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Open-Vocabulary Online Semantic
Mapping for SLAM

Tomas Berriel Martins , Martin R. Oswald , and Javier Civera , Member, IEEE

Abstract—This letter presents an Open-Vocabulary Online 3D
semantic mapping pipeline, that we denote by its acronym OVO.
Given a sequence of posed RGB-D frames, we detect and track
3D segments, which we describe using CLIP vectors. These are
computed from the viewpoints where they are observed by a novel
CLIP merging method. Notably, our OVO has a significantly lower
computational and memory footprint than offline baselines, while
also showing better segmentation metrics than offline and online
ones. Along with superior segmentation performance, we also show
experimental results of our mapping contributions integrated with
two different full SLAM backbones (Gaussian-SLAM and ORB-
SLAM2), being the first ones using a neural network to merge CLIP
descriptors and demonstrating end-to-end open-vocabulary online
3D mapping with loop closure.

Index Terms—Semantic scene understanding, mapping, SLAM.

I. INTRODUCTION

S EMANTIC mapping targets the estimation of the category
to which each element in a scene belongs, along with a con-

sistent geometric representation. Rich semantic representations
in 3D are essential for advanced robotic applications. Tradi-
tionally, semantic 3D reconstruction has relied on a closed-set
approach in both offline [1], [2] and online [3], [4] settings,
including integrations into semantic Simultaneous Localization
and Mapping (SLAM) systems [5], [6], [7]. However, these
methods are constrained by a predefined set of categories, which
limits their flexibility and applicability in open-ended, real-
world environments. Following the emergence of Contrastive
Language-Image Pre-training (CLIP) [8], there has been a surge
of interest in open-vocabulary 3D representations [9], [10], [11],
including efforts in online mapping [12], [13], [14]—though
not yet in full SLAM systems. While these recent approaches
have shown strong performance, their dependence on offline
processing or ground-truth camera poses for mapping signifi-
cantly limits their applicability in robotics, augmented reality,
and virtual reality scenarios.
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Fig. 1. OVO mapping. Given a RGB-D set of keyframes (top), our method
successively reconstructs a 3D open-vocabulary representation of a scene over
time (middle). At any moment, both semantic labels (bottom left) as well as
instance labels (bottom right) can be effectively recovered.

In this letter, we present OVO, an Open-Vocabulary Online
mapping algorithm, which we integrate into two distinct vi-
sual SLAM pipelines. An example of our online reconstruc-
tion results is shown in Fig. 1. Our method processes RGB-D
keyframes to generate 3D segments, each associated with a CLIP
embedding. These segments are initialized by back-projecting
masks predicted by Segment Anything Model (SAM) 2.1 [15],
and are tracked over time by projecting them into 2D and match-
ing against new masks. Each 3D segment’s CLIP descriptor
is selected from the keyframe views with the best visibility.
Additionally, we introduce a novel model to extract per-instance
CLIP descriptors directly from images, which are then assigned
to the corresponding 3D masks. Our CLIP mergingemploys a
neural network that learns per-dimension weighting to fuse CLIP
descriptors of the same instance, while effectively generalizing
to unseen classes and environments. Our pipeline not only
operates online and supports loop-closure optimization, but also
outperforms existing baselines in segmentation accuracy.
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TABLE I
OVERVIEW OF 3D SEMANTIC RECONSTRUCTION BASELINES

II. RELATED WORK

Our OVO estimates consistent 3D open-vocabulary semantics
and seamlessly integrates with SLAM pipelines. Unlike previ-
ous methods that either use a closed set of categories, offline
processing, 2D semantic representations or odometry. Table I
provides a comparative summary of recent related works based
on these aspects, with further details discussed in the remainder
of this section.

Open-Vocabulary Image Semantics: The introduction of Con-
trastive Language-Image Pretraining (CLIP) [8], which encodes
image and text tokens into a shared latent space, revolutionized
semantic segmentation. By computing similarity to text inputs,
CLIP enables classification into any category expressible in
language. Several variations of CLIP have enhanced its perfor-
mance [16], [17] and improved feature granularity, aiming to
generate dense feature vectors [18], [19] rather than per-image
representations. While closed-vocabulary methods outperform
on predefined sets, open-vocabulary offers optimization-free
generalization, highly relevant for diverse applications.

