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Abstract—This letter presents a novel distributed approach
for the control of flexible multiagent formations. We propose a
formulation based on affine formation control in which, instead
of considering a single nominal configuration as in standard for-
mulations, we consider multiple nominal configurations. This has
the advantage of providing higher flexibility to adapt to different
task conditions. In our approach, the agents are arranged in a
chained structure; specifically, we group them in chained sets and
propose a control law based on orthogonal projections defined
for each of these sets. The resulting strategy is distributed, as it
uses local interactions, and it can be implemented using position
measurements expressed in the agents’ local reference frames. We
support the proposed approach via formal analysis and illustrate
it with simulations.

Index Terms—Cooperative control, distributed control, au-
tonomous systems, robotics.

I. INTRODUCTION

ORMATION control is a fundamental competence for
teams of mobile agents in diverse types of missions. Nu-
merous existing formation control schemes consider a geomet-
ric reference (e.g., a nominal configuration of the multiagent
team) and design a motion strategy aimed at achieving and
maintaining that reference, allowing for specific degrees of
freedom to enhance flexibility. Translations, rigid transfor-
mations, and shape-preserving transformations are common
examples of allowed degrees of freedom. Many schemes along
these lines have been proposed, with formulations based on
inter-agent relative positions [1]-[3], distances [4], [5], or
bearings [6]. Affine formation control, which allows for more
general types of transformations, has been studied in a signifi-
cant number of recent works, such as [7]-[12]. In these studies,
the affine formations are defined with respect to a single
nominal configuration. This letter presents a novel approach
that defines affine formations with respect to multiple nominal
configurations, considered simultaneously. By using multiple
geometric references, this approach makes a team capable of
adapting its shape more flexibly to mission requirements (e.g.,
avoiding obstacles, reacting to threats, or enclosing mobile
targets) while still exhibiting the behavior of a formation.
The proposed approach is based on grouping the agents in
chained sets. We adopt this grouping because it has practical
interest and it allows us to obtain formal guarantees. The
agents in every set use motion vectors based on orthogonal

This work was supported via project REMAIN - S1/1.1/E0111 (Interreg
Sudoe Programme, ERDF), and via projects PID2021-1241370B-100 and
TED2021-130224B-100 funded by MCIN/AEI/10.13039/501100011033, by
ERDF A way of making Europe and by the European Union NextGenera-
tionEU/PRTR.

The authors are with Instituto Universitario de Investigacion en Ingenieria
de Aragén (I3A), Universidad de Zaragoza, 50018 Zaragoza, Spain (e-mail:
{miguel.aranda, ignaciocuiral, gonlopez} @unizar.es).

projections to move toward partial affine formations, defined
with respect to multiple nominal configurations. Every pair of
consecutive sets along the considered chain share a number
of agents that ensures that the parameters of the achieved
partial formations are the same for both sets. As a result,
the team as a whole achieves a consistent formation. This
approach has interesting features: it is distributed, since it is
based on local agent interactions, and it accommodates the
use of measurements expressed in local reference frames. The
type of chained formations we define is particularly useful
when specific physical vicinities between the agents need to be
kept; e.g., to form a contour enclosing a region, or to transport
a deformable object.

Recent works [13]-[15] used multiagent formations de-
signed to fit environmental boundaries or to form low-
frequency closed curves. In comparison with these approaches,
our formulation is more general, as it encompasses different
types of formations, and it does not require global information
or communications-based estimators. Other related studies
proposed placing robots at discrete samples of a circle [16],
[17] or of other virtual parametric curves [18] or surfaces [19].
The method we propose provides higher flexibility in terms of
the shapes that can be achieved. The approach in [20] extends
affine formation control to so-called linear formation control,
enhancing flexibility by defining a nominal configuration in a
space of higher dimension than the one where the agents move.
Our strategy is different, as it is based on multiple nominal
configurations, and it uses neither estimators nor pre-defined
design matrices. We support and illustrate the benefits of our
approach with formal analysis and numerical simulation.

