 136.05 6.17 ± 10.69

Phosphorus kg ha−1 47.04 ± 15.06 305.09 ± 280.11 10.06 ± 11.55
Potassium kg ha−1 69.32 ± 35.29 140.14 ± 145.10 11.57 ± 20.05

Livestock load LU ha−1 year−1 0.59 ± 0.10 0.35 ± 0.33 0.20 ± 0.10
Shannon Index 1.82 ± 0.15 2.81 ± 0.31 3.23 ± 0.14

Legume cover (%) 26.25 ± 21.99 24.3 ± 5.95 23.3 ± 5.33
Dominant species Dactylis glomerata Arrhenatherum elatius Festuca rubra

Phenological stage of
dominant species at cutting Flowering Flowering Flowering

Cutting date May-15 ± 16 days Jun-5 ± 21 days Jun-13 ± 20 days

2.2. Simulation and Statistical Analysis

All analyses were conducted in Python 3.11 (Jupyter Lab) [35] using scikit-learn
v1.3.0 [36] and Optuna v3.2.0 [37]. Random Forest models were developed to predict yield,
crude protein content, and RFV, using climate, management, meadow type, and biodiversity
as predictors. Model performance was evaluated using k-fold cross-validation (k = 10) on a
randomly partitioned dataset (80% for training and 20% for testing). The model’s predictive
capability and robustness were assessed using standard regression metrics, specifically the
coefficient of determination (R2 and RMSE [38,39]. Hyperparameters were optimized with
Optuna, and the final configurations are summarized in Table 2.

Table 2. Random Forest model characteristics.

Model Yield RFV Protein Yield

N estimators 158 198 206
Max depth 14 27 16

Min samples split 5 5 5
Min samples leaf 1 1 1

Random state 42 42 42
R2 0.79 0.72 0.73

RMSE 963.62 13.86 115.34

Simulation scenarios were designed to assess the sensitivity of forage yield, RFV,
and protein yield to farmer-dependent management factors, while controlling for climatic
variability. Scenario shifts were defined relative to the observed baseline for each meadow-
year: cutting date (actual harvest date), fertilization rate (annual inputs), and stocking rate
(LU ha−1 year−1). Three factors were modified: (i) cutting date shifts ranging from 5 to
30 days earlier or later, (ii) fertilization adjustments from −100% to +100%, and (iii) stocking
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rate changes from −100% to +100%. Each scenario was applied to the three Random Forest
models, and responses were evaluated accordingly.

Given the non-parametric distribution of the data, we assessed differences among
meadow types using the Kruskal–Wallis H test, followed by Dunn’s post hoc comparisons
when applicable [40]. Within each meadow type, contrasts between baseline management
and simulated scenarios (cutting date, fertilization rate, and stocking rate) were evalu-
ated using the Mann–Whitney U test, which is appropriate for non-parametric pairwise
comparisons [41]. When multiple scenarios were tested (e.g., several cutting date shifts),
comparisons were performed sequentially, and p-values were adjusted using the Bonferroni
correction to control for multiple testing [42]. Statistical significance was established at
p < 0.05 after correction.

3. Results
The environmental and management characteristics of the three meadow types in-

cluded in the study are summarized in Table 1. Intensive meadows were located at
lower altitudes and received synthetic fertilization, while semi-extensive and extensive
meadows were situated at higher elevations and managed with organic inputs or no
fertilization. Extensive meadows showed the highest biodiversity, as indicated by the
Shannon Index, and were also characterized by the latest cutting date, reflecting their lower
management intensity and delayed phenological development. Differences in soil texture,
nutrient inputs, and species composition reflect contrasting management regimes and
ecological conditions.

Figure 1 shows the monthly mean temperature and precipitation patterns recorded in
the three meadow types over the 2019–2024 period. Temperature trends were similar across
management regimes, with peaks in July and August, while precipitation showed greater
variability, particularly in spring and autumn. Intensive meadows exhibited slightly higher
temperatures and lower rainfall than semi-extensive and extensive meadows, consistent
with their lower elevation.

