
Counting Time Temporal Logic for
Multi-Robot Path Planning in Finite Horizons

Peng Lv, Student Member, Shaoyuan Li, Senior Member, Cristian Mahulea, Senior Member, Bruno Denis,
Gregory Faraut, Member, and Xiang Yin, Member

Abstract—In this paper, we consider multi-robot path planning
problems for high-level tasks with a finite horizon. In many
situations, there is a need to count how many times a sub-task is
satisfied in order to achieve the overall task. However, existing
temporal logic languages, such as linear temporal logic, is not
efficient in describing such requirements. To address this issue,
we propose a new temporal logic language called Counting Time
Temporal Logic (CTTL) that extends linear temporal logic by
explicitly counting the number of times that some tasks are
satisfied. To solve the CTTL path planning problem, we propose
an efficient integer linear programming-based method to encode
task satisfaction. We show that our approach is both sound and
complete, while achieving higher efficiency than direct encodings
of such requirements. Moreover, we study several variants of the
problem. To validate our results, we present several numerical
experiments to show the scalability of the proposed approach
and a simulation case study of a team of autonomous robots to
illustrate the feasibility of the synthesis procedure. Finally, to
evaluate the real-world feasibility of our method, we conduct a
hardware experiment with two Turtlebot3-Burger mobile robots.

Note to Pracitioners—This work is motivated by a class of task
planning problems in which the completion of the overall task
depends on the number of times certain sub-tasks are completed.
However, the existing approaches does not offer an convenient
way to describe such requirements. To address this challenge, this
paper proposes a new method to count how many times a task is
satisfied. We extend the existing linear temporal logic framework
by adding a counting operator, which not only facilitates the
expression of the counting requirements but also preserves
the ability to describe all tasks that can be expressed by the
original framework. We propose an integer linear programming
(ILP) method to solve the planning problem and provide a
comprehensive process for translating the problem into an ILP
formulation. The experimental results have demonstrated the
superiority of the proposed algorithm compared with the existing
methods.

Index Terms—Counting time temporal logic, multi-robot path
planning, integer linear programming

This work was supported by the National Natural Science Foundation of
China (62573291,62173226); by the Science Center Program of National
Natural Science Foundation of China under Grant 62188101; and by the ONR
Global grant N62909-24-1-2081, and by PID2024-159284NB-I00 funded by
MCIN/AEI/10.13039/501100011033, by ERDF “A way of making Europe”,
the European Union NextGenerationEU/PRTR, and DGA T64-23R. (Corre-
sponding Author: Xiang Yin)

Peng Lv, Shaoyuan Li and Xiang Yin are with School of Automation and
Intelligent Sensing, Shanghai Jiao Tong University, Shanghai 200240, China.
{lv-peng,syli,yinxiang}@sjtu.edu.cn.

Bruno Denis and Gregory Faraut are with University
Research Laboratory in Automated Production, ENS Paris-
Saclay, University of Paris-Saclay, Paris 91190, France.
{bruno.denis,gregory.faraut}@ens-paris-saclay.fr.

Cristian Mahulea is with Department of Computer Science and
Systems Engineering, University of Zaragoza, Zaragoza 50018, Spain.
cmahulea@unizar.es.

I. INTRODUCTION

Multi-robot systems have found widespread applications in
various fields, including data gathering [14], manufacturing
systems [20], autonomous warehouses [1], [2], [12], [35],
and environmental surveillance [26], [33]. Traditionally, al-
gorithms for multi-robot coordination problems have focused
on synthesizing a trajectory for each robot to meet low-
level task requirements, such as obstacle avoidance or target
reaching [29], [39]. However, with the rapid development
of cyber-physical systems (CPS), many studies have focused
on developing algorithms to solve high-level complex tasks
in multi-robot systems. These studies often involve formal
methods, such as temporal logic, to specify task requirements
and ensure correct and efficient coordination among robots
[11], [18], [21], [38].

The desired high-level requirements in multi-robot path
planning problem can be described using various temporal
logic languages. Linear temporal logic (LTL) is a widely used
formal language in robotics that provides a natural framework
to specify desired properties such as response, safety, liveness,
priority, and stability. Many works in multi-robot path planning
have utilized LTL as the specification language. For instance,
some researchers have focused on finding an optimal infinite
trajectory in prefix-suffix form that satisfies an LTL formula
[3]–[5], [8], [13], [28], [34], [36], [37], [40]. Others have
considered planning problems for probabilistic satisfaction of
LTL tasks under transition uncertainties [8], [15]. Additionally,
some researchers have used probabilistic computation tree
logic (PCTL) as an optimality metric to describe the task [23].
Controller synthesis problems for heterogeneous robots subject
to graph temporal logic specifications (GTL) have also been
studied [9]. To count the number of robots achieving a task,
robust trajectory planning for multi-robot systems is studied
under counting temporal logic (cLTL) [30]. However, most of
these works focus on path planning problems in an infinite
horizon, and the solving processes often depend on specific
structural properties of the solutions, such as the prefix-suffix
form trajectory.

In real-world planning problems, infinite paths are usually
not practical due to limited energy or time constraints. As
a result, considerable attention has been paid in the robotics
research community on finite-horizon task planning problems.
For instance, in [16], the authors proposed a mixed-integer
linear programming-based method to control swarm robots
to achieve specifications specified by spatial temporal logic
(SpaTeL). Moreover, in [24], the authors developed a task

batch planning decision tree plus based allocation framework
for heterogeneous multi-robot system under capability LTL
(CaLTLT). Additionally, in [10], a decentralized and proba-
bilistic algorithm is proposed to control robot teams moving
along graph nodes for finite-horizon planning for GTL. In
[22], the authors propose an approach to specify tasks and
synthesize optimal policies for Markov decision processes
under co-safe linear temporal logic (scLTL), which needs to
be satisfied within a finite horizon. Furthermore, in [6], a
general class of LTLf is proposed to describe a specification
for a finite trajectory, which interprets LTL over finite traces.
Based on this interpretation, [19] studies the finite planning
problem when the labeling function assigns a set of sets of
atomic propositions to each state with the specification being
described by LTLf formulas.

In the field of multi-robot path planning, one usually en-
counters the formal counting requirements in many applica-
tions. For example, the robots may have capacity constraints
such that tasks cannot be fulfilled one-time. Also, in man-
ufacturing systems, some production processes needs to be
repeated to enhance the quality. Furthermore, for surveillance
robots, sometimes they need to inspect some region certain
number of times. The common characteristic of these missions
is that the completion of the task depends on the frequency of
some sub-tasks’ completion. Unfortunately, current temporal
logic languages, such as LTL, do not offer an convenient way
to express these requirements. Therefore, the development of
new formal specifications is necessary, which should integrate
both temporal logic and counting constraints.

In this paper, we propose a new temporal logic called Count-
ing Time Temporal Logic (CTTL) to address the challenge
of efficiently handling tasks that require counting how many
times a sub-formula has been satisfied within a finite horizon.
CTTL introduces a new temporal operator called “k-until”,
which requires a sub-task to be satisfied for more than k times
before some condition holds. We then investigate the multi-
robot path planning problem using the proposed CTTL. Our
approach is to encode the dynamics of the robots and CTTL
specifications as integer constraints and propose an integer
linear programming (ILP)-based method to solve the problem.
Although the semantics of standard LTL can also express
such a requirement, our experimental results demonstrate that
the newly proposed ILP encoding method for CTTL is much
more efficient for the purpose of path planning. In summary,
the main contributions of our work as as follows. First, we
introduce a new operator Uk in CTTL, which provides a more
concise way to capture the counting requirements than the
linear temporal logic. Second, we provide a more efficient
ILP encoding method for the dynamics of the robot team and
the CTTL formula. Under this encoding framework, we can
solve the CTTL path planning problem efficiently.