A. Notation and Preliminary Definitions

R, R™ and R™*™ denote the set of real numbers, real n-
dimensional column vectors, and real matrices with m rows
and n columns, respectively. I,, denotes the n x n identity
matrix, and ® denotes the Kronecker product. For a given
matrix A € R™*", At e R®"*™ denotes its Moore-Penrose
inverse. The column space of A is the set of all possible vectors
v € R™ that are a linear combination of A’s columns. If A is
a square matrix (i.e., m = n), it is positive semidefinite if it
is symmetric and qTAq > 0 Vg € R®. AA™ is a symmetric
and idempotent matrix such that AATw for w € R™ is the
orthogonal projection of w onto the column space of A [21,
ch. I]. row;(A) for i € {1,2,...,m} with row](A4) € R",
and col;(A) € R™ for i € {1,2,...,n} denote, respectively,
the i-th row and i-th column of matrix A. For a vector a € R",
|a| denotes its Euclidean norm. SO(D) denotes the rotation
group of D dimensions.
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II. PROBLEM STATEMENT

Consider a team of N mobile agents, each having a different
identifying index in the set N' = {1,2,..., N}. Agent index
values are always interpreted modulo N in this letter, with
values outside N being wrapped around into A. D denotes
the number (2 or 3) of spatial dimensions. Positions in D-
dimensional Euclidean space are expressed in a fixed global
Cartesian coordinate frame. The position of agent ¢ is denoted
by p; € RP. The stack vector of the agents’ positions, defined
as p = [p],...,pN]T € RPN s called the configuration
of the team. We assume the agents have single-integrator
dynamics, i.e., p;(t) = u;(t) Vi € N, where u;(t) is the control
input and ¢ € R> g denotes time.

A. Affine Formations for a Nominal Configuration

Our work is based on the framework of affine multiagent
formation control. We use the same concept of what an affine
formation is as in the related literature [7]-[12]. Defining a
constant nominal configuration ¢ = [c],...,c}]T € RPN
with position ¢; € RP corresponding to agent i, the multiagent
team is in an affine formation with respect to the nominal
configuration ¢ if there exist A € RP*P and r € R such
that

p; =Ac; +r VieN. (1)

A and r represent, respectively, a general linear transformation
and a general translation that are applied to the positions in
the nominal configuration for all the agents. This specification
can allow for flexible configurations p which still preserve
certain geometric characteristics of the nominal configuration
¢, such as collinearity and parallelism in the agents’ relative
positions, making affine formations useful in diverse tasks. We
can express (1) compactly as

p=(C®Ip), 2)
where we define
a1 coly (A)
C~¢: . c ]:&]\/X(D-‘rl)7 V= : c RD~(D+1). (3)
C;Tv 1 col[;(A)

Note that C' contains the information of the constant nominal
configuration. On the other hand, ¥ is a parameter vector
containing the elements of A and r that characterizes, for the
particular team configuration p, the specific affine formation
with respect to the nominal configuration c¢. The concept of
affine image [7], [8] can be used to define the set of the
configurations p that satisfy (1) for a given c.

B. Affine Formations for Multiple Nominal Configurations

To further enhance flexibility, in this letter we propose using
multiple distinct nominal configurations, each of them repre-
senting a certain geometric pattern of agent positions. Suppose
we have L distinct nominal configurations, with L > 1,
denoted c(y = [c]},...,c]y]" € RPN vl e {1,2,...,L}.
c1i € RY denotes the position for agent i in the nominal

configuration c(;). Our control goal will be the achievement of
a sum of affine formations, in the sense of (1), with respect to
these nominal configurations. Therefore, the condition is now
that there exist 4; € RP*P and r; e RP VI e {1,2,...,L},
such that
L L L
pi = Z(Alcl,i + 7"[) = Z Alcl,i + Z r Vie N. (@)
=1 =1 =1
We can write an expression analogous to (2), with a parameter
vector v € R (D-L+1) and € e RVX(D-L+1) 59

p=(C®Ip)v, )]
[ COll(Al) ]
iq gy 1 COZD_(Al)
with C =] , U= ZEA ) . (6)
Ccoly L
CI,N CE,N 1
COZD(AL)
L ZZL=1 rr

Note that with L = 1, one has the case in Section II-A. Based
on (5), we now present our definition for the formation task.

Definition 1. The multiagent team is in an affine formation
with respect to the nominal configurations c(yy,c(2), - -, ¢(L)
if there exists v € RP (P L) such that p = (C ® Ip)v.

This letter tackles the problem of designing a control
approach for achieving multiagent formations in the sense of
Definition 1. Next, we describe our proposed solution.

