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Abstract

Transition edge sensors (TESs) have emerged as highly sensitive radiation detectors
with applications ranging from astrophysics to materials science. In the framework
of the Athena X-ray space telescope, we have developed Mo/Au-based TES devices
designed to meet the ESA specifications for the X-IFU instrument. The detectors
were fabricated using a Mo/Au/Au trilayer process and characterized in a dilution
refrigerator using a SQUID readout. From I to V curves and complex impedance
measurements, we extracted the electrothermal parameters of the TES, which are
consistent with theoretical models. Noise spectra were analyzed to estimate the
energy resolution, and an excess noise factor was obtained from the comparison of
theoretical and experimental data. A spectral resolution below 4 eV was achieved
for 5.9 keV X-rays from a >Fe source.
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1 Introduction

Since K. D. Irwin proposed their use under voltage bias in 1995 [1], microcalorim-
eters based on transition edge sensors (TESs) have become one of the best radia-
tion detectors available. Depending on their design and the absorber material used,
they are able to detect individual photons across a wide range of frequencies, from
microwaves to gamma-rays, with exceptional spectral resolution [2]. Moreover,
they exhibit extremely low dark count rates. TES devices are nowadays employed
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in a variety of fields, including astrophysics and materials science [3]. One nota-
ble upcoming application is the Athena mission [4], an X-ray space telescope to be
launched by the European Space Agency (ESA) in the oncoming decade.

Several groups, such as SRON [5], NIST [6], and NASA [7], have already devel-
oped detectors that meet the Athena mission specifications, achieving energy resolu-
tions better than 2 eV at 7 keV. Our group has been developing TES devices with the
Athena requirements in mind for more than a decade. We are currently also develop-
ing devices for other applications within the same energy range (synchrotron facili-
ties and axion searches). In this work, we summarize the main milestones achieved
by our group to date. Section 2 describes the detector fabrication process, Sect. 3
presents the characterization system, and Sect. 4 shows selected results for a repre-
sentative device.

2 Fabrication

For our devices, 4-inch, 525-um-thick silicon wafers with 500-nm-thick low stress
Si;N, layer in both sides are used as substrate. To avoid problems associated with
Mo oxidation, when the sample is transferred between the sputtering system and the
e-beam during the fabrication process, our group developed the trilayer solution [8],
combining magnetron sputtering and e-beam deposition. We use a magnetron AJA
Orion 5 UHV sputtering system and an e-beam PVD system Edwards 500 UHV.
First, the 45 nm of Mo layer is deposited by using radio frequency (RF) power sup-
ply from a 2-inch diameter Mo target of 99.95% purity. Then, a 15-nm protective Au
layer is deposited by direct current (DC) power supply from a 2-inch-diameter Au
target of 99.99% purity. The Ar working pressure is fixed to 3 mTorr. The deposition
rates are 9 nm/min for Mo and 10 nm/min for Au. Afterward, the wafer is taken out
from the sputtering chamberand loaded into the e-beam evaporation system, where
250 nm of high purity (99.99%) Au is evaporated (rate of 10 nm/min). These Mo
and Au thicknesses determine a superconducting critical temperature close to 100
mK via the proximity effect [9].

After finishing the trilayer deposition, the Si;N, membranes on the back side of
the wafer are defined by using optical lithography (K.Suss MA6 aligner) with posi-
tive photoresist AZ ECI 3027. The size of the aperture in the Si;N, backside layer is
calculated for anisotropic wet etching of (100) silicon in KOH solution to reach the
correct size of membrane on the top side of the wafer. Then, Si;N, is etched away by
reactive ion etching (RIE) with SF, plasma.

Positive resin lithography (AZ ECI 3027) is used to define the area of the
thermometer (Mo/Au/Au). The combination of ion milling (IM) and RIE allows
etching away the Au and partially the Mo layer, where approximately 10 nm of Mo
layer is left. After resin cleaning, 150 nm of Nb is deposited by DC sputtering with
the rate 7.5 nm/min at a pressure 3 mTorr of Ar. Before Nb deposition, the surface
is cleaned by RF bias Ar plasma in the same chamber. This step allows to remove
all surface contamination and produces a clean interface between Mo and Nb. Next,
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the Nb paths are defined with positive photoresist (AZ ECI 3027). The RIE (CF;
plasma) is used to etch away the Nb and the rest of the Mo layer.

After removal of the remaining photoresist, a two-level lithography process is
carried out for the fabrication of a cantilevered X-ray absorber. First, the positive
photoresist (AZ ECI 3027) is used to define 2.5-um stems that support the absorber
on the Si;N, membrane, and produce a thermal contact point to the Mo/Au ther-
mometer. Then, a Ti/Au (5/100 nm) seed layer is evaporated on, forming a bottom
contact for plating. The area of absorber is defined by a second lithography using
7-um-thick positive photoresist (AZ XT10), being later exposed for plating.

