000165524 001__ 165524
000165524 005__ 20260113221443.0
000165524 0247_ $$2doi$$a10.14232/ejqtde.2020.1.22
000165524 0248_ $$2sideral$$a117999
000165524 037__ $$aART-2020-117999
000165524 041__ $$aeng
000165524 100__ $$0(orcid)0000-0002-3698-6719$$aFerreira, C.$$uUniversidad de Zaragoza
000165524 245__ $$aAnalysis of singular one-dimensional linear boundary value problems using two-point taylor expansions
000165524 260__ $$c2020
000165524 5060_ $$aAccess copy available to the general public$$fUnrestricted
000165524 5203_ $$aWe consider the second-order linear differential equation (x2 - 1)y'' + f (x)y' + g(x)y = h(x) in the interval (-1, 1) with initial conditions or boundary conditions (Dirichlet, Neumann or mixed Dirichlet–Neumann). The functions f, g and h are analytic in a Cassini disk Dr with foci at x = ±1 containing the interval [-1, 1]. Then, the two end points of the interval may be regular singular points of the differential equation. The two-point Taylor expansion of the solution y(x) at the end points ±1 is used to study the space of analytic solutions in Dr of the differential equation, and to give a criterion for the existence and uniqueness of analytic solutions of the boundary value problem. This method is constructive and provides the two-point Taylor appro-ximation of the analytic solutions when they exist.
000165524 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/E24-17R$$9info:eu-repo/grantAgreement/ES/MINECO/MTM2017-83490-P
000165524 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
000165524 590__ $$a1.874$$b2020
000165524 591__ $$aMATHEMATICS$$b44 / 330 = 0.133$$c2020$$dQ1$$eT1
000165524 591__ $$aMATHEMATICS, APPLIED$$b85 / 265 = 0.321$$c2020$$dQ2$$eT1
000165524 592__ $$a0.524$$b2020
000165524 593__ $$aApplied Mathematics$$c2020$$dQ2
000165524 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000165524 700__ $$aLópez, J.L.
000165524 700__ $$0(orcid)0000-0002-8021-2745$$aPerez Sinusía, E.$$uUniversidad de Zaragoza
000165524 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000165524 773__ $$g22 (2020), [21 pp.]$$pElectronic Journal of Qualitative Theory of Differential Equations$$tElectronic Journal of Qualitative Theory of Differential Equations$$x1417-3875
000165524 8564_ $$s183333$$uhttps://zaguan.unizar.es/record/165524/files/texto_completo.pdf$$yPostprint
000165524 8564_ $$s1725584$$uhttps://zaguan.unizar.es/record/165524/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000165524 909CO $$ooai:zaguan.unizar.es:165524$$particulos$$pdriver
000165524 951__ $$a2026-01-13-22:10:31
000165524 980__ $$aARTICLE