III. DEFINITION OF CHAINED TEAM STRUCTURE

In various multiagent tasks, it is beneficial for the agents’
interactions to form a chain; e.g., when specific agent vicinities
are to be kept, such as in cooperative transport or target
enclosing. Here, we propose grouping the agents in chained
sets. Consecutive sets along the chain are interlaced, i.e.,
there are several agents in the intersection set of every two
consecutive sets. We choose the number of agents in these
intersection sets to be equal to the number of columns of C:
D - L + 1. This way, the agent positions in each intersection
provide the same number (D - (D - L + 1)) of degrees of
freedom as the parameter vector v; and, therefore, the positions
of intersection agents can uniquely determine v, allowing us
to obtain formation convergence guarantees.

Then, we choose the number of agents per set, which we
call M, to be one more than the number of agents in the
intersections. Therefore, we have M = D - L + 2. We choose
all sets to have the same number of agents, and to form a
chain that may be open or closed. For an open chain, we
define N — M + 1 chained sets of agents as follows:

81={1,...,M},...,SN,MJrl:{N—M—‘rl,...,N}. @)
On the other hand, for a closed chain we define the N sets

Si={l,....,M},.... Sy ={N,....N+ M —1}. (8
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Fig. 1. Example with two nominal configurations c¢(1y and c() in two

dimensions (i.e., M = 6) for a team of N = 16 agents. The positions
(circles), agent indices, and sets Sj for a closed chain are depicted.

Figure 1 shows an illustrative example. Let N, denote the
number of chained sets, i.e., Ny = N — M + 1 for an open
chain, and Ny = N for a closed chain, and let us define
Ns = {1,2,..., N,}. For readability, we will use j as the
index for sets in N;. Our choice of using pre-defined sets
S; which all have the minimum possible cardinality is made
for the sake of sparsity and uniformity, Still, note that other
designs would be possible. To define the proposed structure
based on multiple chained sets, the number of agents, /V, must
satisfy N > M. Note that N can be arbitrarily large. Next,
we define several matrices used in our control formulation.
We first define for every set S;, i.e., Vj € Ny,

row;(C)

row;11(C)

07‘ — c IRMX(JW—l)7 (9)

Towj 4+ pM—1 (C)

é] _ Cj ®ID c R(D]W)X(D(]\/I—l)) (10)

These constant matrices collect the part of the nominal con-
figurations including the M agents in S;. We also define

row;(C)

row;11(C)

G, = e RIM-Dx(M=1) yic AL (11)

row;j4+p—2(C)

A useful property, due to the chained structure, is that if S;_;
and S; are consecutive sets in the chain, then

O — G;®Ip o rowi(Cj_1)® Ip
T rown (Cy)®Ip | i=1 G;®Ip

Next, we make an assumption about these matrices.

]. (12)

Assumption 1. G; is nonsingular Vj € N.

Assumption 1 is not satisfied if the geometry of the nominal
configurations makes some G; singular. For example, this can
happen when these configurations include several collinear
points. This letter focuses on the nonsingular cases.

IV. CONTROL STRATEGY

From Definition 1, achieving an affine formation implies
that p is in the column space of the matrix C' ® Ip. Based on
this fact, our control strategy consists in:

1) Defining, for the agents in S; Vj € N5, motion vectors
toward the column space of the matrix C;. This produces
a motion toward a partial (i.e., encompassing only S;)
affine formation in the sense of Definition 1.

2) Adding up these motion vectors for all sets S;.

To accomplish 1), we use the orthogonal projection of the

current positions of the agents ¢ € §j, ie., from i = j to

i =j+ M — 1, onto the column space of C;, given by:
pi(t)

C,Cf e RPM, (13)

Pj+a—1(t)
Note that if Assumption 1 is satisfied, then C’j has full rank
equal to D - (M — 1), which means that C; = (C]C;)~'C].
Let d;,;(t) € RP denote the vector from the current position,
pi(t), of agent i € S; to the component corresponding to agent
1 of the orthogonal projection onto the column space of C’j

in (13). Note the vectors d; ;(t) are only defined for agents ¢
from ¢ =j to i = j + M — 1. They are defined as

dj;(t) p;(t)
: :—(ID.M—éjé;—)
Pi+nm—1(t)

: . (14)
djj+m—1(t)

Then, according to 2), for every agent i € A\, the control law
is the sum of the vectors for the sets that contain ¢:

wi(t) =pi(t) = > dji(t) VieN.