A homemade electrochemical cell supplied by an AUTOLAB PGSTAT12 poten-
tiostat is used for Au plating. This method permits deposition of high purity Au
(RRR =35) of few micrometers thickness. Three-electrode system consists of a Pt
counter-electrode (CE), an Ag/AgCl reference electrode, and a working electrode
(WE). The WE is the 4" wafer with the Au seed layer and chips distribution defined
by lithography to open a total area of 10 cm®. A commercial solution, TECHNI
GOLD 25 ES is used for Au plating. The 2.5-uym Au layer is deposited by apply-
ing a constant current mode with the solution heated to 55 °C. The current is set to
1.2 mA/cm? providing a deposition rate of 75 nm/min, that allows to deposit a bright
and flat Au gold layer. After deposition, the wafer is rinsed with deionized water and
dried by N,. In some cases, to increase the quantum efficiency of the absorber, an
additional layer of Bi is deposited using a commercial plating solution, NB 100 (NB
Technologies), in an electrochemical cell dedicated exclusively to Bi. A constant
current of 2.5 mA/cm? at room temperature provides a deposition rate of approx.
80 nm/min to reach a typical thickness between 3 and 5 um.

After cleaning the upper thick photoresist, the seed layer is etched off by IM.
Finally, the bottom photoresist is dissolved and cleaned by acetone, isopropanol, and
ethanol bath. To release the Si;N, membranes, the Si substrate is wet etched selec-
tively by 40% KOH solution at 80 °C. To protect the top side of the wafer, where the
TES are, the wafer is hermetically closed into the PEEK wafer chuck, and only the
backside of the wafer is exposed for wet etching.

Up to 32 (10x 10 mm) chips are usually distributed in every 4” wafer. This
allows for a wide variety of designs to be tested, from bilayer geometry or absorber
coupling in single pixels, to arrays. Figure 1 shows a schematic cross-section of a
typical single pixel.

TES devices with different geometries, sizes, and absorber stem position have
been designed and fabricated. An example of a representative TES, developed
to achieve the best energy resolution in accordance with the specifications of the
X-IFU instrument, is presented in Fig. 2.

3 Characterization Setup
Figure 3 shows a schematic of the circuit used for the TES characterization.
When a photon is absorbed, the TES heats up, and since it is biased within the

superconducting transition, its resistance changes sharply. This leads to a change
in the current flowing through the SQUID’s pickup coil. The SQUID detects this
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Fig. 1 Schematic cross-section of a TES with absorber (SP: sputtering, EV: e-beam evaporation, PL:
plating)

Fig.2 Optical micrographs of a TES. a Top-view image of a TES showing the Au absorber
(240240 pm), two central stems tangent to the edge of the trilayer, and four outer stems laying on the
membrane. Mo/Nb paths with a width of 15 um can also be seen. b Bottom view of the same detector
through the membrane, showing the TES sensor in addition to the absorber stems and the paths

variation and converts it into a voltage pulse. The SQUID used is a dual-channel
model C6_X226LB provided by PTB (Berlin). It also includes the shunt resistor
(Rgyune)» Which in our case is of 2 mQ. An encapsulated *Fe source, mounted
directly above the TES, is eventually used as the X-ray source. The full setup
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Fig. 3 Circuit scheme used for TES characterization

is hosted in a Bluefors dilution refrigerator, achieving a base temperature below
10 mK.

TESs are highly sensitive to magnetic fields. For this reason, the entire holder is
magnetically shielded using a superconducting aluminum enclosure and a CRYOP-
ERM shield. If any residual field remains, B, it is compensated by using a super-
conducting Helmholtz coil placed at the sample holder, ensuring that the TES oper-
ates in a nearly zero-field environment. To estimate B, we bias the TES within
its transition region and sweep the applied magnetic field to maximize the SQUID
output. B, rarely exceeds 0.6 ul.

To minimize external noise, the power line is filtered through an ultra-isolation
transformer and an uninterruptible power supply (UPS). To avoid ground loops,
optical fiber connections are used. A low-noise differential preamplifier (Stanford
Research Systems SR560) is used to set the bandwidth and conditioning the signal
from the SQUID. Finally, a 24-bit NI PXI-5922 digitizer is used to acquire voltage
pulses generated by the arrival of X-ray photons at the detector.

By using this setup, several measurements are performed to fully characterize
the detector. [-V curves are acquired with a HP 3458 A multimeter at different bath
temperatures, Ty, (Fig. 4), from which the TES thermal parameters are extracted
(n, K, T), and G) [10]. A Hewlett-Packard HP 3562A spectrum analyzer is used
to perform complex impedance measurements (Fig. 5). We estimate the electrical
parameters: a, f (logarithmic derivatives of R(T;I)), 7;, and heat capacity C [11]
based on a one thermal block model (1 TB) [12]. 7, is defined in [12] Eq. 18. The
noise performance parameters are also estimated [12].