 

Figure 1. Monthly mean temperature (◦C, lines) and precipitation (mm, bars) averaged over the
2019–2024 period for extensive, semi-extensive, and intensive meadows in the Central Pyrenees.
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3.1. Cutting Date Delay

As shown in Figure 2a, harvest date adjustments had a clear effect on yield. Earlier
cuts consistently reduced yield across all systems. Conversely, delayed cuts increased yield,
an effect that was most pronounced in intensive meadows but produced only limited gains
in semi-extensive systems. Figure 2b shows significant differences in yield among meadow
types, indicating that management intensity influences responses to cutting date.

(a)

(b) 

Figure 2. (a) Boxplots showing mean yield under specific changes in cutting date (advancing or
delaying the actual date by up to 30 days). Colors represent meadow types. Significant differences in
yield among cutting dates within the same meadow type were evaluated using the Mann–Whitney U
test (p < 0.05). (b) Boxplots illustrating the distribution of simulated yields by meadow type under
different cutting date adjustments. Each point represents a simulated yield for a specific change
relative to the actual cutting date. The color gradient indicates the magnitude and direction of the
cutting date change. The central line within each box represents the median yield, the box bounds
indicate the interquartile range (IQR), and the whiskers extend to 1.5 times the IQR. Outliers are
shown as individual points beyond the whiskers. Lowercase letters (a, b, c, etc.) above the boxplots
denote statistically significant differences in median yield between meadow types, as determined by
the Kruskal–Wallis H test (p < 0.05), followed by Dunn’s post hoc test for pairwise comparisons.
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Figure 3a shows that forage quality (RFV) changed markedly with cutting date across
all management systems. In intensive meadows, advancing the cut generally improved
forage quality, while delaying it led to a decline. In semi-extensive meadows, earlier cuts
also enhanced RFV, whereas even short delays produced reductions. In extensive meadows,
advancing the cut did not consistently improve quality, and delays were associated with
clear declines. Figure 3b shows significant differences in forage quality among meadow
types, confirming that management intensity influences responses to cutting date.

(a) 

 
(b) 

Figure 3. (a) Boxplots showing mean RFV under specific changes in cutting date (advancing or
delaying the actual date by up to 30 days). Colors represent meadow types. Significant differences in
RFV among cutting dates within the same meadow type were evaluated using the Mann–Whitney
U test (p < 0.05). (b) Boxplots illustrating the distribution of simulated RFV by meadow type under
different cutting date adjustments. Each point represents a simulated RFV for a specific change
relative to the actual cutting date. The color gradient indicates the magnitude and direction of the
cutting date change. The central line within each box represents the median RFV, the box bounds
indicate the interquartile range (IQR), and the whiskers extend to 1.5 times the IQR. Outliers are
shown as individual points beyond the whiskers. Lowercase letters (a, b, c, etc.) above the box-
plots indicate significant differences in median RFV between meadow types (Kruskal–Wallis H test,
p < 0.05), followed by Dunn’s post hoc test for pairwise comparisons.
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Figure 4a indicates that protein yield showed a variable response to cutting date
adjustments, with significant differences depending on the system. In intensive mead-
ows, delaying the cut did not result in significant improvements, while in semi-extensive
meadows only specific early or late adjustments produced noticeable changes. In extensive
meadows, protein yield remained relatively stable, with no significant differences detected
across the various cutting date adjustments. Figure 4b shows no significant differences
between intensive and extensive meadows. Semi-extensive meadows differed significantly
from both, highlighting a distinct response.

(a) 

 
(b) 

Figure 4. (a) Boxplots showing mean protein yield under specific changes in cutting date (advancing
or delaying the actual date by up to 30 days). Colors represent meadow types. Significant differences
in protein yield among cutting dates within the same meadow type were evaluated using the
Mann–Whitney U test (p < 0.05). (b) Boxplots illustrating the distribution of simulated protein
yields by meadow type under different cutting date adjustments. Each point represents a simulated
protein yield for a specific change relative to the actual cutting date. The color gradient indicates
the magnitude and direction of the cutting date change. The central line within each box represents
the median protein yield, the box bounds indicate the interquartile range (IQR), and the whiskers
extend to 1.5 times the IQR. Outliers are shown as individual points beyond the whiskers. Lowercase
letters (a, b, c, etc.) above the boxplots indicate significant differences in median protein yield
between meadow types (Kruskal–Wallis H test, p < 0.05), followed by Dunn’s post hoc test for
pairwise comparisons.
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Table 3 provides a synthetic summary of the results illustrated in Figures 2a,b, 3a,b
and 4a,b, presenting changes in yield (kg ha−1), relative feed value (RFV), and protein yield
(kg ha−1) according to cutting date and meadow type.

