

Genomic data define species delimitation in Liberica coffee with implications for crop development and conservation

Received: 25 September 2024

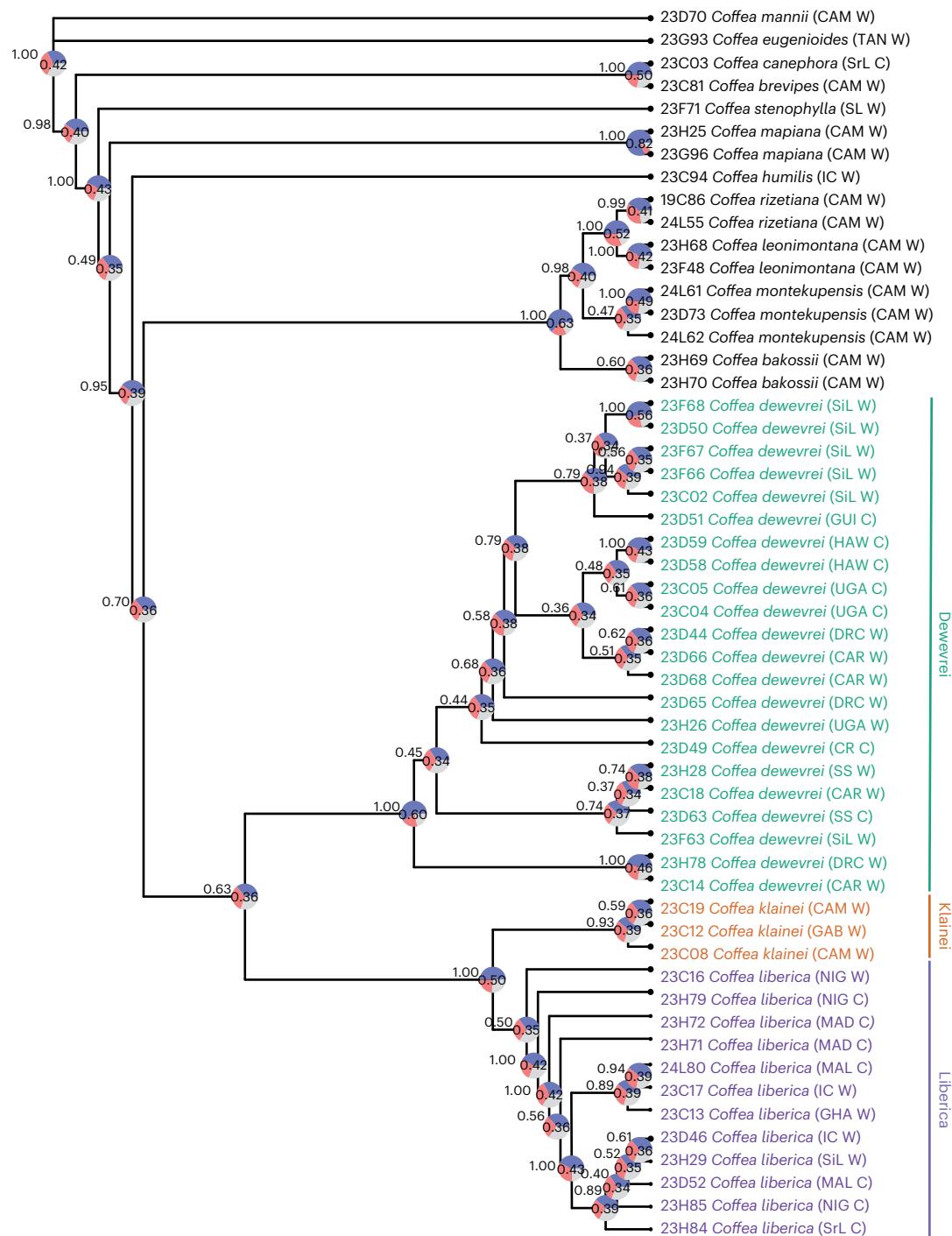
Accepted: 8 July 2025

Published online: 8 August 2025

Check for updates

A. P. Davis¹✉, A. Shepherd-Clowes¹, M. Cheek¹, J. Moat¹, D. Wei Luo¹, C. Kiwuka², J. Kalema³, B. Tchiengué⁴ & J. Viruel¹

Safeguarding the long-term future of the global coffee supply chain represents a major challenge, particularly in an era of accelerated climate change. Of particular concern are the millions of smallholder farmers across the tropical belt who rely on coffee as their major source of income. The world's coffee farmers, and thus the global coffee supply chain, rely on two species: Arabica (*Coffea arabica*) and robusta (*Coffea canephora*)¹. A third species, *Coffea liberica*, including Liberica coffee (*C. liberica* var. *liberica*) and excelsa coffee (*C. liberica* var. *dewevrei*), represents a minor share of global production, although the cultivation of this species is steadily increasing owing to climate challenges affecting Arabica and robusta, coupled with an increasing market demand². In Southeast Asia, Liberica consumption has continued since its introduction in the late-nineteenth century and is now witnessing a renaissance, particularly in Malaysia, Indonesia and Fiji. In Uganda, South Sudan and Guinea, attention is focused on excelsa owing to its ability to grow and produce commercially viable crops under higher temperatures and extended periods of low rainfall compared with robusta^{2,3}. Excelsa production is also increasing in India in response to worsening climate conditions for Arabica and robusta, and in Vietnam and Indonesia to supplement robusta and diversify coffee production. Here we investigate species delimitation in *C. liberica* using genomic data in combination with morphology and geographical distribution, to understand the implications for coffee crop improvement and the conservation of coffee genetic resources.


Our limited understanding of the diversity and trait partitioning within *Coffea liberica* constrains its utilization and development. The taxonomic delimitation and identification of *C. liberica* continues to confound researchers and coffee value-chain stakeholders, with inconsistent and confusing use of scientific and vernacular names in published research, agriculture and the media. The current consensus of taxonomic and systematic study^{4–7} is that *C. liberica* is a single species, divided into two botanical varieties: var. *liberica* and var. *dewevrei*⁸. While this classification is generally accepted, it is also argued that it

does not fully account for the morphological^{9,10}, and potential molecular variation^{4,11,12}, within the species, and thus requires further critical study^{2,3}. An alternative viewpoint is that *C. liberica* represents a single species with no infraspecific taxa¹³. Simply put, what is Liberica coffee and does it represent one, or more, species?

A revised species delimitation for Liberica

Here, we demonstrate congruence across genomic, morphological and spatial analyses, and elucidate distinct evolutionary lineages¹⁴,

¹Royal Botanic Gardens, Kew, Richmond, UK. ²National Agricultural Research Organization, Entebbe, Uganda. ³Makerere University Herbarium, Kampala, Uganda. ⁴IRAD-National Herbarium of Cameroon, Yaoundé, Cameroon. ✉e-mail: a.davis@kew.org

Fig. 1 | Inferred relationships for *C. liberica* (Liberica), *C. dewevrei* (excelsa), *C. klainei* and allied species based on sequencing of Angiosperms353 nuclear genes. An ASTRAL tree. The pie charts show the Qs informing on the agreement between genes with LPP scores. For BS values, see Supplementary Fig. 1.C,

cultivated (accessions from farms or germplasm collections); W, wild (accessions from natural (indigenous) populations). Accession information and country codes are provided in Supplementary Table 1.

supporting the division of *C. liberica* into three distinct species: *C. liberica* (Liberica), *C. dewevrei* (excelsa) and *C. klainei*, following the rules of nomenclatural priority¹⁵. *C. klainei* is a poorly known species, previously considered to represent a synonym of *C. liberica*^{5,16}. With *C. dewevrei* and *C. klainei* reinstated, the total number of known *Coffea* (coffee) species increases from 131 (ref. 8) to 133. Cameroon gains two species (now 18 species in total) and becomes the African country with the highest number of indigenous species, followed by Tanzania (17 species) and second only to Madagascar with 67 species⁸.

