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Abstract

This paper introduces technological interdependence into the theoretical framework of

Gennaioli et al. (2013). This extension leads to an expression for regional development

with spatial e�ects that motivates the incorporation of the geographical dimension into

their newly constructed database and empirical analysis. Our estimation results cor-

roborate both the necessity of accounting for the presence of spatial dependence to

study the determinants of regional income per capita and the importance of educa-

tional attainment in explaining regional development di�erences. Furthermore, we

provide evidence that human capital generates positive spatial spillovers.
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1 Introduction

Gennaioli et al. (2013, GLLS hereafter) develop a `Lucas-Lucas' model that considers

both talent allocation between entrepreneurship and work and within-region human cap-

ital externalities in a standard migration framework. The main aim of this theoretical

framework is to study the determinants of regional development, emphasizing the channels

through which human capital a�ects total factor productivity (TFP). Nevertheless, the

possible in�uence of neighboring regions is not taken into account and, as a consequence,

the spatial dimension of the data is neglected. Given that it is widely acknowledged that

outcomes in a given region are related to the outcomes and characteristics of its neighbors,

we extend the model developed by GLLS by introducing technological interdependence

between regions à la Ertur and Koch (2007).

2 A `Lucas-Lucas' model with technological interdependence

GLLS considers a country with productive (P ) and unproductive (U) regions, populated

by uniformly distributed agents whose utility depends on consumption (c) and housing (a):

u(c, a) = c1−φaφ. Half of these agents are `rentiers' and the rest are `laborers'. The latter

are endowed with h units of human capital and can become either workers or entrepreneurs.

While workers in region i earn a wage$i, entrepreneurs obtain a pro�t from the production

of the consumption good according to

yi,h = Aih1−ϕ−τ−κHϕ
i,hK

κ
i,hT

τ
i,h, ϕ + τ + κ < 1 (1)

where Ai denotes regional TFP, Hi,h is workers' human capital, Ki,h is physical capital

and Ti,h is land.

Following Ertur and Koch (2007), we consider that TFP in a given region depends not

only on its amount of labor Li, average level of human capital Ei(h) and idiosyncratic

factors Ãi, but also on technological spillovers from other regions:

Ai = Ãi[Ei(h)ψLi]ζ Π
j≠i
A
ρwij
j (2)
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where ψ ⩾ 1 re�ects the relative importance of human capital quality with respect to

quantity and ζ > 0 captures the scope of within-region human capital externalities.

The speci�cation for TFP in (2) takes into account the in�uence of productivity levels in

neighboring regions through the term Π
j≠i
A
ρwij
j . The degree of technological interdependence

is captured by 0 ⩽ ρ < 1. Although this parameter is the same for all regions, the net e�ect

of these spatial externalities depends on the relative connectivity between a region and its

neighbors, determined by the exogenous, non-stochastic and �nite friction terms 0 ⩽ wij ⩽ 1,

if j ≠ i; wij = 0, otherwise. For the sake of clarity, it will be assumed in what follows that,

for region i, Σ
i≠j
wij = 1.

In a �rst period, laborers choose both the location and occupation that maximize their

income and housing markets clear according to each region's total amount of labor. Given

that regional productivity is considered as given in this �rst period, the introduction of

technological interdependence does not alter regional labor allocation with respect to that

in the original model. In a second period, entrepreneurs hire land and human and physical

capital, production is carried out and consumption takes place.

This theoretical framework is operative when the ratio of wages between productive and

unproductive regions is greater than one: $P
$U

= ( ÃPΠP
ÃUΠU

)
1

1−κ (EP (h)
ψLP

EU (h)ψLU )
ζ

1−κ (HUHP )
τ

1−κ > 1,

where ΠP = Π
P,j≠P,i

A
ρwij
P,j and ΠU = Π

U,j≠U,i
A
ρwij
U,j . This ratio increases with the relative

importance of human capital quality with respect to quantity. Given that ÃP > ÃU , this

e�ect is magni�ed in the presence of technological interdependence. As pointed out by

Dettori et al. (2012), TFP tends to be geographically concentrated and, hence, it can be

expected that ΠP > ΠU . If (τ − ψζ)(1 − φ) + φ(1 − κ) > 0, there is a stable equilibrium

allocation characterized by a threshold for the human capital endowment hm above which

laborers migrate such that hm [1 − ( ÃUΠU
ÃPΠP

)
1−φ
1−κ (LPLU )

ζ(ζ−1)(1−φ)
1−κ (HPHU )

(1−φ)(τ−ζψ)+(1−κ)φ
1−κ ] = χ.