Offline 3D Open-Vocabulary from 3D point clouds: Most
open-vocabulary 3D semantic approaches assume a known 3D
point cloud. OpenScene [9] leverages OpenSeg [20] to compute
CLIP features from images and trains a network to associate 2D
pixels with 3D points. For each 3D point it performs average
pooling on CLIP vectors from multiple views and supervises
an encoder to directly assign CLIP features to 3D point clouds.
OpenMask3D [10] selects k views per object, crops its 2D SAM
mask to compute a CLIP features, and then features are average-
pooled across crops and views. Open3DIS [11] integrates Su-
perPoint [21] with 2D instance segmentations and a 3D instance
segmentator to generate multiple 3D instance proposals, describ-
ing each with CLIP features following OpenMask3D [10]. In
contrast, OpenYolo-3D [22] uses a 2D open-vocabulary object
detector instead of relying on 2D instance masks and CLIP
features. It classifies each object based on the most common
class across all views. While this approach eliminates the need
for CLIP feature extraction, it limits each scene to a predefined
set of classes.

Offline 3D Open-Vocabulary from RGB and RGB-D: Open-
NeRF [23] optimizes a NeRF to encode the scene represen-
tation along with per-pixel CLIP features from OpenSeg. The
OpenSeg features are projected into 3D to compute the mean
and covariance of 3D points. The NeRF then renders novel
views, prioritizing areas with high covariance to compute ad-
ditional OpenSeg features and refine the model. Hierarchical
Open-Vocabulary 3D Scene Graphs (HOV-SG) [24] relies on

an offline hierarchical global fusion approach that requires
precomputing 3D segments and features for all frames. These
3D segments and features are incrementally fused by merging
observations across consecutive frames. The authors argue that
relying solely on masked segments, as in Concept-Graphs [13],
discards crucial contextual information. To address this, they
propose a descriptor that merges in a handcrafted manner three
CLIP embeddings per mask: (1) the full image, (2) the masked
segment without background, and (3) the masked segment with
background. We adopt this strategy, and contribute by proposing
a novel approach to learn the CLIP merging operation.

Online Semantics: To date, online semantic methods have
focused mostly on closed vocabularies. SemanticFusion [3] was
one of the first semantic SLAM pipelines, predicting per-pixel
closed-set categories and fusing predictions from different views
in 3D space. Fusion++ [25] uses Mask-RCNN [26] to initial-
ize per-object Truncated Signed Distance Functions (TSDFs),
building a persistent object-graph representation. In contrast,
PanopticFusion [27] combines predicted instances and class
labels (including background) to generate pixel-wise panoptic
predictions, which are then integrated into a 3D mesh. More re-
cent works, such as those by Menini et al. [28] and ALSTER [29],
jointly reconstruct geometry and semantics in a SLAM frame-
work. Additionally, NIS-SLAM [30] trains a multi-resolution
tetrahedron NeRF to encode color, depth and semantics. NEDS-
SLAM [31] is a 3DGS-based SLAM system with embedded
semantic features to learn an additional semantic representa-
tion of a closed set of classes. Similarly, Hi-SLAM [32] and
SGS-SLAM [7] augment a 3DGS SLAM with semantic ids of
predefined set of classes. These approaches either assume known
2D ground-truth closed set of semantic classes (and therefore
only tackle a multi-view fusion problem), or only represent
2D semantics, with limited capabilities for 3D segmentation or
precise 3D object localization. More recently, OpenFusion [14]
and Concept-Graphs [13] integrated open-vocabulary semantic
descriptors into online 3D mapping pipelines. Concept-Graphs
relies on the naive mask-cropping to compute CLIP descriptors,
while OpenFusion uses SEEM [33] and creates a TSDF with 3D
segments. None of them, however, addresses the integration into
a full SLAM pipeline with loop closure optimization as we do.

III. OVO METHODOLOGY

OVO relies on a parallel-tracking-and-mapping architecture,
as first defined by Klein and Murray [34] and adopted by
most visual SLAM implementations [35]. Fig. 2 shows an
overview of OVO. It takes as input a stream of RGB-D keyframes
({k0, . . . , kn} in the figure) and their respective poses and lo-
cal point clouds. From this 3D representation, Section III-A,
OVO extracts and tracks a set of 3D segments covering the
whole representation (3D segment mapper in the figure, detailed
in Section III-B). We compute a CLIP descriptor per each
segment’s viewpoint merging 3 different CLIPs (CLIP merging
in the figure, detailed in Section III-E). Then assign to the 3D
segment the most representative descriptor, Section III-D. When
the SLAM module performs a loop closure or bundle-adjustment
optimization, a routine searches for repeated 3D segments, and
fuses those that were not correctly tracked, Section III-C.

