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3. Our findings reveal that leaf phenolic concentration in herbaceous plants was
mainly influenced by grazing pressure and its interactions with leaf nitrogen and
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1 | INTRODUCTION

Global changes, such as increasing aridity and shifts in land use,
pose significant challenges to ecosystems and plant communities
(Sala et al., 2000; Watson et al., 2005). As primary producers, plants
play a critical role in ecosystem functioning, and their ability to adapt
to these challenges is fundamental for maintaining the resilience of
terrestrial ecosystems (Chapin et al., 1998; Loreau et al., 2001). To
address these challenges, plants have evolved mechanisms to toler-
ate or evade desiccation and damage caused by various abiotic and
biotic stressors (Karban & Myers, 1989; Nguyen et al., 2016; Saravi
Cisneros et al., 2022). Under stress conditions, such as increased
herbivory, plants often inhibit growth and shift their primary meta-
bolic processes towards the production of secondary metabolites
(Chiapusio et al., 2018; Chowdhary et al., 2021; Jonasson et al., 1986).
Among these compounds, leaf phenolics, a diverse group of carbon-
based secondary metabolites, are particularly significant. Found in
nearly all plant species, phenolics can constitute between 5% and
40% of dry leaf weight (Pefuelas et al., 2011). These compounds
play crucial roles in plant tolerance and resistance to biotic stressors,
such as pathogen infections and herbivory (Chowdhary et al., 2021;
Pratyusha, 2022), and abiotic stressors, including temperature fluc-
tuations, UV exposure, nutrient deficiencies, drought and flooding
(Chowdhary et al., 2021; Jonasson et al., 1986). In response to abi-
otic stress, plants activate the phenylpropanoid biosynthetic path-
way, resulting in high accumulation of phenolics (Naikoo et al., 2019;
Nenadis et al., 2015; Sharma et al., 2019). These chemicals alleviate
stress by scavenging reactive oxygen species, chelating detrimental
ions, stabilising cellular membranes and safeguarding photosynthetic
machinery (Naikoo et al., 2019). Phenolics also regulate essential ac-
tivities like cell division, nutrient absorption, hormone equilibrium
and gene expression (Naikoo et al., 2019; Sharma et al., 2019).

Climatic variations can influence leaf phenolics by changing car-
bohydrate production, can alter the carbon-nutrient balance and
influence secondary metabolite levels (Di Ferdinando et al., 2014;
Jonasson et al., 1986). Similarly, soil properties, such as water-holding
capacity, influence carbon allocation patterns in plants, particularly
the synthesis of chemical defences such as phenolics within plants
(Hussain et al., 2020). Finally, species richness may also influence
phenolic concentration through competitive interactions and niche
complementarity (Loreau & Hector, 2001; Tilman, 1982), influencing
plant resource allocation towards growth or defence. However, we
lack a general understanding of how plant phenolic concentration
responds to abiotic and biotic stressors at a global scale.

Grazing pressure also influences leaf phenolics, as leaf pheno-
lic concentration often increases under grazing pressure, enhancing
plant resistance to herbivory and serving as a temporary protective
measure until nutrient levels are restored (Jonasson et al., 1986). Leaf
nutrients, particularly nitrogen and iron, also impact the production
of phenolics (Kotton et al., 2022). When nitrogen level is low, plants
tend to allocate more resources to the production of carbon-based
secondary metabolites such as phenolics, and conversely, when ni-
trogen is abundant, the production of carbon-based phenolics tends

to decrease because some plants allocate more photosynthate to-
wards growth rather than phenolic production (Dudt & Shure, 1994;
Herms & Mattson, 1992). On the other hand, iron is involved in en-
zymatic processes linked to phenolic biosynthesis and redox balance
under stress conditions (Kotton et al., 2022; Rout, 2015).

Research on leaf phenolics has garnered substantial interest due
to their important role in ecological adaptation and evolutionary
processes (Fraenkel, 1959; Kulbat, 2016; Mannino & Micheli, 2020;
Stafford, 1991). However, despite their ecological importance and
ubiquity, there remains a lack of comprehensive understanding
about how abiotic and biotic factors influence leaf phenolic concen-
tration across plant communities on a global scale.

Furthermore, plant responses to stressors and phenolic produc-
tion often vary with life form. Herbaceous plants frequently prior-
itise rapid growth and reproduction, while woody plants allocate
more resources to structural development and defence mechanisms
(Massad, 2013). Understanding how phenolics respond to grazing
pressure and environmental factors across global climatic gradients
could provide valuable insights into the role of biotic and abiotic driv-
ers on phenolic production across diverse plant functional groups.