This cut-o� value increases with mobility costs (χ) and decreases with the in�uence of

technology in neighboring regions.

Aggregating individual production functions in (1), and imposing some equilibrium

conditions, it is obtained that regional output is given by

Yi = CA
1

1−κ
i H

1−τ−κ
1−κ

i , C > 0 (3)
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where C > 0 is a constant determined by the model parameters.

Taking natural logarithms in expressions (2) and (3), and rewriting them in matrix form

for N regions, we get

A = Ã + ζL + ζψE(h) + ρWA (4)

Y = C + 1

1 − κA +
1 − κ − τ

1 − κ H (5)

If ρ ≠ 0 and 1
ρ is not an eigenvalue of W , we can solve for A in (4) and substitute it into

(5), obtaining

Y = C + 1

1 − κ(IN − ρW )−1Ã + ζ

1 − κ(IN − ρW )−1[L + ψE(h)] + 1 − κ − τ
1 − κ H (6)

The Mincerian approach permits the derivation of empirical predictions from the for-

mulation of the average level of human capital in region i as a �rst-order expansion around

the average levels of the Mincerian return (
_
µi) and years of schooling (

_

Si): E(h) =
_
µ
_

S, in

matrix notation. Bearing in mind that H = E(h) +L, denoting y = Y −L, and after some

algebraical manipulations, it is found that

y = ( 1

1 − κ) Ã+(1 + ζψ − τ
1 − κ ) µ̄S̄+(ζ − τ

1 − κ)L−ρ(
1 − κ − τ

1 − κ )Wµ̄S̄+ρ( τ

1 − κ)WL+ρWy (7)

By rewriting equation (7) for region i, we obtain an expression for regional develop-

ment with spatial e�ects similar to equation (16) in GLLS in the absence of technological

interdependence (ρ = 0):

ln(Yi
Li

) = ( 1

1 − κ) ln Ãi + (1 + ζψ − τ
1 − κ ) µ̄iS̄i + (ζ − τ

1 − κ) lnLi − (8)

−ρ(1 − κ − τ
1 − κ )

N

∑
j≠i
wijµ̄jS̄j + ( ρτ

1 − κ)
N

∑
j≠i
wij lnLj + ρ

N

∑
j≠i
wij (

Yj

Lj
)

This theoretical result allows us to conclude that output per capita in a region depends

not only on its own factors but also on the level of development as well as on some of its

determinants in neighboring regions. As a consequence, it can be stated that the e�ects of

human capital may not be con�ned to a particular territory in the present framework.
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3 Empirical analysis

Following expression (8), we incorporate the spatial dimension into the data set con-

structed by GLLS with a shape�le containing regional boundaries. The main source1 from

which this geospatial information has been extracted is the GADM database (version 2.0).

Unfortunately, its administrative division for regions does not coincide with that consid-

ered by GLLS. In order to match the two data sets, lower-level administrative divisions in

the GADM database were merged for some countries2. It was also necessary to remove

regions for which no data were available and to reshape some spatial units.

3.1 Narrow replication and spatial dependence assessment

GLLS examine the determinants of regional development by regressing (log) income per

capita on geography and education while controlling for population, institutions, culture

and country �xed-e�ects. A narrow replication of the results obtained by these authors

can be found in Table 1. Our extension of their theoretical framework suggests that, in

the presence of technological interdependence, regional development should not be ana-

lyzed as if spatial dependence was a secondary aspect. In order to con�rm this impression,

we have studied the existence of spatial autocorrelation in the residuals of the OLS re-

gressions by calculating the global Moran's I test statistic of spatial randomness. The

presence of signi�cant spatial autocorrelation in the residuals implies that they are not

independent, clustering together in space, and may be an indication of some type of model

misspeci�cation.

Knowledge spillovers and their productivity e�ects are geographically concentrated (Fis-

cher et al., 2009). For this reason, we consider that, in the present context, the strength of

spatial relationships is determined by geographical proximity. The dependence structure

among regions has been established using four speci�cations of the spatial weights ma-

trix based on proximity and constructed from the geographical coordinates. The presence

of a non-trivial number of islands in GLLS data prevents us from using a binary matrix

based on geographical contiguity. Nevertheless, we have applied an alternative contiguity

1A shape�le for Latvian `rajoni' was kindly provided by Maris Nartiss. NUTS-2 divisions for Denmark,
Ireland, Portugal and Romania were obtained from Eurostat.