Table 3. Changes in yield (kg ha−1), relative feed value (RFV), and protein yield (kg ha−1) according
to cutting date and meadow type are shown. Values in white indicate no significant differences
compared to the baseline (actual management), values in red indicate significantly lower results, and
values in green indicate significantly higher results (p < 0.05).

Extensive Semi Extensive Intensive
Cutting

Date Yield RFV Protein
Yield Yield RFV Protein

Yield Yield RFV Protein
Yield

−30 −655.74 13.95 −21.31 −797.26 13.08 −61.47 −753.05 9.86 −63.66
−25 −489.07 11.94 −13.3 −675.38 11.44 −36.11 −642.41 9.43 −45.46
−20 −372.95 10.63 −3.7 −578.49 11.17 −10.88 −482.57 7.47 −21.04
−15 −271.75 6.99 5.22 −436.85 8.63 1.81 −388.91 6.52 −11.61
−10 −185.54 4.71 5.28 −163.49 6.66 13.95 −333.32 5.53 −6.66
−5 −186.13 2.12 −2.11 −54.98 3.05 16.36 −142.25 3.48 3.02

Actual 0 0 0 0 0 0 0 0 0
5 216.52 −4.36 13.21 117.72 −5.21 −10.77 178.58 −0.67 −1.23
10 234.12 −6.62 6.74 213.98 −7.19 −9.52 411.13 −2.97 2.86
15 319.13 −8.04 6.09 251.54 −9.97 −8.42 524.83 −6.2 5.46
20 332.49 −12.01 −4.06 261.89 −12.64 −13.92 566.76 −7.82 8.17
25 465.38 −14.73 1.5 297 −15.02 −12.3 736.04 −10.51 11.2
30 599.8 −15.92 5.32 340.5 −15.52 −12.4 747.55 −12.38 10.08

Cutting date emerged as the most influential factor, establishing a clear trade-off
between biomass yield and forage quality (RFV) across all three management systems.
Advancing the harvest (−30 to −10 days) resulted in significant and consistent losses in both
yield and protein yield (exceeding 650 kg ha−1 loss at −30 days), while simultaneously
optimizing forage quality, particularly in extensive meadows (RFV increased by up to
+13.95 units at −30 days).

Conversely, delaying the harvest consistently increased yield, an effect most notable
under intensive management; for instance, postponing the cut by +15 days resulted in
a yield increase of 524.83 kg ha−1, coupled with a simultaneous reduction of 6.2 RFV
units. Protein yield, however, signaled the optimal management window: maximum
accumulation was reached at harvest dates slightly post-reference, peaking at +5 days
for extensive meadows (+13.21 kg ha−1) and +10 days for semi-extensive meadows
(+10.27 kg ha−1). These protein peaks were associated with only slight-to-moderate RFV
reductions (−1.42 and −5.07, respectively), thereby evidencing the management equilib-
rium point. Nevertheless, protein yield declined significantly in all systems when delayed
beyond +15 days (Table 3).

3.2. Fertilization Change

Figure 5a shows that fertilizer adjustments did not significantly affect productivity
in intensive or extensive meadows. Yields remained stable across treatments. In contrast,
significant effects were observed in semi-extensive systems, where eliminating fertilization
reduced productivity and higher fertilizer doses enhanced it. Figure 5b shows no significant
differences between intensive and extensive meadows. Both differed significantly from
semi-extensive meadows.

