

1 **Gangrenous pneumonia, ovine respiratory complex and visceral**
2 **form of caseous lymphadenitis: relevance in lower respiratory tract**
3 **disorders of adult sheep**

4 Lacasta, D.^{a*}, Fernández, A.^a, González, J.M.^{a,b}, Ramos, J.J.^a, Ortín, A.^a, Ferrer,
5 L.M.^a

6 ^a*Animal Pathology Department. Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA).*

7 *Veterinary Faculty of Zaragoza. C/Miguel Servet 177. 50013 Zaragoza. Spain.*

8 ^b*Gabinete Técnico Veterinario S.L. C/ Isla conejera sn. 50013. Zaragoza. Spain.*

9 *Corresponding author; email address: dlacasta@unizar.es

10

11

12 **ABSTRACT**

13 Numerous disorders affect the lower respiratory tract of adult sheep, including Maedi Visna, ovine pulmonary
14 adenocarcinoma and verminous pneumonias as reported elsewhere in this special issue. Herein we examine
15 gangrenous pneumonia, ovine respiratory complex (ORC) and the visceral form of caseous lymphadenitis (CLA).

16 Gangrenous pneumonia is a pulmonary infection commonly caused by inhalation of foreign materials, producing
17 inflammation and necrosis of the lung parenchyma. ORC is a complex disease process involving a range of host-
18 pathogen-environment interactions, where host immunological and physiological mechanisms interact with multiple
19 etiological agents including bacteria, plus environmental factors or stressors. Visceral form of CLA commonly
20 causes lesions in mediastinal lymph nodes and lung parenchyma, producing respiratory clinical signs, particularly
21 the coughing that is responsible for transmission of the disease by aerosol. The economic relevance, etiological,
22 clinical and pathological findings of these diseases are reviewed.

23 **Keywords:** ovine, lower respiratory tract diseases, foreign body aspiration pneumonia, F^o Pasteurellacea,
24 *Corynebacterium pseudotuberculosis.*

25

26 **1. Introduction**

27

28 Ruminants are particularly sensitive animals to the development of lung pathologies and respiratory
29 diseases are commonly encountered in sheep flocks, affecting groups or individuals. There are several
30 infectious diseases affecting upper and lower respiratory tract in sheep that often involve a combination of
31 infectious causes as well as predisposing management factors, potentially leading to significant losses.
32 Respiratory diseases have been extensively studied in lambs as these animals are usually more severely
33 affected than adults. However, adult sheep can suffer from several relevant respiratory diseases that
34 furthermore are some of the most frequent pathologies found in these animals (Mearns, 2009; Suárez and
35 Busetti, 2009; Lacasta et al., 2016).

36 The three upper respiratory tract pathologies more frequently found in sheep in Europe have been
37 the subject of specific articles in this special issue: oestrosis (Gracia et al., 2019); enzootic nasal
38 adenocarcinoma (De las Heras et al., 2019) and chronic proliferative rhinitis (Rubira et al., 2019). In
39 lambs, the most relevant disease affecting lower respiratory tract is ovine respiratory complex, widely
40 studied in this journal (Navarro et al., 2019a; 2019b; González et al., 2019a; 2019b). However, in adults,
41 there are several diseases affecting the lower respiratory tract, including Maedi Visna (MV), ovine
42 pulmonary adenocarcinoma (OPA), ovine respiratory complex (ORC), gangrenous pneumonia,
43 verminous pneumonia and the visceral form of caseous lymphadenitis (CLA). Further, the diagnostic
44 difficulty relies on the clinical differentiation of all of them, because auscultation of the ovine chest alone
45 does not always allow the clinician to determine the presence of all superficial lung pathology nor
46 accurately define its distribution (Scott et al., 2010). Therefore, it will be necessary to make use of
47 diagnostic imaging techniques, such as ultrasonography, X-rays or computed tomography that provide
48 more accurate information regarding the nature and extent of the superficial lung lesion, or perform
49 bronchoalveolar lavages in order to determine the etiological agent of the disease and pattern of
50 inflammatory cells. Post-mortem examination should be encouraged to identify the diseases present on
51 the farm as well as for the collection of samples for etiological analysis.

52 As Maedi Visna (Luján et al., 2019), ovine pulmonary adenocarcinoma (Ortín et al., 2019) and
53 verminous pneumonia (Ferré and Sotiraki, 2019) have been deeply studied in this special issue only
54 gangrenous pneumonia, ovine respiratory complex and caseous lymphadenitis will be reviewed in the
55 article.

56 2. Gangrenous pneumonia associated with aspiration of foreign body

57 Gangrenous pneumonia is a pulmonary infection commonly caused by inhalation of foreign
58 materials, producing inflammation and necrosis of the lung parenchyma. It is sometimes described as
59 foreign-body pneumonia, inhalation pneumonia or aspiration pneumonia and has been diagnosed in
60 several domestic animals (Blowey and Weaver, 2011; Scott et al., 2011; Scott, 2017; Darcy et al., 2018).
61 The aspirated material is usually inspired into the antero-ventral lobes of the lung where it produces
62 moderate to severe, peracute or subacute, necrotizing bronchopneumonia, depending on the composition
63 of the inhaled material, the microorganisms involved and the host responses.

64 Aspiration of foreign material into the lung can be due to a range of causes, as described in the
65 literature (Blowey and Weaver, 2011; Scott et al., 2011; Scott, 2017; Darcy et al., 2018). Aspiration of
66 foreign material into respiratory system may come from rumen contents following bloat or during general
67 anaesthesia. When animals are anaesthetized, regurgitation of gastric contents can occur both light (active
68 regurgitation) and deep (passive regurgitation) (Pugh and Baird, 2012). Moreover, aspiration of
69 inappropriately administered oral antiparasitic treatments as drenches, is common and usually reflects
70 poor drenching technique, often involving lifting of the head of the sheep when administered to sheep. In
71

73 dips is also common, often involving excessive immersion of the head as the animals is swimming in the
74 dip bath or shute (Scott, 2017).

75 Another possible cause of aspiration pneumonia described in the literature can be a laryngeal
76 hemiplegia, which was referred in an 18-month-old ram with a macroscopic laryngeal asymmetry and
77 musculature atrophy in the left side. Necropsy showed a gangrenous pneumonia accompanied by
78 fibrinous pleuritis (Sáez et al., 2003). Aspiration pneumonia has been also found associated with
79 oesophageal myonecrosis due to BTV infection in sheep (Antoniassi et al., 2010). Lambs with nutritional
80 myopathy can also have difficulties of deglutition and develop inhalation pneumonia (Scott, 2017) and
81 also milking lambs fed by bottle can suffer a choking that leads to an aspiration pneumonia. In addition,
82 those respiratory pathologies that hinder the correct breathing, favour the inhalation of vegetable material
83 and the appearance of these conditions. In this sense, it is common to find gangrenous pneumonia in
84 association with other lower respiratory disorders (Lacasta et al. 2016; Lacasta et al., 2019).

85 Vegetable material is frequently seen at post-mortem examination and in histological sections of
86 lung lesions of adult sheep with gangrenous pneumonia. The presence of this vegetable material can
87 suggest that seeds or ears of cereals have been inhaled while they are eating (Figure 1) or that
88 regurgitated vegetable material from the rumen has been inspired during rumination (Viall et al., 2018).
89 In this sense, gangrenous pneumonia was experimentally reproduced by Biescas et al. (2009) with a
90 fragment of wall from barley mixed in a sample of fresh ovine rumen content and introduced directly into
91 the bronchus. However, no foreign bodies into the airways were found by Ménsua et al. (2003) in a study
92 of AA amyloidosis in small ruminants where the 76.2% of animals had gangrenous pneumonia that
93 triggered renal amyloidosis.

94 Most of the microorganisms producing gangrenous pneumonia are normal inhabitants of the
95 nasopharynx. A range of anaerobic and aerobic bacteria, fungi and viruses have been isolated from these
96 gangrenous lesions, indicating that most involve mixed infections (Sáez et al., 2003; Azizi et al., 2013). In
97 a survey developed by Lacasta et al. (2019), which involved 195 culled sheep, *Trueperella pyogenes*,
98 *Pasteurella multocida* and *Mycoplasma ovipneumoniae* were the most frequently isolated microorganism
99 from gangrenous pneumonias. Pyogenic bacteria are usually isolated from these lesions, such as
100 *Streptococcus* or *Trueperella pyogenes* which are ubiquitous inhabitants of oropharynx, upper respiratory
101 and gastrointestinal tracts of animals (Rissetti et al., 2017). *Trueperella pyogenes* has been frequently
102 isolated from suppurative lungs or abscesses from sheep (Ribeiro et al., 2015; Rissetti et al., 2017), in
103 which *plo* gene was detected promoting haemolysis, cytolysis of immune cells and tissue damage, being
104 considered the major virulence factor of *T. pyogenes* (Rissetti et al., 2017). *Fusobacterium necrophorum*
105 has also been isolated from pneumonic lungs of Bighorn sheep with suppurative and necrotic lesions
106 (Shauthalingam et al., 2016).

107 Clinical signs often appear within a week or two following an intervention, including oral
108 anthelmintic or dip bath treatments, although initially, an association with the intervention may not be
109 readily apparent. Affected sheep separate from the mob, displaying inappetence, appear to be in pain,

110 showing antalgic position and depressed. The rectal temperature can be as high as 41.5°C (Biescas et al.,
111 2009). Respiratory signs may include coughing, dyspnea, rales when the process progresses sufficiently,
112 abnormal breath odour can be detected suggestive of the necrotizing exudates occurring in gangrenous
113 pneumonia (Ménsua et al., 2003; Biescas et al., 2009; Pugh and Baird, 2012). As auscultation and clinical
114 examination not always lead to a proper diagnosis, ancillary tests as ultrasonography or X-ray will
115 become very useful tools. An X-ray shows a mixed pattern (alveolar and interstitial) where the lesion is
116 located. Affected areas present loss of opacity that sometimes can be mistaken for emphysema, although
117 usually the lesion is surrounded by clear border (Castells et al., 2019). Ultrasound images are clear,
118 offering different hyperechogenic foci in all the affected area depending on the material inside the lesion
119 (Castells et al., 2019).

120 At necropsy, necrotizing lesions usually distributed in anteroventral lung lobes and usually
121 involving bronchi, bronchioles and occasionally causing pleuritis, are characteristic of gangrenous
122 pneumonia. The lesions are usually accompanied by accumulation of a foul-smelling brown to grey
123 exudate (Biescas et al., 2009). Further, gangrenous pneumonia frequently leads to AA amyloid deposition
124 in gastrointestinal tract and kidneys triggering a renal amyloidosis easy to diagnose macroscopically
125 (Ménsua et al., 2003; Biescas et al., 2009).