The rest of the paper is organized as follows. Section II
propose the syntax and semantics of the CTTL, and formulate
the path planning problem. In Section III, we solve the path
planning problem based on an equivalent ILP problem. All
the experiment results are provided in Section IV, and we
conclude the paper in Section V. Part of this work has
been published on [25]. In this journal version, we provide

more technical details on the implementation of the ILP-based
method, Furthermore, two variants of the original problem are
investigated and we also conduct new hardware experiments
to evaluate the real-word feasibility of our algorithm.

II. PRELIMINARY AND PROBLEM FORMULATION

This section begins by introducing some basic definitions.
Then we present the new counting time temporal logic, Finally,
we present the problem formulation.

We use Z+ to denote the set of all positive integers. For
any Z ∈ Z+, we use [Z] to denote the set of all integers t
such that 1 ≤ t ≤ Z. Let S be a finite set. We denote by
|S| the cardinality of S and S∗ the set of all finite sequences
over S including the empty string ε. For any sequence ρ =
s(1)s(2)...s(n) ∈ S∗, we use |ρ| = n to denote the length of
ρ. Moreover, we use ρ(i) to denote the i-th element s(i). For
any matrix v, we use v′ to denote the transposition of v.

A. System Model
We first define the deterministic transition system (DTS) to

model the dynamics of robot.

Definition 1. A DTS T is a five-tuple T = (X,x1, E,Π, L),
where X is the set of all states, x1 is the initial state, E ⊆
X × X is the set of all edges, Π is the set of all atomic
propositions and L : X → 2Π is the labeling function.

A h-path in T with h ∈ Z+ is a finite sequence
ρ = x(1)x(2) · · ·x(h) ∈ X∗ such that x(1) = x1 and
⟨x(i), x(i + 1)⟩ ∈ E, ∀i ∈ [h − 1]. We use Ph to denote
the set of all the h-paths in T . In this paper, we consider
an robot team R consisting of N ∈ Z+ robots operating
synchronously in an environment that in consistent of a set
of regions with connectivity constraints. The DTS and h-
path set associated with robot Rn, n ∈ [N], is denoted by
Tn = (Xn, xn1 , E

n,Π, Ln) and Pnh respectively, which means
that the robots have different dynamics but with the identical
atomic proposition set. Note that this assumption is without
loss of generality as we can always define Π as the union of
all Πn. Given N h-paths ρnh ∈ Pnh with n ∈ [N], one for
each robot, we use Ph = ⟨ρ1h, ρ2h, · · · , ρNh ⟩ to denote the team
sequence and use Ph(i) = ⟨ρ1h(i), ρ2h(i), · · · , ρNh (i)⟩ to denote
the i-th element of Ph with i ∈ [h]. Without loss of generality,
we assume that each robot starts from a state with empty
proposition, which means that ∀n ∈ [N], Ln(xn1) ∩Π = ∅.

Remark 1. Note that maybe all the robots operate in the
same environment, but we still consider different DTS models
for each robot, as we want to model their different mobility
capabilities. For example, in a factory, the cargo robot operates
within the warehouse and equipment rooms, the inspection
robot moves through production areas and equipment rooms,
and the cleaning robot covers all regions. While their opera-
tional areas may overlap in some areas, each robot is subject
to distinct mobility constraints.

B. Counting Time Temporal Logic
In this paper, we introduce a new kind of temporal logic

called counting time temporal logics (CTTL). CTTL is an

extension of Linear Temporal Logic (LTL) and is especially
useful for specifying and reasoning about the completion times
of certain tasks over finite sequences.

Definition 2. A CTTL formula ϕ over a given set of atomic
proposition Π is recursively defined as follows:

ϕ = ⊤ | π | ϕ1 ∧ ϕ2 | ¬ϕ | ⃝ ϕ | ϕ1Ukϕ2, (1)

where π ∈ Π is an atomic proposition, k ∈ Z+ is an index
and ϕ1 and ϕ2 are CTTL formulas.

The symbols ⊤ (true), ∧ (conjunction) and ¬ (negation)
above are standard Boolean operators, while ⃝ (next) and Uk
(k-until) are temporal operators. The above operators can also
induce additional operators such as ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2)
(disjunction), ϕ1 → ϕ2 = ¬ϕ1 ∨ ϕ2 (implication), ♢kϕ =
⊤Ukϕ (k-eventually) and □kϕ = ¬♢k¬ϕ (k-always).

CTTL formulas are interpreted over finite sequence from
(2Π)∗, whose semantics over the team sequence are defined
as follows.

Definition 3. Given team sequence Ph = ⟨ρ1h, ρ2h, · · · , ρNh ⟩,
the satisfaction of CTTL formula ϕ by Ph at instant t with
t ∈ [h], denoted by Ph(t) |= ϕ, is defined recursively as
follows:

• Ph(t) |= ⊤;
• Ph(t) |= π iff π ∈

⋃N
j=1 L(ρ

j
h(t));

• Ph(t) |= ϕ1 ∧ ϕ2 iff Ph(t) |= ϕ1 and Ph(t) |= ϕ2;
• Ph(t) |= ¬ϕ iff Ph(t) ̸|= ϕ;
• Ph(t) |= ⃝ϕ iff t ≤ h− 1 and Ph(t+ 1) |= ϕ;
• Ph(t) |= ϕ1Ukϕ2 iff t ≤ h − k + 1 and ∃t1 < · · · <
tk, t ≤ t1, tk ≤ h, and Ph(ti) |= ϕ2, ∀i ∈ [k] and ∀t′ <
tk, t ≤ t′ ⇒ Ph(t′) |= ϕ1.

If Ph(1) |= ϕ, then we say that Ph satisfies ϕ, written
as Ph |= ϕ. Certainly, we can also define the satisfaction
of ϕ by any concrete robot Rn at t according to the above
semantics by defining N = 1, where we write ρnh(t) |= ϕ
for short. Notice that the above semantics for operators ⃝
and Uk are not defined in the full horizon [h], but a subset.
As it is impossible for the team to satisfy the corresponding
formula at other instants. Moreover, note that unlike in LTL on
infinite sequence, here ¬⃝¬ϕ ̸≡ ⃝ϕ [7]. The intuition behind
the CTTL semantics are as follows: ϕ1Ukϕ2 is satisfied if ϕ1
is satisfied “until” ϕ2 is satisfied for at least k times before
the last instant (included); ♢kϕ is satisfied if ϕ is satisfied
for at least k times before the last instant (included); □kϕ is
satisfied if ¬ϕ is satisfied for at most k−1 times before the last
instant (included). Note that when k = 1, the semantics for
all the above three operators are just the same as the “until”,
“eventually” and “always” operators in LTL. Therefore, the
semantics of CTTL formulas allow us to express constraints
on the desired frequency of events or behaviors in a concise
manner. Some common examples are as follows:

• visit a for at least 5 times: ♢5 a;
• visit a, b and c for at least 4 times in turn: (¬b U4 a) ∧

(¬c U4 b) ∧ ♢4 c;
• visit c for at most twice: □3¬ c.

C. Problem Formulation
In the real-world scenario, infinite path planning problems

are usually not practical, because that the robots are often
constrained by the energy capacity, including battery volume
and fuel tank size, which limits their moving ability to a
certain distance. Therefore, it is hard for an robot team to
follow an infinitely long reference trajectory synthesized from
specifications that describe infinite behaviors, such as □♢
(always eventually) in LTL syntax used in existing works.
Instead, these specifications actually dictate the frequency
with which tasks need to be completed within the robot
team’s limited energy. Motivated by the above situation, we
investigate the problem of multi-robot path planning in finite
sequences under CTTL in this paper, which is formally defined
as follows:

Problem 1. Given N robots operating synchronously with
dynamics Tn = (Xn, xn1 , E

n,Π, Ln) with n ∈ [N], a finite
time domain h ∈ Z+ and a CTTL formula ϕ in forms of (1),
synthesize a feasible team sequence Ph = ⟨ρ1h, ρ2h, · · · , ρNh ⟩
satisfying ϕ, i.e., Ph |= ϕ.