Phylogenomic analyses

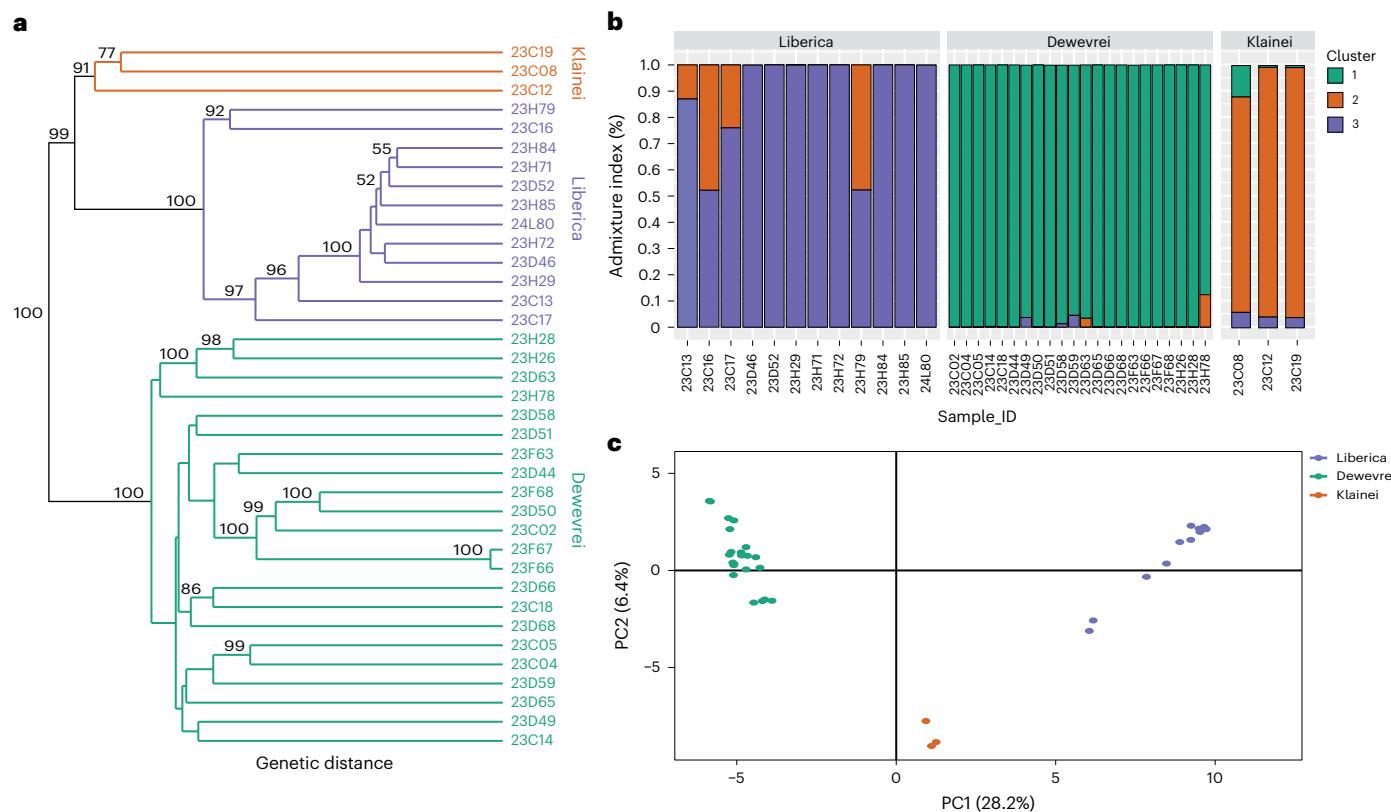
We used the Angiosperms353 target capture kit^{17,18} to elucidate phylogenomic relationships within *C. liberica* sensu lato and related species. This genomic tool resolves relationships at various levels of taxonomic hierarchy in flowering plants^{19,20}, including those at the population scale²¹. We sequenced 353 nuclear genes from 55 accessions (Supplementary Table 1). Across all accessions, we recovered 68.7–91.2% (mean 86.5%) of the 353 genes, representing 196,392–262,188 (mean 248,453) bp per sample recovered across the sample set. The mean

number of gene sequences missing per species in the final alignments was 0.17, ranging from 1–10. Overall, there were 3.17% missing data in the alignments. These statistics exclude *C. magnistipula*, for which only small percentage of the 353 genes were recovered (see below). Inferred relationships for *C. liberica* sensu lato and allied species are shown in Fig. 1, based on a species tree obtained from a multispecies-coalescent ASTRAL-III analysis. Pie charts are placed at the nodes, showing the quartet scores (QSs) (maximum of 1.00), informing on the agreement between genes in the most likely phylogenomic topologies reconstructed, and the local posterior probability (LPP) scores (maximum of 1.00). The bootstrap (BS) values are provided in a supermatrix tree in Supplementary Fig. 1.

ASTRAL-III analysis grouped all *C. liberica* sensu lato accessions into a single clade (QS 0.63, LPP 0.36, BS 99), which subdivides into three monophyletic clades: *C. liberica* (QS 0.35, LPP 0.50, BS 100), *C. klainei* (QS 0.39, LPP 0.93, BS 99) and *C. dewevrei* (QS 0.60, LPP 1.00, BS 100). *C. liberica* and *C. klainei* were retrieved as a clade (QS 0.50, LPP 1.00, BS 60), sister to the *C. dewevrei* clade. These results support the phylogenomic distinction of the three species. The relatively low QS and LPP values are addressed in the single-nucleotide polymorphism (SNP) analyses section below. The remaining *Coffea* species fall outside the aforementioned clades, including a sister clade of five endemic species from Cameroon (*C. bakossii*, *C. rizetiana*, *C. leonimontana*, *C. mapiana* and *C. montekupensis*), *C. humilis* (indigenous to Guinea, Sierra Leone, Liberia and Ivory Coast) and *C. magnistipula* (indigenous to Cameroon and Gabon). The outgroups (*C. stenophylla*, *C. brevipes*, *C. eugenoides* and *C. manii*) fall into positions that are congruent with published phylogenetic analyses of *Coffea*^{6,12,22,23}. We were only able to recover a small percentage (19.7%) of 353 genes for the sample of *C. magnistipula*, and so this species was not included in the ASTRAL tree (Fig. 1). A separate ASTRAL-III analysis shows that this species falls between *C. mapiana* and *C. humilis* (Supplementary Figs. 1 and 2), as anticipated based on morphological, geographical and ecological similarities with *C. mapiana*²⁴. No direct comparison can be made with previous molecular phylogenetic studies for *C. liberica* relatives^{6,22,23,25} owing to either their limited taxon sampling or low levels of sequence data or both.

SNP analyses

To investigate the genetic structure and relationships between and within *C. liberica*, *C. klainei* and *C. dewevrei*, we utilized 2,240 SNPs from the exon regions²¹ of 37 accessions (Supplementary Table 1). A genetic distance phylogenetic tree reconstructed with pairwise genetic distances supports the monophyly of the three species (BSs of 100, 91 and 100, respectively; Fig. 2a). *C. liberica* and *C. klainei* form a clade (BS 99) sister to *C. dewevrei*, consistent with the relationship recovered in the phylogenomic analysis (Fig. 1). Samples 23C16 (Nigeria) and 23H79 (Ivory Coast) form a clade (BS 92) sister to other *C. liberica* samples. On principal coordinate analysis (PCoA) (Fig. 2c) PC1 (28.2% variance) clearly separates the three species, with *C. klainei* positioned between *C. liberica* and *C. dewevrei*, with PC2 (6.4%) showing two outliers (23C16 and 23H79) for *C. liberica*. On the STRUCTURE²⁶ analysis (Fig. 2b) we set the *K* value to *K* = 3, to match the phylogenomic analysis (Fig. 1), genetic distance tree (Fig. 2a), PCoA analyses (Fig. 2c) and geographical distribution (Fig. 3), representing three clusters (*C. liberica*, *C. dewevrei* and *C. klainei*). For *K* = 3, in *C. liberica* there is admixture from the *C. klainei* genetic group: 47.8% for 23C16 (Nigeria), 47.7% for 23H79 (Ivory Coast), 13% for 23C13 (Ghana) and 24% for 23C17 (Ivory Coast) (Fig. 2b). In *K* = 4 and *K* = 5, these four admixtures are not from *C. klainei* (Supplementary Fig. 3). These outliers require further investigation. *K* = 2 was identified as the most likely number of *K* genetic clusters^{26–28} (ΔK value of 3,605.7, compared with ΔK of 37.54 for the remaining *K* values assessed; Supplementary Fig. 3). *K* = 2 was rejected on the grounds that it underrepresented population genetic structure for our study group²⁹ and was incongruent with the known biological information available for the study species²⁹.


For *K* = 3 and *K* = 2, 4 and 5, there is either zero or minimal admixture between *C. liberica* and *C. dewevrei*. Low-to-moderate admixture at *K* = 3 for the accessions from Ivory Coast, Ghana and Nigeria (Fig. 2b) suggest features of historical evolutionary processes and shared common ancestry (with *C. klainei*), rather than recent introgression. *C. liberica* and *C. klainei* are distinctly allopatric, with populations separated by ca. 800 km (Fig. 3). There is no evidence of any introductions of *C. klainei* to upper West Africa, which rules out the possibility of human-assisted introgression. One of the cultivated samples (23H79; Nigeria, Lagos, 1895, Millen 192) with the highest admixture (Fig. 2b) predates the introduction of *Coffea* germplasm into upper West Africa (Supplementary Text). Sample 23H79 and 23C17 (Ivory Coast, Abidjan, 1963, De Wilde 156) are both cultivated, but samples 23C16 (Nigeria, Omo, 1946, Jones & Onochie 17214) and 23C13 (Ghana, Atewa Range Forest Reserve, 1963, Enti & Jenik 36571) are of wild origin. For *K* = 4 and *K* = 5, these four accessions retain admixture (Supplementary Fig. 3) but not with *C. klainei*. The admixtures observed for *K* = 3 (Fig. 2b) probably account for the low QS (0.35) and LPP (0.50) scores in the *C. liberica* clade from the phylogenomic analysis (Fig. 1), despite the clade achieving a high BS value (100) (Supplementary Fig. 1).