Figure 6a shows that forage quality (RFV) did not differ significantly within any
meadow type across fertilizer doses. Values remained stable. In intensive meadows,
reductions in fertilizer did not lead to consistent declines, while in semi-extensive meadows
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certain increases or reductions in dose were associated with slight variations. In extensive
meadows, RFV values were largely unaffected by changes in fertilization. Figure 6b shows
significant differences between semi-extensive and intensive meadows. No differences
were detected involving extensive meadows.

(a) 

 
(b) 

Figure 5. (a) Boxplots showing mean yield under specific changes in fertilization rate. Colors
represent meadow types. Significant differences in yield among fertilization rates within the same
meadow type were evaluated using the Mann–Whitney U test (p < 0.05). (b) Boxplots illustrating
the distribution of simulated yields by meadow type under different fertilization rate adjustments.
Each point represents a simulated yield for a specific change relative to the actual fertilization rate.
The color gradient indicates the magnitude and direction of the fertilization rate. The central line
within each box represents the median yield, the box bounds indicate the interquartile range (IQR),
and the whiskers extend to 1.5 times the IQR. Outliers are shown as individual points beyond the
whiskers. Lowercase letters (a, b, c) above the boxplots indicate significant differences in median
yield between meadow types (Kruskal–Wallis H test, p < 0.05), followed by Dunn’s post hoc test for
pairwise comparisons.



Agriculture 2025, 15, 2440 11 of 22

(a) 

 
(b) 

Figure 6. (a) Boxplots showing mean RFV under specific changes in fertilization rate. Colors represent
meadow types. Significant differences in RFV among fertilization rates within the same meadow type
were evaluated using the Mann–Whitney U test (p < 0.05). (b) Boxplots illustrating the distribution of
simulated RFV by meadow type under different fertilization rate adjustments. Each point represents
a simulated RFV for a specific change relative to the actual fertilization rate. The color gradient
indicates the magnitude and direction of the fertilization rate change. The central line within each box
represents the median RFV, the box bounds indicate the interquartile range (IQR), and the whiskers
extend to 1.5 times the IQR. Outliers are shown as individual points beyond the whiskers. Lowercase
letters (a, b) above the boxplots indicate significant differences in median RFV between meadow
types (Kruskal–Wallis H test, p < 0.05), followed by Dunn’s post hoc test for pairwise comparisons.

Figure 7a shows that protein yield was unaffected by changes in fertilization rate
across all meadow types. In intensive meadows, adjustments in fertilization did not
lead to significant changes, while in semi-extensive meadows only slight variations were
observed depending on the treatment. In extensive meadows, protein yield was also
largely unaffected by fertilization adjustments. Figure 7b shows no significant differ-
ences between intensive and extensive meadows. Both differed significantly from semi-
extensive meadows.
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(a) 

 
(b) 

Figure 7. (a) Boxplots showing mean protein yield under specific changes in fertilization rate. Colors
represent meadow types. Significant differences in protein yield among fertilization rates within
the same meadow type were evaluated using the Mann–Whitney U test (p < 0.05). (b) Boxplots
illustrating the distribution of simulated protein yields by meadow type under different fertilization
rate adjustments. Each point represents a simulated protein yield for a specific change relative to the
actual fertilization rate. The color gradient indicates the magnitude and direction of the fertilization
rate change. The central line within each box represents the median protein yield, the box bounds
indicate the interquartile range (IQR), and the whiskers extend to 1.5 times the IQR. Outliers are
shown as individual points beyond the whiskers. Lowercase letters (a, b) above the boxplots indicate
significant differences in median yield between meadow types (Kruskal–Wallis H test, p < 0.05),
followed by Dunn’s post hoc test for pairwise comparisons.

Table 4 summarizes the effects of fertilization rate on yield, relative feed value (RFV),
and protein yield across the three meadow types. In extensive meadows, changes in
fertilization rate did not produce significant differences in any of the evaluated parameters,
with values remaining relatively stable across treatments. In contrast, semi-extensive
meadows showed a clear response: eliminating fertilization significantly reduced yield and
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protein yield, while higher fertilizer doses led to significant increases. Intensive meadows
also exhibited sensitivity to fertilization, with reductions under fertilizer withdrawal and
progressive improvements as the dose increased. Overall, the results indicate that semi-
extensive and intensive systems are more responsive to fertilization adjustments, whereas
extensive meadows remain largely unaffected.