Therefore, our objective here is to synthesize a finite horizon
plan for the team of multi-robot such that the CTTL formula
is satisfied.

III. SYNTHESIS PROCEDURE

We propose an integer linear programming (ILP) based
method in this section, which is inspired by the concept of
bounded LTL model checking [32]. Our approach involves
encoding the dynamics of the robot team and the CTTL
specifications as a set of ILP constraints. We then solve the
corresponding feasibility problem to obtain a solution. In the
following parts, we provide a detailed explanation of our
encoding process.

A. Encoding for the Dynamics of R
Given the DTS Tn = (Xn, xn1 , E

n,Π, Ln) describing the
dynamics of Rn, we first define the transition matrix of Tn

as An ∈ {0, 1}|Xn|×|Xn|, where the (i, j)-th element An(i, j)
of An is defined by

An(i, j) =

{
1, if (xni , x

n
j) ∈ En,

0, otherwise.

Then, we introduce h state binary vectors vn(t) =
[vn1 (t), v

n
2 (t), · · · , vn|Xn|(t)]

′ ∈ {0, 1}|Xn|, ∀t ∈ [h], to repre-
sent the state of Rn at time instant t as follows: ∀i ∈ [|Xn|],
we have

vni (t) =

{
1, if Rn is at xni at instant t,

0, otherwise.

Finally, based on the above transition matrix An and the
binary vectors vn(t), the dynamics of Rn can be captured as
the following state constraint equations: ∀t ∈ [h],

vn(t+ 1) ≤ (An)′vn(t),

(1n)′vn(t) = 1,

vn1 (1) = 1,

(2)

where 1n is the |Xn| dimensional vector with all elements
being 1. Therefore, the first constraint ensures the development
of the trajectory of Rn must comply with the transition
relation; the second one ensures that Rn can only appear at
a state at each instant, while the third one requires that Rn

must respect the initial state.

B. Encoding for the CTTL Specifications

Next, we show how to encode the CTTL formula in a
recursive way. The basic idea is as follows:

• given CTTL formula ϕ and each time instant t ∈ [h],
introduce a formula satisfaction binary variable yϕ(t) ∈
{0, 1} s.t. yϕ(t) = 1 ⇔ Ph(t) |= ϕ, to encode the
satisfaction of ϕ by the team of all robots at instant t;

• if yϕ(1) = 1, then the CTTL task ϕ is satisfied;
• define yϕ′(t) incrementally for all sub-formula ϕ′ of ϕ.
Specifically, for any atomic proposition π, we first introduce

the following N × h individual satisfaction binary variables
znπ (t) with n ∈ [N] and t ∈ [h] to encode the satisfaction of
π by the Rn at instant t, such that

znπ (t) =

{
1, if ρnh(t) |= π,

0, otherwise.

Then, for any CTTL formula ϕ, we define the following h
formula variables yϕ(t) with t ∈ [h] to encode the satisfaction
of ϕ by R at instant t, such that

yϕ(t) =

{
1, if Ph(t) |= ϕ,

0, otherwise.

Therefore, the satisfaction of ϕ by R can be described by
yϕ(1) = 1.

1) Atomic Proposition π for Rn: For every Rn, we in-
troduce a binary vector πn = [πn1 , π

n
2 , · · · , πn|Xn|]

′, where
∀i ∈ [|Xn|], we have

πni =

{
1, if π ∈ Ln(xni),

0, otherwise,

which means that πn encodes the satisfaction of π at Xn.
Then, the individual variable and the state of the robot should
satisfy the following equations, which encode the satisfaction
of π by Rn at t ∈ [h]:{

(πn)′vn(t) ≥ znπ (t),

(πn)′vn(t) < znπ (t) + 1.
(3)

Note that when Rn is in a state with π at t, the left side of the
second equation is 1, which makes znπ (t) being 1. Otherwise,
the left side of the first equation is 0, making znπ (t) being 0.

2) Atomic Proposition π for R: The formula variable (by
the team) and the individual variable (by each single robot)
should satisfy the following constraints, which encode the
satisfaction of π by R at t ∈ [h]: yπ(t) ≥ ziπ(t), ∀i ∈ [N],

yπ(t) ≤
∑N
i=1 z

i
π(t).

(4)

Note that if any one of the robot Rn satisfies π at t, then the
right side of the first equation is 1, which makes yπ(t) being 1.
Otherwise, the right side of the second equation is 0, making
yπ(t) being 0.

Actually, the above equations define the satisfaction of π by
R by the disjunction operation such that yπ(t) =

∨N
i=1 z

i
π(t)

as defined below.
3) Disjunction ∨: For R with ϕ =

∨I
i=1 ϕi, their relation

constraints at t ∈ [h] are given as follows: yϕ(t) ≥ yϕi(t), ∀i ∈ [I],

yϕ(t) ≤
∑I
i=1 yϕi

(t).
(5)

4) Conjunction ∧: For R with ϕ =
∧I
i=1 ϕi, their relation

constraints at t ∈ [h] are given as follows: yϕ(t) ≤ yϕi
(t), ∀i ∈ [I],

yϕ(t) ≥ 1− I +
∑I
i=1 yϕi(t).

(6)

5) Negation ¬: For R with ψ = ¬ϕ, their relation con-
straint at t ∈ [h] is given as follows:

yψ(t) = 1− yϕ(t). (7)

6) Next ⃝: For R with ψ = ⃝ϕ, their relation constraints
at t ∈ [h] are given as follows:{

yψ(t) = yϕ(t+ 1), ∀t ∈ [h− 1],

yψ(h) = 0.
(8)

Note that the above encoding equations from (5) to (8) for
the Boolean and temporal operators are consistent with the
encodings in [30], [32]. However, we still present them here
for the purpose of completeness.

Next, we give the encoding method for the “k-until” opera-
tor. For the convenience of narration, when ϕ =

∨I
i=1 ϕi, we

just write yϕ(t) =
∨I
i=1 yϕi

(t) instead of the equations in (5)
and treat the “conjunction” operator as well.

7) k-Until Uk: For R with ϕ = ϕ1Ukϕ2, their relation
constraints are given as follows:

• if k = 1, then we have yϕ(t) = yϕ2
(t) ∨

(
yϕ1

(t) ∧ yϕ(t+ 1)
)
, ∀t ∈ [h− 1],

yϕ(h) = yϕ2(h). (9)

• if k > 1, then we have

yϕk(t) = yϕ1(t) ∧

((
yϕk−1(t+ 1) ∧ yϕ2(t)

)
∨ yϕk(t+ 1)

)
,

∀t ∈ [h− k],

yϕk(h− k + 1) = yϕ1
(h− k + 1) ∧

(
yϕk−1(h− k + 2)∧

yϕ2(h− k + 1)
)
.

yϕk(t′) = 0,∀t′ ∈ [h] \ [h− k + 1],

(10)

where we define ϕk = ϕ1Ukϕ2.
Notice that when k = 1, the encoding (9) for U1 is the

same as the “U” operator in LTL [32]. When K > 1, we
further define k−1 auxiliary formulae from ϕk−1 to ϕ1. If R

satisfies ϕk at t ∈ [h− k], then the first equation requires that
R must satisfy ϕ1 at t and further satisfy one of the following
conditions: 1) satisfying ϕ2 at t and continuing to satisfy only
ϕk−1 at the next instant; 2) no additional constraints at t, but
still needing to satisfy ϕk at the next instant. Another point
to keep in mind is that the Uk operator is only defined for
instants within [h − k + 1] according to Definition 3 and the
first equation is only suited for encoding the satisfaction of ϕk

at t ≤ h−k. When t = h−k+1, the second condition above
is not allowed as there is no chance for R to further satisfy
ϕk at the next instant h − k + 2. Finally, as it is impossible
for R to satisfy ϕk at other time instants t′ ∈ [h] \ [h − k +
1], we define yϕk(t′) = 0. Therefore, by the above recursive
equations, yϕk(t) = 1 if and only if there exists at least k
instants ti with i ∈ [k] between t and h such that yϕ2(ti) = 1
and before the instant tk that yϕ2

(tk) = 1, yϕ1
(tk) has always

been 1, which means that there exists at least k instants in
[h]\ [t−1] such that R satisfies ϕ2 and before the last instant,
R always satisfies ϕ1. Therefore, the above equations (10) are
correct and consistent with the semantics of CTTL.

