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Abstract 26 

 27 

A total of 237 faecal specimens from diarrheic calves younger than two months were 28 

collected and submitted for diagnosis of enteropathogens over a two-year period (2017-29 

2018) to a veterinary laboratory. Samples originated from 193 dairy and beef farms in 29 30 

provinces distributed throughout Spain, and were tested for the occurrence of three target 31 

enteric pathogens by reverse transcription real-time PCR (RT-qPCR): bovine rotavirus A 32 

(RVA), Cryptosporidium parvum and bovine coronavirus (BCoV). RT-PCR and 33 

nucleotide sequencing analysis were used to determine the G (VP7 gene) and P (VP4 34 

gene) genotypes of 26 specimens positive for RVA. A total of 188 specimens (79.3%) 35 

were positive for at least one of the three target enteric pathogens, and 101 samples 36 

(42.6%) harbored mixed infections. The individual prevalence was 57.8%, 50.6% and 37 

23.6% for C. parvum, RVA and BCoV, respectively. Molecular analysis of selected RVA 38 

strains revealed the presence of the G6, G10, G3, P[5] and P[11] genotypes, with the 39 

combinations G6P[5] and G6P[11] being the most prevalent. Alignments of nucleotide 40 

sequences of the VP7 and VP4 markers showed a high frequency of single nucleotide 41 

polymorphisms (SNPs), with up to 294 SNPs found in 869bp of sequence at the G6 42 

genotype (0.338 SNPs/nt), which reveals the extensive genetic diversity of RVA strains. 43 

Phylogenetic analysis of the VP7 gene of the G6 strains revealed four distinct lineages, 44 

with most strains clustering in the G6-IV lineage. The discrepancies between the RVA 45 

genotypes circulating in the sampled cattle farms and the genotypes contained in 46 

commercial vaccines currently available in Spain are discussed. We believe that this is 47 

the first study on the molecular characterization of rotavirus infecting cattle in Spain. 48 

 49 
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 52 

1. Introduction 53 

  54 

Neonatal calf diarrhea is the most commonly reported disease in both dairy and beef herds 55 

(Meganck et al., 2015). In Europe, morbidity rates from 19.1% to 74.4% have been 56 

reported, and this disease is considered the main cause of death among un-weaned calves 57 

(Bartels et al., 2010; Żychlińska-Buczek et al., 2015; Johnson et al., 2017). Diarrhea in 58 

neonatal calves is a multifactorial disease influenced by infectious agents in combination 59 

with the environment and management practices. Multiple pathogens can contribute to 60 

this condition, including common (rotavirus, coronavirus, Cryptosporidium parvum, 61 

Escherichia coli, Salmonella spp., Clostridium perfringens) and emerging agents 62 

(enterovirus, torovirus, norovirus and nebovirus), although C. parvum and rotavirus are 63 

the dominant pathogens (Cho and Yoon, 2014). The simultaneous presence of more than 64 

one of these pathogens is frequent and may lead to complications and death (Chauhan et 65 

al., 2008). 66 

 67 

Rotavirus is among the leading causes of gastroenteritis and diarrhea in humans and a 68 

broad range of animal hosts. A total of ten rotavirus species (A−J) have been established 69 

based on genetic and antigenic differences in the inner capsid VP6 protein 70 

(https://talk.ictvonline.org/taxonomy). Species A rotaviruses (RVA) are recognized as the 71 

most important members of the genus in both human and veterinary medicine, and a major 72 

cause of economic losses in cattle (Otto et al., 2015). Sequence-based genotyping 73 

targeting the genes encoding the VP7 and VP4 proteins have become the most common 74 
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current method for RVA genotyping. VP7 is a glycosylated protein and assigns the G 75 

type, whereas VP4 is a protease-sensitive polypeptide and assigns the P type (Midgley et 76 

al., 2012). To date, 36G and 51P genotypes are recognized by the Rotavirus Classification 77 

Working Group (RCWG, 2017). In cattle, at least 12 G types (G1–G3, G5, G6, G8, G10, 78 

G11, G15, G17, G21 and G24) and 11 P types (P[1], P[3], P[5−7], P[11], P[14], P[17], 79 