A. Map Definition

Its input is an RGB-D video V = {f0, . . . , fτ}, fτ ∈
Nw×h×3
≤255 ×R>0 representing the RGB-D frame of size w × h



MARTINS et al.: OPEN-VOCABULARY ONLINE SEMANTIC MAPPING FOR SLAM 11747

Fig. 2. Overview. From a stream of RGB-D keyframes, OVO builds, online, a 3D semantic representation of the scene. It relies on a 3D segment mapper to
cluster 3D points into 3D segments; a queue to distribute the CLIP extraction computation, and a novel CLIP merging method to aggregate CLIP descriptors from
multiple keyframes into one for each 3D segment.

captured at time step τ . A SLAM front-end estimates in real-
time the pose Tn of every frame fτ in the world reference
frame. The SLAM back-end selects a set of keyframes K =
{k0, . . . kn} ⊂ V from which it iteratively refines their poses
T = {T0, . . . , Tn},Tn ∈ SE(3) asynchronously, at a rate lower
than the video rate of the tracking thread.

Our scene representation or ‘map’ M = {T ,P,S}, con-
sists on these keyframe poses T , a point cloud P =
{P0, . . . , Pm} and a set of 3D segments S = {S0, . . . , Sq},
being q the identifier of the last added segment. Every map

point P = (
[
x y z

]�
, lp) is defined by its 3D coordinates[

x y z
]� ∈ R3 and a discrete label lp ∈ {−1, 0, 1, . . . , q},

lp > −1 indicating the 3D segment the point belongs to, and
lp = −1 indicating that it is unassigned. The dense point cloud
P is built concatenating at each keyframe kn the estimated 3D
pointsPn provided by the SLAM front-end. If the SLAM front-
end does not estimate a dense point cloud,Pn is computed as the
unprojection of the input depth map to 3D using the estimated
camera pose Tn ∈ SE(3). To avoidP growing unconstrained, a
pixel is not projected to 3D if a previously unoccluded 3D point
falls inside its neighborhood when projected back to 2D. For
every 3D point, occlusion is assessed by comparing its projected
depth to its measured depth in the 2D pixel it is projected. Every
3D segment S = (d, κ) has a unique identifier, its semantics are
described by a CLIP feature d ∈ Rd, and stores in a heap κ the
indices of the best keyframes in which S was seen, ordered by
visibility scores.

B. 3D Segment Mapper

For every new keyframe kn, we run an image seg-
mentation model that returns a set of 2D segments S̃n =
{(s0, ls0), (s1, ls1), . . .}, each segment being composed of a
mask s and a label ls, which is initialized as ls := −1. We then
select the 3D map points in kn’s frustum, project them to kn,
and remove occluded points by comparing their projected depth
to the input depth. In this manner, we obtain the 2D point set

P̃n = {p0, p1, . . .}, for which p = (
[
u v

]�
, lp). We compute

the label mode of all points p within a segment s, that we will
represent slightly abusing notation as zl := argmaxlp(P̃ ∩ s).
If the mode receives less votes v than a predefined threshold ε,
we discard s. If not, two possibilities can occur:

1) If zl=−1, we set zl :=q+1 and initialize a new 3D
segmentSq+1 with an empty CLIP featured (filled later as

Algorithm 1: 3D Segment Mapper.

1: function 3D_segment_mapper (P,S, kn, Tn)

2: S̃n ← segment_keyframe(kn)
3: P̃n ← project_point_cloud(P, Tn)

4: for (s, ls) in S̃n do � For every 2D segment in kn
5: mode, v ← get_label_mode_and_votes(P̃n, s, ε)
6: if v > ε then � #votes greater than threshold
7: if mode = −1 then
8: Sq+1 ← new_3D_segment(q + 1, n, s)
9: S ← S ∪ {Sq+1}

10: ls ← q + 1
11: else
12: S ← update_3D_segment(Smode, n, s)
13: ls ← zl
14: S̃n ← merge_and_prune_2D_segments(S̃n)
15: P ← update_pcd_labels(P, P̃n, S̃n)
16: returnP , S, S̃n

described in Section III-D), and a keyframe heap κ :=
{(n, r)}, initialized with kn’s index and s’ visibility score
r.