C. Problem Reformulation as an ILP Problem

Given a CTTL formula ϕ, we use {v, z, y}ϕ and ILP(ϕ)
to denote the sets of all the binary variables and all the con-
straint equations from (2) to (10) created during the encoding
process respectively. Based on {v, z, y}ϕ and ILP(ϕ), we now
reformulate Problem 1 as the following ILP problem:

Find : {v, z, y}ϕ
Subject to : ILP(ϕ), and yϕ(1) = 1.

(11)

Next, we show that the solutions found by (11) is sound
and complete by the following theorem.

Theorem 1. Given h ∈ Z+ and a CTTL formula, there exists
a solution for Problem 1 if and only if there is a solution for
the ILP problem (11).

Proof. (⇒) The completeness of encoding equations from (5)
to (9) of CTTL formulae follows the results in [32]. Moreover,
the proof of completeness for (10) is also trivial according to
Definition 3. This completes the proof of this part.

(⇐) The encoding equations (2) ensure that the trajecto-
ries of every robot must respect their dynamics and initial
conditions. The encoding equations (3) and from (5) to (9)
of CTTL formulae are sound according to [32]. Regarding
equations (4) and (10), we have proven their soundness by
showing that they are correct and consistent with the semantics
of CTTL above. Therefore, the constraint yϕ(1) = 1 together
with ILP(ϕ) ensures that Ph |= ϕ.

Therefore, if (11) has a solution, then the solution for
Problem 1 can be synthesized as follows: ∀n ∈ [N], t ∈
[h], [vni (t) = 1] ⇒ [ρnh(t) = xni]. Note that, in this work,
our main objective is to find a feasible solution. In other
words, optimality is not explicitly considered here. A naive
approach to handle the optimal planning problem is to add
a new optimization objective, for example, the total cost of
the plan, in addition to the Boolean constraints in (11). This
direct extension does not change our technical approach as

it is still an ILP problem. However, it may make the ILP
problem more difficult to solve since the original problem only
has constraints and the optimization objective is essentially
constant.

D. Variants of the Problem

In this section, we enumerate two potential variants and
extensions to the above problems and engage in a discussion
on implementing these extensions. We consider the following
scenario such that the solution to (11) has been solved and
the robot team starts to move, but during the execution of
the robot team, some accidents occurred, called environment
change or robot fault. We would like to study the trajectory re-
planning problems for the above two types of accidents online
taking into account the existing completed trajectories, rather
than re-planing from the beginning, and the specific process
is shown in detail as the following two parts. Here, for any
instant t ∈ [h] and any number n ∈ [N], we use vn(t) to
denote the binary vector for Rn in the re-planning process
and use vni (t) to denote the specific element of vn(t).

1) Environmental Change Cases: Suppose that during the
execution of the robot team, the dynamics of Rn have changed
to Tnr = (Xn, xn1 , E

n
r ,Π, L

n) at some instant t ∈ [h] \ {0},
which means that transition relations of Rn have changed.
Given x, x′ ∈ Xn and (x, x′) ∈ En, before t, Rn can arrive at
x′ from x. However, if (x, x′) /∈ Ênr , then the above transition
will become infeasible for Rn after t. We often encounter the
above scenarios such that a robot needs to deliver some files to
the finance office and it will reach there by passing through the
meeting room, but on its way forward, an emergency meeting
suddenly convenes and the door is closed. Then, how should
we re-plan their trajectories?

Specifically, we supplement some additional constraints and
adjust some constraint equations for the ILP problem (11),
which are shown by the following two items.

• In order to take into account the existing completed
trajectories of the robot team until instant t, we add
some constraint equations as follows: ∀0 ≤ t′ ≤ t,m ∈
[N], vm(t′) = vm(t′), which means that the synthesis
trajectories in the re-planning process should comply with
the previous ones until t.

• As the dynamics of Rn change after t, we update the
constraint equations in (2) for Rn to incorporate with the
new dynamics Anr , which denotes the transition matrix
corresponding to Tnr , as follows: ∀t < t′ ≤ h, vn(t′) ≤
(Anr)

′vn(t′ − 1).

Note that if the dynamics of multiple robots change instead
of just one, we only need to repeat the above process for
every robot at the corresponding instant and the problem can
be solved.

2) Robot Fault Cases: Suppose that during the execution of
the robot team, robot Rn is broken at some instant t ∈ [h]\{0},
which means that the Rn cannot contribute to the satisfaction
of the task in the remaining part of the trajectory after time
instant t. Then, how should we re-plan the trajectories of the
remaining robots to further finish the task?

Specifically, we make two changes for the ILP problem (11)
as shown in follows.

• We also add the following constraint equations, ∀0 ≤ t′ ≤
t,m ∈ [N], vm(t) = vm(t), to ensure that the synthesis
trajectories in the re-planning process must comply with
the previous ones until t.

• As Rn failed at t, it can not collect any atomic proposi-
tions from t+1. Therefore, we directly move it to a state
without any atomic propositions from t + 1, that is the
initial state xn1 . To achieve this, we update equation (2)
from t+ 1 for Rn as follows: ∀t < t′ ≤ h, vn1 (t′) = 1.

Suppose that Rn arrives at x′ at instant t. Even though it
may be infeasible for Rn to move from x′ to xn1 and move
from xn1 to xn1 , which means that it might be the case such
that (x′, xn1), (x

n
1 , x

n
1) /∈ En, we do not care about this, as Rn

is already broken, it do not need to comply with its dynamics
anymore.

Moreover, in the above two cases, it might be the situation
that the robot team can not achieve ϕ in the original horizon
h after the accident, such that when Rn got broken at t, the
remaining steps h− t are not enough for the remaining robots
to further finish ϕ. In this case, we can directly extend h to a
larger one h′ and supplement constraints.

Remark 2. It is important to notice that, mathematically
speaking, the proposed CTTL is no more expressive than the
standard LTL. In other words, we can also express the counting
time requirement by LTL formulae. Specifically, for CTTL
formula ϕ = (ϕ1Ukϕ2), we construct an LTL formula ϕ′ as
follows:

ϕ′ = ⟨(ϕ1U(ϕ1 ∧ ϕ2 ∧⃝⟩k−1 + ⟨(ϕ1Uϕ2)⟩+ ⟨)⟩2k−2,

where ⟨∗⟩k−1 represents writing ∗ for k− 1 times and A+B
represents writing B after A. For example, for ϕ = ϕ1U2ϕ2,
we can write its equivalent LTL expression by

ϕ′ = (ϕ1U(ϕ1 ∧ ϕ2 ∧⃝(ϕ1Uϕ2))).

Also for ϕ = ϕ1U3ϕ2, we can write its equivalent LTL

ϕ′ = (ϕ1U(ϕ1 ∧ ϕ2 ∧⃝(ϕ1U(ϕ1 ∧ ϕ2 ∧⃝(ϕ1Uϕ2))))).

Therefore, any trajectory synthesis problem for CTTL formula
can be reduced to an equivalent problem for LTL formula.
However, this reduction process results in a formula that is
linearly larger in size than the original CTTL formula. In the
following section, we will also provide numerical results that
demonstrate the advantages of our CTTL language over the
equivalent LTL formula.