P[21], P[29] and P[33]) have been reported, but genotypes G6 (57%), G10 (21%), and 80 

G8 (3%) as well as P[5] (26%), P[11] (21%) and P[1] (2%) are the most prevalent in 81 

calves (Dóró et al., 2015). Phylogenetic analyses have classified the G6 genotype into 82 

five (I-V) distinct lineages. Briefly, lineages I and IV contain human and bovine rotavirus 83 

strains, respectively. Lineages II, III and V are composed by both human and animal 84 

strains (Badaracco et al., 2013). 85 

 86 

Cattle production is of great economic significance in Spain, which has the fifth largest 87 

bovine population in the European Union after France, Germany, United Kingdom and 88 

Ireland (https://ec.europa.eu/eurostat). In 2018, a total of 6.5 million head of cattle were 89 

declared in Spain by 14,051 dairy farmers which provided more than 7 million tons of 90 

milk, and 20,357 beef cattle feedlots which provided just over a quarter (25.1%) of the 91 

veal meat in the European Union (https://www.mapa.gob.es/es). In spite of this, the 92 

impact of neonatal calf diarrhea in Spanish farms is not well documented and most studies 93 

on morbidity rates of infectious agents are limited to individual pathogens. 94 

Cryptosporidium has been reported to play a major role in the northern region of the 95 

country, where prevalence rates over 50% have been found in diarrheic calves (Castro-96 

Hermida et al., 2002; Quílez et al., 2008). Some studies in north-western Spain have 97 

showed that Shiga toxin-producing Escherichia coli strains are also frequently isolated in 98 

calves with diarrhea (Blanco et al., 2004). However, the significance of rotavirus infection 99 

https://ec.europa.eu/eurostat


 5 

has received limited attention and no data on its genetic diversity in cattle in Spain are 100 

available. A study in the central area of the country showed that rotaviruses were the 101 

second most prevalent enteropathogen among diarrheic calves (42.7%), and coinfection 102 

with Cryptosporidium was the most common combination (De la Fuente et al., 1998). In 103 

this study, faecal specimens submitted to a veterinary laboratory were used to determine 104 

the occurrence and genetic variability of RVA in diarrheic calves throughout Spain. 105 

Faecal samples were also analyzed for two other major enteropathogens included in the 106 

diagnostic panel for calf diarrhea: C. parvum and bovine coronavirus (BCoV).   107 

 108 

2. Material and methods   109 

 110 

2.1. Samples 111 

 112 

A total of 237 faecal specimens from diarrheic calves younger than two months submitted 113 

for diagnosis of enteropathogens to a veterinary laboratory (Exopol S.L., Spain) were 114 

used. Specimens were received from January 2017 to December 2018 in the form of 115 

faeces from individual calves sampled directly from the rectum (n: 148) or faecal pools 116 

from several calves (n: 89). Samples originated from 193 farms in 29 provinces 117 

distributed throughout Spain (Figure 1). A total of 120 stool specimens originated from 118 

101 beef herds (mean, 1.19 r 0.72 specimens/farm) and 117 stool samples originated 119 

from 92 dairy herds (mean, 1.27 r 0.66 specimens/farm). Most farms submitted a single 120 

(n: 163) or two (n: 24) specimens and the remaining six farms submitted three to five 121 

samples. On most of the farms submitting more than one specimen (26/30), repeated 122 

submissions were due to different diarrheic outbreaks, usually with at least one month 123 

apart. 124 
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 125 

2.2. Nucleic acid extraction and RT-qPCR 126 

 127 

The commercial kit, MagMAX™ Pathogen RNA/DNA (Thermo Fisher Scientific) with 128 

an automated magnetic particle processor (KingFisher Flex; Thermo Fisher Scientific) 129 

was used for extraction of nucleic acids according to the manufacturer’s instructions. 130 