The responses of leaf phenolic concentration to changes in
abiotic and biotic stressors are of particular importance in dry-
lands, which cover more than 40% of Earth's surface and support
about 38% of the global human population (Reynolds et al., 2007).
Grazing is a fundamental activity in drylands because more than
1 billion dryland inhabitants rely on livestock for their livelihoods
(Neely et al., 2009), which demands substantial forage production
(Adeel et al., 2005; Giridhar & Samireddypalle, 2015; Middleton
et al., 2011). Forage quality is also crucial for ensuring an adequate
supply of energy and nutrients for livestock (Berauer et al., 2020),
and has a direct impact on livestock production and nutritional value
(Ball et al., 2001). Forage quality is determined largely by leaf phe-
nolic concentration (Horvat et al.,, 2022), making it an important
consideration in livestock production systems. For example, high
concentrations of phenolics could reduce forage protein digestibil-
ity (Skidmore et al., 2010), leading to lower feed intake and reduced
animal performance (Waghorn & McNabb, 2003). Despite this, the
factors affecting leaf phenolic concentration in drylands have not
been widely studied so far.

Most studies of leaf phenolics in drylands to date have been
restricted to local or regional scales (Chen et al., 2013; Mattera
et al., 2024; Moreira et al., 2020; Saravi Cisneros et al., 2022;
Varela et al., 2016). For example, warming has been shown to en-
hance the community-level expression of phenolic compounds in
annual herbs in Mediterranean savannas (Moreira et al., 2020),
while UV radiation has been identified as a primary driver of phe-
nolic variation, rather than grazing pressure, in ecosystems such
as Inner Mongolia and the Tibetan Plateau (Chen et al., 2013).
Another study by Saravi Cisneros et al. (2022) conducted in
Patagonian rangelands assessed phenolic profiles in tall and me-
dium evergreen shrubs and grasses. They found that, across mor-
photypes, phenolic structural complexity was conserved despite
large differences in concentration and richness. However, no
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study has simultaneously evaluated how grazing pressure and en-
vironmental factors shape leaf phenolics across global drylands.
Doing so is critical for understanding how forage quality may shift
under global change and for better understanding physiological
plant responses to biotic and abiotic stressors.

Here we used a global survey conducted on 325 plots in dry-
land ecosystems from six continents in 25 countries (Algeria,
Argentina, Australia, Botswana, Brazil, Canada, Chile, China,
Ecuador, Hungary, Iran, lIsrael, Kazakhstan, Kenya, Mexico,
Mongolia, Namibia, Niger, Palestine, Peru, Portugal, South
Africa, Spain, Tunisia and the United States of America) (Maestre,
Eldridge, et al., 2022). This survey included 1854 plant species
(574 woody and 1280 herbaceous), and we evaluated how climate
and grazing —two key drivers of desertification, along with soil
properties and plant biodiversity attributes influence leaf phenolic
concentrations. We considered key predictors of phenolics (Albert
et al., 2009; Chen et al.,, 2013; Dudt & Shure, 1994; Moreira
et al.,, 2020; Muzika, 1993), including climatic variables (mean
annual precipitation, MAP; mean annual temperature, MAT), soil
attributes (water-holding capacity), plant nutrient contents (mac-
ro- and micronutrients), biodiversity (plant species richness) and
grazing pressure. We aimed to identify the main drivers of leaf
phenolics across dryland sites and to explore interactive effects
between grazing pressure and other environmental variables (cli-
mate, leaf nutrients and soil properties) on phenolic concentra-
tions. We hypothesised that both grazing pressure and an increase
in temperature would increase the concentration of leaf pheno-
lics as a response to herbivory and environmental stress, as ob-
served across local and regional scales (Chen et al., 2013; Moreira
et al., 2020; Saravi Cisneros et al., 2022). We also hypothesised
that grazing pressure would influence leaf phenolics more in her-
baceous (grasses, herbs and forbs) than woody (trees and shrubs)
plants, as herbaceous plants usually prioritise rapid growth and
reproduction, while woody plants allocate more resources to
structural support and defence mechanisms. Furthermore, herba-
ceous plants in drylands are generally preferred and grazed more
than woody plants, withstanding greater consumption pressure
(Biancari et al., 2024).