126 Although laboratory analyses are not normally necessary to diagnose a gangrenous pneumonia,
127 aetiological analysis can be performed in order to know the microorganisms implicated. Bronchoalveolar
128 lavages enable examination of exudates from live animals, assisting choice of therapy. Increases in serum
129 gamma globulins in response to the chronic infectious process that promotes antigenic stimulation were
130 demonstrated in experimental infections (Biescas et al., 2009). Other findings reported by these authors
131 were the decrease in serum albumin, cholesterol and calcium levels and alterations in urinary parameters
132 due to renal amyloidosis induced by the chronic infection (Biescas et al., 2009).

133 If therapy is possible, results of antibiotic susceptibility tests performed on exudate samples can
134 guide the choice of antimicrobial agent to administer. In addition, imaging techniques (X-ray and
135 ultrasound) may assist in determining the degree of extension of the lung lesion and, consequently, the
136 prognosis. Equally, if it is known that a sheep has inhaled a foreign body, treatment should commence
137 immediately, prior to the onset of respiratory signs. Therefore, in early cases, treatment should be carried
138 out based on β -lactam antibiotics, during at least seven days, associated with nonsteroidal anti-
139 inflammatory drugs (NSAIDs) at the first days of the therapeutic protocol to improve the breathing
140 condition (Scott, 2017). If aspiration or regurgitation occurs during anaesthesia and before intubation of
141 animal can be completed, a bronchodilator such as aminophylline should be administered to relieve
142 bronchospasm (Pugh and Baird, 2012). Despite the treatments and efforts to treat this disease, the
143 prognosis is very poor (mainly at chronic phase) and many animals die or must be euthanized, then efforts
144 must be directed to prevention. Prevention against this disease requires that risk factors for aspiration are
145 addressed, particularly the risks from inappropriate administration of oral therapies and antiparasitic
146 baths.

147

148 **3. Ovine Respiratory Complex in adult sheep**

149

150 The major bacterial respiratory processes affecting adult sheep was traditionally described as
151 "pasteurellosis" reflecting that bacteria from the family *Pasteurellaceae* were predominantly involved.
152 Other names associated with this disease are enzootic pneumonia or atypical pneumonia. However, these
153 are names related only to the pneumonic presentation, but not to the systemic form of the disease. In our
154 opinion, similarities of adult "pasteurellosis" with the ovine respiratory complex in lambs suggests that
155 the disease be described as well as ovine respiratory complex (ORC). As in ORC in lambs, this
156 respiratory disorder in adults reflects a complex disease process involving a range of host-pathogen-
157 environment interactions (HPE), where host immunological and physiological mechanisms (host),
158 interact with multiple etiological agents including bacteria (pathogen), plus environmental factors or
159 stressors (environment). Environmental factors have proven to be key in the development of this
160 pathology, so the influence of climatic factors and the facilities where animals are housed has been widely
161 reported (Lacasta et al., 2008; Navarro et al., 2019b). Although the clinical presentation and severity of
162 the disease may differ with ORC in lambs, the distribution of lesions at necropsy are similar, reflecting
163 common disease mechanisms. Hyperacute or peracute lesions are often characterized by hemorrhages.
164 Acute and subacute forms are characterized by varying degrees of lung consolidation from the exudates
165 produced, including pus causing suppurative or catharral pneumonia or fibrin causing fibrinous
166 pneumonia. Chronic pneumonias reflect the onset of fibrous tissue, increasing the severity of
167 consolidation. Description of the clinical presentations of ORC can be found in González et al. 2019a of
168 this special issue.

169 In a survey developed at the greatest dairy sheep farm in Spain, the ovine respiratory complex was
170 the 2nd most frequent reason of death, following by reproductive disorders, and in another study carried
171 out in a large meat-production flock managed under the semi-extensive system ORC was the first cause
172 of death in both adult animals and replacement (Lacasta et al., 2019).

173 In a study conducted on 3,673 necropsied animals (786 milking lambs, 2,730 feedlot lambs, 94
174 replacement animals and 63 adult sheep), differences among the groups in the type of ORC clinical
175 presentation were observed in the analyzed animals (Figure 2). The most frequent presentation that
176 caused the death in the youngest animals was the acute form of ORC, while adult animals primarily died
177 of hyperacute ORC. In adults, very often, hyperacute form of ORC is the final cause of death after the
178 animal has undergone another process. When the immune system is comprised, etiological agents of ORC
179 can cause the rapid death of the animal. Chronic forms of the disease are responsible for an early culling
180 of sheep. In a survey carried out on 195 culling sheep, 60% of the animals showed some pattern of lung
181 lesion (Lacasta et al., 2019).

182 Clinical signs of the hyperacute form of ORC are those related to a septicemic process with sudden
183 deaths or non-specific clinical symptoms as fever, anorexia and depression. The clinical signs in the acute

184 form are dullness, anorexia, pyrexia and varying degrees of hyperpnoea or dyspnea with respiratory
185 pathological sounds as rhonchus and crackles. Finally, the symptoms of the chronic form are similar to
186 those other chronic diseases that affect the respiratory tract in adult sheep and that involve productive-like
187 lesions such as ovine pulmonary adenocarcinoma (OPA) or gangrenous pneumonia with severe dyspnea
188 accompanied with rhonchus, crackles and wheezing. Advanced OPA can be distinguished with the
189 “wheelbarrow test”, even sometimes, when the animal lowers the head during feeding, clear frothy fluid
190 may flow freely from both nostrils. However, the only difference in clinical signs of ORC from
191 gangrenous pneumonia is the presence of malodorous breath in the latter disorder. An accurate clinical
192 diagnosis of ORC usually requires that ancillary tests including ultrasonography of the lung (Scott, 2010)
193 or bronchoalveolar lavages to identify the microorganisms involved (Rowe et al., 2001) are performed. In
194 an outbreak, necropsies with sample collection and microbiological analysis is required.

195 As in lambs, several infectious agents have been associated with ORC, the more important being:
196 *Mannheimia haemolytica*, *Pasteurella multocida*, *Bibersteinia trehalosi* and *Mycoplasma* spp., usually,
197 found mixed in the isolates with more than one bacteria species implicated (Miller et al., 2011).
198 Moreover, most of these bacteria exist as commensal organisms of the nasopharynx, tonsil and lungs of
199 healthy sheep (Glendinning et al., 2016) and under certain circumstances can produce disease. For that
200 reason, etiological diagnosis is essential for the control of ORC.

201 As described, treatment of ORC can be complicated by the range of pathogens including bacterial
202 serotypes involved, however, several treatments can be advisable on the use of β -lactams and NSAIDs
203 (eg. Flunixin) that may play a very important role in the acute condition of avoiding death due to intense
204 pulmonary edema resulting from inflammation. However, the treatment of chronic cases is less advisable
205 since very long treatments would be necessary to obtain an appropriate degree of healing.

206 Prevention is important for controlling the disease and is based on optimal management of the
207 animals and facilities to avoid or at least minimize the risk factors causing stress, improving animal
208 welfare, as it has been extensively explained in other article of this special issue (González et al., 2019b). In
209 outbreaks, vaccination plans could be implemented or at least considered for the flock at risk of ORC.
210

211 **4. Pseudotuberculosis or caseous lymphadenitis (visceral form)**

212
213 Caseous lymphadenitis (CLA) is caused by *Corynebacterium pseudotuberculosis* and can present
214 as either the superficial form characterized by abscess development in superficial lymph nodes, or the
215 visceral form affecting internal lymph nodes and organs, mostly observed in adults (Fontaine and Baird,
216 2008). CLA is common in sheep and distributed worldwide, causing important economic losses (Fontaine
217 and Baird, 2008; Windsor and Bush, 2016). In countries where there is minimal vaccination, the losses
218 may include costs of managing clinical cases, although where the clinical disease is largely controlled by
219 vaccination, the losses mostly occur at abattoirs from carcass condemnations (Windsor, 2014). Several
220 surveys have confirmed the importance of CLA, including a study of CLA prevalence in 485 culled sheep

221 where the prevalence of animals with abscesses of any etiology was 36% compared to 21% for confirmed
222 CLA (Arsenault et al., 2003). A more recent abattoir survey of over 692 sheep concluded that the
223 prevalence of CLA, based on gross and bacteriological examination, was 32.65% (Al-Gaabary et al.,
224 2010).

225 The previously report study of 485 culled sheep, found 70% of culled sheep with CLA had
226 abscesses in the thoracic cavity, 26% in external sites (head, neck and shoulder) and 25% in the
227 abdominal cavity (Arsenault et al., 2003). In a study by our research group of over 132 culled sheep with
228 an average age of 5.2 years, we identified that 32% of the animals had CLA lesions, of which 70% had
229 the visceral form of the disease, with 80.9% having lesions in the thoracic cavity. CLA was the only cause
230 of culling in 47% of these animals. The mediastinal lymph node was the most commonly affected lymph
231 node, identified in 57.1% of the animals although as a single lesion in 48.0% of these (Figure 3). Lesions
232 involving the lung parenchyma resembling abscesses caused by *C. pseudotuberculosis* were observed in a
233 23.8% of the affected animals, with 19.0% occurring as a single lesion (Navarro et al., 2015).
234 Consideration of the high rate of CLA lesions in the thoracic cavity, including either mediastinal lymph
235 node and/or lung parenchyma and usually producing respiratory clinical signs, the inclusion of CLA in
236 this review of respiratory disorders is justified (Figure 4), particularly as these lesions are the source of
237 the aerosol that is considered of relevance to the mode of transmission of the disorder (Windsor, 2011).
238 This respiratory route for the transmission of *C. pseudotuberculosis* infection from infected animals with
239 pulmonary lesions presenting as the major source of exposure to naïve animals within a flock is well
240 recognised (Pepin et al., 1999; Williamson, 2001; Fontaine and Baird, 2008). That pulmonary lesions
241 occurring within the walls of airways may rupture resulting in local exudation and the production of an
242 infectious aerosol is supported by the isolation of infectious organisms from the tracheas of the infected
243 sheep (Pepin et al., 1999; Fontaine and Baird, 2008; Windsor, 2011).

244 The control of CLA is assisted by a confirmed diagnosis of the disease although this is still a matter
245 of intense research (Oreiby, 2015; De la Fuente et al., 2017). Clinical lesions suggestive of the superficial
246 form of CLA may be confirmed by microbiological analysis. Visceral lesions are more difficult to detect
247 clinically, unless the animal with respiratory lesions is coughing. Progressive weight loss and chronic
248 recurrent ruminal tympanism may also accompany visceral CLA lesions (Oreiby, 2015). Microbiological
249 confirmation of the visceral form in live animals is challenging, although isolation of *C. pseudotuberculosis* from respiratory exudates and/or urine are indicative of respiratory or renal lesions,
250 respectively (Ferrer et al., 2009). However, respiratory clinical signs associated with CLA are often not
251 readily recognized, particularly if only dyspnoea is detected without audible sounds of thoracic cavity
252 pathology, as occurs when the content of abscesses is encapsulated. Diagnostic imaging techniques assist
253 confirmation of the visceral form of the disease, with isolation of *C. pseudotuberculosis* at necropsies
254 enhancing diagnostic investigations. Although the etiological diagnosis of the disease would be advisable,
255 absence of a confirmed bacteriological diagnosis should not preclude implementation of strategic control
256 by vaccination where the pathological evidence is considered sufficiently diagnostic.