3.3. Stocking Rate Change

Figure 8a shows that intensive meadows had relatively stable yields across stock-
ing rates. In semi-extensive meadows, changes in stocking rate produced more evident
shifts, while in extensive meadows yields also remained comparatively stable. Figure 8b
shows no significant differences between intensive and extensive meadows. Both differed
significantly from semi-extensive meadows.

(a) 

 
(b) 

Figure 8. (a) Boxplots showing mean yield under specific changes in stocking rate. Colors represent
meadow types. Significant differences in yield among stocking rates within the same meadow type
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were evaluated using the Mann–Whitney U test (p < 0.05). (b) Boxplots illustrating the distribution of
simulated yield by meadow type under different stocking rate adjustments. Each point represents a
simulated yield for a specific change relative to the actual stocking rate. The color gradient indicates
the magnitude and direction of stocking rate change. The central line within each box represents
the median yield, the box bounds indicate the interquartile range (IQR), and the whiskers extend to
1.5 times the IQR. Outliers are shown as individual points beyond the whiskers. Lowercase letters
(a, b) above the boxplots indicate significant differences in median yield between meadow types
(Kruskal–Wallis H test, p < 0.05), followed by Dunn’s post hoc test for pairwise comparisons.

Figure 9a shows that in intensive meadows RFV improved slightly as stocking rate
increased. In extensive meadows, RFV values remained relatively stable across treatments,
with no clear response to changes in stocking rate. According to the Kruskal–Wallis test,
significant differences were detected between semi-extensive and intensive meadows,
whereas no significant differences were found between these two systems and the extensive
meadows, as shown in Figure 9b.

(a) 

 
(b) 

Figure 9. (a) Boxplots showing mean RFV under specific changes in stocking rate. Colors represent
meadow types. Significant differences in RFV among stocking rates within the same meadow type
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were evaluated using the Mann–Whitney U test (p < 0.05). (b) Boxplots illustrating the distribution of
simulated RFV by meadow type under different stocking rate adjustments. Each point represents a
simulated RFV for a specific change relative to the actual stocking rate. The color gradient indicates
the magnitude and direction of the stocking rate change. The central line within each box represents
the median RFV, the box bounds indicate the interquartile range (IQR), and the whiskers extend to
1.5 times the IQR. Outliers are shown as individual points beyond the whiskers. Lowercase letters
(a, b) above the boxplots indicate significant differences in median RFV between meadow types
(Kruskal–Wallis H test, p < 0.05), followed by Dunn’s post hoc test for pairwise comparisons.

Table 4. Changes in yield (kg ha−1), relative feed value (RFV), and protein yield (kg ha−1) according
to fertilization rate and meadow type are shown. Values in white indicate no significant differences
compared to the baseline (actual management), and values in red indicate significantly lower results.

Extensive Semi Extensive Intensive
Fertilization

Rate Yield RFV Protein
Yield Yield RFV Protein

Yield Yield RFV Protein
Yield

−100% −41.84 −0.02 −0.74 −387.96 1.32 −12.7 −197.03 −0.15 0.64
−75% −41.78 0.01 −0.54 −273.98 1.25 −10.13 −199.02 −0.09 1.09
−50% −42.58 0.05 −0.47 −215.5 1.19 −8.24 −96.27 −0.35 1.16
−25% 1.36 0.08 −0.06 −28.57 1.27 −1.54 −18.49 −0.18 0.08
Actual 0 0 0 0 0 0 0 0 0
+25% 9.76 0.02 0.32 6.09 −0.8 2 −4.61 0.33 −0.66
+50% 9.74 0.02 0.36 24.76 −1.3 2.07 −3.46 0.35 −0.85
+75% 9.32 0.06 0.28 27.66 −1.64 3.11 7.81 0.4 −0.77

+100% 20.93 0.06 0.28 61.28 −1.63 3.34 113.34 0.43 0.62

Figure 10a shows that in extensive meadows, reducing stocking rate decreased protein
yield, while increases did not exceed baseline levels. In intensive grasslands, no significant
changes were detected when either increasing or decreasing the current stocking rate. In
semi-extensive meadows, some variation was observed under different grazing pressures,
but these differences were not statistically significant relative to the baseline. Overall,
reductions in grazing pressure consistently decreased productivity, whereas increases did
not enhance protein yield beyond current levels. Figure 10b shows significant differences
between semi-extensive and intensive meadows, but none involving extensive meadows.

