000165663 001__ 165663
000165663 005__ 20260113234334.0
000165663 0247_ $$2doi$$a10.1016/j.renene.2019.11.060
000165663 0248_ $$2sideral$$a117179
000165663 037__ $$aART-2020-117179
000165663 041__ $$aeng
000165663 100__ $$0(orcid)0000-0001-8327-7256$$aLachén, J.
000165663 245__ $$aHigh purity hydrogen from biogas via steam iron process: Preventing reactor clogging by interspersed coke combustions
000165663 260__ $$c2020
000165663 5060_ $$aAccess copy available to the general public$$fUnrestricted
000165663 5203_ $$aProduction of high purity hydrogen from biogas by combined dry reforming of methane and steam iron process (SIP), outlines a serious drawback with the possible formation of coke deposits along reduction steps of the iron oxide. Steam used along reoxidations, which regenerates the iron oxide and force the release of high purity hydrogen, could also be responsible of the gasification of such coke deposits and the consequent contamination of hydrogen with carbonaceous species such as CO or CO2. Oxidations at low enough temperature can inhibit coke gasification, but paradoxically, increasing amounts of coke upon repeated cycles will provoke reactor clogging sooner or later. To circumvent this issue, a strategy consisting of interspersing coke combustion stages with diluted oxygen within the regular cycles of reduction with biogas and reoxidation with steam releasing hydrogen, has been analyzed with three solids based on iron oxide. It has been verified that including coke combustion stages within the regular scheme of redox cycles, not only counteracts both bed clogging and catalyst deactivation by coking, but also breaks down the trend to lose (by sintering) active material for the redox process, thus allowing the extension of the useful life of the solid.
000165663 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/GREG$$9info:eu-repo/grantAgreement/ES/MINECO/BES-2014-067984$$9info:eu-repo/grantAgreement/ES/MINECO/CTQ2016-77277-R$$9info:eu-repo/grantAgreement/ES/MINECO/ENE2013-44350-R
000165663 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
000165663 590__ $$a8.001$$b2020
000165663 591__ $$aGREEN & SUSTAINABLE SCIENCE & TECHNOLOGY$$b7 / 44 = 0.159$$c2020$$dQ1$$eT1
000165663 591__ $$aENERGY & FUELS$$b16 / 114 = 0.14$$c2020$$dQ1$$eT1
000165663 592__ $$a1.825$$b2020
000165663 593__ $$aRenewable Energy, Sustainability and the Environment$$c2020$$dQ1
000165663 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000165663 700__ $$0(orcid)0000-0003-1940-9597$$aHerguido, J.$$uUniversidad de Zaragoza
000165663 700__ $$0(orcid)0000-0002-8383-4996$$aPeña, J.A.$$uUniversidad de Zaragoza
000165663 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000165663 773__ $$g151 (2020), 619-626$$pRenew. energy$$tRenewable Energy$$x0960-1481
000165663 8564_ $$s690080$$uhttps://zaguan.unizar.es/record/165663/files/texto_completo.pdf$$yPostprint
000165663 8564_ $$s459977$$uhttps://zaguan.unizar.es/record/165663/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000165663 909CO $$ooai:zaguan.unizar.es:165663$$particulos$$pdriver
000165663 951__ $$a2026-01-13-22:05:20
000165663 980__ $$aARTICLE