JEN|i€S;

5)

Let us now express this control law in stacked form, which will
be useful for analysis. We define for every j € N, a selector
matrix Q; = [g;,, .] e RM*N with ¢;, , =1,¢q5,,,, =1, ...
s iy om— = 1, and zeros in all other positions. Then, the
matrix Q; = Q; ® Ip € RP-M*(D-N) gelects the elements
of p(t) corresponding to the set S;; i.e.,

p;(t)
Q;p(t) = : (16)
pj+n—1(t)
We can, therefore, express the control law motion vectors as
d;,5(t)
: = —(Ip.m — C;CHQ;p(t). 17)

djj+m—1(t)

We now define d;(t) € RPN which is the motion vector, for
the full team, due to the set S;. This vector simply includes
the motion vectors from (17) for the agents that are in S;, and
it has zeros in all other positions. It is defined by

) dj ;(t) ) -
d;(t) = QF = —QI(Ip.m — C;C;)Q;p(1).

djj+m—1(t)
(18)
The expression of the control law in stacked form is, hence,
pt) = Y di(t) = = > QIUp.ar — C;CF)Qip(t). (19)

JENs JENs
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Example 1. Consider a team of N = 7 agents with two
nominal configurations, i.e., L = 2, in two dimensions, i.e.,
D = 2. Therefore, M = 6. Suppose the chain being used is
open, i.e., Ny = {1,2} with sets S; = {1,2,3,4,5,6} and
Sy ={2,3,4,5,6,7}. The control law (19) is, using (18),

p1(t) dl’.l g C[l(2)720(]tT)
: =di(t) +dao(t) = d (t) ’ (20)
pr(t) 007 | | dant)

Notice that this corresponds to the control law expression for
every individual agent i = 1,2,...,7 given in (15).

A. Control Strategy Implementation

To compute (15), an agent ¢ € N needs to know the
identities, nominal configuration positions, and positions at
time ¢, of the agents that are in common sets with 7. It does
not need any information about the agents that are not in
common sets; e.g., agent 1 in Example 1 needs no information
about agent 7, and vice versa. The maximum possible number
of agents that a given agent has to interact with is limited
to 2 - (M — 1) even if N grows indefinitely. Hence, the
control strategy is distributed. C}, C;r are constant matrices
and can be pre-stored offline. The online (i.e., at time t)
information used in this approach consists of measurements
of positions. Importantly, it is possible for every agent to
use measurements expressed in its local reference frame; e.g.,
the relative positions of the other agents, measured with an
onboard sensor. Let the superscript (¢) denote that a variable
is expressed in agent ¢’s local frame. Assume that, instead
of pi, what agent ¢ measures is p,(;) = R;pr + w;, where
the rotation R; € SO(D) and translation w; € RP express
the transformation between frames. We omit ¢ in this section,
for compactness, but R; and w; can be time-varying. As
mentioned, a common particular case is p,(;) = R;(px — pi),
i.e., w; = —R;p;, which means that agent ¢ measures relative
positions in its local frame. Clearly, if ul(.l) = R,;u;, the agent’s
motion is the same as when computed in the global frame.
Next, we show that this condition is indeed satisfied.

Due to Kronecker product properties, the matrix Ip.ps —
@C‘; for any j € N has the form (I, — C;C) ® Ip;
therefore, it consists of blocks {2, = = «;,.  Ip,witha;,, €
R. Expressing Ip.ps — C_’j C_';” in terms of these blocks, we can
write from (14), for a j such that i € S;,

(1)
de le,l T le,M Ripj w;
S e : +]| )
d;f;ﬁr]v{fl QjM,l T QjM,M Ripjin—1 w

2h
Let us define @; = [Ip,...,Ip]Tw; € RP"M which is the
rightmost vector of (21). Note the last D columns of C; are
[Ip,...,Ip]T; therefore, w; is in the column space of C;,
i.e., (Ip.y —C;C; )w; = 0. In addition, Q;,  R; = RiQ;,,

Im,n
for every block €2, .. Comparing (14) and (21), we conclude

that d;lz = R;d; ;, which holds for every addend in the control
law (15) of agent i. Consequently, ugl) = Ru;.

B. Control Law Analysis
Our formal result is presented in the following.

Theorem 1. If Assumption 1 is satisfied, under control law
(15), p(t) converges exponentially fast to a static configuration
for which the team is in an affine formation with respect to
the nominal configurations c(1y, C2), - -, ¢(r)- The parameter
vector of this formation is unique and can be computed from
the positions of sets of M — 1 agents.