258 In countries where CLA vaccination is not available, control of the disease may require
259 identification of the infected animals to prevent their contact with the uninfected ones, which usually
260 means that serologic testing is required (Windsor, 2011), although autologous vaccines can be considered.
261 Serological tests, particularly those detecting humoral responses, have specificity and/or sensitivity
262 deficiencies and consequently, repetitive serological monitoring is a preferred option than applying a
263 single testing policy for diagnosis and control of CLA in sheep and goat flocks (Oreiby, 2015). Moreover,
264 CLA can be diagnosed by blood and milk gamma interferon assay (Oreiby and Hegazi, 2016).

265 The preferred strategy to control CLA is routine and persistent vaccination of healthy sheep in a
266 population, coupled with culling of infected animals (Windsor, 2011). As with many vaccination
267 programs, the currently licensed vaccines suppress the disease rather than conferring complete protection
268 of immunized animals, so CLA will persists despite routine vaccinations (Lacasta et al., 2015; Windsor
269 and Bush, 2016). However, vaccination schedules should be implemented to reduce the numbers of
270 infected animals and the prevalence of the disease into the flock, with efficacy of the vaccination plan
271 dependent on the vaccination programme used (Windsor, 2011; Windsor, 2014).

273 **4. Concluding remarks**

274

275 The lower respiratory tract pathology in sheep is very common and has great diagnostic difficulty
276 due to the high number of pathological processes that settle at this level, all causing a very similar clinical
277 symptomatology. ORC and gangrenous pneumonia are both disorders that have to be included in the
278 differential diagnosis of productive processes, along with the ovine pulmonary adenocarcinoma.
279 However, caseous lymphadenitis, as it does not produce productive clinical signs, should be added to the
280 differential diagnosis of non-productive processes, such as interstitial pneumonia associated with Maedi
281 Visna virus.

284 **Conflict of interest statement**

285

286 The authors have nothing to disclose.

289 **References**

290

291 Al-Gaabary, M.H., Osman, S.A., Ahmed, M.S., Oreiby, A.F., 2010. Abattoir survey on caseous lymphadenitis
292 in sheep and goats in Tanta, Egypt. Small Rumin. Res. 94, 117-124.

293 Antoniassi N.A., Pavarini S.P., Henzel A., Flores E.F., Driemeier D. 2010. Aspiration pneumonia associated
294 with oesophageal myonecrosis in sheep due to BTV infection in Brazil. *Vet Rec.* 9, 166(2), 52-3.

295 Arsenault, J., Girard, C., Dubreuil, P., Daignault, D., Galarneau, J.R., Boisclair, J., Simard, C., Belanger, D.,
296 2003. Prevalence of and carcass condemnation from maedi-visna, paratuberculosis and caseous
297 lymphadenitis in culled sheep from Quebec, Canada. *Prev. Vet. Med.* 59, 67-81.

298 Azizi, S., Korani, F.S., Oryan, A., 2013. Pneumonia in slaughtered sheep in south-western Iran: pathological
299 characteristics and aerobic bacterial aetiology. *Vet. Ital.* 49, 109-118.

300 Biescas E., Jirón W., Climent S., Fernández A., Pérez M., Weiss D.T., Solomon A., Juján L. 2009. AA
301 Amyloidosis induced in sheep principally affects the gastrointestinal tract. *J. Comp. Pathol.* 140, 238-
302 246.

303 Blowey R.W., Weaver A.D. 2011. Color atlas of diseases and disorders of cattle. Mosby Elsevier. 3º edi. UK.

304 Castells, E., Lacasta, D., Climent, M., Pérez, M., Sanroman, F., Jiménez, C., Ferrer, L.M., 2019. Diagnostic
305 imaging techniques of the respiratory tract of sheep. *Small Rumin. Res.* **THIS ISSUE**

306 Darcy, H.P., Humm, K., ter Haar, G. 2018. Retrospective analysis of incidence, clinical features, potential risk
307 factors, and prognostic indicators for aspiration pneumonia in three brachycephalic dog breeds.
308 *JAVMA* 253(7), 869-876.

309 De la Fuente, F., De las Heras, M., Torrijos, C., Diez de Tejada, P., Pérez-Sancho, M., Carrión, F.J., Orden,
310 J.A., Domínguez-Bernal G. 2017. Isolation frequency of bacteria causing lymphadenitis and abscesses in small
311 ruminants in central Spain. *Small. Rum. Res.* 154, 5-8.

312 De las Heras, M., Ortín, A., Borobia, M., Navarro, T., 2019. Enzootic nasal adenocarcinoma in sheep. An
313 update. *Small Rumin. Res.* **THIS ISSUE**

314 Ferré, I. and Sotiraki, S., 2019. Lungworms of sheep. *Small Rumin. Res.* **THIS ISSUE**

315 Ferrer, L.M., Lacasta, D., Chacon, G., Ramos, J.J., Villa, A., Gomez, P., Latre, M.V., 2009. Clinical diagnosis
316 of visceral caseous lymphadenitis in a Salz ewe. *Small Rumin. Res.* 87, 126-127.

317 Fontaine, M.C., Baird, G.J., 2008. Caseous lymphadenitis. *Small Rumin. Res.* 76, 42-48.

318 Gracia, M.J., Ruíz de Arcaute, M., Ferrer, L.M., Ramo, M., Jimenez, C., Figueras, L., 2019. Oestrosis:
319 parasitism by *Oestrus ovis*. *Small Rumin. Res.* **THIS ISSUE**

320 Glendinning, L., Wright, S., Pollock, J., Tennant, P., Collie, D., McLachlan, G., 2016. Variability of the Sheep
321 Lung Microbiota. *Appl. Environ. Microb.* 82, 3225-3238.

322 González, J.M., Navarro, T., Lacasta, D., Ramos, J.J., Ferrer, L.M., De las Heras, M., 2019a. Pathology and
323 etiology of ovine respiratory complex in lambs. *Small Rumin. Res.* **THIS ISSUE**

324 González, J.M., Navarro, T., Lacasta, D., Ramos, J.J., Ferrer, L.M., Vasileiou, N.G.C., De las Heras, M.,
325 2019b. Prevention of ovine respiratory complex in lambs based on vaccination. *Small Rumin. Res.*
326 **THIS ISSUE**.

327 Lacasta, D., Ferrer, L.M., Ramos, J.J., González, J.M., De las Heras, M. 2008. Influence of climatic factors on
328 the development of pneumonia in lambs. *Small Rumin. Res.* 80, 28-32.

329 Lacasta, D., Ferrer, L.M., Ramos, J.J., González, J.M., Ortín, A., Fthenakis, G.C., 2015. Vaccination schedules
330 in small ruminant farms. *Vet. Microbiol.* 181, 34-46.

331 Lacasta, D., González, J.M., Navarro, T., Valero, M., Saura, F., Ramos, J.J., Ferrer, L.M., Ortín, A., Jiménez,
332 C., 2016. Respiratory diseases affecting adult sheep in Spain. Relationship between auscultation and

333 lung lesion. Proceedings of the Deutsche Veterinärmedizinische Gesellschaft and ECSRHM annual
334 congress, Freibourg, Germany.

335 Lacasta, D.; González, J.M.; Navarro, T.; Saura, F.; Acín, C.; Vasileiou N.G.C. 2019. Significance of the
336 respiratory diseases in the health management of sheep. Small Rumin. Res. **THIS ISSUE**

337 Luján, L.; Pérez, M.; De Andrés, D.; Reina, R. 2019. Lentivirus infections in small ruminants. Small Rumin.
338 Res. **THIS ISSUE**

339 Mearns R. 2009b. Post mortem examination of lambs aged between 1 and 12 months. UK Vet: Livestock, 14:
340 43-48.

341 Ménsua C., Carrasco L., Bautista M.J., Biescas E., Fernández A., Murphy C.L., Weiss D.T., Solomon A.,
342 Luján L. 2003. Pathology of AA amyloidosis in domestic sheep and goats. Vet. Pathol. 40, 71-80.

343 Miller, D.S., Weiser, G.C., Ward, A.C.S., Drew, M.L., Chapman, P.L., 2011. Domestic sheep (*Ovis aries*)
344 Pasteurellaceae isolates from diagnostic submissions to the Caine Veterinary Teaching Center (1990-
345 2004). Vet. Microbiol. 150, 284-288.

346 Navarro, T.; Ferrer, L.M.; Ramos, J.J.; Lacasta, D.; Bueso, J.P.; González, J.M.; Catalán, E. 2015.
347 Pseudotuberculosis: ¿acorta la vida productiva de nuestras ovejas? Hoja divulgativa Zoetis. Marzo 2015

348 Navarro, T.; Ramos, J.J.; Figueras, L.; González, J.M. 2019a. Epidemiology of ovine respiratory complex in
349 lambs. Small Rumin. Res. **THIS ISSUE**

350 Navarro, T.; Ramos, J.J.; Ruíz de Arcaute, M.; González, J.M. 2019b. Predisposing factors inducing ovine
351 respiratory complex in lambs. Small Rumin. Res. **THIS ISSUE**

352 Oreiby, A.F., 2015. Diagnosis of caseous lymphadenitis in sheep and goat. Small Rumin. Res. 123, 160-166.

353 Oreiby, A.F. and Hegazi, Y.M. 2016. Diagnosis of ovine caseous lymphadenitis by blood and milk gamma
354 interferon assays. Small Rum. Res. 144: 109-112.

355 Ortín, A.; De las Heras, M.; Borobia, M.; Ramo, M.; Ortega, M.; Ruíz de Arcaute, M. 2019. Ovine pulmonary
356 adenocarcinoma: a transmissible lung cancer of sheep, difficult to control. Small Rumin. Res. **THIS**
357 **ISSUE**

358 Pepin, M., Sanchis, R., Paton, M., 1999. Caseous lymphadenitis in sheep and goats. Point Vet. 30, 33-40.

359 Pugh D.G., Baird A.N. 2012. Sheep and goat medicine. 2º edi. Elsevier, Missouri, USA

360 Ribeiro M.G., Rosseti R.M., Bolaños C.A.D., et al. 2015. *Trueperella pyogenes* multispecies infection in
361 domestic animals: a retrospective study of 144 cases (2002 to 2012). Vet. Quart. 35, (2), 82-87.

362 Rissetti R.M., Zastempowska E., Twaruzek M., et al. 2017. Virulence markers associated with *Trueperella*
363 *pyogenes* infections in livestock and companion animals. Letter in Appl. Microbiol. 65, 125-132.