Morphological delimitation

We found that *C. liberica*, *C. dewevrei* and *C. klainei* are readily distinguishable using morphological characteristics (Table 1, Extended Data Figs. 1–4 and Supplementary Table 2). Compared with *C. liberica*, *C. dewevrei* has longer, broader leaves, more flowers (and thus more fruits) per leaf axil and node, fewer corolla lobes and flower parts per flower (usually five-merous flowers, versus six to nine-merous or more in *C. liberica*), smaller fruits with a thinner pulp (mesocarp), a thinner parchment (endocarp) and smaller seeds² (Table 1, Extended Data Figs. 2–4 and Supplementary Table 2). The micromorphology of the seed epidermis and seed chemistry (diterpenes) may provide additional support for the separation of these two species¹⁰. *C. klainei* has a greater morphological affinity with *C. liberica*, but differs in having sessile, unbranched (as opposed to cymose and branched), inflorescences, with few flowers/ruits per inflorescence (usually one to three, versus two to six) and ellipsoid to narrowly ellipsoid fruits (versus spherical to ellipsoid). Experienced coffee professionals (for example, farmers and coffee buyers) can readily distinguish Liberica and excelsa based on the leaf dimensions (mainly overall size and shape and width), the fruit and seed size and yield (few or many per branch), in agreement with the morphological data presented here (Table 1 and Extended Data Figs. 1–4).

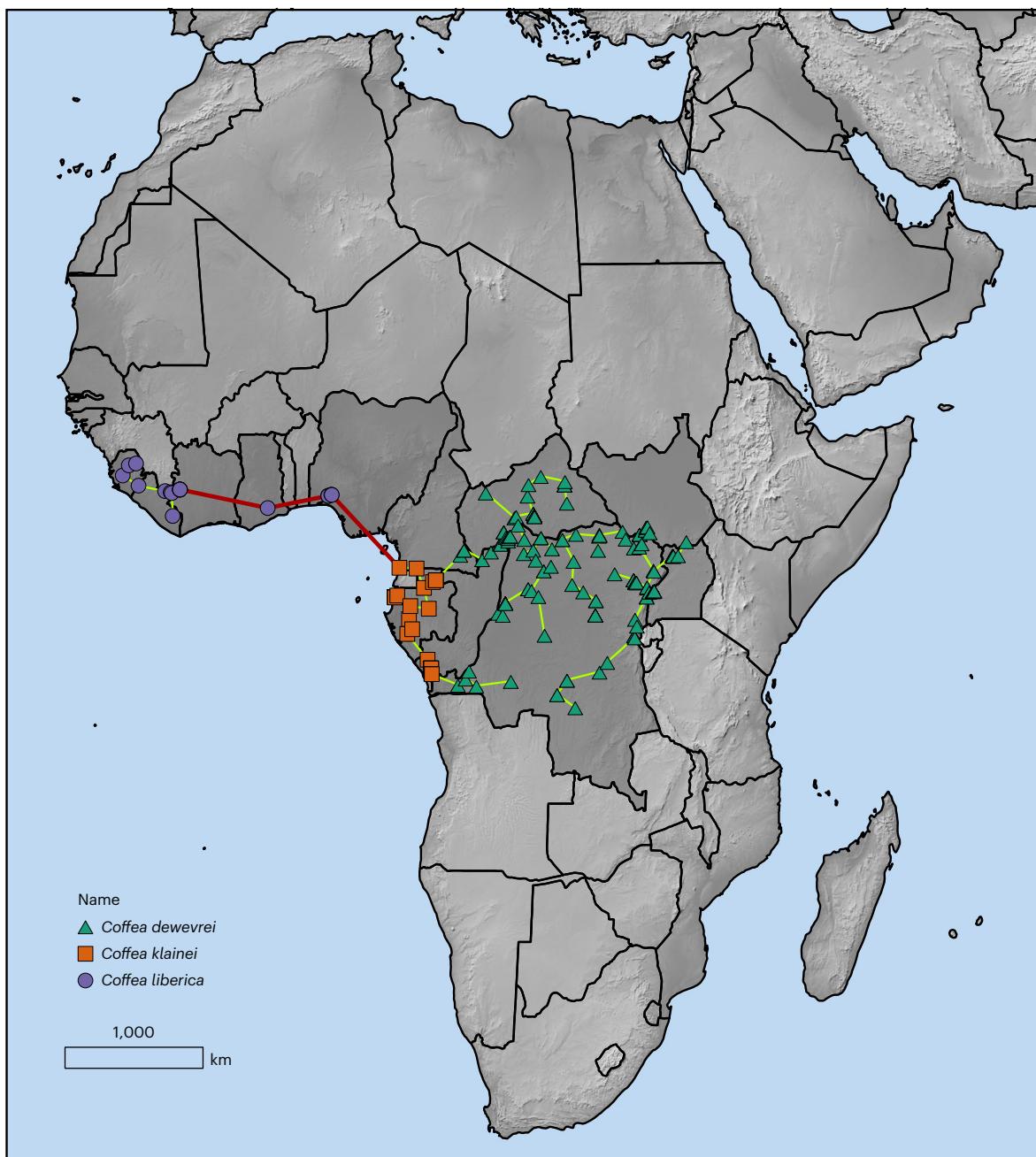
Indigenous distribution and elevation

After a thorough appraisal of ground point data (mostly for herbarium specimens) and focusing on the removal of cultivated and spontaneous (that is, self-sown into various habitats, but originating from cultivation) records, we demonstrate that the indigenous (wild) distributions of *C. liberica*, *C. klainei* and *C. dewevrei* are specific and allopatric (Fig. 3). *C. liberica* occurs in upper West Africa (Sierra Leone, Liberia, Ivory Coast, Ghana and Nigeria); *C. klainei* occurs in West-Central Africa (Cameroon, Gabon, the Republic of Congo and Angola (Cabinda)); and *C. dewevrei* in Central Africa (Republic of the Congo, Cameroon, the Democratic Republic of Congo, Central African Republic, South Sudan and Uganda). A Rapoport's mean propinquity assessment³⁰ using a barrier distance of 500 km demonstrates a robust population separation between *C. liberica* and *C. dewevrei* plus *C. klainei* (bold red line), but not between *C. dewevrei* and *C. klainei* (Fig. 3). The revised indigenous geographical range for *C. liberica* is comparable to that of two other *Coffea* species: *C. humilis* (Guinea, Sierra Leone, Liberia and Ivory Coast) and *C. stenophylla* (Guinea, Sierra Leone and Ivory Coast). This may infer shared drivers of *Coffea* species distributions in upper West Africa. *C. liberica* and *C. klainei* are predominantly located at low elevations (mean values of 386 m and 273 m, respectively),

Fig. 2 | Genetic structure and relationships between and within *C. liberica* (Liberica), *C. dewevrei* (excelsa) and *C. klainei*, based on 2,240 exon region SNPs. **a**, A genetic distance phylogenetic tree reconstructed with pairwise genetic distances (the proportion of loci that are different). The figures above branches indicate the BS values (BS values <50 not shown). **b**, STRUCTURE²⁶ analysis with the *K* value set to *K* = 3 to match the phylogenomic analysis

(Fig. 1), genetic distance tree (a), PCoA analyses (c) and geographical distribution (Fig. 3), representing three clusters (*C. liberica*, *C. dewevrei* and *C. klainei*; see the main text and Supplementary Fig. 3 for alternative *K* values and details). **c**, PCoA analysis. PC1 (28.2% variance) separates the three species, with *C. klainei* intermediate to *C. liberica* and *C. dewevrei*. Accession information is provided in Supplementary Table 1.

whereas *C. dewevrei* typically inhabits mid-elevations (mean of 653 m) (Supplementary Table 3).


Climate parameters

Identifying the climate parameters essential for growth, yield and plant health is critical for optimizing the cultivation and development of crop species. *C. liberica* (Liberica) and *C. dewevrei* (excelsa) are recent introductions to agriculture (<200 years old)², although wild gathering and local use may be date back centuries and perhaps millennia. At best, these two species are minimally domesticated; *C. klainei* is undomesticated and has only been cultivated in germplasm collections on a few occasions (Supplementary Text). Climate variable data for these species, over the natural distributions, provides a useful starting point for understanding climate requirements in cultivation^{31,32}. Summary data for the 19 Bioclims³³ are given in Supplementary Table 3.

The following narrative focuses on notable similarities and differences for the two crop species *C. liberica* (Liberica) and *C. dewevrei* (excelsa), as indicated in Supplementary Fig. 4 and Supplementary Table 4 (with *P* values). The annual mean temperature (Bio1) values are nearly identical (24.6 versus 24.4 °C), although Liberica has a lower mean diurnal range (Bio2; 7.9 versus 8.9). The main differences between *C. liberica* and *C. dewevrei* are for precipitation (the respective mean values are given): mean annual precipitation (Bio12; 2,215 versus 1,678 mm), precipitation of the wettest month (Bio13; 376.6 versus 230 mm); precipitation of the driest month (Bio14; 15.9 versus 36.2 mm); precipitation seasonality (Bio15; 66.9 versus 49.3); precipitation of the wettest quarter (Bio16; 988.9 versus 643.8 mm); precipitation of the driest quarter (Bio17; 80 versus 141.1 mm); and precipitation

of the coldest quarter (Bio19; 961.7 versus 597.7 mm). Although the mean annual precipitation for *C. dewevrei* is lower than for *C. liberica*, *C. liberica* experiences lower precipitation in the dry season (Bio14 and Bio17). The higher mean annual precipitation for *C. liberica* is due to higher precipitation in the wet season (Bio16), which corresponds to the wetter coldest quarter (Bio19). These patterns, along with precipitation seasonality (Bio15), are consistent with mean annual temperature and total annual precipitation climate bar charts. Upper West Africa (*C. liberica*) has a longer and more severe dry season with proportionally higher precipitation during the wetter/cool months of the year, whereas much of the distribution range of *C. dewevrei* (in central Africa) has a shorter dry season, or dry seasons (if annual rainfall is bimodal), with a more even annual distribution of precipitation (Supplementary Tables 3 and 4). Comprehensive field trials for *C. liberica* and *C. dewevrei* are required to ascertain the precipitation requirements in cultivation and particularly to test whether *C. liberica* is better adapted to a more seasonal rainfall pattern and is perhaps more drought tolerant than *C. dewevrei*.