Proof. In this proof, we use several elementary properties of
positive semidefinite matrices. Further details in this respect
are widely available; e.g., in textbooks such as [22]. From the
control law expression (19), we have the system

p(t) = —Bp(t), (22)
where we define

B= Z Q]T(ID-M - C’jé’;’)Qj e R(P-N)x(D-N)_
JEN

(23)

Here, all Cyéj and Ip. — C_'jC_’;r for all sets j are sym-
metric and idempotent and, hence, positive semidefinite. This
implies the matrices QJT(I DM — C'JC';“ )QJ are all positive
semidefinite, and their sum (i.e., B) is positive semidefinite.
Therefore, from standard results in the theory of linear dy-
namical systems, |p(t)|| remains upper-bounded over time and
p(t) converges, exponentially fast, to a static configuration
which is the orthogonal projection of p(0) onto the nullspace
of B. Next, we examine the static configuration that is reached
asymptotically. For this, we define the notation p; = p;(t —
o0) and P = p(t — o).
As p is in the nullspace of B, we have

Bj = 0. 4)

We can then write

pTBp=0 (25)

and, substituting the expression of B, and using IV)TQJT =
(Q;p)7, we get

Z QD) (Ip.m — C_'jC_'f)Qjﬁ =0.

JEN

(26)

As noted above, all matrices Ip.py — C'JC'J-* are positive
semidefinite. Therefore, we infer from (26) that

@Q;ip)"(UIpm —C;CHQp=0 VieN,, (27
and (see, e.g., [22, Obs. 7.1.6]) that
(Ip.a — C;CHQp =0 VjeN.. (28)
Recalling (16), let us arrange (28) as follows:
pj
: =C;0; VjeN;, (29)
Djt+M—1
where we defined
Pj
i =C; e RP-M=1) yje N, (30)
Djt+M—1
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From (29), every one of the Ny systems of linear equations

~

Dj
=095 VjENS, (31)
Dj+M—1

where g; € RP"(M=1) 5 the unknown vector, has g; = ¥,
as a solution. Moreover, due to Assumption 1, this solution
is unique, since every C_’j has full column rank. In addition,
if we apply Definition 1 to the set of agents in S; only, (29)
implies that these agents are in an affine formation (which can
be understood as a partial affine formation) with respect to the
corresponding partial nominal configurations. Hence, we have
established that every set of agents S; converges as t — o0 to
a partial affine formation with a parameter vector U; uniquely
determined by the positions p; for i € S;. Next, we show that
¥; is the same for all the sets S;.

Let us take an arbitrary integer k£ such that 1 < k < N;.
For the cases j = k and j = k — 1 in (29), we have

~ ~

Pk Pr—1

= Cy U, = Cr_1Tp_1. (32)

Pk+M-—1 Pk+M—2

From (12), we know that the matrix GG, satisfies

Co— Gr®Ip G = |rowi(Cr—1) ®Ip
k rowp (Cx) ® Ip |’ k-l Gy, ®Ip i
(33)
Therefore, from (32) and (33), we have
Pk
= (Gy®Ip) U = (Gr®Ip) - Vp—1, (34)
Dl M—2
i.e.,
(Gx®1Ip) - (VU — V—1) = 0. (35)

Recall that G, is a nonsingular matrix, due to Assumption 1.
Hence, G ®Ip is nonsingular too. Therefore, the only solution
to (35) is U, — Up—1 = 0, and we thus have U, = Up_1. It is
direct to see that this reasoning can be extended to every set
S;Vje N, due to their chained structure. Hence, there exists
a unique ¥ such that U; = ¥ Vj € N;. Considering (29) and
the form of the C_'j matrices according to (9), (10), we can
then write

]\5N = (TOw]y[(CN_M+1) ® ID)’U = (’I“OU)N(C) ®ID)17
(36)
Therefore, p = (C ® Ip)7T; i.e., according to Definition 1, the

multiagent team converges as ¢ — o0 to an affine formation
with respect to the nominal configurations c(1), ¢(a), - - -, ¢(z)-

The unique parameter vector v of this formation can be com-
puted from sets of M —1 agent positions: using p = (C®Ip)v
for agents j to j + M — 2,

~

bj

U= (G;®Ip)"" Vje N, (37)

Dj+M—2
which concludes the proof. O

Our control strategy makes every set S; reach a partial
affine formation of M agents as ¢ — oo. This is expressed
by (29). Due to Assumption 1, M — 1 consecutive agents
in each set uniquely determine the parameter vector ¥; for
the M agents in the set. Then, as two chained sets have
M — 1 consecutive agents in common (e.g., sets S; and S,
have the agents 2,..., M in common), they have the same
parameter vector (i.e., U7 = Us). Hence, the partial formations
fit together: they all have the same parameter vector, U; = ¥
Vj € Ni. As a result, a full formation for the N agents is
achieved. As in [2], [3], [6], [7], [15], we focus on the problem
of achieving a formation. We do not control the parameters,
0, of the achieved formation, which depend on the initial state
p(0) and the system dynamics.