2) Otherwise, 2D segment s is a match for 3D segment Szl
and the keyframe will be inserted into κ, and stored if it is
one of the best views or if κ is not full.

For both, the unassigned 3D points and 2D segment’s labels,
lp and ls are updated to the identifier of the matched Szl .

After matching all 2D masks, those that share the same ls
are merged. Finally, once all masks are gathered in S̃n, the tuple
(kn, S̃n) is pushed to the queueQ. Keyframes and masks remain
inQ until processing resources become available to compute the
CLIP descriptors for the highest-scoring 2D segments.

C. Loop Closure

When the SLAM module closes a loop or completes a Global
Bundle Adjustment, OVO updates both its map and the set of
3D instances. We denote both after the update as M′ and S′.
For each updated keyframe T ′n ∈ T ′, its associated local point
cloud is also updated by propagating the pose correction as
Pn := T ′n T−1n Pn. This transforms the points from the world
frame to the original keyframe’s and back using the updated pose
T ′n. Keyframes that are removed during SLAM optimization are
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discarded along with their associated 3D points. After updating
the 3D points, the temporary queue Q is cleared. Next, the
set of 3D instances S′ is pruned by removing instances whose
associated points were entirely deleted during optimization. Fol-
lowing, instance fusion is performed by comparing remaining
pairs of 3D instances. Two instances are merged if they satisfy
the following criteria: (1) The distance between their point cloud
centroids is < 150 cm, (2) the cosine similarity between their
CLIPs is > 0.8, and (3) more than 50% of their points lie
within 10 cm of a point in the other instance. For a pair of
segments Si and Sj to be merged, their point indices are unified
as κi := κi ∪ κj , and all map points previously labeled as j are
reassigned to i, i.e., ∀Pk ∈ P|lk = j,⇒ lk := i.

D. CLIP Descriptors

When a tuple (kq, S̃q) is popped from Q, only the matched
2D segments for which kq is still in the κ of their 3D instance S
are selected. A CLIP descriptor d is computed for each of them
as explained in Section III-E. Then, the final descriptor for a 3D
segmentS is selected between the 2D segments in its keyframes’
heap κ, as the CLIP descriptor with the smallest aggregated
distance to the rest. To query the 3D semantic representation,
text queries are encoded to CLIP space. Then, we compute the
cosine similarity between the CLIP descriptor of the query and
the descriptor d of each 3D segment in S .

E. CLIP Merging

Similarly to HOV-SG [24], for each 2D segment we compute
three CLIP descriptors: 1) d0 for the full keyframe, 2) d1 for
the segment masking the rest of the image out, and 3) d2

for the minimum bounding box that contains the segment. In
contrast, in our case, the CLIP descriptor d =

∑2
i=0 wi � di

of a 2D segment is the result of merging the three descriptors
di={0,1,2} using a per-dimension weighted average with weights
wi ∈ Rd (� is the Hadamard product). Our weights wi={0,1,2}
are predicted by a neural model, as shown in Fig. 2. Note that
HOV-SG’s merging is done with hand-crafted scalar weights
(i.e., d =

∑2
i=0 widi, wi ∈ R).

As seen in Fig. 2, the input to our CLIP merging is three
CLIPs di={0,1,2}. These are first passed by a transformer en-
coder, and the output is flattened and fed to a MLP, predicting
the weights, and a softmax, forcing

∑2
i=0 wi = 1d. Our CLIP

mergingis pre-trained following SigLIP [16]. For a mini-batch
B = {(s0, c0), (s1, c1), . . . } composed by pairs of 2D segments
sj and semantic classes cj , we minimize the sigmoid cosine
similarity loss

L = − 1

|B|

|B|∑
i=1

|B|∑
j=1

log

(
1

1+exp(zij(−tdi · yj + b))

)
(1)

between the merged CLIP descriptor di, and the CLIP embed-
ding yj of the semantic class cj associated to the 2D segment
sj in the same batch B. zij is the label for a given image
and class input, which equals 1 if they are paired and −1
otherwise. b and t are learnable bias and temperature parameters,
used to compensate the imbalance coming from negative pairs
dominating the loss.