2 | MATERIALS AND METHODS
2.1 | Study sites and grazing gradients

This survey was conducted at 98 study sites located in 25 countries
from six continents except Antarctica. At each of the 98 study sites,
two to four 45mx45m plots located across a local grazing pressure
gradient (ungrazed and low, medium and high grazing pressure) were
surveyed. These grazing gradients were established either by plac-
ing plots at different distances from artificial water points to deter-
mine the grazing gradient or by setting up grazing exclosures (see
(Maestre, Bagousse-Pinguet, et al., 2022) for details). The distance
from water points is known to be a good proxy of grazing pressure
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in drylands from all around the world (Pringle & Landsberg, 2004;
Stumpp et al., 2005; Tefera et al., 2007). The plots were established
in areas representative of the vegetation found at each site, with
soils derived from the same parent material and sharing the same soil
type whenever possible, to avoid undesirable confounding factors,
such as having different soil types between plots subjected to vary-
ing grazing intensities (Maestre, Eldridge, et al., 2022). Additional
details on study site selection and environmental characteristics can
be found in Maestre, Bagousse-Pinguet, et al. (2022). Mean annual
precipitation (MAP) and mean annual temperature (MAT) of each
site were obtained from WorldClim 2.0 (www.worldclim.org) (Fick
& Hijmans, 2017). The study sites had a range in MAP from 26 mm/
year to 891 mm/year, and MAT from -1.2 to 29.2°C.

To confirm our local grazing gradients and to quantify grazing
pressure in situ, we estimated it using a combination of herbivore
dung/pellet counts, dung mass per unit area and the number and
size of livestock tracks, following the protocol described in Maestre,
Bagousse-Pinguet, et al. (2022). Recent grazing pressure by large
herbivores (e.g. cattle, buffalo, zebra) was determined by count-
ing dung in two 25m? (5mx5m) quadrats located along each 45m
transect. For smaller herbivores (e.g. rabbits, goats, sheep), pellets
were counted within smaller 1mx1m quadrats (Maestre, Eldridge,
et al.,, 2022). The dung and pellets were separated into herbivore
types using experts or field guides (Hess, 1954; Triggs, 1996). Dung
and pellet mass were calculated at each plot by either taking direct
measurements or by counting dung/pellets. In plots where dung/
pellet mass was low or where the main herbivores did not produce
clearly defined pellets, all dung and pellets in the quadrats were
collected, dried, weighed and expressed as a mass per hectare for
each herbivore type (Maestre, Eldridge, et al., 2022; Sheidai-Karkaj
et al.,, 2022). The total oven-dried mass of dung per hectare for each
herbivore was therefore calculated (Maestre, Eldridge, et al., 2022).
Historic grazing was determined by quantifying the size and den-
sity of livestock tracks (Landsberg et al., 2002; Maestre, Eldridge,
et al., 2022), as the intensity and size of livestock tracks are said
to be useful indicators of the history of livestock grazing (Pringle &
Landsberg, 2004; Val et al., 2018). The width and depth of all live-
stock tracks crossing each of the 45m transects were measured to
derive a total cross-sectional area of tracks for each site; this was
done to determine the historical pressure intensity. Local grazing
pressure gradients at the surveyed sites result mainly from live-
stock, primarily involving goats, sheep and cattle. However, wild
herbivores, including kangaroos, deer, zebras, antelopes, elephants,
rabbits and giraffes, were also observed in the surveyed plots. In
dryland rangelands, the coexistence of wild herbivores and live-
stock is common (Acebes et al., 2016; Mizutani et al., 2012). The
analyses of dungs/pellets and livestock tracks confirmed our local
grazing gradients (from ungrazed to high), see Maestre, Eldridge,
et al. (2022) for a full description.

No specific permits were required to conduct the fieldwork as-
sociated with this study. However, all shipments of leaf and soil sam-
ples were carried out in accordance with national and international

regulations. Export permits were obtained in each country when
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required, and all shipments entering Spain were accompanied by
the corresponding import permits issued by the Spanish Ministry of

Agriculture, Fisheries and Food.

2.2 | Vegetation surveys

At each plot, we placed 2-4 transects separated by 10 m each (see
Maestre, Eldridge, et al., 2022). At each transect, 25 (1.5mx 1.5m),
consecutive quadrats were placed. Within these quadrats, the
cover of every perennial species in relation to the quadrat size was
visually estimated (to 1%). In total, 100 quadrats were sampled
within each plot. Total plot-level species plant richness was deter-
mined by counting the unique perennial plant species identified in
the quadrats.