C. dewevrei has the greatest range for most of the Bioclims, which may infer either, or a combination of, the following: (1) that this species has greater climate plasticity, (2) that there is a wider range of climate tolerance over the entirety of the metapopulation or (3) simply that the considerably larger distribution (compared with *C. liberica* and *C. klainei*) encompasses a greater range of data values. *C. dewevrei* frequently occurs in riverine and gallery forest types within savanna woodland landscapes²³, where populations may gain access to belowground or perhaps even surface water, at least during certain times of the year. Water availability in these habitats may enable this species to exist in

Fig. 3 | Distribution map for indigenous (wild) *C. liberica* (Liberica), *C. dewevrei* (excelsa) and *C. klainei*. The colours of the symbols are matched to the genetic distance phylogenetic tree (Fig. 2a). Linked symbols represent a

Rapoport's mean propinquity assessment²⁹ using a barrier distance of 500 km, which reveals a robust population separation between *C. liberica* versus *C. dewevrei* and *C. klainei*, but not between *C. dewevrei* and *C. klainei*.

areas of lower precipitation (for example, <1,000 mm yr⁻¹), biasing precipitation values (for example, those for this species (that is, below Q1; Supplementary Fig. 4 and Supplementary Tables 3 and 4)). In the wild, *C. dewevrei* occurs in both open-canopy and closed-canopy forest³.

Under the revised circumscription and reassessment of wild occurrences, the mean annual temperature value for *C. liberica* is 0.7 °C higher (at 24.6 °C) than previously reported for *C. liberica* sensu lato (23.9 °C)³², and *C. dewevrei* is 0.4 °C higher (at 24.4 °C) than previously reported (23.9 °C)³². The modelled mean annual temperature for *C. liberica* is 5.9 °C and 0.9 °C higher than naturally occurring *Arabica* (*C. arabica*: 18.7 °C) and *robusta* (*C. canephora*: 23.7 °C)³², respectively; and for *C. dewevrei* (5.7 °C and 0.7 °C, respectively). The modelled mean total annual precipitation for *C. dewevrei* (1,678 mm) is

similar to *Arabica* (1,614 mm) and *robusta* (1,699 mm)³², although field observations suggest that *C. dewevrei* exhibits a considerable measure of drought tolerance, particularly compared with *C. canephora*^{2,3}. Ultimately, multilocation field trials over a range of climates, using a range of genotypes, would be required to more thoroughly compare climate tolerances for these four crop species.

Implications for crop use and development

The species delimitations proposed in this study have implications for coffee crop development. Our genomic (Figs. 1 and 2) and phenotypic data (Table 1) reveal that *C. liberica* (Liberica) and *C. dewevrei* (excelsa) possess distinct alleles and unique allelic combinations of genes, as well as specific phenotypic (morphological) and climate

Table 1 | Morphological characters distinguishing *C. liberica* (Liberica), *C. dewevrei* (excelsa) and *C. klainei*

Characters	<i>C. liberica</i> (Liberica)	<i>C. dewevrei</i> (excelsa)	<i>C. klainei</i>
Leaf size (length×width)* (mean values)	16.7–30.2×5.6–10.4 cm (22.8×8.2 cm)	22.4–35.9×10–18 cm (29.5×14 cm)	15–33.6×5.5–14.4 cm (23.9×8.7 cm)
Leaf shape	Elliptic to narrowly elliptic or obovate elliptic, rarely narrowly obovate elliptic	Elliptic to broadly elliptic or elliptic obovate	Narrowly oblanceolate to oblanceolate, rarely obovate to elliptic
Inflorescence type	Cymose (branched), very rarely single or fasciculate	Cymose (branched)	Single or fasciculate
Number of inflorescences per axil	(1–)2–4	(2–)3–6	1–2(–3)
Number of flowers per inflorescence	(1–)2–6	(2–)4–8	1–3
Number of flowers per axil	(2–)4–18(–24)	(4–)6–40(–48)	1–2(–3)
Number of corolla lobes (most frequent number)	6–9(–12) (7)	5(–6) (5)	7–8(–9) (7)
Fruit size (length×width)	(1.5–)1.8–3.4×1.7–3.3 cm	1.2–2.5×0.8–2.1 cm	2.8–3.5×1.4–2.2 cm
Fruit shape	Spherical to ellipsoid	Spherical to ellipsoid, rarely subglobose	Narrowly-ellipsoid to ellipsoid
Pulp (mesocarp) thickness	4–9.5 mm	2–3.5 mm	Not seen
Parchment (endocarp) thickness* (mean values)	0.36–0.77 mm (0.57 mm)	0.22–0.41 mm (0.31 mm)	ca. 0.6 mm
Seed size (length×width)* (mean values)	9.5–18.3×6.5–12 mm (12.6×8.4 mm)	7.7–11.3×5.4–8 mm (9.3×6.6 mm)	9–18.4×5.8–8.1 mm (12.2×7.2 mm)

*See Extended Data Fig. 1 for box and whisker plots for leaf width and length, seed width and length and parchment thickness. The number of flowers per inflorescence is usually greater than the number of fruits per infructescence, with a proportion of flowers not developing into mature fruits. One-flowered inflorescences are rare in *C. liberica* and usually the result of low light levels or restricted water and/or nutrient availability. Numbers in parentheses with an en-dash (–) indicate outlying or uncommon values.

characteristics. These attributes offer resources and utility for coffee breeding programmes.

The robust species delimitation identified enables the unambiguous partitioning of attribute data. For example, compared with *C. liberica*, *C. dewevrei* exhibits a higher yield² owing to the number of fruits produced per tree, a higher outturn (that is, the conversion ratio of fresh fruit to clean (unroasted) coffee, mainly attributed to its thinner pulp² and thinner parchment (endocarp)) (Table 1). In addition, the smaller seeds of *C. dewevrei* (Table 1 and Supplementary Table 2), which are similar in size and shape to Arabica², make them more amenable to existing post-harvest, and preconsumption (roasting, packaging and coffee making) processes, as used for Arabica and robusta. Liberica and excelsa have contrasting coffee flavour profiles², which influences consumer preferences and supports market differentiation. In addition to previously reported agronomic traits for these species, we report here that the parchment (endocarp) of *C. dewevrei* is conspicuously thinner than *C. liberica* (mean values of 0.31 versus 0.57 mm; Table 1, Extended Data Fig. 1 and Supplementary Table 2), which, in combination with a thinner pulp (mesocarp), improves outturns and ultimately the profitability of the harvested crop compared with Liberica.

Our climate analyses show that indigenous *C. dewevrei* is adapted to a lower mean annual rainfall, compared with *C. liberica* (Supplementary Fig. 4 and Supplementary Tables 3 and 4), but that *C. liberica* might be better adapted to higher precipitation seasonality and thus longer dry seasons, with periods (1–4 months) of relatively low precipitation. *C. liberica* occurs at lower elevations (mean of 386 m), whereas *C. dewevrei* is located at mid- to high elevations (mean of 386 versus 654 m; Supplementary Table 3). In cultivation, Liberica is mostly farmed at low elevations (10–500 m), in warm to hot (for example, a mean annual temperature of 24–27 °C) and wet (for example, mean annual precipitation of 2,000–4,000 mm) habitats, with low precipitation seasonality (short or indistinct wet season(s)), such as those in lowland regions of Malaysia, the Philippines and Indonesia. In contrast, excelsa is principally farmed at mid-elevations (500–1,200 m), with cooler temperatures (a mean annual temperature of 22–25 °C and with lower mean annual precipitation (1,500–1,800 mm), for example, in Guinea,

South Sudan and Uganda. Notably, these species are rarely cultivated together or in overlapping agroecological zones. In tropical Central Africa^{34,35}, Peninsula Malaysia and Sarawak (K. Lee Wing Ting, D. Jitam & A. Clayre, personal communication) and Java³⁶ cultivated *C. liberica* flowers and fruits throughout the year. It is not certain whether this is the same for wild populations of *C. liberica*. By contrast *C. dewevrei* has a distinct flowering and fruiting seasons, although it is not known whether phenology would be disrupted under the conditions stated above for *C. liberica*.

Over their indigenous ranges, both species are likely to include populations with adaptations to regional climate differences, other abiotic factors (for example, soil), and various biotic interactions (for example, pest and disease incidence and resistance). This may particularly be the case for *C. dewevrei*, which has a large natural distribution range across tropical Central Africa. Importantly, Liberica and excelsa hold substantial potential for developing coffee farming in areas that are unsuitable for Arabica or robusta^{2,32}, particularly those at low elevations in hotter and wetter climates (with higher mean annual temperatures and different annual precipitation patterns, see above). They may also have potential as a replacement coffee crop in areas that are becoming climatically unsuitable for Arabica and robusta. Excelsa has been used to replace robusta in some areas of Uganda, probably as result of climate change, for example, refs. 2,3.