2Azerbaijan, Belgium, Burkina Faso, Bulgaria, Czech Republic, Dominican Republic, Egypt, Gabon,
United Kingdom, Guatemala, Hungary, Ireland, Kazakhstan, Cambodia, South Korea, Sri Lanka, Moldova,
Malawi, Nigeria, Philippines, Romania, Serbia, Sweden, Thailand, Turkey, Uganda, and Uzbekistan.
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criterion that, using Delaunay triangulation, connects all regions without an intervening

neighbor, ensuring that all of them have, at least, one neighbor. This `Gabriel' weights

matrix, largely used in computer science and ecology, considers two regions to be neighbors

if no other region falls between the circles of radius equal to their respective shortest dis-

tances. The other three speci�cations for the spatial weights matrix correspond to another

binary type that establishes a speci�c number of n-nearest neighbors (n = 3,5,7).

The values obtained for global Moran's I test statistic (z-scores) are reported in the

lower panel of Table 1. Regardless of the weights matrix used, OLS residuals present

positive spatial autocorrelation in all the speci�cations used by GLLS to analyze the de-

terminants of regional development. This result suggests the use of spatial econometric

techniques to study the factors that explain regional di�erences in income per capita world-

wide.

3.2 Wide replication and spatial spillover e�ects

Expression (8) includes both endogenous interaction e�ects among the dependent vari-

able and exogenous interaction e�ects among the explanatory variables. Therefore, its

empirical counterpart is the spatial Durbin model (SDM):

y = αιN +Xβ +WXθ + ρWy + ε (9)

where y is a (Nx1) vector of the logarithms of income per capita, α is the intercept and

ιN is a (Nx1) vector of ones. X is a (Nxk) matrix of k exogenous variables and β is

its associated (kx1) parameter vector. W is a (NxN) row-standardized3 spatial weights

matrix and WX is a (Nxk) matrix of the spatial lags of the exogenous variables. θ is its

corresponding (kx1) parameter vector. Wy is the (Nx1) vector with the spatial lag of the

endogenous variable and ρ is the spatial autocorrelation parameter. ε is a (Nx1) vector of

error terms.

The spatial lagWy is endogenous due to simultaneous spatial interactions and, hence, it

is correlated with the error term. For this reason, the estimation of (9) has been performed

3Although not required, row-standardization is desirable in contiguity schemes so that each neighbor of
a region is given equal weight. This enhances the understanding of spatial autocorrelation measures and
coe�cients because spatial lags correspond to the weighted average of neighboring observations, allowing
us to obtain comparable spatial parameters across di�erent samples with di�erent connectivity structures.

6



using maximum likelihood (ML). The results are displayed4 in Table 2 for the spatial

weights matrix that, for each speci�cation, achieves the highest value of the log-likelihood

function. The main conclusions drawn from Table 1 are maintained, i.e., that regions

nearer to the coast and with better resource endowments tend to have higher income per

capita. It can also be observed that the introduction of spatial e�ects does not a�ect the

robustness of human capital as a determinant of regional development.

In contrast to the results obtained by GLLS, we �nd that population � one of the main

variables in expression (8) � is now statistically signi�cant. Furthermore, the estimation

of the spatial model leads to a positive and statistically signi�cant relationship between

the index of institutional quality and regional income per capita. More importantly, and

corroborating our theoretical extension, the spatial lag of the dependent variable and the

spatial interaction e�ects of population and educational attainment are statistically signi�-

cant in all the speci�cations. These results are reinforced by the inability of global Moran's

I test statistic to reject the null hypothesis of no spatial autocorrelation in the estimation

residuals at conventional signi�cance levels (one-tailed test). It can also be observed that

likelihood ratio (LR) tests prefer the SDM to alternatives that include a single type of

spatial interactions.