364 Rowe, H.A., Poxton, I.R., Donachie, W., 2001. Survival of *Mannheimia* (*Pasteurella*) *haemolytica* in
365 tracheobronchial washings of sheep and cattle. Vet. Microbiol. 81, 305-314.

366 Rubira, I.; Figueras, L.; De las Heras, M.; Bueso, J.P.; Castells, E.; Climent, M.; Lacasta, D. 2019. Chronic
367 proliferative rhinitis in sheep Is its relevance increasing?. Small Rumin. Res. **THIS ISSUE**

368 Sáez T., Ramos J.J., García de Jalón, J.A., Unzueta A., Loste A. 2003. Laryngeal hemiplegia in a ram
369 associated with *Sarcocystis* species infection. Vet. Rec. 153, 27-28.

370 Scott, P.R. 2010. Lung auscultation recording from normal sheep and from sheep with well-defined respiratory
371 tract pathology. Small Rumin. Res. 92 (2010) 104-107.

372 Scott P.R. 2017. Overview of aspiration pneumonia. MSD Veterinary Manual. In:
373 <http://www.msdbvetmanual.com/respiratory-system/aspiration-pneumonia/overview-of-aspiration-pneumonia>. [consulted 2017.09.02].

375 Suárez, V.H. and Busetti, M.R., 2009. Health management practices and disease prevalence in dairy sheep
376 systems in Argentina. *Pesq. Vet. Bras.* 29(11), 931-937.

377 Shauthalingam S., Narayanan S., Batra S.A., Jegrube B., Srikumaran S. 2016. *Fusobacterium necrophorum* in
378 North American Bighorn (*Ovis canadensis*) pneumonia. *J. Wildlife Dis.* 53, (3), 616-620.

379 Viall A.K., Larios Mora A., Brewer M.T., Smith J.S., Kreuder A.J., Breuer R.M., Fales-Williams A.J. 2018.
380 What is your diagnosis? Nasal discharge from a sheep. *Vet. Clin. Pathol.* 47(3):503-504.

381 Williamson, L.H., 2001. Caseous lymphadenitis in small ruminants. *Vet. Clin. N. Am-food A.* 17, 359-+.

382 Windsor, P.A., 2011. Control of Caseous Lymphadenitis. *Vet. Clin. N. Am-food A.* 27, 193-+.

383 Windsor, P.A., 2014. Managing control programs for ovine caseous lymphadenitis and paratuberculosis in
384 Australia, and the need for persistent vaccination *Vet. Med.: Research and Reports* 2014:5 11-22.

385 Windsor, P.A., Bush, R.D., 2016. Caseous lymphadenitis: Present and near forgotten from persistent
386 vaccination? *Small Rumin. Res.* 142, 6-10.

387

388

389

390 **Figure legends**

391

392 **Figure 1.** Vegetable material causing gangrenous pneumonia is shown inside the lesion. The lesions
393 comprised foci of pulmonary necrosis with accumulation of a foul-smelling exudate with an associated
394 pleuritis.

395

396 **Figure 2.** Hyperacute, acute and chronic clinical presentation of ovine respiratory complex in 3,673
397 necropsied animals: lactation, feedlot, replacement and adults. (Original research without publishing).

398

399 **Figure 3.** Location of the lesions in the visceral form of caseous lymphadenitis in 485 culled sheep
400 (multiorgan presentation, mesenteric lymphnode, mediastinal lymphnode and lung parenchyma).

401

402 **Figure 4.** Gross view of a sheep lung. (A) Mediastinal lymph node affected by caseous lymphadenitis.
403 (B) CLA pyogranuloma within the parenchyma.

1 **Gangrenous pneumonia, ovine respiratory complex and visceral**
2 **form of caseous lymphadenitis: relevance in lower respiratory tract**
3 **disorders of adult sheep**

4 Lacasta, D.^{a*}, Fernández, A.^a, González, J.M.^{a,b}, Ramos, J.J.^a, Ortín, A.^a, Ferrer,
5 L.M.^a

6 ^a*Animal Pathology Department. Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA).*

7 *Veterinary Faculty of Zaragoza. C/Miguel Servet 177. 50013 Zaragoza. Spain.*

8 ^b*Gabinete Técnico Veterinario S.L. C/ Isla conejera sn. 50013. Zaragoza. Spain.*

9 *Corresponding author; email address: dlacasta@unizar.es

10
11 **ABSTRACT**

12 Numerous disorders affect the lower respiratory tract of adult sheep, including Maedi Visna, ovine pulmonary
13 adenocarcinoma and verminous pneumonias as reported elsewhere in this special issue. Herein we examine
14 gangrenous pneumonia, ovine respiratory complex (ORC) and the visceral form of caseous lymphadenitis (CLA).

15 Gangrenous pneumonia is a pulmonary infection commonly caused by inhalation of foreign materials, producing
16 inflammation and necrosis of the lung parenchyma. ORC is a complex disease process involving a range of host-
17 pathogen-environment interactions, where host immunological and physiological mechanisms interact with multiple
18 etiological agents including bacteria, plus environmental factors or stressors. Visceral form of CLA commonly
19 causes lesions in mediastinal lymph nodes and lung parenchyma, producing respiratory clinical signs, particularly
20 the coughing that is responsible for transmission of the disease by aerosol. The economic relevance, etiological,
21 clinical and pathological findings of these diseases are reviewed.

22 **Keywords:** ovine, lower respiratory tract diseases, foreign body aspiration pneumonia, F^o Pasteurellaceae,
23 *Corynebacterium pseudotuberculosis.*

24
25 **1. Introduction**

26 Ruminants are particularly sensitive animals to the development of lung pathologies and respiratory
27 diseases are commonly encountered in sheep flocks, affecting groups or individuals. There are several
28 infectious diseases affecting upper and lower respiratory tract in sheep that often involve a combination of
29 infectious causes as well as predisposing management factors, potentially leading to significant losses.
30 Respiratory diseases have been extensively studied in lambs as these animals are usually more severely
31 affected than adults. However, adult sheep can suffer from several relevant respiratory diseases that
32 furthermore are some of the most frequent pathologies found in these animals (Mearns, 2009; Suárez and
33 Busetti, 2009; Lacasta et al., 2016).

36 The three upper respiratory tract pathologies more frequently found in sheep in Europe have been
37 the subject of specific articles in this special issue: oestrosis (Gracia et al., 2019); enzootic nasal
38 adenocarcinoma (De las Heras et al., 2019) and chronic proliferative rhinitis (Rubira et al., 2019). In
39 lambs, the most relevant disease affecting lower respiratory tract is ovine respiratory complex, widely
40 studied in this journal (Navarro et al., 2019a; 2019b; González et al., 2019a; 2019b). However, in adults,
41 there are several diseases affecting the lower respiratory tract, including Maedi Visna (MV), ovine
42 pulmonary adenocarcinoma (OPA), ovine respiratory complex (ORC), gangrenous pneumonia,
43 verminous pneumonia and the visceral form of caseous lymphadenitis (CLA). Further, the diagnostic
44 difficulty relies on the clinical differentiation of all of them, because auscultation of the ovine chest alone
45 does not always allow the clinician to determine the presence of all superficial lung pathology nor
46 accurately define its distribution (Scott et al., 2010). Therefore, it will be necessary to make use of
47 diagnostic imaging techniques, such as ultrasonography, X-rays or computed tomography that provide
48 more accurate information regarding the nature and extent of the superficial lung lesion, or perform
49 bronchoalveolar lavages in order to determine the etiological agent of the disease and pattern of
50 inflammatory cells. Post-mortem examination should be encouraged to identify the diseases present on
51 the farm as well as for the collection of samples for etiological analysis.

52 As Maedi Visna (Luján et al., 2019), ovine pulmonary adenocarcinoma (Ortín et al., 2019) and
53 verminous pneumonia (Ferré and Sotiraki, 2019) have been deeply studied in this special issue only
54 gangrenous pneumonia, ovine respiratory complex and caseous lymphadenitis will be reviewed in the
55 article.

56 2. Gangrenous pneumonia associated with aspiration of foreign body

57 Gangrenous pneumonia is a pulmonary infection commonly caused by inhalation of foreign
58 materials, producing inflammation and necrosis of the lung parenchyma. It is sometimes described as
59 foreign-body pneumonia, inhalation pneumonia or aspiration pneumonia and has been diagnosed in
60 several domestic animals (Blowey and Weaver, 2011; Scott et al., 2011; Scott, 2017; Darcy et al., 2018).
61 The aspirated material is usually inspired into the antero-ventral lobes of the lung where it produces
62 moderate to severe, peracute or subacute, necrotizing bronchopneumonia, depending on the composition
63 of the inhaled material, the microorganisms involved and the host responses.

64 Aspiration of foreign material into the lung can be due to a range of causes, as described in the
65 literature (Blowey and Weaver, 2011; Scott et al., 2011; Scott, 2017; Darcy et al., 2018). Aspiration of
66 foreign material into respiratory system may come from rumen contents following bloat or during general
67 anaesthesia. When animals are anaesthetized, regurgitation of gastric contents can occur both light (active
68 regurgitation) and deep (passive regurgitation) (Pugh and Baird, 2012). Moreover, aspiration of
69 inappropriately administered oral antiparasitic treatments as drenches, is common and usually reflects
70 poor drenching technique, often involving lifting of the head of the sheep when administered to sheep. In
71

73 dips is also common, often involving excessive immersion of the head as the animals is swimming in the
74 dip bath or shute (Scott, 2017).

75 Another possible cause of aspiration pneumonia described in the literature can be a laryngeal
76 hemiplegia, which was referred in an 18-month-old ram with a macroscopic laryngeal asymmetry and
77 musculature atrophy in the left side. Necropsy showed a gangrenous pneumonia accompanied by
78 fibrinous pleuritis (Sáez et al., 2003). Aspiration pneumonia has been also found associated with
79 oesophageal myonecrosis due to BTV infection in sheep (Antoniassi et al., 2010). Lambs with nutritional
80 myopathy can also have difficulties of deglutition and develop inhalation pneumonia (Scott, 2017) and
81 also milking lambs fed by bottle can suffer a choking that leads to an aspiration pneumonia. In addition,
82 those respiratory pathologies that hinder the correct breathing, favour the inhalation of vegetable material
83 and the appearance of these conditions. In this sense, it is common to find gangrenous pneumonia in
84 association with other lower respiratory disorders (Lacasta et al. 2016; Lacasta et al., 2019).

85 Vegetable material is frequently seen at post-mortem examination and in histological sections of
86 lung lesions of adult sheep with gangrenous pneumonia. The presence of this vegetable material can
87 suggest that seeds or ears of cereals have been inhaled while they are eating (Figure 1) or that
88 regurgitated vegetable material from the rumen has been inspired during rumination (Viall et al., 2018).
89 In this sense, gangrenous pneumonia was experimentally reproduced by Biescas et al. (2009) with a
90 fragment of wall from barley mixed in a sample of fresh ovine rumen content and introduced directly into
91 the bronchus. However, no foreign bodies into the airways were found by Ménsua et al. (2003) in a study
92 of AA amyloidosis in small ruminants where the 76.2% of animals had gangrenous pneumonia that
93 triggered renal amyloidosis.