After extraction all specimens were tested by real-time PCR (RT-qPCR) using 131 

commercial kits (EXOone qPCR kits, Exopol S.L.) for specific detection of bovine 132 

species A rotavirus (RVA), bovine coronavirus and C. parvum. These assays target the 133 

rotavirus non-structural protein NSP3, coronavirus nucleocapside protein and C. parvum 134 

actin genes, respectively.  135 

 136 

2.3. G and P genotyping of RVA  137 

 138 

A subset of 26 rotavirus strains from dairy (n: 9) and beef (n: 17) calves from 26 farms in 139 

12 provinces was characterized by nucleotide sequencing of VP7 and VP4 genes (Figure 140 

1). These samples were selected for genotyping based on the cycle threshold (Cq<28) and 141 

their geographic origin in order to analyze samples from different regions. Amplification 142 

of both genes was performed using protocols described previously with the following 143 

modifications. For G-typing, primers VP7F/VP7R (Fujii et al., 2012) or 144 

Bov9Com5/Bov9Com3 (Isegawa et al., 1993) were used with annealing temperatures of 145 

56°C and 52°C respectively. The expected amplicon size for the VP7F/VP7R and 146 

Bov9Com5/Bov9Com3 set of primers, were 1,062 and 1,010 base pairs (bp), respectively. 147 

For P-typing, primers Con2/Con3 (Gentsch et al., 1992) or Bov4com5/Bov4Com3 148 

(Isegawa et al., 1993) were used with an annealing temperature of 50°C. The expected 149 
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amplicon size for these primer pairs was 876 bp and 860 bp, respectively. Each sample 150 

underwent amplification with the first of the above-mentioned primer pairs for VP7 and 151 

VP4 genes. The PCR products were analyzed on 1.5% agarose gels and visualized under 152 

UV light. If no amplicon was observed or if the amplicon was not of the expected length, 153 

the amplification was attempted with the alternative primer pairs. PCR products of 154 

positive samples were purified and sequenced at STABvida laboratories (Caparica, 155 

Portugal) by Sanger sequencing with the same primers used for amplification.  156 

 157 

2.4. Sequence analysis 158 

 159 

Nucleotide sequences were aligned against each other and with reference sequences 160 

retrieved from GenBank using Clustal WW and edited with BioEdit version 7.2.5 161 

(http://www.mbio.ncsu.edu/bioedit/bioedit.html). Sequences were analyzed for similarity 162 

using BLASTN and BLASTP searches at the NCBI databases 163 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). Phylogenetic trees for VP7 and VP4 sequences 164 

were constructed by the Maximum Likelihood method of the Kimura two-parameter 165 

model in BioEdit version 7.2.5. The statistical reliability was checked using 1,000 166 

bootstrap replicates.   167 

 168 

2.5. Nucleotide sequence accession numbers 169 

 170 

Representative sequences of both VP7 and VP4 markers from this study were deposited 171 

in the GenBank database under accession numbers MT02529 to MT025330. 172 

 173 

2.6. Statistical analysis 174 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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 175 

Chi-square tests were used to compare the occurrence of the three target enteropathogens 176 

in faecal specimens. A P<0.05 value was required for significance.  177 

 178 

3. Results 179 

 180 

3.1. Occurrence of enteropathogens 181 

 182 

The number of specimens and farms testing positive for any of the three enteropathogens 183 

surveyed is shown in Table 1. A total of 120 stool samples (50.6%; 95%CI: 44.3–56.9%) 184 

from 106 farms (54.9%; 95%CI: 47.8–61.7%) in 25 provinces were positive for species 185 

A rotavirus. C. parvum infection was detected in 137 specimens (57.8%; 95%CI: 51.4–186 

63.9%) from 121 farms (62.7%; 95%CI: 55.6–69.2%) in 26 provinces. The presence of 187 

rotavirus and/or C. parvum was identified in more than 76% of samples (n: 181) and both 188 

pathogens were significantly more prevalent than coronavirus (P<0.0001), which was 189 

found in 56 faecal specimens (23.6%; 95%CI: 18.6–29.4%) from 51 farms (26.4%; 190 

95%CI: 20.7–33.1%) in 18 provinces. The frequency of positive samples was higher in 191 

specimens from dairy calves than in samples from beef calves for Cryptosporidium 192 

(61.5% versus 54.2%), rotavirus (56.4% versus 45%) and coronavirus (29.9% versus 193 