Given the close phylogenomic relationship between *C. liberica* and *C. dewevrei* (Fig. 1) the production of fertile interspecies hybrids is likely³⁷, either artificially (by hand or close-proximity cross pollination) or by chance³⁸. *C. dewevrei* × *C. liberica* hybrids have been reported to be of outstanding vigour and yield³⁸, although the existence of hybrids has not yet been verified by molecular methods. The use of either species in interspecies breeding programmes with other species may hold promise³.

Online sources regularly state that 'Liberica' (that is, *C. liberica* and *C. dewevrei*) provides 1–2% of the global coffee supply. This is incorrect, as these percentages are based on figures from the late-nineteenth century, when *C. liberica* stood with Arabica as the second most important coffee of commerce^{2,39}. By the mid-twentieth century, Liberica was

reported to represent about⁴⁰ or less than⁴¹ 1% of global production, respectively. Today, global production of *C. liberica* and *C. dewevrei* is probably less than 1,000 metric tons (mt). Based on the figures for global exports of Arabica and robusta, which combined was around 10 million mt for 2024¹, an estimate of production of 1,000 mt would represent 0.01% of global coffee exports. Despite this seemingly insignificant figure, Liberica and excelsa production is now being upscaled², particularly in Uganda, South Sudan, India, Vietnam, Malaysia, the Philippines, Indonesia and even the Pacific.

Extinction risk

Under our revised taxonomic circumscription, and refinement of indigenous distribution (Fig. 3), the extent of occurrence (EOO) for *C. liberica* decreases from 6,812,900 km², as per the existing International Union for Conservation of Nature (IUCN) Red List assessment⁴², to 352,310 km², which represents a reduction of 94.8%. The area of occurrence (AOO), is similarly affected, decreasing from 736 km² to 52 km², a reduction of 92.9%. The current IUCN Red List assessment reports that *C. liberica* occurs naturally in 17 countries⁴²; our revised species delimitation reduces this to five: Sierra Leone, Liberia, Ivory Coast, Ghana and Nigeria. In all these countries, except Liberia, forest loss has been ongoing and in some cases severe, even over the past two decades⁴³. It should be made clear, that the conservation metrics given above are based on historical records only, mainly from 1900–1980. Over the past 45 years, many of the populations and subpopulations recorded during that period have been extirpated or reduced in area and health owing to deforestation and other land-use changes. For example, in Sierra Leone, targeted searches for wild coffee species at Kasewe Hills Forest Reserve in 2023 and 2024 failed to locate *C. liberica* (Lebbie personal communication, 2024). To our knowledge, it was last recorded at Kasewe Hills in 1913 (herbarium specimen: Lane-Poole 128, 1913, K). Conversely, there are likely to be additional populations and subpopulations in Liberia, which has considerably more natural forest than the other four countries and is under-botanized. Given an AOO of less than 2,000 km² (52 km² for *C. liberica*), evidence of severe fragmentation (via Google Earth imagery) and continuing declines in AOO and EOO, *C. liberica* may warrant reassessment as a species threatened with extinction, shifting from its current classification of 'Least Concern'⁴² to 'vulnerable' (VUB2 (a,b(i–v)))⁴⁴. *C. klainei* has an AOO of 76 km², and might also qualify as 'Vulnerable' under IUCN Red List criteria⁴⁴, although further data would be required, for both species, before confident IUCN extinction threat assessments could be made. With an EOO of 2,464,990 km² and an AOO of 456 km², *C. dewevrei* falls into the 'Least Concern' category, even with the observed forest loss evident in many areas of its distribution³. Regardless of the conservation metrics presented here, enhanced conservation measures are urgently needed for all three species, and particularly for *C. liberica*, to ensure their survival in the wild and potential role in global coffee sustainability.

Methods

DNA sampling

We sampled 12 accessions of *C. liberica* and 22 of *C. dewevrei*, sourced from wild and cultivated populations (farmed or germplasm collections), and 15 accessions representing all eight closely related species, as identified by prior molecular phylogenetic analyses^{6,22,25} and taxonomic study^{5,16,24}. Material representing the geographical range of validly published synonyms for the two foci species were included in the DNA sampling (Supplementary Table 1 and Supplementary Text 1 and 2). Outgroup taxa from within *Coffea* (five accessions) were selected based on previous molecular phylogenetic analyses^{6,12,22,25}. DNA was extracted from 26 herbarium leaf tissue samples, 13 silica-gel dried samples and 16 seed samples. Sampling details, other accession information and sequence information are provided in Supplementary Table 1. Accepted botanical names and authorities follow the International Plant Names Index (<https://www.ipni.org>).

DNA sequencing and phylogenomic analysis

Total DNA was extracted using a modified CTAB protocol for herbarium specimens⁴⁵. Sequence target capture data were generated using the universal Angiosperms353 target capture kit developed to retrieve 353 nuclear genes across the angiosperms^{17,18}. Genomic libraries were constructed using an optimized protocol⁴⁶ for half volumes of the NEBNext Ultra II DNA Library Prep kit for Illumina (New England Biolabs) and purified using AMPure XP magnetic beads and multiplexed using NEBNext Multiplex Oligos for Illumina (Dual Index Primer Sets I and II). Pools containing 55 genomic libraries mixed in equimolar conditions were enriched with half reactions of the Angiosperms353 probe kit following the myBaits kit manual v.3.0.2 (Arbor Biosciences), using an optimized protocol⁴⁷. The DNA concentration and fragment size distribution were calculated using a Quantus fluorometer (Promega Corp.) and an Agilent 4200 TapeStation (Agilent Technologies), respectively. Sequencing was performed on a HiSeq (Illumina Inc.) by Macrogen, producing 2×150 bp paired-end reads. Raw reads were submitted to the European Nucleotide Archive (<https://www.ebi.ac.uk>). ID codes are given in Supplementary Table 5. Trimmomatic v.0.35 (ref. 48) was used to discard low-quality reads and trim adaptors based on the reports generated by FastQC v.0.11.7 (ref. 49) and HybPiper v.2.3.0 (ref. 50) to retrieve the 353 nuclear loci using a combination of map to reference and de novo assembly methods for all samples. Alignments were generated in MAFFT 7.305b (ref. 51) using the command 'auto', then edited with trimAL v.1.4.rev22 (ref. 52) using the 'automated1' parameter.

Phylogenetic analyses were conducted for the concatenated and partitioned dataset of nuclear data (that is, the supermatrix approach) and by estimating a species tree from individual phylogenetic trees reconstructed for each nuclear locus independently (that is, multispecies-coalescent approach). Phylogenetic trees were reconstructed using RAxML-NG⁵³ and IQ-TREE⁵⁴ with 1,000 BS replicates. ModelFinder determined the optimal substitution model (-m MFP), selecting GTR + GAMMA⁵⁵ on the best BIC score. Concatenated datasets were built with FASconCAT-G v.1.04 (ref. 56). ASTRAL-III⁵⁷ was used to construct a species tree based on the independent nuclear gene trees and the ASTRAL-III phylogenetic topology as input for the supermatrix approach. Support values were assessed using LPPs, with branches deemed supported if their LPP exceeded 0.95. To evaluate incongruence among gene trees, a quartet-based analysis was performed using the -t8 option in ASTRAL-III, enabling the identification of the proportion of genes supporting alternative topologies at each node.

SNP production and analyses

To generate SNP data for *C. liberica*, *C. dewevrei* and *C. klainei* (38 accessions), we used the framework developed by DePristo et al.⁵⁸ using GATK⁵⁹ following the pipelines established for Angiosperms353 data^{21,60}. This process involved combining aligned and unaligned reads to a reference built with the longest exon obtained for all samples of the three species. We removed duplicate sequences and performed joint genotype calling for all samples after initially generating variants for each sample individually⁶¹ in a variant call format (VCF) file. The initial VCF file was processed with a stringent filter (QD < 5.0 || FS > 60.0 || MQ < 40.0 || MQRankSum < -12.5 || ReadPosRankSum < -8.0), removing indels and SNPs with missing data using GATK and eliminating linked SNPs with PLINK⁶². Base quality score recalibration was performed in GATK, followed by a repeated variant calling step.

To examine genetic differentiation patterns, we used STRUCTURE²⁶ to determine the optimal number of genetic clusters in the dataset. STRUCTURE was run for five potential clusters (*K*), corresponding to the number of assumed genetic groups plus two. Each *K* was analysed with ten replicates, using 100,000 burn-in iterations followed by 1,000,000 Markov chain Monte Carlo repetitions. The most likely number of clusters was identified using Structure Harvester²⁷, which

implemented the method of Evanno et al.²⁸ to calculate ΔK values. The K with the highest ΔK value was selected as one probable assessment of the number of clusters, and $K = 3$ was examined as an alternative, based on the number of clades obtained with the phylogenomic analysis (Fig. 1), genetic distance phylogenetic tree (Fig. 2a) and geographical distribution, heeding the issues raised regarding $K = 2$ and recommendations for exploring population subdivision²⁹. $K = 2, 4$ and 5 were also examined. PLINK outputs were converted into STRUCTURE-compatible files using PGDSpider⁶³. The results from STRUCTURE were visualized with StructRly⁶⁴. Genetic differentiation was explored using a genetic distance-based phylogenetic tree using upgma with poppr 2.9.6, adegenet, ape 5.7.1 and RColorBrewer packages (Fig. 2a) and PCoA in R 4.3.0 (ref. 65), with the adegenet and ggplot2 packages, retaining three principal components to investigate genetic groupings (Fig. 2c).