The interpretation of parameter estimates in spatial regression models is more compli-

cated than in standard OLS regressions due to the dependence relationships in the spatial

lag terms that generate feedback e�ects. A change in an explanatory variable in a given

region will not only have a direct e�ect on its dependent variable, but also an indirect

e�ect on that of its neighbors. Nevertheless, this is a valuable feature of spatial models

that permits the quanti�cation of spillover e�ects. Table 3 shows the marginal e�ects of

regional income per capita determinants obtained from the SDM estimation, calculated

using the method proposed by LeSage and Pace (2009). The sign of the average direct

e�ects displayed in its upper panel tends to coincide with that of the estimated parameters

for regional development determinants. The di�erences between parameter estimates and

direct impact estimates represent the feedback e�ects passing through neighboring regions

and back to the origin itself. The �gures reported in the lower panel suggest that the

4We do not report the results for the speci�cation that includes the educational attainment of older
people, considered by GLLS to assess the possible presence of simultaneity bias problems.

7



indirect e�ects generated by distance to the coast are positive. On the contrary, those

generated by oil production are negative. It can also be observed that the spatial spillovers

related to population, social capital and ethnic diversity are not statistically signi�cant.

Last, but not least, we focus on indirect e�ects generated by human capital. These

spatial spillovers can be interpreted as the e�ects from a change in the educational level of

all regions by a constant on the level of income per capita of a typical region. The average

indirect e�ect of educational attainment is positive and statistically signi�cant in speci�-

cations with a wider coverage. Although their magnitude is small compared to the average

direct e�ects (around 30%), this �nding provides evidence of the presence of positive human

capital externalities between regions. In line with our theoretical extension, this implies

that a higher stock of human capital in a region entails not only a higher technological

level for that economy, but also additional technological �ows into its neighbors.

Our estimation results also provide evidence of a negative indirect e�ect of educational

attainment in speci�cations that refer to a smaller number of regions, where less developed

countries are mainly represented. This may be re�ecting that the adverse e�ects of the

regional competition for the educated population are higher than the bene�ts from the

exchange of knowledge and experience between neighboring regions. Nonetheless, we �nd

that institutional quality exerts positive spatial spillover e�ects in these speci�cations.
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Table 2: Regional income per capita, geography, institutions, culture, and education. SDM estimation.

(1) (2) (3) (4) (5) (6)

Temperature 0.009 0.003 −0.004 0.000 0.007 −0.001
(0.006) (0.005) (0.008) (0.001) (0.006) (0.010)

Inverse distance to coast 1.496∗∗∗ 1.193 0.883∗∗ 0.358 1.035∗∗∗ 0.831∗∗

(0.320) (0.273) (0.380) (0.321) (0.314) (0.390)
Oil production per capita 0.155∗∗∗ 0.155∗∗∗ 0.208∗∗ 0.124∗∗ 0.229∗∗∗ 0.282

(0.038) (0.031) (0.091) (0.062) (0.034) (0.229)
Years of education 0.219∗∗∗ 0.227∗∗∗ 0.215∗∗∗ 0.219∗∗∗ 0.212∗∗∗

(0.010) (0.014) (0.015) (0.011) (0.019)
Population 0.037∗∗∗ 0.060∗∗∗ 0.056∗∗∗ 0.036∗∗∗ 0.086∗∗∗

(0.010) (0.019) (0.015) (0.011) (0.025)
Institutional quality 0.579∗∗ 0.697∗∗∗

(0.187) (0.002)
Trust in others −0.006 0.039

(0.121) (0.210)
Ethnic groups −0.076∗∗∗ −0.033

(0.024) (0.039)
W * Income per capita 0.861∗∗∗ 0.793∗∗∗ 0.713∗∗∗ 0.872∗∗∗ 0.835∗∗∗ 0.725∗∗∗

(0.011) (0.013) (0.027) (0.014) (0.014) (0.032)
W * Temperature −0.023∗∗∗ −0.005 −0.003 −0.000 −0.010 −0.008

(0.006) (0.005) (0.009) (0.001) (0.006) (0.011)
W * Inverse distance to coast −1.012∗∗∗ −0.881∗∗∗ −0.383 −0.147 −0.663∗ −0.388

(0.345) (0.291) (0.426) (0.362) (0.345) (0.452)
W * Oil production per capita −0.057 −0.027 −0.013 −0.035 −0.113∗∗ 0.122

(0.062) (0.045) (0.137) (0.096) (0.049) (0.327)
W * Years of education −0.159∗∗∗ −0.168∗∗∗ −0.181∗∗∗ −0.170∗∗∗ −0.180∗∗∗

(0.011) (0.018) (0.016) (0.013) (0.022)
W * Population −0.035∗∗∗ −0.059∗∗∗ −0.049∗∗∗ −0.022∗ −0.073∗∗∗