94 Most of the microorganisms producing gangrenous pneumonia are normal inhabitants of the
95 nasopharynx. A range of anaerobic and aerobic bacteria, fungi and viruses have been isolated from these
96 gangrenous lesions, indicating that most involve mixed infections (Sáez et al., 2003; Azizi et al., 2013). In
97 a survey developed by Lacasta et al. (2019), which involved 195 culled sheep, *Trueperella pyogenes*,
98 *Pasteurella multocida* and *Mycoplasma ovipneumoniae* were the most frequently isolated microorganism
99 from gangrenous pneumonias. Pyogenic bacteria are usually isolated from these lesions, such as
100 *Streptococcus* or *Trueperella pyogenes* which are ubiquitous inhabitants of oropharynx, upper respiratory
101 and gastrointestinal tracts of animals (Rissetti et al., 2017). *Trueperella pyogenes* has been frequently
102 isolated from suppurative lungs or abscesses from sheep (Ribeiro et al., 2015; Rissetti et al., 2017), in
103 which *plo* gene was detected promoting haemolysis, cytolysis of immune cells and tissue damage, being
104 considered the major virulence factor of *T. pyogenes* (Rissetti et al., 2017). *Fusobacterium necrophorum*
105 has also been isolated from pneumonic lungs of Bighorn sheep with suppurative and necrotic lesions
106 (Shauthalingam et al., 2016).

107 Clinical signs often appear within a week or two following an intervention, including oral
108 anthelmintic or dip bath treatments, although initially, an association with the intervention may not be
109 readily apparent. Affected sheep separate from the mob, displaying inappetence, appear to be in pain,

110 showing antalgic position and depressed. The rectal temperature can be as high as 41.5°C (Biescas et al.,
111 2009). Respiratory signs may include coughing, dyspnea, rales when the process progresses sufficiently,
112 abnormal breath odour can be detected suggestive of the necrotizing exudates occurring in gangrenous
113 pneumonia (Ménsua et al., 2003; Biescas et al., 2009; Pugh and Baird, 2012). As auscultation and clinical
114 examination not always lead to a proper diagnosis, ancillary tests as ultrasonography or X-ray will
115 become very useful tools. An X-ray shows a mixed pattern (alveolar and interstitial) where the lesion is
116 located. Affected areas present loss of opacity that sometimes can be mistaken for emphysema, although
117 usually the lesion is surrounded by clear border (Castells et al., 2019). Ultrasound images are clear,
118 offering different hyperechogenic foci in all the affected area depending on the material inside the lesion
119 (Castells et al., 2019).

120 At necropsy, necrotizing lesions usually distributed in anteroventral lung lobes and usually
121 involving bronchi, bronchioles and occasionally causing pleuritis, are characteristic of gangrenous
122 pneumonia. The lesions are usually accompanied by accumulation of a foul-smelling brown to grey
123 exudate (Biescas et al., 2009). Further, gangrenous pneumonia frequently leads to AA amyloid deposition
124 in gastrointestinal tract and kidneys triggering a renal amyloidosis easy to diagnose macroscopically
125 (Ménsua et al., 2003; Biescas et al., 2009).

126 Although laboratory analyses are not normally necessary to diagnose a gangrenous pneumonia,
127 aetiological analysis can be performed in order to know the microorganisms implicated. Bronchoalveolar
128 lavages enable examination of exudates from live animals, assisting choice of therapy. Increases in serum
129 gamma globulins in response to the chronic infectious process that promotes antigenic stimulation were
130 demonstrated in experimental infections (Biescas et al., 2009). Other findings reported by these authors
131 were the decrease in serum albumin, cholesterol and calcium levels and alterations in urinary parameters
132 due to renal amyloidosis induced by the chronic infection (Biescas et al., 2009).

133 **If therapy is possible, results of antibiotic susceptibility tests performed on exudate samples can**
134 **guide the choice of antimicrobial agent to administer. In addition, imaging techniques (X-ray and**
135 **ultrasound) may assist in determining the degree of extension of the lung lesion and, consequently, the**
136 **prognosis. Equally, if it is known that a sheep has inhaled a foreign body, treatment should commence**
137 **immediately, prior to the onset of respiratory signs.** Therefore, in early cases, treatment should be carried
138 out based on β -lactam antibiotics, during at least seven days, associated with nonsteroidal anti-
139 inflammatory drugs (NSAIDs) at the first days of the therapeutic protocol to improve the breathing
140 condition (Scott, 2017). If aspiration or regurgitation occurs during anaesthesia and before intubation of
141 animal can be completed, a bronchodilator such as aminophylline should be administered to relieve
142 bronchospasm (Pugh and Baird, 2012). **Despite the treatments and efforts to treat this disease, the**
143 **prognosis is very poor (mainly at chronic phase) and many animals die or must be euthanized, then efforts**
144 **must be directed to prevention.** Prevention against this disease requires that risk factors for aspiration are
145 addressed, particularly the risks from inappropriate administration of oral therapies and antiparasitic
146 baths.

147

148 **3. Ovine Respiratory Complex in adult sheep**

149

150 The major bacterial respiratory processes affecting adult sheep was traditionally described as
151 "pasteurellosis" reflecting that bacteria from the family *Pasteurellaceae* were predominantly involved.
152 Other names associated with this disease are enzootic pneumonia or atypical pneumonia. However, these
153 are names related only to the pneumonic presentation, but not to the systemic form of the disease. In our
154 opinion, similarities of adult "pasteurellosis" with the ovine respiratory complex in lambs suggests that
155 the disease be described as well as ovine respiratory complex (ORC). As in ORC in lambs, this
156 respiratory disorder in adults reflects a complex disease process involving a range of host-pathogen-
157 environment interactions (HPE), where host immunological and physiological mechanisms (host),
158 interact with multiple etiological agents including bacteria (pathogen), plus environmental factors or
159 stressors (environment). Environmental factors have proven to be key in the development of this
160 pathology, so the influence of climatic factors and the facilities where animals are housed has been widely
161 reported (Lacasta et al., 2008; Navarro et al., 2019b). Although the clinical presentation and severity of
162 the disease may differ with ORC in lambs, the distribution of lesions at necropsy are similar, reflecting
163 common disease mechanisms. Hyperacute or peracute lesions are often characterized by hemorrhages.
164 Acute and subacute forms are characterized by varying degrees of lung consolidation from the exudates
165 produced, including pus causing suppurative or catharral pneumonia or fibrin causing fibrinous
166 pneumonia. Chronic pneumonias reflect the onset of fibrous tissue, increasing the severity of
167 consolidation. Description of the clinical presentations of ORC can be found in González et al. 2019a of
168 this special issue.

169 In a survey developed at the greatest dairy sheep farm in Spain, the ovine respiratory complex was
170 the 2nd most frequent reason of death, following by reproductive disorders, and in another study carried
171 out in a large meat-production flock managed under the semi-extensive system ORC was the first cause
172 of death in both adult animals and replacement (Lacasta et al., 2019).

173 In a study conducted on 3,673 necropsied animals (786 milking lambs, 2,730 feedlot lambs, 94
174 replacement animals and 63 adult sheep), differences among the groups in the type of ORC clinical
175 presentation were observed in the analyzed animals (Figure 2). The most frequent presentation that
176 caused the death in the youngest animals was the acute form of ORC, while adult animals primarily died
177 of hyperacute ORC. In adults, very often, hyperacute form of ORC is the final cause of death after the
178 animal has undergone another process. When the immune system is comprised, etiological agents of ORC
179 can cause the rapid death of the animal. Chronic forms of the disease are responsible for an early culling
180 of sheep. In a survey carried out on 195 culling sheep, 60% of the animals showed some pattern of lung
181 lesion (Lacasta et al., 2019).

182 Clinical signs of the hyperacute form of ORC are those related to a septicemic process with sudden
183 deaths or non-specific clinical symptoms as fever, anorexia and depression. The clinical signs in the acute

184 form are dullness, anorexia, pyrexia and varying degrees of hyperpnoea or dyspnea with respiratory
185 pathological sounds as rhonchus and crackles. Finally, the symptoms of the chronic form are similar to
186 those other chronic diseases that affect the respiratory tract in adult sheep and that involve productive-like
187 lesions such as ovine pulmonary adenocarcinoma (OPA) or gangrenous pneumonia with severe dyspnea
188 accompanied with rhonchus, crackles and wheezing. Advanced OPA can be distinguished with the
189 “wheelbarrow test”, even sometimes, when the animal lowers the head during feeding, clear frothy fluid
190 may flow freely from both nostrils. However, the only difference in clinical signs of ORC from
191 gangrenous pneumonia is the presence of malodorous breath in the latter disorder. An accurate clinical
192 diagnosis of ORC usually requires that ancillary tests including ultrasonography of the lung (Scott, 2010)
193 or bronchoalveolar lavages to identify the microorganisms involved (Rowe et al., 2001) are performed. In
194 an outbreak, necropsies with sample collection and microbiological analysis is required.

195 As in lambs, several infectious agents have been associated with ORC, the more important being:
196 *Mannheimia haemolytica*, *Pasteurella multocida*, *Bibersteinia trehalosi* and *Mycoplasma* spp., usually,
197 found mixed in the isolates with more than one bacteria species implicated (Miller et al., 2011).
198 Moreover, most of these bacteria exist as commensal organisms of the nasopharynx, tonsil and lungs of
199 healthy sheep (Glendinning et al., 2016) and under certain circumstances can produce disease. For that
200 reason, etiological diagnosis is essential for the control of ORC.

201 As described, treatment of ORC can be complicated by the range of pathogens including bacterial
202 serotypes involved, however, several treatments can be advisable on the use of β -lactams and NSAIDs
203 (eg. Flunixin) that may play a very important role in the acute condition of avoiding death due to intense
204 pulmonary edema resulting from inflammation. **However, the treatment of chronic cases is less advisable**
205 **since very long treatments would be necessary to obtain an appropriate degree of healing.**

206 Prevention is important for controlling the disease and is based on optimal management of the
207 animals and facilities to avoid or at least minimize the risk factors causing stress, improving animal
208 welfare, as it has been extensively explained in other article of this special issue (González et al., 2019b). In
209 outbreaks, vaccination plans could be implemented or at least considered for the flock at risk of ORC.
210

211 **4. Pseudotuberculosis or caseous lymphadenitis (visceral form)**

212
213 Caseous lymphadenitis (CLA) is caused by *Corynebacterium pseudotuberculosis* and can present
214 as either the superficial form characterized by abscess development in superficial lymph nodes, or the
215 visceral form affecting internal lymph nodes and organs, mostly observed in adults (Fontaine and Baird,
216 2008). CLA is common in sheep and distributed worldwide, causing important economic losses (Fontaine
217 and Baird, 2008; Windsor and Bush, 2016). In countries where there is minimal vaccination, the losses
218 may include costs of managing clinical cases, although where the clinical disease is largely controlled by
219 vaccination, the losses mostly occur at abattoirs from carcass condemnations (Windsor, 2014). Several
220 surveys have confirmed the importance of CLA, including a study of CLA prevalence in 485 culled sheep

221 where the prevalence of animals with abscesses of any etiology was 36% compared to 21% for confirmed
222 CLA (Arsenault et al., 2003). A more recent abattoir survey of over 692 sheep concluded that the
223 prevalence of CLA, based on gross and bacteriological examination, was 32.65% (Al-Gaabary et al.,
224 2010).