Morphological study

Morphological characters (Table 1) were measured from herbarium specimens (held at The Natural History Museum, London, UK (BM); Meise Botanic Garden, Belgium (BR); Royal Botanic Gardens, Kew, UK (K); Muséum National d'Histoire Naturelle, Paris, France (P) and Naturalis Biodiversity Center, Leiden, Netherlands (WAG)⁶⁶) and living plants. More than 700 herbarium specimens, encompassing wild and cultivated *C. liberica*, *C. dewevrei* and *C. klainei*, were examined. Material representing all validly published synonyms of the three taxa were comprehensively studied (Supplementary Text 1 and 2). Living plants were studied in the wild and in cultivation settings across Africa, Madagascar and Asia. Parchment measurements were taken using a Mitutoyo no. 193-111, 0–25 mm (0.001 mm) micrometer. Seed measurement data were taken from published work^{2,36}.

Distribution and conservation assessment metrics

Data for the production of the distribution map, climate profiling (see 'Climate profiling' section) and conservation metrics for *C. liberica*, *C. dewevrei* and *C. klainei* were gathered from occurrence data points representing indigenous (wild) locations derived from herbarium specimens (BM, BR, K, MHU, P and WAG⁶⁶) and field surveys. Georeferencing was performed for locations lacking coordinates, followed by manual validation and correction using Google Earth imagery. The dataset comprised 311 records, including 19 for *C. liberica*, 267 for *C. dewevrei* and 25 for *C. klainei*; after the removal of duplicate locations (within 1 km of each other), this was reduced to 152 data points (13, 119 and 20, respectively). The distribution map (Fig. 3) was produced in ArcGIS Pro 3.2.0 (Environmental Systems Research Institute) using Natural Earth (<https://www.naturalearthdata.com>) and their terrain and country boundaries dataset (version 5.1.1). IUCN Red List conservation metrics⁴⁴, were produced using ShinyGeoCAT⁶⁷, with default settings aligned to IUCN methodology and criteria⁴⁴, providing the EOO (that is, a minimum convex polygon enclosing all occurrences) and AOO based on at least one occurrence in a 2 × 2 km grid cell (that is, the IUCN default⁴⁴). A Rapoport's mean propinquity assessment³⁰ with a barrier distance of 500 km was used to test for population and subpopulation separation.

Climate profiling

To understand the key climate parameters for each species, the statistics package R⁶⁵ was used to sample the same dataset as above, against 19 Bioclim variables³³ from the CHELSA dataset⁶⁸. We reviewed all 19 Bioclim variables (Supplementary Fig. 4 and Supplementary Tables 3 and 4). For validation purposes, the modelled Bioclim data were compared against publicly available mean annual temperature and total annual precipitation climate bar charts.

Reporting summary

Further information on research design is available in the Nature Portfolio Reporting Summary linked to this article.

Data availability

Raw reads for Angiosperms353 sequence data are available at the European Nucleotide Archive (<https://www.ebi.ac.uk>) under project no. PRJEB78707; ID codes are given in Supplementary Table 5.

References

1. Coffee market report. December 2024. International Coffee Organization https://www.ico.org/documents/cy2024-25/cmr-1224-e.pdf?mc_cid=c38d8a27cc&mc_eid=e7d1030fcc (2024).
2. Davis, A. P., Kiwuka, C., Faruk, A., Walubiri, M. J. & Kalema, J. The re-emergence of Liberica coffee as a major crop plant. *Nat. Plants* **8**, 1322–1328 (2022).
3. Davis, A. P., Kiwuka, C., Faruk, A., Mulumba, J. & Kalema, J. A review of the indigenous coffee resources of Uganda and their potential for coffee sector sustainability and development. *Front. Plant Sci.* **13**, 1057317 (2023).
4. N'Diaye, A. N., Poncet, V., Louran, J., Hamon, S. & Noiro, M. Genetic differentiation between *Coffea liberica* var. *liberica* and *C. liberica* var. *dewevrei* and comparison with *C. canephora*. *Plant Syst. Evol.* **253**, 95–104 (2005).
5. Davis, A. P., Govaerts, R., Bridson, D. M. & Stoffelen, P. An annotated taxonomic conspectus of the genus *Coffea* (Rubiaceae). *Bot. J. Linn. Soc.* **152**, 465–512 (2006).
6. Hamon, P. et al. Genotyping-by-sequencing provides the first well-resolved phylogeny for coffee (*Coffea*) and insights into the evolution of caffeine content in its species. *Mol. Phylogenet. Evol.* **109**, 351–361 (2017).
7. Baltazar, M. D. & Buot, I. E. Leaf architectural analysis of taxonomic confusing coffee species: *Coffea liberica* and *Coffea liberica* var. *dewevrei*. *Biodiversitas* **20**, 1560–1567 (2019).
8. Plants of the world online. World checklist of vascular plants: checklist builder. Royal Botanic Gardens Kew <https://checklistbuilder.science.kew.org/reportbuilder.do> (2025).
9. Bridson, D. M. in *Flora of Tropical East Africa, Rubiaceae, Part 2* (eds Polhill R. M., Bridson D. M., & Verdcourt B.) 703–723 (Balkema, 1988).
10. Crisafulli, P., Guercia, E. & Navarini, L. Discrimination of *Coffea liberica* and *Coffea liberica* var. *dewevrei*: silverskin morphological traits and seed diterpenes content. *Trop. Plant Biol.* **15**, 247–259 (2022).
11. Noiro, M., Charrier, A., Stoffelen, P. & Anthony, F. Reproductive isolation, gene flow and speciation in the former *Coffea* subgenus: a review. *Trees* **30**, 597–608 (2016).
12. Charr, J.-C. et al. Complex evolutionary history of coffees revealed by full plastid genomes and 28,800 nuclear SNP analyses, with particular emphasis on *Coffea canephora* (robusta coffee). *Mol. Phylogenet. Evol.* **151**, 106906 (2020).
13. Mwanga, I. J.-C. & Stoffelen, P. in *Flore d'Afrique Centrale: Spermatophytes, Rubiaceae, Tribu VIII. Coffeeae* (ed. Robbrecht, E.) (Jardin Botanique de Meise, 2024).
14. Carstens, B. C., Pelletier, T. A., Reid, N. M. & Satler, J. D. How to fail at species delimitation. *Mol. Ecol.* **22**, 4369–4383 (2013).
15. Turland, N. J. et al. in *International Code of Nomenclature for Algae, Fungi, and Plants (Shenzhen Code) Adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017* (Koeltz Botanical Books, 2018).
16. Stoffelen, P. *Coffea and Psilanthus in Tropical Africa: a Systematic and Palynological Study, Including a Revision of the West and Central African Species*. PhD thesis, Katholieke Univ. Leuven, 1998.
17. Johnson, M. G. et al. A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k-medoids clustering. *Syst. Biol.* **68**, 594–606 (2018).

18. Baker, W. J. et al. A comprehensive phylogenomic platform for exploring the Angiosperm Tree of Life. *Syst. Biol.* **71**, 301–319 (2021).

19. Zuntini, A. R. et al. Phylogenomics and the rise of the angiosperms. *Nature* **629**, 843–850 (2024).

20. Baker, W. J. et al. Exploring Angiosperms353: an open, community toolkit for collaborative phylogenomic research on flowering plants. *Am. J. Bot.* **108**, 1059–1065 (2021).

21. Slimp, M., Williams, L. D., Hale, H. & Johnson, M. G. On the potential of Angiosperms353 for population genomic studies. *Appl. Plant Sci.* **9**, e11419 (2021).

22. Davis, A. P., Tosh, J., Ruch, N. & Fay, M. Growing coffee: *Psilanthes* (Rubiaceae) subsumed on the basis of plastid and nuclear DNA sequences; implications for the size, morphology, distribution and evolutionary history of *Coffea*. *Bot. J. Linn. Soc.* **167**, 357–377 (2011).

23. Maurin, O. et al. Towards a phylogeny for *Coffea* (Rubiaceae): identifying well-supported lineages based on nuclear and plastid DNA sequences. *Ann. Bot.* **100**, 1565–1583 (2007).

24. Sonké, B., Nguembou, C. K. & Davis, A. P. A new dwarf *Coffea* (Rubiaceae) from southern Cameroon. *Bot. J. Linn. Soc.* **151**, 425–430 (2006).

25. Stoffelen, P., Anthony, F., Janssens, S. & Noirot, M. A new coffee species from South-West Cameroon, the principal hotspot of diversity for *Coffea* L. (Coffeeae, Ixoroideae, Rubiaceae) in Africa. *Adansonia* **43**, 277–285 (2021).

26. Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. *Genetics* **155**, 945–959 (2000).

27. Earl, D. A. & vonHoldt, B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. *Conserv. Genet. Resour.* **4**, 359–361 (2012).

28. Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: a simulation study. *Mol. Ecol.* **14**, 2611–2620 (2005).

29. Janes, J. K. et al. The $K = 2$ conundrum. *Mol. Ecol.* **26**, 3594–3602 (2017).

30. Rapoport, E. H. *Areography: Geographical Strategies of Species* (Pergamon Press, 1982).

31. Zohary, D. & Spiegel-Roy, P. Beginnings of fruit growing in the Old World: olive, grape, date, and fig emerge as important Bronze Age additions to grain agriculture in the Near East. *Science* **187**, 319–327 (1975).