V. SIMULATION RESULTS

We illustrate our approach via numerical simulation in
MATLAB. The task is for the agents to form a low-frequency
discretized 2D closed curve [14], [15]. By avoiding high
frequencies, such a curve avoids sharp local variations and
preserves physical agent vicinities, while having a highly
flexible shape. These are useful features for, e.g., enclosing
a phenomenon taking place in the interior of the curve. We
use a discrete Fourier-based representation of planar closed
curves with two low-frequency components. The nominal
configurations are Fourier basis vectors at these frequencies.
We build C in (6) as follows, where the arguments have the

form k2"U=1 with k indexing the frequency and i the agent:
cos(1Z50) cos(1Z1) .. cos(1250V=1)]T
sin(123:2) - sin(123:4) sin(12-0V=1))
C = [cos(225Y) cos(22%2) cos(22“‘(1]:[’*1))
sin(22%0)  sin(22%1) Sin(22ﬂ.(]1\\£_1))
1 1 1
(38)

Note that we have L = 2 and M = D-L +2 = 6. We
take N = 15 and use a closed chain structure with Ny, = N
sets S;. For every G, the determinant is 8.26 - 1073 and the
condition number is 3.15 - 102. Therefore, Assumption 1 is
satisfied. To assess formation achievement, we use the error
metric e(t) = |(Ip.y — (C ® Ip)(C ® Ip)T)p(t)|| which
expresses the distance from p(t) to the column space of C' ®
Ip. We simulate our control law, using the time step 0.01
s. Figure 2 illustrates the convergence of the multiagent team
toward a low-frequency discretized closed curve. We run again
the same test incorporating a multiplicative control gain equal
to 10 for every agent and saturation of every |u;(¢)| at 1 m/s.
As seen in the plots, this improves the convergence behavior,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Control Systems Letters. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/LCSYS.2025.3590428

[ RN i 5
. \ 9
X 6 S Nelb k
£l St B ]
2 e S o

&1 4 0 200 400 600 800
s ] t(s)

S
| g
¥
S
b Q\“
||lui]| Vi € N (m/s)

-10F 0\ 7
g 5
' 0 LL
5000 5 10 15 0 5 10 15 20
z (m) t(s)
- T 15
15 :&;
. 10
0 4 ; &)
L — N
; 04
= 4
= 5 ; 7 _Il \, 0
g e AU, 0 20 40 60 80
> 0 ;':/ 3 . )’ , ] t(s)
v | N Zoomed-in view
-5 g g . *;E& E
- avE ;
-10F f
/ =
5 0 5 10 15 -

0 20 40 60 80
t(s)

Fig. 2. The three plots at the top show the results with the original control
law. The three at the bottom show the results with saturation and higher gain.
Left plots: initial agent positions (red hollow circles), final agent positions
(black solid circles), agent paths (blue solid lines). Agent indices and dashed
lines joining consecutive agents are also shown. The final positions if using
only one nominal configuration are shown as small green squares. Right plots:
error metric (top) and velocity norms (bottom) over time.

which is influenced by matrix conditioning. The configuration
p(t — o0) depends on the initial state p(0) and the system
dynamics, and is not controlled in our approach.

Taking only the frequency index £ = 1, i.e., a single
nominal configuration with the geometry of a discretized
circle, the achievable final configurations would be limited to
discretized ellipses, as seen in the figure. This is because an
ellipse is an affine transformation of a circle. By using two
nominal configurations, our approach allows the team to ac-
quire more complex shapes than an ellipse while still forming
a low-frequency closed curve. This increases flexibility during
enclosing. Using different nominal configurations (not Fourier-
based) would offer different properties, while retaining our
core advantage: allowing a wider range of achievable shapes
than affine formation control in its standard form (i.e., with a
single and constant nominal configuration).

VI. CONCLUSION

In this letter, we have introduced a novel approach for
flexible multiagent formation control where multiple nom-
inal configurations are used simultaneously. We considered

a chained team structure, which is interesting in practical
tasks and allowed us to develop a distributed and formally
supported approach. Future directions include (i) controlling
the formation parameter vector via a subset of leader agents
using the results in Theorem 1, and (ii) a specific study of
achievable shapes for various nominal configurations.
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