Remark 3. We conclude this section by discussing the com-
plexity of the overall synthesis algorithm. Despite the fact
that the computational complexity of solving ILP problems
is known to be NP-complete, there exist several effective
heuristic algorithms that can significantly alleviate the com-
putational burden, such as [17]. In general cases, there are
O
(
hN |X̂| + h(|ϕ| + nk̂)

)
decision variables and constraint

equations for (11) (very roughly estimated), where h is the
length of planning domain, N is the number of robots, |X̂| is
the number of states of the largest DTS, |ϕ| is the length of

the CTTL formula ϕ, n is the number of Uk in ϕ and k̂ is the
largest value among all the indexes of k-until operators.

IV. EXPERIMENT RESULTS

In this section, we provide a set of experiments to illustrate
our results. In Section IV-A, we conduct a set of numerical
experiments to show the scalability of our encoding method
and the efficiency of the CTTL language. In Section IV-B, we
provide a simulation experiment on a 7×5 grid world to further
illustrate our synthesis procedure. Finally, in Section IV-C,
we conduct a hardware experiment to evaluate the real-world
feasibility of our method. All simulations are implemented by
Python 3.7 and robot simulation platform V-REP 4.2.0
on a PC with 64 cores with 3.30 GHz processors and 64 GB of
RAM using PYTHON-MIP [31] to setup the ILP problem and
GUROBI [27] as the underlying ILP solver. The robots used
in the hardware experiment are two Turtlebot3-Burger
mobile robots. Moreover, we use a Vicon Motion Capture
Systems to localize each robot and use a low-level PID
controller to track the planned high-level trajectory from one
grid to another. All the simulation and experimental videos in
later sections are available online1.

A. Numerical Experiments

First, we demonstrate the scalability of our encoding method
by varying several parameters, such as the size of DTS, the
number of robots and the length of planning horizon. We also
illustrate the efficiency of the CTTL by comparing it with
the LTL on reasoning about missions describing completion
times of some tasks. In each experiment, the DTSs Tn are
generated from Erdös-Rényi graphs with edge probability
being 0.75 and the number of every atomic proposition is set
to ⌊ |Xn|

20 ⌋ with their locations being chosen randomly from
Xn, which means that the accessible regions of each robot are
considered independently and they do not overlap. For each
set of parameters, we repeated the experiment for 20 times and
recorded the average value of all experimental data. Moreover,
in this part, we consider that all the accessible regions of all
robots do not intersect.

We start by investigating the effect of the number of robots
N on runtime. We set |Xn| = 50 for all n ∈ [N], h = 20.
Consider the following task:

ϕ = (¬bU N
5 a) ∧ (¬cU N

5 b) ∧ ♢
N
5 c ∧□

N
5 ¬d, (12)

which requires that visit a, b and c for at least N
5 times each

in order and visit d at most N
5 − 1 times. We increase N

from 10 to 50 and the statistics are displayed in Table 1. As
can be seen, all the three parameters increase linearly with the
increase of N .

Then, we investigate the effect of system size |Xn|. We
still use the above task, but set N = 10 and h = 20. The
statistics are shown in Table 2. We can see that both the
number of variables and constraints still linearly increase with
the increase of |Xn|. However, the solving time is significantly

1https://www.youtube.com/@ILagrange-j1s

https://www.youtube.com/@ILagrange-j1s

Table 1: Statistics for different number of robots.

N 10 20 50

variable 11362 22500 55674

constraint 13840 27458 67592

time (sec) 4.64 9.03 22.73

Table 2: Statistics for different size of systems.

|Xn| 50 100 200

variable 11362 21362 41362

constraint 13840 23840 43840

time (sec) 4.64 18.69 79.76

affected by the system size, which seems to exhibit polynomial
growth as |Xn| increases.

Next, we further study the effect of the length of planning
horizon h on runtime. In this experiment, we fix |Xn| = 50
and N = 20 and increase h from 20 to 100 to see the
results. Besides, note that just increasing the planning horizon
might result in trivial solutions, such that many steps in the
trajectory stay in place. Therefore, we also simultaneously
increase the complexity of the CTTL formula. Specifically, we
increase h from 20 to 50 and then to 100. Correspondingly,
we simultaneously change all the parameters in (12) from N

5
to N

2 and then to N
1 . The statistics are displayed in Table 3.

As expected, all the three parameters increase linearly with
the increase of h.

Finally, in order to demonstrate the efficiency of our CTTL
language, we further carry out two additional experiments
to compare the trends of the above parameters when the
specification is given in the form of CTTL formula versus their
equivalent LTL formula as mentioned in Remark 2. Some pa-
rameters are given as follows: N = 10, |Xn| = 50,∀n ∈ [N]
and h = 100. Note that, we use equations (5)-(10) to encode
the satisfactions of the CTTL formula and use equations (5)-
(9) to encode the satisfactions of the equivalent LTL formula.

In the first experiment, consider the following CTTL task:

ϕ = ♢ka ∧ ♢kb ∧ ♢kc ∧ ♢kd.

We increase parameter k above from 10 to 50. For each value,
we construct the equivalent LTL task and use the encoding
method proposed in this paper to solve the two problems. The
statistics are recorded in Table 4. From Table 4, we can see
that regardless of the value of k, the average value of each
parameter solved based on encoding CTTL is always smaller
than that based on encoding LTL. And as the complexity of
the specification increases, the difference between the values

Table 3: Statistics for different length of planning horizon.

h 20 50 100

variable 22500 58944 126884

constraint 27458 76742 180482

time (sec) 9.03 24.18 59.79

Table 4: Statistics on comparative experiments between CTTL
and LTL by changing k.

k 10 25 40 50

CTTL

variable 62104 72004 80104 84504

constraint 85904 115604 139904 153104

time (sec) 42.78 53.33 77.25 80.88

LTL

variable 71356 95296 119236 135196

constraint 110180 175880 241580 285380

time (sec) 43.13 81.92 173.48 217.22

Table 5: Statistics on comparative experiments between CTTL
and LTL by another way.

ϕ ϕ1 ϕ2 ϕ3 ϕ4

CTTL

variable 58701 67302 75903 84504

constraint 76601 102102 127603 153104

time (sec) 30.72 54.42 67.68 80.88

LTL

variable 71449 92698 113947 135196

constraint 109745 168290 226835 285380

time (sec) 45.83 96.73 134.95 217.22

of the two languages becomes more prominent. In other words,
the rate at which the parameters increase for CTTL is much
lower than that for LTL.

In order to further evaluate the scalability of both languages
with respect to the complexity of the specification, we con-
ducted the second experiment using a different approach to
increase the complexity. We consider the following four tasks:

• ϕ1 = ♢50a;
• ϕ2 = ♢50a ∧ ♢50b;
• ϕ3 = ♢50a ∧ ♢50b ∧ ♢50c;
• ϕ4 = ♢50a ∧ ♢50b ∧ ♢50c ∧ ♢50d

We re-conduct the above experiments and the statistics are
recorded in Table 5. The data clearly demonstrate the advan-
tages of using the CTTL language once again.

These results are as expected since the equivalent LTL
formula is always combinatorially much longer than the CTTL
formula, as stated in Remark 2. Therefore, these numerical
results demonstrate the scalability of our encoding method and
the advantage of the CTTL language.

B. Simulation Experiments

In this part, we conduct a simulation for multi-robot path
planning. Consider a factory as depicted in Fig 1. The factory
can be divided into 35 grid regions, which can be further
clarified into two parts, inside the building (the red regions)
and outside the building (the green and blue regions). For
the convenience of narration, we encode the above grids into
35 states {xi : i ∈ [35]} from top to bottom and from
left to right. There are twelve grids of interest: x1 (living
quarters), x6 (lake), x10 (workshop 1), x11 (finance office),
x13 (lounge), x20 (canteen), x23 (warehouse), x24 (workshop
2), x25 (workshop 3), x26 (toilet), x30 (supermarket) and x35
(fire location).

Fig. 1: The topology of the factory with two UGVs and two
UAVs.