225 The previously report study of 485 culled sheep, found 70% of culled sheep with CLA had
226 abscesses in the thoracic cavity, 26% in external sites (head, neck and shoulder) and 25% in the
227 abdominal cavity (Arsenault et al., 2003). In a study by our research group of over 132 culled sheep with
228 an average age of 5.2 years, we identified that 32% of the animals had CLA lesions, of which 70% had
229 the visceral form of the disease, with 80.9% having lesions in the thoracic cavity. CLA was the only cause
230 of culling in 47% of these animals. The mediastinal lymph node was the most commonly affected lymph
231 node, identified in 57.1% of the animals although as a single lesion in 48.0% of these (Figure 3). Lesions
232 involving the lung parenchyma resembling abscesses caused by *C. pseudotuberculosis* were observed in a
233 23.8% of the affected animals, with 19.0% occurring as a single lesion (Navarro et al., 2015).
234 Consideration of the high rate of CLA lesions in the thoracic cavity, including either mediastinal lymph
235 node and/or lung parenchyma and usually producing respiratory clinical signs, the inclusion of CLA in
236 this review of respiratory disorders is justified (Figure 4), particularly as these lesions are the source of
237 the aerosol that is considered of relevance to the mode of transmission of the disorder (Windsor, 2011).
238 This respiratory route for the transmission of *C. pseudotuberculosis* infection from infected animals with
239 pulmonary lesions presenting as the major source of exposure to naïve animals within a flock is well
240 recognised (Pepin et al., 1999; Williamson, 2001; Fontaine and Baird, 2008). That pulmonary lesions
241 occurring within the walls of airways may rupture resulting in local exudation and the production of an
242 infectious aerosol is supported by the isolation of infectious organisms from the tracheas of the infected
243 sheep (Pepin et al., 1999; Fontaine and Baird, 2008; Windsor, 2011).

244 The control of CLA is assisted by a confirmed diagnosis of the disease although this is still a matter
245 of intense research (Oreiby, 2015; De la Fuente et al., 2017). Clinical lesions suggestive of the superficial
246 form of CLA may be confirmed by microbiological analysis. Visceral lesions are more difficult to detect
247 clinically, unless the animal with respiratory lesions is coughing. Progressive weight loss and chronic
248 recurrent ruminal tympanism may also accompany visceral CLA lesions (Oreiby, 2015). Microbiological
249 confirmation of the visceral form in live animals is challenging, although isolation of *C. pseudotuberculosis* from respiratory exudates and/or urine are indicative of respiratory or renal lesions,
250 respectively (Ferrer et al., 2009). However, respiratory clinical signs associated with CLA are often not
251 readily recognized, particularly if only dyspnoea is detected without audible sounds of thoracic cavity
252 pathology, as occurs when the content of abscesses is encapsulated. Diagnostic imaging techniques assist
253 confirmation of the visceral form of the disease, with isolation of *C. pseudotuberculosis* at necropsies
254 enhancing diagnostic investigations. Although the etiological diagnosis of the disease would be advisable,
255 absence of a confirmed bacteriological diagnosis should not preclude implementation of strategic control
256 by vaccination where the pathological evidence is considered sufficiently diagnostic.

258 In countries where CLA vaccination is not available, control of the disease may require
259 identification of the infected animals to prevent their contact with the uninfected ones, which usually
260 means that serologic testing is required (Windsor, 2011), although autologous vaccines can be considered.
261 Serological tests, particularly those detecting humoral responses, have specificity and/or sensitivity
262 deficiencies and consequently, repetitive serological monitoring is a preferred option than applying a
263 single testing policy for diagnosis and control of CLA in sheep and goat flocks (Oreiby, 2015). Moreover,
264 CLA can be diagnosed by blood and milk gamma interferon assay (Oreiby and Hegazi, 2016).

265 The preferred strategy to control CLA is routine and persistent vaccination of healthy sheep in a
266 population, coupled with culling of infected animals (Windsor, 2011). As with many vaccination
267 programs, the currently licensed vaccines suppress the disease rather than conferring complete protection
268 of immunized animals, so CLA will persists despite routine vaccinations (Lacasta et al., 2015; Windsor
269 and Bush, 2016). However, vaccination schedules should be implemented to reduce the numbers of
270 infected animals and the prevalence of the disease into the flock, with efficacy of the vaccination plan
271 dependent on the vaccination programme used (Windsor, 2011; Windsor, 2014).

273 **4. Concluding remarks**

274

275 The lower respiratory tract pathology in sheep is very common and has great diagnostic difficulty
276 due to the high number of pathological processes that settle at this level, all causing a very similar clinical
277 symptomatology. ORC and gangrenous pneumonia are both disorders that have to be included in the
278 differential diagnosis of productive processes, along with the ovine pulmonary adenocarcinoma.
279 However, caseous lymphadenitis, as it does not produce productive clinical signs, should be added to the
280 differential diagnosis of non-productive processes, such as interstitial pneumonia associated with Maedi
281 Visna virus.

284 **Conflict of interest statement**

285

286 The authors have nothing to disclose.

289 **References**

290

291 Al-Gaabary, M.H., Osman, S.A., Ahmed, M.S., Oreiby, A.F., 2010. Abattoir survey on caseous lymphadenitis
292 in sheep and goats in Tanta, Egypt. Small Rumin. Res. 94, 117-124.

293 Antoniassi N.A., Pavarini S.P., Henzel A., Flores E.F., Driemeier D. 2010. Aspiration pneumonia associated
294 with oesophageal myonecrosis in sheep due to BTV infection in Brazil. *Vet Rec.* 9, 166(2), 52-3.

295 Arsenault, J., Girard, C., Dubreuil, P., Daignault, D., Galarneau, J.R., Boisclair, J., Simard, C., Belanger, D.,
296 2003. Prevalence of and carcass condemnation from maedi-visna, paratuberculosis and caseous
297 lymphadenitis in culled sheep from Quebec, Canada. *Prev. Vet. Med.* 59, 67-81.

298 Azizi, S., Korani, F.S., Oryan, A., 2013. Pneumonia in slaughtered sheep in south-western Iran: pathological
299 characteristics and aerobic bacterial aetiology. *Vet. Ital.* 49, 109-118.

300 Biescas E., Jirón W., Climent S., Fernández A., Pérez M., Weiss D.T., Solomon A., Juján L. 2009. AA
301 Amyloidosis induced in sheep principally affects the gastrointestinal tract. *J. Comp. Pathol.* 140, 238-
302 246.

303 Blowey R.W., Weaver A.D. 2011. Color atlas of diseases and disorders of cattle. Mosby Elsevier. 3º edi. UK.

304 Castells, E., Lacasta, D., Climent, M., Pérez, M., Sanroman, F., Jiménez, C., Ferrer, L.M., 2019. Diagnostic
305 imaging techniques of the respiratory tract of sheep. *Small Rumin. Res.* **THIS ISSUE**

306 Darcy, H.P., Humm, K., ter Haar, G. 2018. Retrospective analysis of incidence, clinical features, potential risk
307 factors, and prognostic indicators for aspiration pneumonia in three brachycephalic dog breeds.
308 *JAVMA* 253(7), 869-876.

309 De la Fuente, F., De las Heras, M., Torrijos, C., Diez de Tejada, P., Pérez-Sancho, M., Carrión, F.J., Orden,
310 J.A., Domínguez-Bernal G. 2017. Isolation frequency of bacteria causing lymphadenitis and abscesses in small
311 ruminants in central Spain. *Small. Rum. Res.* 154, 5-8.

312 De las Heras, M., Ortín, A., Borobia, M., Navarro, T., 2019. Enzootic nasal adenocarcinoma in sheep. An
313 update. *Small Rumin. Res.* **THIS ISSUE**

314 Ferré, I. and Sotiraki, S., 2019. Lungworms of sheep. *Small Rumin. Res.* **THIS ISSUE**

315 Ferrer, L.M., Lacasta, D., Chacon, G., Ramos, J.J., Villa, A., Gomez, P., Latre, M.V., 2009. Clinical diagnosis
316 of visceral caseous lymphadenitis in a Salz ewe. *Small Rumin. Res.* 87, 126-127.

317 Fontaine, M.C., Baird, G.J., 2008. Caseous lymphadenitis. *Small Rumin. Res.* 76, 42-48.

318 Gracia, M.J., Ruíz de Arcaute, M., Ferrer, L.M., Ramo, M., Jimenez, C., Figueras, L., 2019. Oestrosis:
319 parasitism by *Oestrus ovis*. *Small Rumin. Res.* **THIS ISSUE**

320 Glendinning, L., Wright, S., Pollock, J., Tennant, P., Collie, D., McLachlan, G., 2016. Variability of the Sheep
321 Lung Microbiota. *Appl. Environ. Microb.* 82, 3225-3238.

322 González, J.M., Navarro, T., Lacasta, D., Ramos, J.J., Ferrer, L.M., De las Heras, M., 2019a. Pathology and
323 etiology of ovine respiratory complex in lambs. *Small Rumin. Res.* **THIS ISSUE**

324 González, J.M., Navarro, T., Lacasta, D., Ramos, J.J., Ferrer, L.M., Vasileiou, N.G.C., De las Heras, M.,
325 2019b. Prevention of ovine respiratory complex in lambs based on vaccination. *Small Rumin. Res.*
326 **THIS ISSUE**.

327 Lacasta, D., Ferrer, L.M., Ramos, J.J., González, J.M., De las Heras, M. 2008. Influence of climatic factors on
328 the development of pneumonia in lambs. *Small Rumin. Res.* 80, 28-32.

329 Lacasta, D., Ferrer, L.M., Ramos, J.J., González, J.M., Ortín, A., Fthenakis, G.C., 2015. Vaccination schedules
330 in small ruminant farms. *Vet. Microbiol.* 181, 34-46.