IV. EXPERIMENTS

First, we report OVO evaluation on 3D online semantic map-
ping on two established datasets, one synthetic (Replica), and
one real (ScanNetv2). Then, we present our CLIP mergingeval-
uation on semantic classification of images with ground-truth
segmentation masks both on a dataset with multiple masks
per image (ScanNet++) and with a single mask per image
(ImageNet-S), and against alternative methods integrated into
OVO for 3D semantic mapping (Replica). Implementation. For
OVO, we implemented three different configurations to show its
flexibility: (1) OVO-mapping, that uses ground-truth camera
poses, (2) OVO-Gaussian-SLAM, where we integrate our con-
tributions within Gaussian-SLAM [36], a SLAM method target-
ing novel-view synthesis and dense point cloud reconstruction,
although not real-time, and (3) OVO-ORB-SLAM2 for which
we integrate with ORB-SLAM2 [37], a real-time feature-based
SLAM system with loop-closure. While OVO-Gaussian-SLAM
uses the center of 3D Gaussians as the dense point cloud P ,
for OVO-ORB-SLAM2 we build a dense point cloud by reg-
istering the local point clouds from the RGB-D images. All
three configurations use SAM2.1-l for 2D segmentation and
SigLip ViT-SO400 for CLIP descriptors. Our CLIP merging
has 5 self-attention layers with 8 heads, a 1152 latent dimen-
sion, with drop-out of 0.1, and 4 layers MLP with 3× 1152
input/output neurons and ×4 inverse bottleneck with Leaky
ReLU activations. It was trained with 4 Nvidia V100 GPUs,
using Pytorch, with AdamW optimizer, learning rate 1× 10−6,
gradient clipping at 1, and batch size of 512 per GPU, for 15
epochs using the top 100 semantic labels from ScanNet++ 250
training set. To compensate for class imbalance, in the loss we
weight each element of the batch by the inverse of their class
frequency in the training set.

Baselines: We evaluate CLIP mergingagainst baselines that
compute local CLIP descriptors [12], [13], [24] (using all of
them SigLIP-SO400 M) and Alpha-CLIP [19], a state-of-the-art
model developed to condition CLIP using masks. Additionally,
we include two variations of our CLIP mergingtrained in the
same setup, in order to validate its design: directly predicting the
fused descriptor, and predicting only one weight per descriptor.
As detailed in Section II, existing semantic SLAM pipelines
do not construct a 3D representation that can be evaluated
using 3D metrics for open-set classes. Thus, we compare OVO
against similar 3D open-vocabulary online mapping systems,
Concept-Graphs [13], and OpenFusion [14]; and the state-of-
the-art 3D open-vocabulary offline baselines OpenScene [9],
OpenNeRF [23], Open3DIS [11] and HOV-SG [24]. Finally,
we evaluate computational cost against Concept-Graphs, Open-
Fusion, HOV-SG and OpenNeRF, but exclude Open3DIS and
OpenScene, as they rely on pre-processed 3D geometry and
features.

Datasets: ScanNet++ [38] has 250 training and 50 validation
indoor RGB+D scenes sequences. We use 2D rasterized masks
for a total of 1.6 M and 400 k 2D instance samples respectively.
Semantic classes are mapped into either the set of 100 most
commons (used for training) or the full set of over 1.6 k classes
(used for evaluation). ImageNet-S [39] has a validation set of∼
12k images with 919 semantic labels. ScanNetv2 [40] has a full
validation set of 312 RGB+D sequences of real scenes (FVS).
We also evaluate on the 5-scene subset used by HOV-SG (HVS).
We use the original annotation set with 20 classes (ScanNet20)
and the expanded set with 200 classes (ScanNet200 [41]). On
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Fig. 3. Out-of-distribution queries. From left to right, top to bottom, observe how common-language queries allow to differentiate bins based on a recycling
symbol; recongize sofas and chairs as places to sit; that you can take a nap in a sofa, pillows and couches are soft objects, and books are readable, that the clock
tells the hour, the blackboard is to draw equations, and the jacket is something to stay warm. Colorbar shows similarity strength.

TABLE II
3D SEMANTIC SEGMENTATION EVALUATION ON REPLICA 51 CLASSES, SPLITTING BY FREQUENCY TERTILES: HEAD, COMMON AND TAIL

Replica [42], we use the standard 8-scene subset (office-0...4,
room-0...2) and its 51 annotated classes.