Two UGVs with G0 being initially placed at x16 and G1

at x19, and two UAVs with A0 at x5 and A1 at x31, move in
this factory. For safety reasons, G0 and G1 are only allowed
to move inside the building, while A0 and A1 can only inspect
outside the building to deal with the emergencies. Moreover,
to ensure efficient energy usage and prevent any potential
collisions, each UAV is confined to operate within a designated
area, the green part for A0, while the blue part for A1. Both
UGVs are capable of transporting parcels between these grids,
while the UAVs have the added capability of addressing other
incidents in addition to parcel delivery, such as extinguishing
fires by fetching water. At any given moment, these four robots
can either choose to move from their current location to an
adjacent grid synchronously, or remain in place for one unit of
time to unload a parcel or address a fire within their designated
regions. It is assumed that they can immediately unload a
parcel or extinguish an ignition source upon arrival, and two
UGVs cannot unload at the same locations simultaneously due
to the space constraints.

Now consider the following tasks:
• due to insufficient parcels left, the UGVs must replenish

before delivery by proceeding to the warehouse;
• base on the order and urgency of transportation requests,

the two UGVs should first deliver three parcels to work-
shop 1, followed by three parcels to workshop 3 and
finally two parcels to workshop 2. Additionally, there are
transportation requests for three parcels from the toilet,
two parcels from the finance office, and two parcels from
the lounge respectively;

• two UGVs should never enter canteen for food safety;
• living quarters purchase two pieces of goods from super-

market and UAVs need to transport them;
• UAVs discover two ignition sources at fire location, but

they need to first go to lake to fetch water and then
proceed to the fire location to put out the fire.

By the CTTL language, the above tasks can be formulated as
the following CTTL formula:

ϕ = (¬x10U1x13) ∧ (¬x25U3x10) ∧ (¬x24U3x25)

∧♢2x24 ∧ ♢2x11 ∧ ♢2x13 ∧ ♢3x26 ∧□1¬x20
∧(¬x1U1x30) ∧ ♢2x1 ∧ (¬x35U1x6) ∧ ♢2x35.

(13)

We use the encoding methods proposed in this paper to
formulate the optimization problem with the planning horizon

being 20, which has 5186 optimization variables and 9038
constraints and is solved in 2.78 s. The simulation trajectories
for the two UGVs are shown in Figure 2(a). For the trajectories
of the two UAVs, we refer the readers to the simulation video.
Specifically, the trajectories for the above four robots are as
follows:

• G0 : x16 → x23 → x16 → x9 → x10 → x10 → x10 →
x17 → x18 → x25 → x25 → x25 → x24 → x24 →
x25 → x26 → x26 → x19 → x19 → x19;

• G1 : x19 → x18 → x17 → x16 → x23 → x16 → x17 →
x18 → x19 → x26 → x19 → x18 → x11 → x11 →
x12 → x13 → x13 → x12 → x12 → x12;

• A0 : x5 → x4 → x3 → x2 → x3 → x4 → x5 → x4 →
x5 → x5 → x6 → x7 → x14 → x21 → x28 → x35 →
x28 → x35 → x28 → x28;

• A1 : x31 → x32 → x33 → x34 → x33 → x32 → x31 →
x32 → x31 → x31 → x30 → x29 → x22 → x15 → x8 →
x1 → x8 → x1 → x8 → x8.

Note that the above task is satisfied by this solution with
synchronous execution. Specifically, after replenishing parcels
from x23, G0 first delivers three parcels to x10, then three
parcels to x25, then two parcels to x24 and finally two parcels
to x26. As for G1, before G0 arriving x26, G1 has already
delivered a parcel to x26 and then it further delivers two parcels
to x11 and x13 each. Moreover, for A0, it first proceeds to x6
to fetch water. Then it goes to x35 twice to extinguish two
ignition sources. Finally, for A1, it picks up two pieces of
goods from the supermarket and unloads them at x1 twice to
complete the task.

Now consider that when G0 arrives x9, its engine gets
broken as shown in Figure 2(b), which means that it can
not continue with its trajectories synthesized before anymore.
Therefore, the re-planning procedure needs to be carried out.
We still choose the planning horizon being 20, but no solution
can be solved, which means that the robot team without G0

can not further achieve ϕ within the remaining 16 steps. On
account of this, we extend h to 30 and the simulation trajec-
tories are shown in Figure 2(c) with the specific trajectories
for the above four robots shown as follows:

• G0 : x16 → x23 → x16 → x9 → broken;
• G1 : x19 → x18 → x17 → x16 → x23 → x16 → x9 →
x10 → x10 → x10 → x17 → x18 → x19 → x26 →
x26 → x26 → x25 → x25 → x25 → x24 → x24 →
x25 → x18 → x11 → x11 → x12 → x13 → x13 →
x12 → x12;

• A0 : x5 → x4 → x3 → x2 → x3 → x4 → x4 → x5 →
x4 → x5 → x6 → x7 → x7 → x14 → x21 → x28 →
x35 → x28 → x35 → x28 → x28 → x28 → x28 →
x28 → x21 → x21 → x21 → x14 → x14 → x14;

• A1 : x31 → x32 → x33 → x34 → x33 → x32 → x31 →
x32 → x32 → x31 → x32 → x31 → x30 → x29 →
x29 → x22 → x15 → x8 → x1 → x8 → x1 → x8 →
x15 → x15 → x15 → x15 → x15 → x15 → x15 → x15.

The simulation video for the re-planning process is also
available. Note that as G0 got broken, G1 has to replace G0

to complete the task that G0 should have completed, which

(a) Simulation trajectories before re-planning. (b) The time instant when G0 gets broken. (c) Simulation trajectories after re-planning.

Fig. 2: Simulation trajectories for the two UGVs.

(a) Snapshot at t1 for ϕ1. (b) Snapshot at t3 for ϕ1. (c) Snapshot at t6 for ϕ1. (d) Snapshot at t9 for ϕ1.

(e) Snapshot at t1 for ϕ2. (f) Snapshot at t4 for ϕ2. (g) Snapshot at t9 for ϕ2. (h) Snapshot at t11 for ϕ2.

Fig. 3: Experiment scene and snapshots of the solution for ϕ1 and ϕ2. Note that in (a) and (e), two mobile robots R1 and R2

with optical sensor are placed in the lower left corner.

causes the trajectory of G1 to change to a very long trajectory
as shown by the blue one.

C. Hardware Demonstration

In this section, we conduct two hardware experiments
to validate the real-world feasibility of our method. These
experiments take place in an indoor 4×4 grid motion capture
environment as illustrated in Figure 3(a). We consider discrete
and region-level trajectories, which are fully recorded in the
experimental videos for the two experiments, and these trajec-
tories can be further translated into individual robot movement
plans using established low-level path planning algorithms.

In the first experiment, we consider the following task

ϕ1 = (¬BU1A) ∧ (¬CU2B) ∧ ♢2C ∧ ♢2E ∧□1¬D,

which requires that C and E should be visited for at least twice
respectively, A should be visited for at least once before B
being visited, B should be visited for at least twice before C
being visited and D should never be visited.

We formulate the optimization problem using our encoding
methods with the length of the planning horizon being 10,
which has 697 optimization variables and 1212 constraints and

is solved in 0.09 s. Snapshots of one of the solution for ϕ1
are shown in Figure 3(a)-3(d). Specifically, R1 first goes to A
and R2 waits for it before B in Figure 3(b). After R1 visiting
A once, R2 goes to visit B twice and R1 proceeds to visit E
once while avoiding D in Figure 3(c). Finally, R1 leaves E
and goes to visit C twice and R2 leaves B to visit E once in
Figure 3(d). Therefore, ϕ1 has been finished by the synthesized
trajectories.

In order to verify the adaptability of our method to different
task, we further give a more complicate task as follows:

ϕ2 = (¬BU3A) ∧ ♢2B ∧ ♢4C ∧ ♢4E ∧□1¬D,

which requires that B, C and E should be visited for at least
twice, four times and four times respectively, A should be
visited for at least three times before B being visited, and D
should never be visited.