331 Lacasta, D., González, J.M., Navarro, T., Valero, M., Saura, F., Ramos, J.J., Ferrer, L.M., Ortín, A., Jiménez,
332 C., 2016. Respiratory diseases affecting adult sheep in Spain. Relationship between auscultation and

333 lung lesion. Proceedings of the Deutsche Veterinärmedizinische Gesellschaft and ECSRHM annual
334 congress, Freibourg, Germany.

335 Lacasta, D.; González, J.M.; Navarro, T.; Saura, F.; Acín, C.; Vasileiou N.G.C. 2019. Significance of the
336 respiratory diseases in the health management of sheep. Small Rumin. Res. **THIS ISSUE**

337 Luján, L.; Pérez, M.; De Andrés, D.; Reina, R. 2019. Lentivirus infections in small ruminants. Small Rumin.
338 Res. **THIS ISSUE**

339 Mearns R. 2009b. Post mortem examination of lambs aged between 1 and 12 months. UK Vet: Livestock, 14:
340 43-48.

341 Ménsua C., Carrasco L., Bautista M.J., Biescas E., Fernández A., Murphy C.L., Weiss D.T., Solomon A.,
342 Luján L. 2003. Pathology of AA amyloidosis in domestic sheep and goats. Vet. Pathol. 40, 71-80.

343 Miller, D.S., Weiser, G.C., Ward, A.C.S., Drew, M.L., Chapman, P.L., 2011. Domestic sheep (*Ovis aries*)
344 Pasteurellaceae isolates from diagnostic submissions to the Caine Veterinary Teaching Center (1990-
345 2004). Vet. Microbiol. 150, 284-288.

346 Navarro, T.; Ferrer, L.M.; Ramos, J.J.; Lacasta, D.; Bueso, J.P.; González, J.M.; Catalán, E. 2015.
347 Pseudotuberculosis: ¿acorta la vida productiva de nuestras ovejas? Hoja divulgativa Zoetis. Marzo 2015

348 Navarro, T.; Ramos, J.J.; Figueras, L.; González, J.M. 2019a. Epidemiology of ovine respiratory complex in
349 lambs. Small Rumin. Res. **THIS ISSUE**

350 Navarro, T.; Ramos, J.J.; Ruíz de Arcaute, M.; González, J.M. 2019b. Predisposing factors inducing ovine
351 respiratory complex in lambs. Small Rumin. Res. **THIS ISSUE**

352 Oreiby, A.F., 2015. Diagnosis of caseous lymphadenitis in sheep and goat. Small Rumin. Res. 123, 160-166.

353 Oreiby, A.F. and Hegazi, Y.M. 2016. Diagnosis of ovine caseous lymphadenitis by blood and milk gamma
354 interferon assays. Small Rum. Res. 144: 109-112.

355 Ortín, A.; De las Heras, M.; Borobia, M.; Ramo, M.; Ortega, M.; Ruíz de Arcaute, M. 2019. Ovine pulmonary
356 adenocarcinoma: a transmissible lung cancer of sheep, difficult to control. Small Rumin. Res. **THIS**
357 **ISSUE**

358 Pepin, M., Sanchis, R., Paton, M., 1999. Caseous lymphadenitis in sheep and goats. Point Vet. 30, 33-40.

359 Pugh D.G., Baird A.N. 2012. Sheep and goat medicine. 2º edi. Elsevier, Missouri, USA

360 Ribeiro M.G., Rosseti R.M., Bolaños C.A.D., et al. 2015. *Trueperella pyogenes* multispecies infection in
361 domestic animals: a retrospective study of 144 cases (2002 to 2012). Vet. Quart. 35, (2), 82-87.

362 Rissetti R.M., Zastempowska E., Twaruzek M., et al. 2017. Virulence markers associated with *Trueperella*
363 *pyogenes* infections in livestock and companion animals. Letter in Appl. Microbiol. 65, 125-132.

364 Rowe, H.A., Poxton, I.R., Donachie, W., 2001. Survival of *Mannheimia* (*Pasteurella*) *haemolytica* in
365 tracheobronchial washings of sheep and cattle. Vet. Microbiol. 81, 305-314.

366 Rubira, I.; Figueras, L.; De las Heras, M.; Bueso, J.P.; Castells, E.; Climent, M.; Lacasta, D. 2019. Chronic
367 proliferative rhinitis in sheep Is its relevance increasing?. Small Rumin. Res. **THIS ISSUE**

368 Sáez T., Ramos J.J., García de Jalón, J.A., Unzueta A., Loste A. 2003. Laryngeal hemiplegia in a ram
369 associated with *Sarcocystis* species infection. Vet. Rec. 153, 27-28.

370 Scott, P.R. 2010. Lung auscultation recording from normal sheep and from sheep with well-defined respiratory
371 tract pathology. Small Rumin. Res. 92 (2010) 104-107.

372 Scott P.R. 2017. Overview of aspiration pneumonia. MSD Veterinary Manual. In:
373 <http://www.msdbvetmanual.com/respiratory-system/aspiration-pneumonia/overview-of-aspiration-pneumonia>. [consulted 2017.09.02].

375 Suárez, V.H. and Busetti, M.R., 2009. Health management practices and disease prevalence in dairy sheep
376 systems in Argentina. *Pesq. Vet. Bras.* 29(11), 931-937.

377 Shauthalingam S., Narayanan S., Batra S.A., Jegrube B., Srikumaran S. 2016. *Fusobacterium necrophorum* in
378 North American Bighorn (*Ovis canadensis*) pneumonia. *J. Wildlife Dis.* 53, (3), 616-620.

379 Viall A.K., Larios Mora A., Brewer M.T., Smith J.S., Kreuder A.J., Breuer R.M., Fales-Williams A.J. 2018.
380 What is your diagnosis? Nasal discharge from a sheep. *Vet. Clin. Pathol.* 47(3):503-504.

381 Williamson, L.H., 2001. Caseous lymphadenitis in small ruminants. *Vet. Clin. N. Am-food A.* 17, 359-+.

382 Windsor, P.A., 2011. Control of Caseous Lymphadenitis. *Vet. Clin. N. Am-food A.* 27, 193-+.

383 Windsor, P.A., 2014. Managing control programs for ovine caseous lymphadenitis and paratuberculosis in
384 Australia, and the need for persistent vaccination *Vet. Med.: Research and Reports* 2014:5 11-22.

385 Windsor, P.A., Bush, R.D., 2016. Caseous lymphadenitis: Present and near forgotten from persistent
386 vaccination? *Small Rumin. Res.* 142, 6-10.

387

388

389

390 **Figure legends**

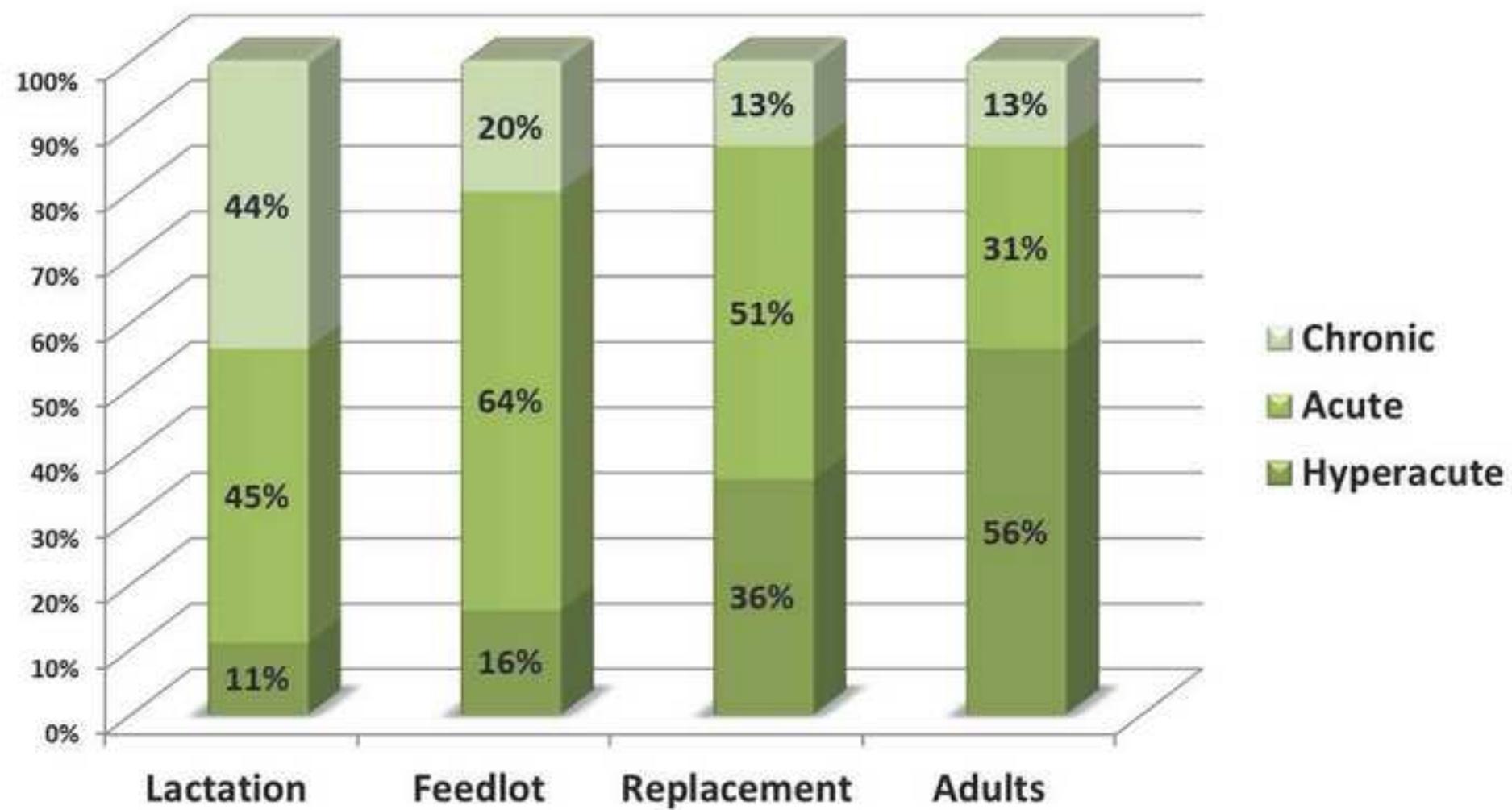
391

392 **Figure 1.** Vegetable material causing gangrenous pneumonia is shown inside the lesion. The lesions
393 comprised foci of pulmonary necrosis with accumulation of a foul-smelling exudate with an associated
394 pleuritis.