Metrics: Semantic classification is evaluated using mean In-
tersection Over Union (mIoU) and mean Accuracy (mAcc) on
ScanNet++, while on ImageNet-S we report the standard Top-1
and Top-5 mAcc. While we assess CLIP mergingin 2D to isolate
other factors, the full OVO is evaluated in 3D by labeling the
vertices of ground-truth meshes and comparing them against
ground-truth 3D labels. For Replica, following OpenNeRF [23],
we report mIoU and mAcc, categorizing labels into tertiles based
on their frequency (head, common, and tail). In ScanNetv2, we
further present metrics weighted by the label frequency in the
ground truth (f-mIoU and f-mAcc). Additionally, we analyze our
computational footprint. We measure wall-clock time required to
optimize Replica scenes, as well as mean and max GPU vRAM
and max system RAM usage (in GB). Each table highlights first,
second, and third best results.

A. 3D Semantic Segmentation

Replica: Table II presents segmentation results for all our
OVO configurations alongside relevant baselines. OVO outper-
forms all baselines in the aggregated mIoU and mAcc (‘All’ col-
umn). OVO-Gaussian-SLAM and OVO-ORB-SLAM2 surpass
both offline and online mapping algorithms. This is particularly
noteworthy since both implementations estimate camera poses
and scene geometry, whereas all baselines (indicated in the table)
rely either on ground-truth geometry, camera pose, or both.

Thanks to the strong generalization of our CLIP merging, all
OVO implementations have a significantly better mIoU on tail
categories, which demonstrates less false-positives. As shown
in Fig. 4, OVO effectively segments and classifies 3D instances,
such as chairs and tables, that other baselines often misclassify
due to the excessive context information incorporated into CLIP
descriptors. OVO even outperforms the ground truth in some
instances. For example, in “office4” (top left of Fig. 4), the
ground-truth label for the table is missing, and one chair is
misclassified as the floor. This underscores the advantage of
open-set pipelines, particularly in situations where previous
SLAM algorithms, which rely on known 2D semantics [7], [30],
would fail.

ScanNetv2: Results, summarized in Table III, show how
OVO-mapping matches HOV-SG, and even Open3DIS in the set
ScanNet20. On the harder set ScanNet200, OVO-mapping has a
similar performance to Open3DIS in mIoU, although it is signif-
icantly better in terms of f-mIoU and f-mAcc. OpenScene does
achieve the best performance on ScanNet20. Nevertheless, its
significant drop when using the extended set of classes highlights
a weaker generalization capabilities than OVO and other base-
lines. SLAM comparison. The difference between OVO’s two
SLAM versions and OVO-mapping is bigger in ScanNetv2 than
in Replica (compare Table II and Table III), due to image blur
and noisy depths in ScanNetv2. Gaussian-SLAM benefits from
a more complex strategy for densification and pruning of the 3D
point cloud, outperforming our simpler depth unprojection in
Replica. However, while its camera tracking works flawlessly
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Fig. 4. 3D semantic segmentation on Replica. OVO yields more accurate results in comparison to the two best offline baselines.

TABLE III
3D SEMANTIC SEGMENTATION ON SCANNETV2 WITH FREQUENCY WEIGHTED METRICS ON 5 (HVS) AND ALL 312 VAL. SCENES (FVS)

TABLE IV
RUNTIME STATISTICS ON REPLICA WITH 2 K FRAMES PER SCENE

there, it does struggle in ScanNetv2 noisier images, where
loop-closure plays a key role. Comparing OVO-ORB-SLAM2
w/o and w/ loop-closure, Table III, shows the importance of this
feature. Further, Fig. 5 illustrates the loop closure correction over
inconsistent reconstructions with repeated semantic instances,
caused by odometric drift.