Plant phenolic concentration was assessed on the tallest in-
dividual of each perennial plant species within 20 quadrats, ran-
domly chosen from the 100 quadrats surveyed per plot (5 quadrats
per transect). This means that, in theory, up to 20 individuals of a
species could be sampled per plot, but the actual number of rep-
licates per species depended on how frequently it occurred in the
sampled quadrats. This approach allowed for representative sam-
pling of dominant and co-dominant species across diverse dryland
ecosystems (Gross et al., 2024). For each selected individual, the
youngest mature, undamaged leaves were collected from the top.
In the field, the harvested leaves from the same individuals were
placed in a wet paper towel and stored in a labelled plastic Ziploc
bag with a small amount of water to avoid desiccation. These plastic
bags were placed in a cooling box before being transported to the
laboratory. Once in the laboratory, the plastic bags with leaves were
stored in a dark refrigerator before being analysed, ideally within
48h of sampling (Maestre, Eldridge, et al., 2022). The leaves were
thereafter oven-dried for 48h at 40°C, ground with liquid nitrogen
and stored at room temperature prior to chemical analysis. Drying at
this temperature halts enzymatic activity and preserves secondary
metabolites such as phenolics (Chua et al., 2019). While we acknowl-
edge that phenolic profiles can be sensitive to post-harvest condi-
tions, previous work (e.g. Lattanzio et al., 2006; Salminen & Karonen,
2011) supports the stability of total phenolic concentration in oven-
dried tissue.

The total phenolic content was determined colorimetrically
using the Folin-Ciocalteu method (Moreira et al., 2020; Waterman
& Mole, 1994). Specifically, phenolics were extracted from 20mg
of plant tissue with 70% methanol in an ultrasonic bath for 15min,
followed by centrifugation (Moreira et al., 2020). The total pheno-
lic concentration was then measured using a Biorad 650 microplate
reader (Bio-Rad Laboratories, PA, USA) at 740nm, with tannic acid
serving as the standard. Each sample was tested in three technical
replicates to account for variations due to the experimental proce-
dure, and phenolic concentration was expressed on a dry weight
basis. To investigate the effects of environmental factors, grazing
pressure, leaf nutrients and soil parameters on plant phenolics at the
community level, total phenolics were measured across all species

and then converted to community-weighted mean (CWM) (Moreira
et al., 2020). Due to the global scope of this study, many species
were sampled only locally and therefore have low sample sizes.
Consequently, the statistical power to infer variability across sites
is limited for most taxa. For this reason, our analyses and interpre-
tations focused on community-weighted and trait-based metrics
rather than species-specific trends.

The leaves used for phenolic analyses were also used for leaf
nutrient analyses. Leaf nutrients such as nitrogen, phosphorus,
potassium, calcium, magnesium, manganese, copper, zinc and iron
were extracted using an open-vessel wet digestion method with
nitric-perchloric acid. The extracted elements were then sus-
pended in water and quantified using inductively coupled plasma
optical emission spectrometry (Hesse, 1971; Kuo, 1996) with a
Perkin Elmer Optima 4300 DV instrument (Perkin Elmer, Waltham,
Massachusetts, USA; Maestre, Bagousse-Pinguet, et al., 2022).

2.3 | Soil properties

Soil sampling was carried out in all the plots surveyed for vegeta-
tion during the dry season (soils were dry at the time of sampling).
Soil sampling followed a stratified random approach. In each plot,
five 50cmx 50cm quadrats were randomly positioned beneath the
canopy of the dominant perennial vegetation (based on percentage
cover) and in open areas without perennial vegetation, resulting in a
total of 10 quadrats per plot. From each quadrat, a composite top-
soil sample was created by collecting five 145 cm® soil cores (from
a depth of 0-7.5cm), which were bulked and homogenised in the
field. Upon field sampling, soil samples were put in Ziploc bags (one
sample per bag) labelled with the plant species under which they
were sampled and put in cooler ice packs to transport to the labora-
tory (where possible). See (Maestre, Bagousse-Pinguet, et al., 2022;
Maestre, Eldridge, et al., 2022) for additional details on how the soil
survey was conducted.