We formulate the optimization problem using our encoding
methods with the length of the planning horizon being 15,
which has 1183 optimization variables and 2266 constraints
and is solved in 0.18 s. Snapshots of the solution for ϕ2 are
shown in Figure 3(e)-3(h). Specifically, R1 first goes to visit
A three times and R2 goes to E once in Figure 3(f). Next,

R2 leaves E to visit C twice and then leaves for B and R1

also proceeds to visit C twice while avoiding D in Figure
3(g). Finally, R1 leaves C to visit E three times and R2 goes
to visit B twice in Figure 3(h). Therefore, ϕ2 has also been
finished by R1 and R2.

V. CONCLUSION

In this paper, we proposed a new temporal logic language
for specifying finite horizon tasks called the counting time
temporal logic (CTTL). Compared with the standard LTL
formulae in finite horizon, CTTL allows us to directly specify
the number of completions for some sub-formulae. We then
solved the multi-robot path planning problem for CTTL spec-
ifications using integer linear programming techniques. The
efficiency of CTTL in describing such counting tasks and
its feasibility in real-world scenario have been demonstrated
by experiment results. Moreover, two variants of the basic
problem have also been investigated. In the future, we plan
to study the robust planning problem, where some robots
may be subject to execution delays. In this work, we mainly
focus on finding feasible plans without considering numerical
optimality criteria. Although our approach can be directly
extended to the qualitative setting, finding optimal plans using
ILP is generally time-consuming. How to find optimal plans
satisfying CTTL specifications more efficiently is also an
interesting future direction.

REFERENCES

[1] F Basile, P Chiacchio, and E Di Marino. An auction-based approach to
control automated warehouses using smart vehicles. Control Engineer-
ing Practice, 90:285–300, 2019.

[2] Kai Cai. Warehouse automation by logistic robotic networks: a cyber-
physical control approach. Frontiers of Information Technology &
Electronic Engineering, 21(5):693–704, 2020.

[3] Ziyang Chen, Mingyu Cai, Zhangli Zhou, Lin Li, and Zhen Kan. Fast
motion planning in dynamic environments with extended predicate-
based temporal logic. IEEE Transactions on Automation Science and
Engineering, 2024.

[4] Ziyang Chen, Zhangli Zhou, Shaochen Wang, Jingsong Li, and Zhen
Kan. Fast temporal logic mission planning of multiple robots: A
planning decision tree approach. IEEE Robotics and Automation Letters,
2024.

[5] Bohan Cui, Feifei Huang, Shaoyuan Li, and Xiang Yin. Robust
temporal logic task planning for multirobot systems under permanent
robot failures. IEEE Transactions on Control Systems Technology, 2024.

[6] Giuseppe De Giacomo and Moshe Y Vardi. Linear temporal logic and
linear dynamic logic on finite traces. In Twenty-Third International Ioint
conference on Artificial Intelligence, pages 854–860, 2013.

[7] Giuseppe De Giacomo, Moshe Y Vardi, et al. Synthesis for LTL and
LDL on finite traces. In Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, pages 1558–1564, 2015.

[8] Xuchu Ding, Stephen L Smith, Calin Belta, and Daniela Rus. Optimal
control of markov decision processes with linear temporal logic con-
straints. IEEE Transactions on Automatic Control, 59(5):1244–1257,
2014.

[9] Franck Djeumou, Zhe Xu, Murat Cubuktepe, and Ufuk Topcu. Prob-
abilistic control of heterogeneous swarms subject to graph temporal
logic specifications: A decentralized and scalable approach. IEEE
Transactions on Automatic Control, 2022.

[10] Franck Djeumou, Zhe Xu, and Ufuk Topcu. Probabilistic swarm
guidance subject to graph temporal logic specifications. In Robotics:
Science and Systems, 2020.

[11] Georgios E Fainekos, Antoine Girard, Hadas Kress-Gazit, and George J
Pappas. Temporal logic motion planning for dynamic robots. Automat-
ica, 45(2):343–352, 2009.

[12] Maria Pia Fanti, Agostino M Mangini, Giovanni Pedroncelli, and Walter
Ukovich. A decentralized control strategy for the coordination of agv
systems. Control Engineering Practice, 70:86–97, 2018.

[13] Meng Guo and Dimos V Dimarogonas. Multi-agent plan reconfiguration
under local LTL specifications. The International Journal of Robotics
Research, 34(2):218–235, 2015.

[14] Meng Guo and Michael M Zavlanos. Multirobot data gathering under
buffer constraints and intermittent communication. IEEE Transactions
on Robotics, 34(4):1082–1097, 2018.

[15] Meng Guo and Michael M Zavlanos. Probabilistic motion planning
under temporal tasks and soft constraints. IEEE Transactions on
Automatic Control, 63(12):4051–4066, 2018.

[16] Iman Haghighi, Sadra Sadraddini, and Calin Belta. Robotic swarm
control from spatio-temporal specifications. In 55th IEEE Conference
on Decision and Control (CDC), pages 5708–5713. IEEE, 2016.

[17] Taoan Huang, Aaron Ferber, Yuandong Tian, Bistra Dilkina, and Benoit
Steiner. Local branching relaxation heuristics for integer linear pro-
grams. arXiv preprint arXiv:2212.08183, 2022.

[18] Yiannis Kantaros and Michael M Zavlanos. Distributed intermittent
connectivity control of mobile robot networks. IEEE Transactions on
Automatic Control, 62(7):3109–3121, 2016.

[19] Takuma Kinugawa and Toshimitsu Ushio. Hyper-labeled transition
system and its application to planning under linear temporal logic
constraints. IEEE Control Systems Letters, 6:2437–2442, 2022.

[20] Ilya Kovalenko, Dawn Tilbury, and Kira Barton. The model-based
product agent: A control oriented architecture for intelligent products
in multi-agent manufacturing systems. Control Engineering Practice,
86:105–117, 2019.

[21] Hadas Kress-Gazit, Georgios E Fainekos, and George J Pappas.
Temporal-logic-based reactive mission and motion planning. IEEE
Transactions on Robotics, 25(6):1370–1381, 2009.

[22] Bruno Lacerda, David Parker, and Nick Hawes. Optimal and dynamic
planning for markov decision processes with co-safe LTL specifications.
In 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 1511–1516. IEEE, 2014.

[23] Morteza Lahijanian, Sean B Andersson, and Calin Belta. Temporal logic
motion planning and control with probabilistic satisfaction guarantees.
IEEE Transactions on Robotics, 28(2):396–409, 2011.

[24] Lin Li, Ziyang Chen, Hao Wang, and Zhen Kan. Task allocation of
heterogeneous robots under temporal logic specifications with inter-task
constraints and variable capabilities. IEEE Transactions on Automation
Science and Engineering, 2025.

[25] Peng Lv, Shaoyuan Li, and Xiang Yin. Multi-agent path planning for
finite horizon tasks with counting time temporal logics. In 2024 IEEE
20th International Conference on Automation Science and Engineering
(CASE), pages 2025–2030. IEEE, 2024.

[26] Sina Sharif Mansouri, Christoforos Kanellakis, Emil Fresk, Dariusz
Kominiak, and George Nikolakopoulos. Cooperative coverage path
planning for visual inspection. Control Engineering Practice, 74:118–
131, 2018.

[27] Gurobi Optimization. Gurobi optimizer reference manual; gurobi opti-
mization. Inc.: Houston, TX, USA, 2016.

[28] Jiming Ren, Haris Miller, Karen M Feigh, Samuel Coogan, and Ye Zhao.
Ltl-d*: Incrementally optimal replanning for feasible and infeasible tasks
in linear temporal logic specifications. In 2024 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 4495–4502.
IEEE, 2024.