4 Results
The characterization results of a representative TES are presented below. Assuming

a 1 TB model Py, = Py, by fitting the set of I-V curves at different bath tempera-
tures (Fig. 6) to the expression:
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Fig.4 A setof I-V curves at different 7, ,,,, from 40 to 100 mK
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Fig.5 Imag. versus Real plot of the AC impedance taken at 50% Rn and 7},;, =50 mK. In red the fit to
1 TB. The spikes in the curve are due to pulses caused by X-ray photons from the 3°Fe source

Py = K(Tg - Tl:lam)

the thermal parameters of the TES (n, K, G, and T) are obtained [10], as summarized
in Table 1. The n value of 3.5 is in good agreement with the calculations reported by
Anghel et al. [13].
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Fig.6 Power-law fit of the I-V curves at different temperatures taken al 80%Rn. From this fit, the
thermal parameters (n, k, G, and T,;) are computed

Table 1 TES parameters

Length 80 um

Width 40 um

T, (50%Rn) 94 mK

Rn 60 mQ

n 35+0.2

G (20%Rn) 156+ 10 pW/K
C (20%Rn) 1.5+0.1 pJ/K
a (20%Rn) 300+ 10
 (20%Rn) 2.3+0.1

L 57 nH
7,(20%Rn) 145+1 ps

Electrical parameters of the TES (a, f, r; and C and C) are derived by fitting [11]
the complex impedance data at different bias points to a 1 TB model [12] (see Table 1).

The TES energy resolution can be estimated from the experimental noise spectrum
(AE1ine) and also from the theoretical noise spectrum (AE,,), both based on the noise
model (Figs. 7 and 8).

In both cases, the definition follows Eq. (97) from [12] although the integral band-
width is restricted between 10 Hz and 100 kHz.

24/2Ln(2)

AEpwpv = e
N
NEP(w)
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Fig.7 Experimental noise spectrum of the TES measured at a bias point of 30% Rn and a bath
temperature of 50 mK. The theoretical total noise is obtained by summing up all individual noise
contributions. To account for the observed excess noise, the Johnson noise is scaled by a factor of
(14+M?) and the phonon noise by (1 +Mph2). The noise components were calculated using the TES
parameters extracted from the I-V curves and the complex impedance based on a 1 TB model
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Fig.8 AEp, and AE, . as a function of R/Rn. For a typical operating point of 0.15, the AEy, is
approximately 1.5 eV, while the AE ;... is around 2.7 eV and AE , is 3.5 eV

From the difference between the theoretical and experimental noise, the excess
noise parameter M is estimated (Fig. 9). The figure shows the relationship between
M? and o for this device which remains approximately constant, M*/a=0.005. This
result is consistent with those reported in [14]. This relation implies that TESs with
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Fig.9 Excess-noise parameter, Mz, and a as a function of R/Rn

a larger a do not necessarily achieve better energy resolution, as it is often associated
with higher M? values. Therefore, a trade-off between both parameters is required.
Finally, Fig. 10 shows a histogram from the acquisition of 1730 pulses, yielding
a final spectral resolution (AE,,,) of 3.5+0.2 eV for the Ka complex of the >Fe
source (5.9 keV). The discrepancy between AEg,, and AE,, ., Mmay suggest that
the intrinsic resolution of the devices is already at the state of the art and that the
measured final resolution is being limited by a setup contribution. We are working on
improving temperature stability and vibration isolation to reduce this contribution.
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Fig. 10 Spectrum of *Fe Ka lines obtained with the pixel in Fig. 2. at 15% of Rn
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A detailed analysis of the effect of T, ,,, on the resolution at low operating point will
be presented elsewhere.

5 Conclusions and Outlook

We are developing Mo/Au-based TES X-ray detectors, focusing on the specifica-
tions defined by ESA for the X-IFU instrument of the Athena mission. We have
developed fabrication and full characterization setups and have designed, fabricated,
and characterized many devices. In this paper, we presented the best results achieved
so far. Energy resolutions below 4 eV have been obtained, possibly limited by exper-
imental setup contributions. Further improvements are currently being developed,
including better temperature stability, a new anti-vibration system and an optimiza-
tion of the circuit inductance (L). These upgrades are expected to enable further
enhancement of the achieved energy resolution.

Although this manuscript presents only the results of a representative TES for
X-IFU, different TES have been developed to perform a broad range of studies. For
instance, in [15], the physical origin of the superconducting transition was investi-
gated; in [16], the temperature and current sensitivities of bare Mo/Au TES were
analyzed; and in [17], the proximity effect in Mo/Au TES was explored.

Ongoing work is currently focused on the optimal choice of the operating point
and on the influence of TES design on fundamental parameters and excess noise as
well as on the development of TES for other applications.
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