32. Davis, A. P., Mieulet, D., Moat, J., Sarmu, D. & Haggar, J. Arabica-like flavour in a heat-tolerant wild coffee species. *Nat. Plants* **7**, 413–418 (2021).

33. Busby, J. R. in *Nature Conservation: Cost Effective Biological Surveys and Data Analysis* (eds Margules C. R. & Austin M. P.) 64–68 (CSIRO, 1991).

34. De Wildeman, E. *Mission Émile Laurent (1903–1904)* Vol. 1 (Imp. F. Vandenbugghoudt, 1906).

35. Cheney, R. H. *A Monograph of the Economic Species of the Genus Coffea L.* (New York Univ. Press, 1925).

36. Cramer, P. J. S. Gevens over de variabiliteit van de in Nederlandsch-Indië verbouwde koffie-sorten. *Meded. Depart. Landbouw* **1**, 1–696 (1913).

37. Viruel, J. et al. Crop wild phylorelatives (CWRs): phylogenetic distance, cytogenetic compatibility and breeding system data enable estimation of crop wild relative gene pool classification. *Bot. J. Linn. Soc.* **195**, 1–33 (2020).

38. Cramer, P. J. S. *A Review of Literature of Coffee Research in Indonesia* (Inter-American Institute of Agricultural Sciences, 1957).

39. McCook, S. in *Comparing Apples, Oranges, and Cotton. Environmental Histories of the Plantation* (ed. Uekötter, F.) 85–112 (Campus Verlag, 2014).

40. Wellman, F. L. *Coffee: Botany, Cultivation and Utilization*. (Leonard Hill Limited, 1961).

41. Burkill, I. H. *A Dictionary of the Economic Products of the Malay Peninsula Vol. 1 (A–H)* (Oxford Univ. Press, 1935).

42. Chadburn, H. & Davis, A. P. *Coffea liberica*. The IUCN Red List of threatened species 2017. *IUCN* <https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T18537594A18539526.en> (2017).

43. World Resources Institute (WRI). *Global Forest Watch* <http://www.globalforestwatch.org> (2014).

44. IUCN Standards and Petitions Subcommittee. Guidelines for using the IUCN Red List categories and criteria, version 16. *IUCN* <http://www.iucnredlist.org/documents/RedListGuidelines.pdf> (2024).

45. Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. *Phytochem. Bull.* **19**, 11–15 (1987).

46. Viruel, J. et al. A target capture-based method to estimate ploidy from herbarium specimens. *Front. Plant Sci.* **10**, 937 (2019).

47. Brewer, G. E. et al. Factors affecting targeted sequencing of 353 nuclear genes from herbarium specimens spanning the diversity of angiosperms. *Front. Plant Sci.* **10**, 1102 (2019).

48. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics* **30**, 2114–2120 (2014).

49. Andrews, S. FastQC: a quality control tool for high throughput sequence data. *Babraham Bioinformatics* <http://www.bioinformatics.babraham.ac.uk/projects/fastqc> (2010).

50. Johnson, M. G. et al. HybPiper: extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment. *Appl. Plant Sci.* **4**, 1600016 (2016).

51. Katoh, K., Misawa, K., Kuma, K.-i & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Res.* **30**, 3059–3066 (2002).

52. Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. *Bioinformatics* **25**, 1972–1973 (2009).

53. Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. *Bioinformatics* **35**, 4453–4455 (2019).

54. Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol. Biol. Evol.* **32**, 268–274 (2015).

55. Yang, Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. *J. Mol. Evol.* **39**, 306–314 (1994).

56. Kück, P. & Longo, G. C. FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. *Front. Zool.* **11**, 81 (2014).

57. Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. *BMC Bioinformatics* **19**, 15–30 (2018).

58. DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. *Nat. Genet.* **43**, 491–498 (2011).

59. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res.* **20**, 1297–1303 (2010).

60. Liang, J. K., Shepherd-Clowes, A., Ibarra, P. T. & Viruel, J. Conservation implications for the Iberian narrowly endemic *Androsace cantabrica* (Primulaceae) using population genomics with target capture sequence data. *Authorea* <https://doi.org/10.22541/au.173352933.31760025/v1> (2024).

61. Poplin, R. et al. Scaling accurate genetic variant discovery to tens of thousands of samples. Preprint at *bioRxiv* <https://doi.org/10.1101/201178> (2018).
62. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. *GigaScience* <https://doi.org/10.1186/s13742-015-0047-8> (2015).
63. Lischer, H. E. L. & Excoffier, L. PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. *Bioinformatics* **28**, 298–299 (2012).
64. Criscuolo, N. G. & Angelini, C. StructuRly: a novel shiny app to produce comprehensive, detailed and interactive plots for population genetic analysis. *PLoS ONE* **15**, e0229330 (2020).
65. R Core Team *R: A Language and Environment for Statistical Computing* (R Core Team, 2023).
66. Thiers, B. Index Herbariorum: a global directory of public herbaria and associated staff. *New York Botanical Garden's Virtual Herbarium* <http://sweetgum.nybg.org/science/ih/> (2024).
67. Bachman, S., Moat, J., Hill, A. W., de la Torre, J. & Scott, B. Supporting red list threat assessments with GeoCAT: geospatial conservation assessment tool. *Zookeys* <https://doi.org/10.3897/zookeys.150.2109> (2011).
68. Karger, D. N. et al. Climatologies at high resolution for the earth's land surface areas. *Sci. Data* **4**, 170122 (2017).

Acknowledgements

We thank the individuals and organizations who contributed cultivated and trade samples of Liberica and excelsa coffee, including A. Kawabata, the Department of Tropical Plant and Soil Sciences, Kealakekua, Hawaii; G. Hernandez, at *Coffea diversa*, Costa Rica; D. Sarmu, Coffee Culture, Sierra Leone; Slow Foods, Italy; E. Selam, House of Kendal, Malaysia; and J. Liew, MyLiberica, Malaysia. We thank the herbarium curators at the herbaria listed herein, and E. Messenger at Kew's Economic Botany Collection for access to collections for DNA sampling. Thank you to K. Lee Wing Ting, D. Jitam and A. Clayre for sharing their knowledge of Liberica coffee in Malaysia. Funding was provided by a legacy from Jean Rose (to A.P.D., A.S.-C. and J.V.), the Calleva Foundation (to A.P.D., A.S.-C., D.W.L., J.V., C.K. and J.K.) and the Amar-Frances Foster-Jenkins Trust (to A.P.D., A.S.-C., C.K. and J.K.).

Author contributions

A.P.D., A.S.-C., J.M., M.C. and J.V. designed the study. DNA sampling was undertaken by A.P.D., A.S.-C., M.C. and B.T. DNA extractions and genomic library preparations were performed by A.S.-C. Bioinformatics pipelines were constructed by A.S.-C., D.W.L. and J.V. Pre-analysis bioinformatics, phylogenomic analyses, SNP production and analyses were undertaken by A.S.-C. and J.V. Assembly and

assessment of morphological and distribution data was made by A.D., M.C., C.K., J.K. and B.T. Taxonomic and nomenclature work was undertaken by A.D. and M.C. Conservation metrics were produced and analysed by J.M. and A.D. Climate profiling analyses were performed by J.M. The paper was written by A.D., A.S.-C., J.M., M.C. and J.V. All authors contributed to manuscript revisions and approved the paper. A.P.D. and A.S.-C. contributed equally to the study.