Computational footprint: Despite OpenFusion being 2×
faster than OVO, thanks to using SEEM instead of SAM+SigLIP,
OVO achieves a better balance between speed and performance.
It is still 2.5× faster than Concept-Graphs, 3× faster than
OpenNerf and80× faster than HOV-SG, as shown in Table IV. In
contrast with HOV-SG, that relies on an expensive hierarchical
merging of segments, requiring almost ×10 more RAM, OVO
shows a lower RAM and GPU vRAM usage that enables its

TABLE V
IMAGENET-S SEMANTIC CLASSIFICATION ACCURACY

use on consumer devices. OVO-ORB-SLAM2 takes on average
0.67 seconds per keyframe on Replica and ScanNetv2, spik-
ing up to 1.4 seconds for the slowest frame, and up to up
to 2.5 and 6.1 seconds after loop closure on “scene0011_00”
and “scene0231_00” respectively. This is compatible in our
experiments with a conservative keyframe creation policy of
1 keyframe every 10 frames. Therefore, it is compatible with
real-time SLAM pipelines, in which the critical camera tracking
runs at video rate while the mapping runs at lower frequencies.

B. CLIP Merging

In Table V, we report evaluation on ImageNet-S, including
also Alpha-CLIP, and on which both HOV-SG’s and Concept-
Fusion’s merging approaches are equivalent to just computing
the global descriptor due to there being only one mask per image.
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Fig. 5. Visualization of OVO-ORB-SLAM2 loop closure on “scene0011_00”
(ScanNet). We highlight four instances split due to tracking drift and effectively
merged after loop-closure by our semantic fusion.

TABLE VI
2D OPEN VOCABULARY SEMANTIC CLASSIFICATION ON SCANNET++

Table VI presents 2D semantic classification results on unseen
scenes from ScanNet++, using the expanded label set of 1.6 k,
of our CLIP mergingvs. HOV-SG’s and Concept Fusion’s (CF)
CLIP merging, and the simpler mask crop used by Concept-
Graphs.

Overall, ours outperforms baselines, particularly in
frequency-weighted metrics, although with slightly worse
mAcc in ScanNet++. Alpha-CLIP performs worse than simpler
approaches like our CLIP merging. Using a better backbone
(SigLIP-SO400 M vs ViT-L/14) outperforms a significantly
more expensive fine-tuning (our trained two day on 4 V100 vs
their on 128 A100 GPUs).

Regarding alternatives, the per-descriptor weights predictor
achieves a similar performance to HOV-SG, while directly pre-
dicting a fused descriptor achieves better frequency-weighted
metrics but significantly worse overall ones, which indicates
overfitting. This is further validated evaluating OVO-mapping
in Replica, Table VII using HOV-SG’s merging approach, and
the alternatives to our CLIP merging. The fused predictor per-
formance collapses in classes not seen during training, while
our proposed CLIP merginghas a slightly worse performance
than HOV-SG’s, while being significantly better on the known

TABLE VII
3D OPEN-VOCABULARY SEMANTIC METRICS ON REPLICA OF OVO-MAPPING

WITH ALTERNATIVE CLIP MERGING

classes. The per-CLIP weights is unable to match the perfor-
mance, highlighting the impact of per-dimension weights.

Finally, we highlight in Fig. 3 how our CLIP mergingpreserves
their rich semantic encoding, allowing our merged CLIPs to
generalize to zero-shot complex language queries. For instance,
our descriptors distinguish between two trash bins based on a
recycling symbol on one of them, despite both being labeled just
as bin in the ground truth.

C. Limitations

Despite OVO state-of-the-art results on 3D indoor semantic
segmentation, generalization to outdoor large-scale scenes may
face challenges such as different class distributions, illumination
and blur, and higher tracking errors. Our semantic fusion at
loop closure effectively corrects odometric drift. However, it
sometimes misses instances that should be fused, something that
may be fixed by a richer and more accurately localized set of
features. We also observed in CLIP merginga slight bias towards
classes seen at training, which may be solved with larger training
sets.

V. CONCLUSION

In this letter, we present OVO, an open-vocabulary, online
3D mapping method. Our pipeline extracts 3D segments from
2D masks and tracks them across keyframes. To assign CLIP
descriptors to 3D segments, we introduce a novel strategy: each
2D segment receives a single descriptor computed as a weighted
sum of embeddings from the full image, the masked region, and
its surrounding bounding box. The weights are predicted by a
neural network, which outperforms handcrafted heuristics while
retaining strong generalization. We also develop a mechanism
to fuse instances that are affected by odometric drift after the
geometric corrections of a loop closure. OVO outperforms exist-
ing baselines in both computational efficiency and segmentation
quality across multiple datasets. By bridging SLAM with open-
vocabulary representations, we believe that our work broadens
the scope of applications in these two domains.
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