Table 5 shows the effects of stocking rate on forage quality (RFV) and protein yield
across the three meadow types. In extensive and semi-extensive meadows, increasing the
stocking rate was associated with progressive declines in RFV, while protein yield showed
only modest improvements. By contrast, intensive meadows exhibited the opposite trend,
with RFV increasing steadily as stocking rate rose, accompanied by clear gains in protein
yield. These results indicate that stocking rate exerts contrasting effects depending on
management intensity: while extensive and semi-extensive systems experience a trade-off
between quality and protein yield, in intensive systems increasing stocking rate improved
RFV but reduced protein yield.

Table 5. Changes in yield (kg ha−1), relative feed value (RFV), and protein yield (kg ha−1) according
to stocking rate and meadow type are shown. Values in white indicate no significant differences
compared to the baseline (actual management), values in red indicate significantly lower results.

Extensive Semi Extensive Intensive
Fertilization

Rate Yield RFV Protein
Yield Yield RFV Protein

Yield Yield RFV Protein
Yield

−100% −30.04 −0.56 −14.88 −69.79 −3.1 −37.88 −29.37 −2.31 −26.3
−75% −30.04 −0.56 −14.88 −50.53 −2.48 −30.76 −14.2 −1.12 −10.09
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Table 5. Cont.

Extensive Semi Extensive Intensive
Fertilization

Rate Yield RFV Protein
Yield Yield RFV Protein

Yield Yield RFV Protein
Yield

−50% −20.58 −0.38 −7.08 −53.05 −2.44 −29.75 4.97 −1 1.16
−25% −9.56 0.14 −0.79 −37.57 −2.03 −23.55 7.67 −1.02 0.34
Actual 0 0 0 0 0 0 0 0 0
+25% 37.14 0.24 11.48 −2 0.23 −0.66 −14.49 1.78 0
+50% 54.18 0.56 17.26 12.49 0.41 5.61 −60.65 4.99 −1.3
+75% 61.7 0.58 17.65 10.67 0.39 5.7 −65.08 5.66 −1.87

+100% 60.41 0.77 17.16 12.5 0.38 5.84 −73.85 6.04 −2.31

(a) 

 
(b) 

Figure 10. (a) Boxplots showing mean protein yield under specific changes in stocking rate. Colors
represent meadow types. Significant differences in protein yield among stocking rates within the same
meadow type were evaluated using the Mann–Whitney U test (p < 0.05). (b) Boxplots illustrating the
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distribution of simulated protein yields by meadow type under different stocking rate adjustments.
Each point represents a simulated protein yield for a specific change relative to the actual stocking
rate. The color gradient indicates the magnitude and direction of the stocking rate change. The central
line within each box represents the median protein yield, the box bounds indicate the interquartile
range (IQR), and the whiskers extend to 1.5 times the IQR. Outliers are shown as individual points
beyond the whiskers. Lowercase letters (a, b, c) above the boxplots indicate significant differences in
median protein yield between meadow types (Kruskal–Wallis H test, p < 0.05), followed by Dunn’s
post hoc test for pairwise comparisons.

4. Discussion
We used Random Forest because mountain meadow systems involve multiple in-

teracting factors that rarely respond linearly [43]. Traditional linear models often fail to
capture such dynamics, whereas Random Forest, by aggregating multiple decision trees,
can identify non-linear interactions and quantify the relative importance of predictors
without requiring strict parametric assumptions [44]. This makes it particularly suitable
for heterogeneous landscapes such as the Pyrenees, where management practices and
environmental drivers are strongly intertwined.