[29] Indranil Saha, Rattanachai Ramaithitima, Vijay Kumar, George J Pappas,
and Sanjit A Seshia. Implan: Scalable incremental motion planning for
multi-robot systems. In 2016 ACM/IEEE 7th International Conference
on Cyber-Physical Systems (ICCPS), pages 1–10. IEEE, 2016.

[30] Yunus Emre Sahin, Petter Nilsson, and Necmiye Ozay. Multirobot
coordination with counting temporal logics. IEEE Transactions on
Robotics, 36(4):1189–1206, 2019.

[31] Haroldo G Santos and T Toffolo. Mixed integer linear programming
with python. COINOR Computational Infrastructure for Operations
Research, 2020.

[32] Viktor Schuppan, Timo Latvala, Tommi Junttila, Keijo Heljanko, and
Armin Biere. Linear encodings of bounded LTL model checking.
Logical Methods in Computer Science, 2, 2006.

[33] Jongho Shin, Dongjun Kwak, and Taehyung Lee. Robust path control
for an autonomous ground vehicle in rough terrain. Control Engineering
Practice, 98:104384, 2020.

[34] Stephen L Smith, Jana Tumova, Calin Belta, and Daniela Rus. Optimal
path planning for surveillance with temporal-logic constraints. The
International Journal of Robotics Research, 30(14):1695–1708, 2011.

[35] Yuta Tatsumoto, Masahiro Shiraishi, Kai Cai, and Zhiyun Lin. Appli-
cation of online supervisory control of discrete-event systems to multi-
robot warehouse automation. Control Engineering Practice, 81:97–104,
2018.

[36] Daiying Tian, Hao Fang, Qingkai Yang, and Yue Wei. Decentralized
motion planning for multiagent collaboration under coupled LTL task
specifications. IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 2021.

[37] Alphan Ulusoy, Stephen L Smith, and Calin Belta. Optimal multi-robot
path planning with LTL constraints: guaranteeing correctness through
synchronization. In Distributed Autonomous Robotic Systems, pages
337–351. Springer, 2014.

[38] Shuo Yang, Xiang Yin, Shaoyuan Li, and Majid Zamani. Secure-by-
construction optimal path planning for linear temporal logic tasks. In
2020 59th IEEE Conference on Decision and Control (CDC), pages
4460–4466, 2020.

[39] Jingjin Yu and Steven M LaValle. Optimal multirobot path planning on
graphs: Complete algorithms and effective heuristics. IEEE Transactions
on Robotics, 32(5):1163–1177, 2016.

[40] Jianing Zhao, Keyi Zhu, Mingyang Feng, Shaoyuan Li, and Xiang Yin.
No-regret path planning for temporal logic tasks in partially-known
environments. The International Journal of Robotics Research, page
02783649251315758, 2025.

Peng Lv (S’24) was born in Heilongjiang, China, in
1998. He received the B.Eng degree in automation
from Harbin Engineering University in 2020. He
is currently a Doctoral student at Shanghai Jiao
Tong University. He is also a visiting student at
ENS Paris-Saclay, University of Paris-Saclay. His
research interests include formal methods, temporal
logic task planning and game theory in Discrete-
Event Systems.

Shaoyuan Li (Senior Member, IEEE) was born
in Hebei, China, in 1965. He received the B.S.
and M.S. degrees in automation from the Hebei
University of Technology, Tianjin, China, in 1987
and 1992, respectively, and the Ph.D. degree in au-
tomatic control theory and application from Nankai
University, Tianjin, in 1997.

Since 1997, he has been with the School of
Automation and Sensing, Shanghai Jiao Tong Uni-
versity, Shanghai, China, where he is currently a Pro-
fessor. His current research interests include model

predictive control, dynamic system optimization, and cyber-physical systems.

Bruno Denis received the Ph.D. degree from the
University of Nancy 1, Nancy, France, in 1994. He is
currently an Associate Professor of Automatic Con-
trol at the École Normale Supérieure Paris-Saclay,
France. He teaches courses in control of mechatronic
systems, modeling and simulation of multi-physical
manufacturing systems, and fault detection and re-
moval in discrete-event control systems. His research
interests include formal methods and models for the
synthesis, analysis, and diagnosis of Discrete-Event
Systems (DES) and Hybrid Dynamical Systems

(HDS), with applications in manufacturing systems, networked automated
systems, energy production, and digital twin.

Gregory Faraut received the B.S. degree in elec-
trical engineering and the M.S. degree in computer
science from the University of Nice Sophia Antipo-
lis, Nice, France, in 2004 and 2006, respectively,
and the Ph.D. degree in automatic control from
the Ampere Lab, INSA Lyon, Villeurbanne, France,
in 2010. Since 2011, he has been an Associate
Professor of Automatic Control with LURPA, ENS
Paris-Saclay, University of Paris-Saclay, and Full
Professor since 2022. His research interests concern
the field of Discrete Event Systems with applications

to cyber-physical systems, behavioral identification, resilient control, and,
more recently, Digital Twins for cognitive systems.

Cristian Mahulea received his B.S. and M.Sc.
degrees in control engineering from the Technical
University of Iasi, Romania, in 2001 and 2002,
respectively, and his Ph.D. in systems engineering
from the University of Zaragoza, Spain, in 2007.
Currently, he is a Full Professor at the University
of Zaragoza, where he chaired the Department of
Computer Science and Systems Engineering from
2020 to 2024. He has also served as a visiting
professor at the University of Cagliari, Italy.

His research interests include discrete event sys-
tems, hybrid systems, mobile robotics, and healthcare systems. He has been
a Visiting Researcher at the University of Sheffield (UK), Boston University
(USA), University of Cagliari (Italy), and ENS Paris-Saclay (France).

Cristian has served as an Associate Editor for IEEE Transactions on
Automation Science and Engineering (TASE) and IEEE Control Systems
Letters (L-CSS). He is currently an Associate Editor for IEEE Transactions
on Automatic Control (TAC), the International Journal of Robotics Research
(IJRR), Discrete Event Dynamic Systems: Theory and Applications (JDES),
and IEEE Robotics and Automation Letters (RA-L). Additionally, he was the
General Chair of ETFA 2019.

Xiang Yin (S’14-M’17) was born in Anhui, China,
in 1991. He received the B.Eng degree from Zhe-
jiang University in 2012, the M.S. degree from the
University of Michigan, Ann Arbor, in 2013, and
the Ph.D degree from the University of Michigan,
Ann Arbor, in 2017, all in electrical engineering.
Since 2017, he has been with the School of Automa-
tion and Intelligent Sensing, Shanghai Jiao Tong
University, where he is a Full Professor. His re-
search interests include formal methods, discrete-
event systems, robotics, artificial intelligence and

cyber-physical systems.
Dr. Yin is serving as the chair of the IEEE CSS Technical Committee

on Discrete Event Systems, Associate Editors for the Journal of Discrete
Event Dynamic Systems: Theory & Applications, Nonlinear Analysis: Hybrid
Systems, IEEE Control Systems Letters, IEEE Transactions on Automation
Science and Engineering, and a member of the IEEE CSS Conference
Editorial Board.

	Introduction
	Preliminary and Problem Formulation
	System Model
	Counting Time Temporal Logic
	Problem Formulation

	Synthesis Procedure
	Encoding for the Dynamics of R
	Encoding for the CTTL Specifications
	Atomic Proposition for Rn
	Atomic Proposition for R
	Disjunction
	Conjunction
	Negation
	Next
	k-Until Uk

	Problem Reformulation as an ILP Problem
	Variants of the Problem
	Environmental Change Cases
	Robot Fault Cases

	Experiment Results
	Numerical Experiments
	Simulation Experiments
	Hardware Demonstration

	Conclusion
	References
	Biographies
	Peng Lv (S'24)
	Shaoyuan Li
	Bruno Denis
	Gregory Faraut
	Cristian Mahulea
	Xiang Yin (S'14-M'17)