(0.012) (0.022) (0.017) (0.014) (0.029)
W * Institutional quality 0.004 −0.293

(0.252) (0.289)
W * Trust in others 0.050 −0.217

(0.152) (0.265)
W * Ethnic groups 0.083∗∗ −0.022

(0.033) (0.054)
Constant 1.019∗∗∗ 1.125∗∗∗ 1.755∗∗∗ 0.604∗∗∗ 0.621∗∗∗ 1.820∗∗∗

(0.110) (0.146) (0.323) (0.218) (0.163) (0.427)
Weights matrix knn5 knn3 knn3 knn5 gab knn3

Observations 1,536 1,499 483 728 1,498 281
Number of countries 107 105 78 66 105 45

Log-likelihood −1163.711 −899.923 −279.919 −408.122 −1000.61 −117.648
Moran's I 0.799 −1.017 0.328 1.063 −4.241 0.236
LR tests

SAR vs. SDM 27.332∗∗∗ 223.831∗∗∗ 91.336∗∗∗ 16.139∗∗∗ 202.423∗∗∗ 71.363∗∗∗

SEM vs. SDM 56.690∗∗∗ 27.330∗∗∗ 12.394∗ 5.536 26.518∗∗∗ 13.386∗

Note: The endogenous variable is (log) income per capita. Standard errors reported in parentheses. ∗∗∗

p<0.01, ∗∗ p<0.05, ∗ p<0.10. Moran's I test statistics (z-score) refer to estimation residuals.

10



Table 3: Marginal e�ects of regional income per capita determinants. SDM estimation.

(1) (2) (3) (4) (5) (6)

Direct e�ects

Temperature 0.003 0.001 −0.006 0.000 0.005 −0.011
(0.005) (0.004) (0.008) (0.006) (0.005) (0.010)

Inverse distance to coast 1.611∗∗∗ 1.221∗∗∗ 0.968∗∗∗ 0.438 1.130∗∗∗ 1.093∗∗∗

(0.299) (0.248) (0.341) (.303) (0.285) (0.331)
Oil production per capita 0.187∗∗∗ 0.195∗∗∗ 0.255∗∗∗ 0.159∗∗∗ 0.266∗∗∗ 0.680

(0.041) (0.033) (0.097) (0.061) (0.037) (0.588)
Years of education 0.225∗∗∗ 0.224∗∗∗ 0.218∗∗∗ 0.225∗∗∗ 0.179∗∗∗

(0.009) (0.014) (0.014) (0.100) (0.021)
Population 0.035∗∗∗ 0.054∗∗∗ 0.056∗∗∗ 0.040∗∗∗ 0.073∗∗

(0.010) (0.018) (0.015) (0.011) (0.033)
Institutional quality 0.723∗∗∗ 0.957∗∗∗

(0.203) (0.357)
Trust in others 0.015 −0.191

(0.082) (0.302)
Ethnic groups −0.067∗∗∗ −0.090

(0.025) (0.068)
Indirect e�ects

Temperature −0.100∗∗∗ −0.011 −0.018 −0.007 −0.024∗ −0.020
(0.012) (0.010) (0.014) (0.027) (0.014) (0.015)

Inverse distance to coast 1.834∗∗∗ 0.289 0.773 1.191 1.123∗ 0.519
(0.693) (0.459) (0.605) (1.046) (0.663) (0.550)

Oil production per capita 0.508 0.421∗∗ 0.425 0.524 0.438∗∗ 0.790
(0.338) (0.164) (0.370) (0.489) (0.219) (0.741)

Years of education 0.063∗∗∗ −0.021 0.047 0.068∗ −0.065∗∗

(0.023) (0.037) (0.060) (0.036) (0.031)
Population −0.023 −0.053 0.001 0.043 −0.025

(0.032) (0.045) (0.200) (0.053) (0.048)
Institutional quality 1.308∗ 0.514

(0.694) (0.572)
Trust in others 0.321 −0.457

(0.701) (0.482)
Ethnic groups 0.110 −0.112

(0.132) (0.106)
Note: Standard errors reported in parentheses. The empirical distribution of these marginal e�ects
have been obtained by simulating the SDM parameters using the maximum likelihood multivariate
normal distribution (10,000 draws). ∗∗∗ p<0.01, ∗∗ p<0.05, ∗ p<0.10.
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