As widely reported in previous research, forage yield and quality often display an
inverse relationship, with higher production generally associated with lower nutritive
value [8,45,46]. This trade-off was also evident in our study, confirming that management
decisions must balance productivity with forage quality.

Regarding cutting date, the three meadow types exhibited distinct responses, except
for protein yield, where intensive and extensive meadows did not differ significantly. This
similarity may be explained by the higher proportion of legumes in intensive systems,
which compensate for their lower floristic diversity and sustain protein yield [47,48]. For
yield, a general increase was observed with delayed cutting, except in semi-extensive
meadows, where production remained stable across a wide window. The absence of sig-
nificant differences between delaying the cut by 30 days and advancing it by 15 days
suggests a 45-day period of yield stability. This resilience may be linked to the high
levels of organic fertilization in these systems, which could slow maturation and sus-
tain production [49,50]. In all meadow types, however, advancing the cut by more than
15 days resulted in significant yield reductions. Forage quality (RFV) followed the opposite
trend, reaching maximum values with early cuts and declining progressively thereafter,
confirming that earlier cutting improves nutritive value but at the expense of yield [45].

Protein yield, which integrates both biomass and crude protein concentration, pro-
vided a more balanced perspective. In intensive meadows, protein yield remained stable
across a wide range of cutting dates, likely due to the phenological pattern of legumes,
which maintain protein levels from flowering to seed set [51]. Extensive meadows showed
even greater stability, probably related to their high species diversity, where asynchronous
phenologies buffer declines in some species with increases in others [2]. In contrast, semi-
extensive meadows were particularly sensitive: protein yield peaked between the current
cutting date and a 10-day advancement, while any delay led to significant reductions. This
highlights the vulnerability of semi-extensive systems to even moderate delays in harvest.

Fertilization had a smaller impact on forage performance than cutting date. Differ-
ences across meadow types were less pronounced: intensive and extensive meadows did
not differ significantly in either yield or protein yield, while semi-extensive meadows
consistently displayed higher values. This pattern may be related to their location in more
humid areas and on more fertile soils, which favor higher productivity. As observed in
other studies, the most productive systems tended to show lower forage quality, although
differences with extensive meadows were not significant [8,30].
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Yield response to fertilization was negligible in intensive meadows, suggesting that
production is more constrained by climatic conditions than by nutrient availability. A
similar lack of response was observed in extensive meadows, likely due to their complex
floristic composition, which confers resilience and reduces dependence on fertilization. In
contrast, semi-extensive meadows exhibited significant yield reductions when fertilization
was decreased by at least 50%. This suggests that while a minor reduction (e.g., −25%)
could maintain comparable yields (−28.57 kg ha−1, not significant), a 50% reduction
would lead to significant losses (−215.5 kg ha−1). For forage quality (RFV), no significant
differences were detected in any grassland type, indicating that quality is more strongly
linked to cutting date than to fertilization [52,53]. Similarly, protein yield did not vary
significantly with fertilization, suggesting that yield gains and quality declines offset each
other, resulting in stable protein yield across treatments.

Stocking rate was the management variable with the least overall effect. As with
fertilization, semi-extensive meadows showed significantly higher yield and protein yield
than intensive and extensive systems, between which no significant differences were
observed. In contrast, forage quality was significantly lower in semi-extensive meadows
compared to intensive ones but did not differ from extensive systems. This pattern is
consistent with the role of stocking rate as an indirect form of fertilization, since higher
grazing pressure increases nutrient inputs through animal excreta [7,17,54].

Within each meadow type, no significant differences were detected in yield or forage
quality when stocking rate was modified, suggesting that production and quality can be
maintained regardless of grazing intensity. However, differences emerged in protein yield.
In both extensive and semi-extensive meadows, reducing stocking rate led to significant
declines. In extensive systems, this result is expected, as grazing represents the main
nutrient input, and its reduction directly limits protein production [29]. The absence of a
similar effect on total yield may reflect compensatory mechanisms in biomass accumulation.
In semi-extensive meadows, where organic fertilization is already high, the decline in
protein yield is less likely to be nutrient-driven and may instead be related to the stimulatory
effect of grazing on plant regrowth [54]. Intensive meadows did not show this response,
possibly due to their lower floristic diversity, which reduces the capacity for compensatory
growth under different grazing pressures [55].