17.5%), although differences were statistically significant only for coronavirus (P: 0.02). 194 

Mixed infections by two or more of these pathogens was found in 101 samples (42.6%). 195 

A total of 49 stool specimens (21.1%) tested negative for the enteropathogens analyzed 196 

in this study (Table 1). The percentages hardly differed when only specimens from 197 

individual calves (n: 148) were taken as the basis for occurrence analysis: a high detection 198 

frequency was seen for C. parvum [84 calves (56.7%) from 75 farms (61%)] and rotavirus 199 
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[70 calves (47.3%) from 62 farms (50.4%)], and coronavirus infection was less common 200 

[32 calves (21.6%) from 29 farms (23.6%)].  201 

 202 

3.2. Rotavirus genotypes 203 

 204 

A total of 21 of the 26 specimens used for RVA genotyping were successfully 205 

characterized at both the VP7 (G) and VP4 (P) genes, with three different G and two 206 

different P genotypes being identified. Among the G genotypes, G6 was the most 207 

common (n: 20), followed by G10 (n: 4) and G3 (n: 1). In the case of the P genotypes, 11 208 

specimens were found to be P[5] and the remaining 11 were P[11]. Five specimens were 209 

not successfully amplified at either the VP7 (n: 1) or the VP4 (n: 4) gene after repeated 210 

attempts, and these specimens were considered untypeable. Five different combinations 211 

of G and P genotypes were identified with G6P[5] and G6P[11] being the most common. 212 

The combination G6P[5] predominated in beef calves (8/17 = 47%) while G6P[11] was 213 

more common in dairy calves (5/9 = 55,5%). Nevertheless, this trend was not considered 214 

conclusive due to the small number of specimens genotyped (Table 2). 215 

 216 

Nucleotide sequence comparison of strains at the VP7 gene revealed a large diversity. 217 

The highest number of single nucleotide polymorphisms (SNPs) was found at the G6 218 

genotype of the VP7 marker, with alignments identifying up to 294 SNPs in 869 bp of 219 

sequence (0.338 SNPs/nt). To prevent any bias related to the difference in the number of 220 

samples, and index of 294/869/17 (SNPs/nt/sample) was calculated (0.0199). A similar 221 

procedure provided an index of 0.030 SNPs/nt/sample (111/924/4) at the G10 genotype 222 

of the VP7 marker. Comparison of nucleotide sequences of the VP4 gene showed a higher 223 

variability at the P[5] genotype (125/767/8 = 0.0203 SNPs/nt/sample) as compared to the 224 
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P[11] genotype (80/764/8 = 0.0130 SNPs/nt/sample). The Maximum Likelihood analysis 225 

does not clearly cluster samples collected from nearby farms, indicating no strong 226 

phylogeographic structure. Moreover, the different VP7 and VP4 genotypes are not 227 

related to the latitude or the longitude of the collection points. 228 

 229 

Phylogenetic analyses based on the VP7 gene of G6 rotaviruses identified four lineages. 230 

Most strains (14/18) clustered in the G6-IV lineage and demonstrated nucleotide identity 231 

higher than 92% to each other, and higher than 94% with strains contained in the vaccines 232 

available in Spain. The remaining four strains were allocated to lineages G6-II, G6-V 233 

(one strain each) and G6-III (two strains), and showed a nucleotide similarity lower than 234 

86% with all the other and vaccine strains (Table 3, Figure 2, Supplementary Figures S1 235 

and S2) (Jamnikar-Ciglenecki et al., 2016). In contrast, phylogenetic analysis based on 236 

the VP4 gene showed that RVA strains from this study were not clustered in lineages 237 

previously described into P[5] and P[11] genotypes for Argentinean rotavirus strains from 238 

cattle (Badaracco et al. (2013). Strains of the P[5] genotype showed nucleotide identity 239 

higher than 92% to each other, and higher than 90% with the vaccine strain available in 240 

Spain. RVA strains of the P[11] genotype demonstrated nucleotide similarity higher than 241 