395

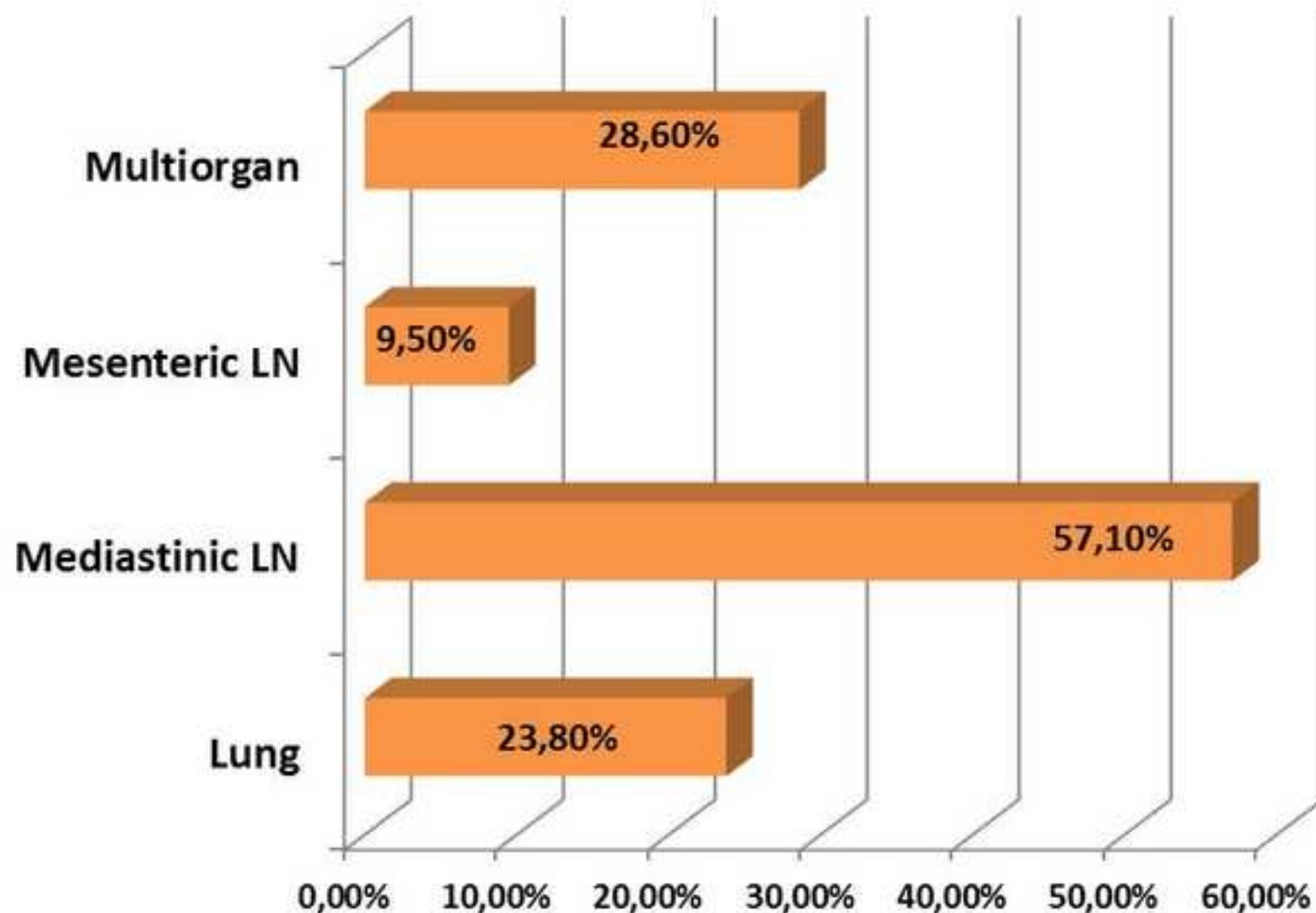
396 **Figure 2.** Hyperacute, acute and chronic clinical presentation of ovine respiratory complex in 3,673
397 necropsied animals: lactation, feedlot, replacement and adults. (Original research without publishing).

398

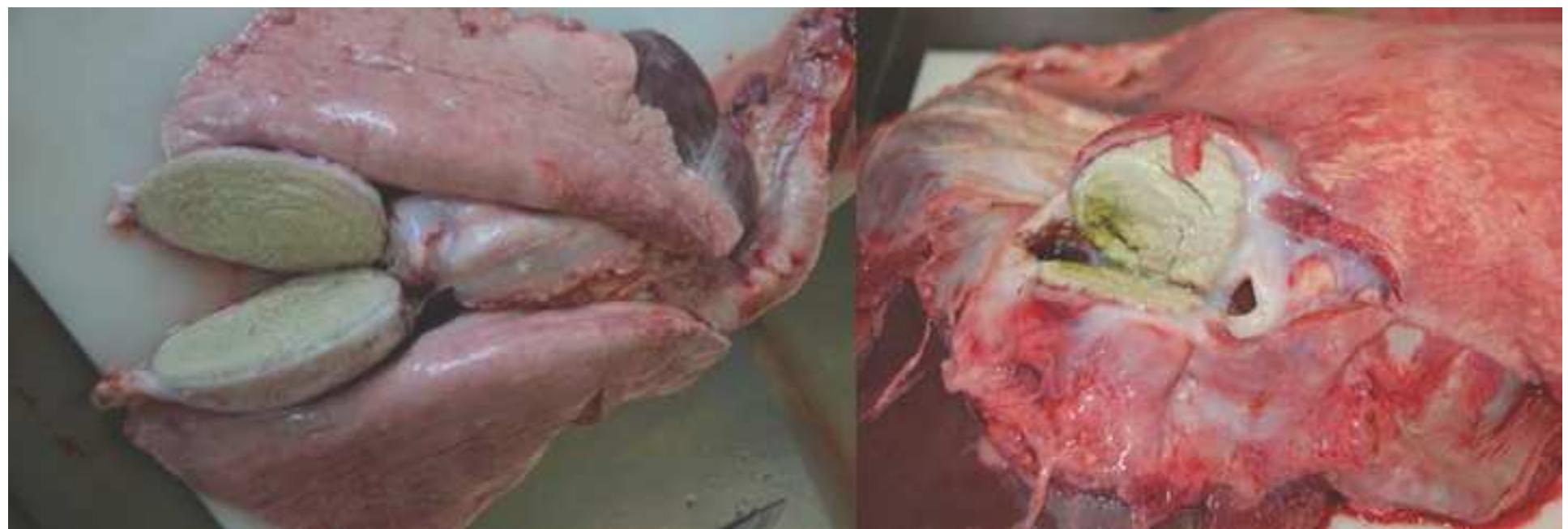

399 **Figure 3.** Location of the lesions in the visceral form of caseous lymphadenitis in 485 culled sheep
400 (multiorgan presentation, mesenteric lymphnode, mediastinal lymphnode and lung parenchyma).

401

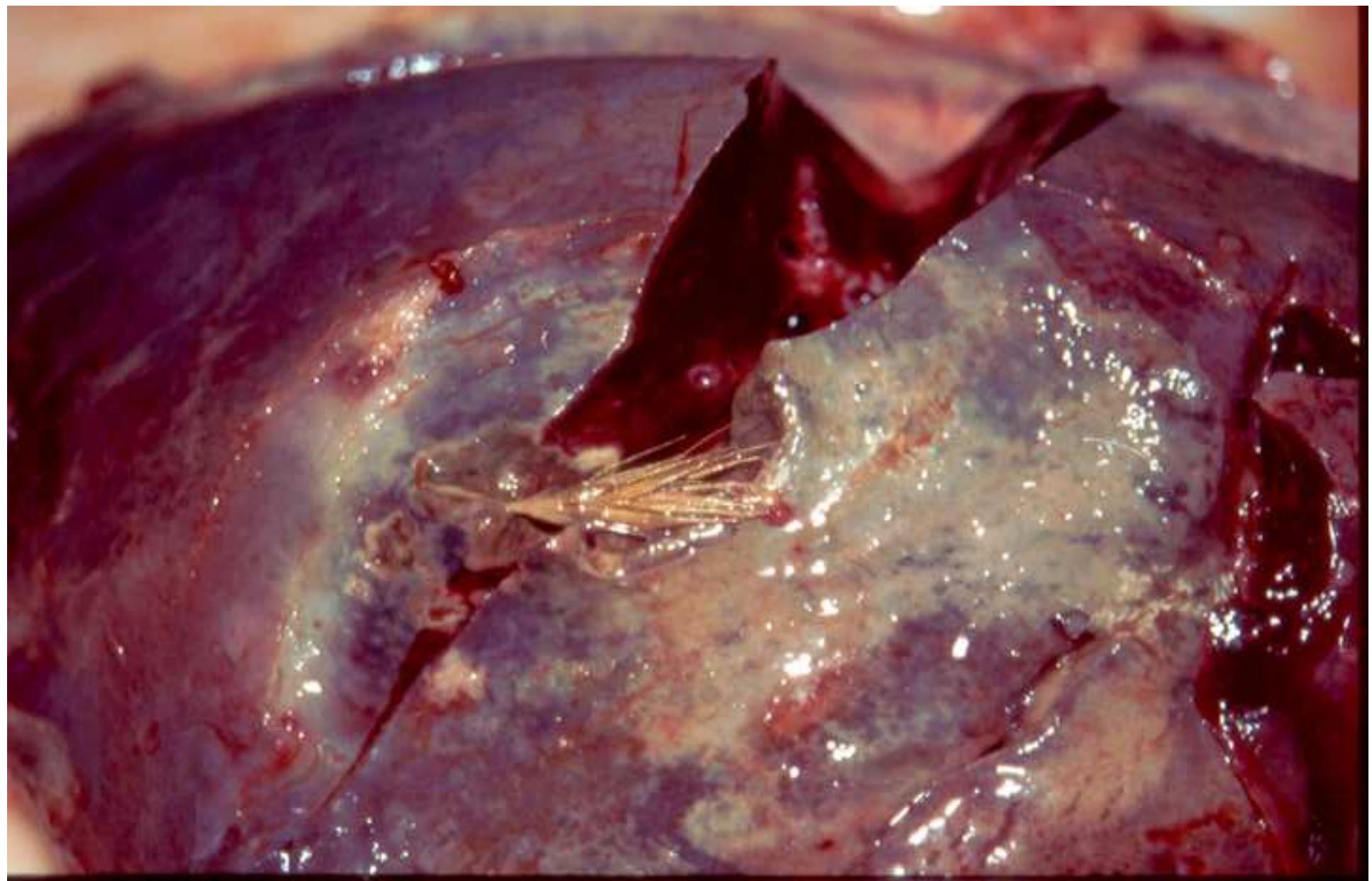
402 **Figure 4.** Gross view of a sheep lung. (A) Mediastinal lymph node affected by caseous lymphadenitis.
403 (B) CLA pyogranuloma within the parenchyma.


Figure

[Click here to download high resolution image](#)


Figure

[Click here to download high resolution image](#)


Figure

[Click here to download high resolution image](#)

Figure

[Click here to download high resolution image](#)

Delia Lacasta

Animal Pathology Department

Veterinary Faculty of Zaragoza (Spain)

Conflict of interest statement

The authors have nothing to disclose.

Delia Lacasta

Corresponding author