While these simulations offer valuable insights, the limitations of the modeling ap-
proach must be considered.

Despite the robustness and predictive accuracy of the Random Forest model used in
this study, several limitations must be acknowledged. As a non-mechanistic, data-driven
approach, Random Forest does not incorporate physiological or ecological processes ex-
plicitly, which restricts its interpretability in terms of causal mechanisms [56]. Moreover,
the model’s structure does not account for potential multicollinearity among input vari-
ables, meaning that highly correlated predictors may obscure individual effects or inflate
variable importance measures [57]. While Random Forest is well suited for capturing
complex, nonlinear relationships, its reliance on empirical patterns limits extrapolation
beyond the observed data range and may reduce reliability under novel management
scenarios or climatic conditions [58]. Therefore, predictions should be interpreted with
caution and complemented by mechanistic insights or field validation when informing
management decisions.

Taken together, these findings highlight that semi-extensive meadows are the most
sensitive system, consistently showing distinct responses to management changes. While
intensive and extensive meadows appear more resilient to adjustments in fertilization and
grazing, semi-extensive systems require more precise and adaptive management strategies.
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A practical implication of these findings is that advancing the cutting date is generally
advisable across all meadow types, although the optimal margin differs: approximately
10 days in semi-extensive meadows, 15 days in intensive systems, and up to 20 days
in extensive ones. Delays, by contrast, are consistently penalized with reductions in
forage quality and protein yield. These differences can be explained by the baseline
cutting schedules and the ecological characteristics of each system. Extensive meadows,
traditionally harvested later in the season, retain a wider margin for improvement when
cuts are advanced. Intensive meadows, despite being cut earlier, also benefit from earlier
harvests, likely due to the predominance of grass–legume mixtures in which grasses senesce
rapidly under these conditions. Semi-extensive meadows, however, show the narrowest
adjustment window, with only a 10-day advancement improving outcomes. This suggests
that their current cutting dates are already close to the agronomic optimum, leaving less
room for improvement. In this sense, semi-extensive systems represent a central situation,
while intensive meadows offer some scope for optimization and extensive meadows the
greatest potential for gains through earlier cutting.

5. Conclusions
Advancing harvest improves forage quality (RFV) but reduces yield, while delaying it

increases biomass and protein yield at the expense of nutritive value. Protein yield, which
integrates both dimensions, proved especially useful for evaluating trade-offs: intensive and
extensive meadows maintained stable protein levels across a wide range of cutting dates,
whereas semi-extensive meadows were highly sensitive to delays, with even moderate
postponements leading to significant declines.

Fertilization had a smaller impact than cutting date. Intensive and extensive meadows
showed limited responses to dose changes, whereas semi-extensive meadows were more
dependent on nutrient inputs. In contrast, semi-extensive meadows responded more
strongly: reducing fertilization by 50% led to significant yield losses, suggesting that these
systems are more dependent on nutrient inputs. However, the results also indicate that
halving fertilizer doses may still maintain acceptable yields, offering a potential strategy
for cost reduction without compromising productivity.

Stocking rate was the least influential factor overall. Yield and forage quality remained
stable across grazing intensities, but protein yield declined when stocking rate was reduced
in semi-extensive and extensive meadows. This reflects grazing as both a nutrient input
and a stimulant for regrowth. Intensive meadows showed no significant response, possibly
due to their lower floristic diversity and reduced capacity for compensatory growth.

In summary, management strategies in mountain livestock systems should prioritize
cutting date adjustments to balance yield and quality. Fertilization and stocking rate play
more context-dependent roles, with semi-extensive meadows emerging as the most pro-
ductive but also the most sensitive to management changes. Random Forest modeling was
effective in identifying these trade-offs, offering a robust framework to support evidence-
based decision-making in complex agroecosystems. Nevertheless, future research should
validate these model-based insights through controlled field experiments explicitly manip-
ulating cutting date, fertilization, and stocking rate, to ensure that simulated responses are
consistent with actual agronomic outcomes.
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