Competing interests

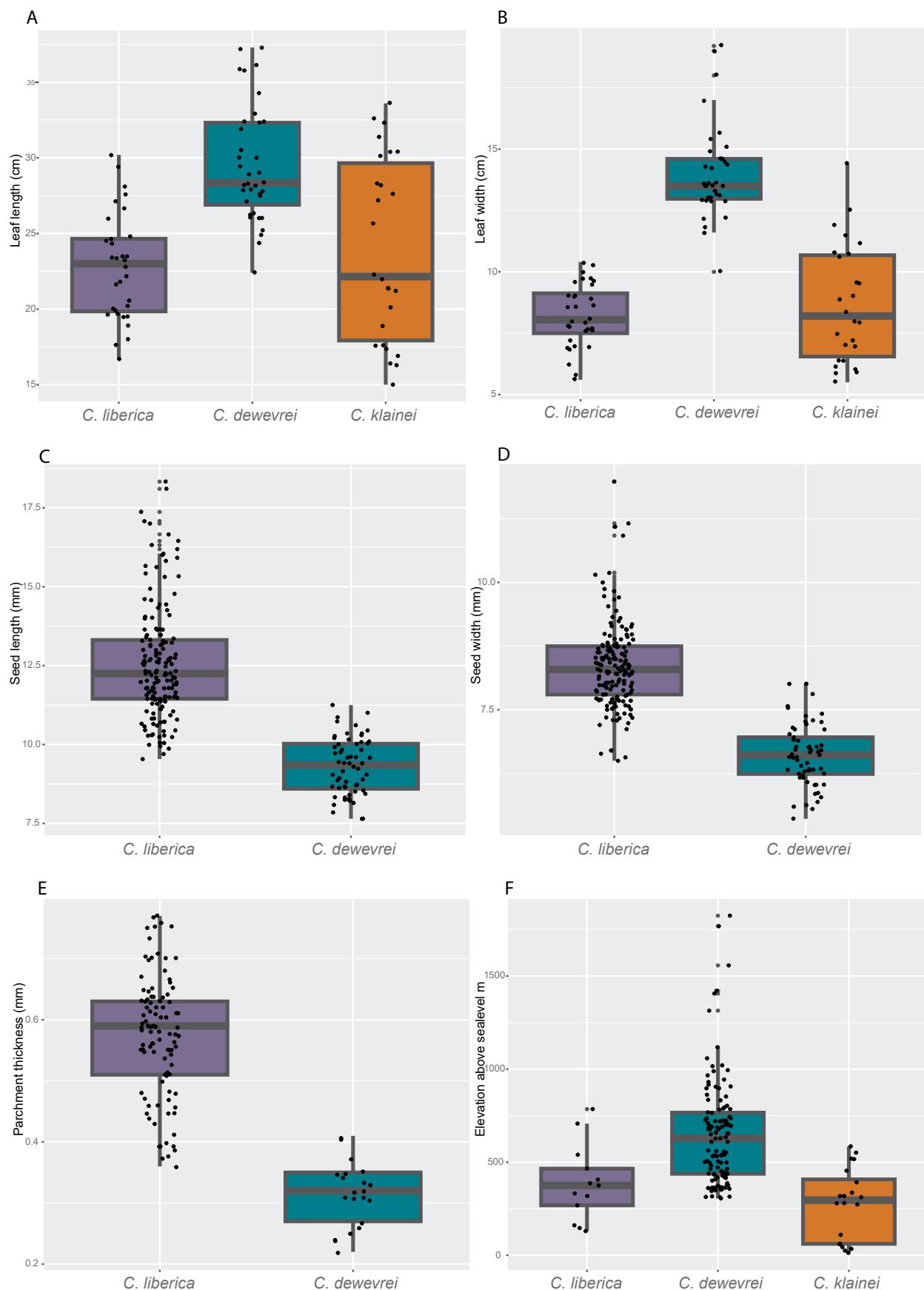
The authors declare no competing interests.

Additional information

Extended data is available for this paper at <https://doi.org/10.1038/s41477-025-02073-y>.

Supplementary information The online version contains supplementary material available at <https://doi.org/10.1038/s41477-025-02073-y>.

Correspondence and requests for materials should be addressed to A. P. Davis.


Peer review information *Nature Plants* thanks Brecht Verstraete and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by/4.0/>.

© The Author(s) 2025

Extended Data Fig. 1 | See next page for caption.

Extended Data Fig. 1 | Box and whisker plots for length and width of leaves and seeds, parchment (endocarp) thickness, and elevation for *C. liberica* (*Liberica*), *C. dewevrei* (*excelsa*) and *C. klainei*. Mean values in square brackets; quartile values are given in Supplementary Information Table 2. **a, Leaf length (cm):** *C. liberica* (22.8 cm), *C. dewevrei* (29.5 cm) and *C. klainei* (23.9 cm). **b, Leaf width (cm):** *C. liberica* (8.2 cm), *C. dewevrei* (14 cm) and *C. klainei* (8.7 cm). **c, Seed length (mm):** *C. liberica* (12.6 mm) and *C. dewevrei* (9.3 mm). **d, seed width (mm):** *C. liberica* (8.4 mm), *C. dewevrei* (6.6 mm). **e, Parchment thickness**

(mm): *C. liberica* (0.57 mm) and *C. dewevrei* (0.31 mm). **f, Elevation (m):** *C. liberica* (386 m), *C. dewevrei* (654 m) and *C. klainei* (274 m). Overview of *t*-Tests: *C. liberica* and *C. dewevrei* are significantly different ($p < 0.0005$) for all six variables; *C. liberica* and *C. klainei* are not significantly different for any variables; *C. dewevrei* and *C. klainei* are significantly different for leaf length and width ($p < 0.0005$) and elevation ($p < 0.005$). *t*-Test results and other information are given in Supplementary Information Table 2.

Extended Data Fig. 2 | Leaves of *C. liberica* (Liberica) and *C. dewevrei* (excelsa). **Top**, *C. liberica*, shoot with leaves; **bottom**, *C. dewevrei*, leaves.

Extended Data Fig. 3 | Fruits of *C. liberica* (Liberica) and *C. dewevrei* (excelsa).
a, *C. liberica*, infructescences and fruits; **b**, *C. liberica*, fruit in partial cross section (pulp removed showing pyrene and outer surface of endocarp, with whole fruits.

c, *C. dewevrei*, infructescences and fruits; **d**, *C. dewevrei*, fruit in partial cross section (above) with pulp removed and showing pyrene and outer surface of endocarp, and whole fruit (below).

Extended Data Fig. 4 | Fruits and flowers of *C. liberica* (Liberica) and *C. dewevrei* (excelsa). **a**, immature fruits: *C. liberica*, left and *C. dewevrei*, right; **b**, *C. liberica*, with 8-lobed (8-merous) flower; **c**, *C. dewevrei*, with 5-lobed (5-merous) flower. Flower size and shape is highly variable in both species.

Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Portfolio policies, see our [Editorial Policies](#) and the [Editorial Policy Checklist](#).

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F , t , r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d , Pearson's r), indicating how they were calculated

Our web collection on [statistics for biologists](#) contains articles on many of the points above.

Software and code

Policy information about [availability of computer code](#)

Data collection N.A.

Data analysis N.A.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio [guidelines for submitting code & software](#) for further information.

Data

Policy information about [availability of data](#)

All manuscripts must include a [data availability statement](#). This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our [policy](#)

All raw DNA sequence data generated for this study are deposited in the European Nucleotide Archive. All other generated is provided in the main text or in supplementary material.

Research involving human participants, their data, or biological material

Policy information about studies with [human participants or human data](#). See also policy information about [sex, gender \(identity/presentation\), and sexual orientation](#) and [race, ethnicity and racism](#).

Reporting on sex and gender

N.A.

Reporting on race, ethnicity, or other socially relevant groupings

N.A.

Population characteristics

N.A.

Recruitment

N.A.

Ethics oversight

N.A.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description

A phylogenomic and morphological analysis of Liberica coffee (*C. liberica* sensu lato) to ascertain species delimitation, to enable the elucidation of key attributes (focusing on climate parameters, and crop traits).

Research sample

A broad selection of samples of Liberica coffee (*C. liberica* var *liberica* and *C. liberica* var *dewevrei*), including a reference sampling from wild populations, and cultivated (farmed) examples.

Sampling strategy

Coverage of wild material from across the geographical range of each var. of *C. liberica*, plus a range of related species

Data collection

The samples were collected by a range of individuals, mostly as museum (herbarium) samples.

Timing and spatial scale

Late nineteenth century to present day.

Data exclusions

A much larger sample size was made (i.e. 96% of all known coffee species) to ensure that no other species/taxa fell into the core study sampling.

Reproducibility

Repeat sequences were undertaken for the main study taxa. Phylogenomic analysis were repeated several time with various optimizations. The results were the same.

Randomization

N.A.

Blinding

N.A.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

n/a	Involved in the study
<input checked="" type="checkbox"/>	Antibodies
<input checked="" type="checkbox"/>	Eukaryotic cell lines
<input checked="" type="checkbox"/>	Palaeontology and archaeology
<input checked="" type="checkbox"/>	Animals and other organisms
<input checked="" type="checkbox"/>	Clinical data
<input checked="" type="checkbox"/>	Dual use research of concern
<input type="checkbox"/>	<input checked="" type="checkbox"/> Plants

Methods

n/a	Involved in the study
<input checked="" type="checkbox"/>	ChIP-seq
<input checked="" type="checkbox"/>	Flow cytometry
<input checked="" type="checkbox"/>	MRI-based neuroimaging

Dual use research of concern

Policy information about [dual use research of concern](#)

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented in the manuscript, pose a threat to:

No | Yes

<input checked="" type="checkbox"/>	<input type="checkbox"/> Public health
<input checked="" type="checkbox"/>	<input type="checkbox"/> National security
<input checked="" type="checkbox"/>	<input type="checkbox"/> Crops and/or livestock
<input checked="" type="checkbox"/>	<input type="checkbox"/> Ecosystems
<input checked="" type="checkbox"/>	<input type="checkbox"/> Any other significant area

Experiments of concern

Does the work involve any of these experiments of concern:

No | Yes

<input checked="" type="checkbox"/>	<input type="checkbox"/> Demonstrate how to render a vaccine ineffective
<input checked="" type="checkbox"/>	<input type="checkbox"/> Confer resistance to therapeutically useful antibiotics or antiviral agents
<input checked="" type="checkbox"/>	<input type="checkbox"/> Enhance the virulence of a pathogen or render a nonpathogen virulent
<input checked="" type="checkbox"/>	<input type="checkbox"/> Increase transmissibility of a pathogen
<input type="checkbox"/>	<input type="checkbox"/> Alter the host range of a pathogen
<input checked="" type="checkbox"/>	<input type="checkbox"/> Enable evasion of diagnostic/detection modalities
<input checked="" type="checkbox"/>	<input type="checkbox"/> Enable the weaponization of a biological agent or toxin
<input checked="" type="checkbox"/>	<input type="checkbox"/> Any other potentially harmful combination of experiments and agents

Plants

Seed stocks

Most of the material was from museum collections, including ancillary material (DNA in silica gel). No living material used or stored.

Novel plant genotypes

N.A.

Authentication

N.A.