95% to each other (Tables 4 and 5, Figure 3, Supplementary Figure S3). 242 

   243 

4. Discussion 244 

 245 

Neonatal diarrhea is one of the major problems for cattle farms around the world, 246 

accounting for up to 50% of the mortality in pre-weaned dairy calves (Potter, 2011). There 247 

are no reported data on the negative impact of this condition in cattle herds in Spain, but 248 

the economic losses in other European countries such as Norway, which has a 249 
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significantly lower livestock production, were estimated to be US$ 10 million in 2006 250 

(Østerås et al., 2007). In this study, we investigated the occurrence of three common 251 

enteropathogens in specimens from diarrheic calves submitted by veterinarians to an 252 

animal health laboratory. Commercial real-time RT-qPCR assays were used for a rapid 253 

diagnosis of these agents. These molecular methods have been proven to be an excellent 254 

tool for the detection of several enteric pathogens, and have gradually replaced other 255 

diagnostic tests with the advantage of high sensitivity and specificity (Cho and Yoon, 256 

2014). Many specimens were tested as faecal pools, which means that laboratory-257 

confirmed cases were considered to represent farm-level infection and not the individual 258 

prevalence. Nevertheless, the percentages of positive specimens and farms hardly differed 259 

when only specimens from individual calves were used for prevalence estimation. 260 

 261 

Nearly 80% of specimens (188/237) were positive for at least one of the three target 262 

enteric pathogens, indicating that they are usually involved in the etiology of infectious 263 

calf diarrhea. The remaining diarrheic stool specimens (just over 20%) were negative for 264 

the three target agents, although common bacterial (E. coli K99, C. perfringens), or other 265 

viral pathogens (norovirus, torovirus, nebovirus) were not analyzed in this study. 266 

Likewise, the role of non-infectious factors (inclement weather, poor sanitation, adequate 267 

colostrum intake, etc) was not excluded. C. parvum and rotavirus were the most common 268 

(57.8% and 50.6% of faecal specimens, respectively) and widespread pathogens (62.7% 269 

and 54.9% of farms, respectively), with over 75% of calves being infected by one or both. 270 

Previous studies in Europe have shown that Cryptosporidium and rotavirus were the two 271 

most prevalent enteropathogens in diarrheic calves in Belgium (31% and 20%, 272 

respectively), Sweden (11% and 24%), Switzerland (55% and 59%) and The Netherlands 273 

(27.8% and 17.7) (de Graaf et al., 1999; Björkman et al., 2003; Lanz Uhde et al., 2008; 274 
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Bartels et al., 2010). Infections by bovine coronavirus were significantly less prevalent in 275 

this study, although they were still found in approximately a quarter of faecal samples 276 

and farms, which indicates that coronavirus also plays a significant role in calf diarrhea. 277 

In fact, studies conducted in other European countries have reported substantially lower 278 

detection rates for coronavirus in diarrheic suckling calves (3.4�8%) (de Graaf et al., 279 

1999; Björkman et al., 2003; Lanz Uhde et al., 2008; Bartels et al., 2010).  280 

 281 

The three target enteric pathogens were most prevalent in specimens from dairy calves, 282 

although differences with beef calves were statistically significant only for coronavirus. 283 

Epidemiological studies in the Czech Republic have previously reported lower 284 

Cryptosporidium infection prevalence in beef calves than in dairy calves, which was 285 

linked to differences in breeding technology (Kvác et al., 2006). An overall low 286 

Cryptosporidium prevalence was also seen in beef calves in Belgium, although 287 

differences were attributed to the significantly higher age of the beef calves compared to 288 

dairy calves sampled (Geurden et al. 2007). In contrast, the proportion of samples positive 289 

to rotavirus in Brazilian farms was significantly higher in calves from beef herds, a 290 

finding that the authors related to differences in management practices (Alfieri et al. 291 

2006). 292 

  293 

The occurrence of Cryptosporidium correlates well with other studies in diarrheic 294 

neonatal calves from dairy farms in northern Spain, recording similar percentages of 295 

infected calves (47.9�57.8%) using microscopy methods (Castro-Hermida et al., 2002; 296 

Quílez et al., 2008). Cryptosporidium and rotavirus were also the most commonly 297 

detected agents in a previous study in central Spain (52.3% and 42.7% positive samples 298 

respectively), where mixed infections by both microorganisms were found in 21.6% of 299 
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the calves (De la Fuente et al., 1998). Studies in Europe and Australia have showed that 300 

multiple pathogens are frequently reported in diarrheic calves (40�71% of samples), and 301 

this has been linked with more severe clinical signs (Bazeley, 2003; Lanz Uhde et al., 302 

2008; Izzo et al., 2011). A recent study of calf diarrhea in India showed that the majority 303 

of the samples (90%) showed mixed infections ranging from a combination of two to five 304 

agents (Brar et al., 2017). In the current study, concurrent infections with two of the three 305 

pathogens were more common than single infections (101 and 87 samples respectively) 306 

and 10% of specimens contained all the three target pathogens. This finding indicates that 307 

most calves were exposed to a diverse pathogenic load, which may result in a more severe 308 

disease (Peek et al., 2018). The high frequency of co-infections also supports the 309 

suggestion that control of calf diarrhea should be focused on hygienic measures and 310 

improvement of the husbandry management system (Cho et al., 2013).  311 

 312 

The present study also demonstrates a large genetic diversity of rotavirus circulating in 313 

sampled cattle farms in Spain. A total of five combinations were identified in 21 314 

specimens successfully typed, but a remarkable variability was seen among the strains 315 

allocated to each particular genotype, especially for the VP7 marker. Genotype G6 was 316 

by far the most prevalent and widely distributed G rotavirus type followed by G10. 317 

Phylogenetic analysis of the VP7 gene allocated most strains to the G6-IV lineage, which 318 

is the most usual lineage of bovine RVA according to the classification provided by 319 

Jamnikar-Ciglenecki et al. (2016). The lineage includes the G6P[5] (strain RVA/Cow-320 

tc/GBR/UK/1973/G6P[5]) and G6P[1] (strains RVA/cow-tc/USA/NCDV/1967/G6P[1] 321 

prototypes, which are present in commercial vaccines available in Spain. Nevertheless, a 322 

significant ratio of strains (4/18) exhibited a much lower (< 86%) nucleotide identity with 323 

the other strains and clustered into three other lineages (II, III, V), which contain both 324 
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human and bovine RV strains (Jamnikar-Ciglenecki et al., 2016). Analysis of the VP4 325 

gene revealed that P types were more evenly distributed and two genotypes (P5 and P11) 326 

showed an identical occurrence rate. Lineages described by Badaracco et al. (2013) in 327 

RVA from Argentinian cattle were used for phylogenetic analysis of this marker, and no 328 

clear phylogenetic relationships with RVA strains from this study were found.  329 

 330 

Recent reviews on rotavirus have revealed differences in the genotype distribution 331 

according to the host and some studies have reported fluctuations in the G and P type 332 

prevalence over time (Papp et al., 2013). The most frequent cattle genotypes belong to 333 

VP7 types G6 and G10, and VP4 types P5 and P11, with combinations G6P[5], G6P[11] 334 

and G10P[11] being predominant in many areas worldwide (Papp et al., 2013; Dóró et 335 

al., 2015) and this is in agreement with the results of the current study. The G-P 336 

combination G6P[5] was the most common rotavirus circulating in cattle in France 337 

(Kaplon et al., 2013), Ireland (Collins et al., 2014), Germany (Otto et al., 2015) and Iran 338 

(Pourasgari et al., 2016). In contrast, G6P[11] was the most common VP7/VP4 339 

combination in calves in Italy (Monini et al., 2008), Turkey (Alkan et al., 2010) and 340 

Tunisia (Hassine-Zaafrane et al., 2014). Genotype combination G10P[11] predominated 341 

in diarrheic calves in other areas of Iran (Madadgar et al., 2015), India (Ahmed et al., 342 

2017), Argentina (Badaracco et al., 2013) and Brazil (da Silva Medeiros et al., 2019).  343 

 344 

It is worth mentioning that rotavirus G10P[11] is frequently associated with 345 

asymptomatic and symptomatic infection in Indian children and has been related to 346 

zoonotic transmission (Iturriza-Gomara et al., 2004; Ramani et al., 2009). This is also the 347 

genotype combination selected to be included in commercial vaccines in some countries 348 

(Rocha et al., 2017). The discrepancy between the RVA genotypes found in the 349 
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commercial vaccines and RVA strains circulating in cattle herds has been reported as a 350 

contributing factor to explain the lack of protection in some vaccinated herds, which 351 

suggests that only the combinations more common in the geographical area of interest 352 

should be present in the vaccines (Alkan et al., 2010; da Silva Medeiros et al., 2015; 353 

Rocha et al., 2017). The lack of information about rotavirus vaccination in the cattle farms 354 

sampled constitutes a limitation of this study. Nevertheless, it is significant to note that 355 

only one of the three commercial vaccines available in Spain contains the genotype 356 

RVA/Cow-tc/GBR/UK/1973/G6P[5],  matching the most prevalent VP7/VP4 357 

combination found in this study. The other commercial vaccines currently available in 358 

Spain contain the genotype RVA/Cow-tc/USA/NCDV/1967/G6P[1], which is a 359 

VP7/VP4 combination not detected in this study.  360 

 361 

The current study highlights the role of rotavirus and C. parvum as major pathogens in 362 

the etiology of calf diarrhea in the Spanish farms sampled, with coronavirus playing a 363 

minor but not insignificant role. The molecular analysis revealed the genetic variability 364 

of rotavirus strains circulating in these cattle farms, with two predominant genotype 365 

combinations G6P[5] and G6P[11], but a high frequency of single nucleotide 366 

polymorphisms, especially at the VP7 marker. Further investigations with additional 367 

specimens are required to confirm these observations, with regard to genotype 368 

combinations to be incorporated into future vaccines. To the best of our knowledge, this 369 

is the first study on the molecular characterization of rotavirus from cattle farms in Spain. 370 
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Figure 1. Map of Spain showing the provinces (shaded) with cattle farms submitting 562 

samples for diagnosis. Some RVA strains from the twelve provinces marked with an 563 

asterisk were genotyped at the VP7 and VP4 genes. 564 

  565 

Figure 2. Phylogenetic analysis of RVA strains of the G6 genotype examined in the 566 

current study (marked with an asterisk) to representative strains of different G6 567 

lineages and strains RVA/cow-tc/USA/NCDV/1967/G6P[1] and RVA/Cow-568 

tc/GBR/UK/1973/G6P[5] contained in the vaccines available in Spain. Lineages 569 

described by Jamnikar-Ciglenecki et al. (2016) are indicated. Maximum Likelihood 570 

analysis based on genetic distances calculated by the Kimura two-parameter model 571 

and a bootstrap value of 1,000.  572 

 573 

Figure 3. Phylogenetic analysis of RVA strains of the P[5] and P[11] genotypes 574 

examined in the current study (marked with an asterisk) to representative strains of 575 

different P[5] and P[11] lineages. The strain RVA/Cow-tc/GBR/UK/1973/G6P[5] 576 

contained in the vaccines available in Spain is included. Lineages described by 577 

Badaracco et al. (2013) in RVA strains from Argentinian cattle are indicated. 578 

Maximum Likelihood analysis based on genetic distances calculated by the Kimura 579 

two-parameter model and a bootstrap value of 1,000.  580 

 581 

Supplementary Figure S1. Alignment of predicted partial amino acid sequences (G6 582 

genotype of the VP7 gene) of RVA strains found in the current and strain RVA/Cow-583 

tc/GBR/UK/1973/G6P[5] contained in commercial vaccines available in Spain 584 

 585 
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Supplementary Figure S2. Alignment of predicted partial amino acid sequences (G6 586 

genotype of the VP7 gene) of RVA strains found in the current and strain RVA/Cow-587 

tc/USA/NCDV/1967/G6P[1] contained in commercial vaccines available in Spain 588 

 589 

Supplementary Figure S3. Alignment of predicted partial amino acid sequences 590 

(P[5] genotype of the VP4 gene) of RVA strains found in the current and strain 591 

RVA/Cow-tc/GBR/UK/1973/G6P[5] contained in commercial vaccines available in 592 

Spain 593 

 594 
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