To measure water-holding capacity, 10g of dry soil per sample
was weighed and placed in a funnel lined with moist filter paper.
Each sample then received 10mL of deionised water, and the fun-
nels were covered with parafilm to prevent evaporation. The soils
were allowed to drain for 24 h into a test tube. After this period, the
soils were weighed again to determine their water-holding capacity
(Maestre, Bagousse-Pinguet, et al., 2022).

2.4 | Statistical analyses

The community weighted mean (CWM) of total leaf phenolics for
each plot was calculated using the weighted.mean function in R
software, version 4.2.3 (R Core Team, 2023). This calculation used
species-level phenolic values, weighted by the relative cover of each
species. Initially, individual total phenolic measurements were aver-
aged at the species level, followed by the calculation of plot-level
estimates as community mean trait values (Mean j):
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Mean j = Z:’ piTi

Here, pi and Ti represent the relative abundance and the trait
value of species i in plot j, respectively, and S represents species
richness in plot j (Lavorel & Garnier, 2002; Pérez-Harguindeguy
et al., 2013).

To compare leaf phenolic contents between woody and herba-
ceous plants, we used plot-level community-weighted mean (CWM)
values calculated for each plant group at each plot. Descriptive sta-
tistics, including the range (minimum and maximum) and mean phe-
nolic concentration, were derived from these plot-level estimates
using Microsoft Excel. The range was determined by identifying the
minimum and maximum CWM values within each plant group, and
the mean was calculated as the average across all plots for woody
and herbaceous plants, respectively. Additionally, a t-test was per-
formed to determine whether the differences in mean phenolic con-
centration between woody and herbaceous plants were statistically
significant.

All quantitative predictor variables, such as mean annual precip-
itation (MAP), mean annual temperature (MAT), soil water-holding
capacity, leaf carbon, leaf iron, leaf nitrogen and species richness,
were standardised across plots prior to analysis to ensure that pa-
rameter estimates could be interpreted on a comparable scale.

Generalised linear mixed models (GLMM) with the Ime func-
tion were performed to determine the influence of the predic-
tor variables on leaf phenolics (Bolker, 2015; Bolker et al., 2009;
Brown, 2021). The model incorporated interactions between grazing
pressure and climatic, soil, leaf nutrient and biodiversity variables,
as well as quadratic terms for mean annual precipitation (MAP?) and
mean annual temperature (MAT?). The inclusion of quadratic terms
allows the model to capture potential non-linear relationships, such
as diminishing or threshold effects of climatic factors on plant phe-
nolic concentration. The model also included site as a random effect
to account for the non-independence of data collected at the same
site. Multicollinearity was evaluated among all predictors in the
global model; we excluded variables with variance inflation factors
(VIFs)> 10 to prevent distortion of coefficient estimates (Kim, 2019).
Only predictors that had VIF values lower than 10 were considered
for further model selection.

To determine the relative importance of the predictors and
identify the best-fitting model, multi-model inference (Burnham
& Anderson, 2002; Katsanevakis, 2006) was performed using the
dredge function in the MuMIn package (Barton, 2024). Geographical
coordinates, which include latitude and longitude, were kept as
fixed variables in all models. Longitude was included with the sine
and cosine transformations to account for the cyclical nature of the
variable.

The relative importance of the variables included in our mod-
els was assessed using the sw function of the MuMIn package
(Barton, 2024), which provides a summary of the important weights
based on model averaging, including model estimates, standard er-
rors, p values and variance inflation factors. The best-fitting model,
chosen based on the lowest Akaike Information Criterion (AIC), was
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extracted from the model set. After this step, only the most influ-
ential variables on leaf phenolic content remained in the model. To
visualise the best-fitting model's results, coefficient plots were cre-
ated using the ggplot2 package (Xia et al., 2018), which displays the
variables (climate, soil, leaf nutrients, biodiversity and their interac-
tions) that influence leaf phenolic concentration, along with their re-
spective coefficients and standard errors. This helps to understand
the relative significance and influence of these factors on plant phe-
nolic concentration, with variables with higher coefficients being
more important. Variance partitioning was therefore established
from the best model to identify the predictors contributing most
to explaining variation in phenolics across dryland regions. To cate-
gorise variance partitioning, interactions between variables such as
grazing and leaf nutrients, grazing and climate, grazing and biodi-
versity, leaf carbon and climate, and climate and leaf nutrients were
redistributed equally among their primary contributing factors. This
approach grouped the total variance explained into fewer, broader
categories: grazing, climate, leaf carbon, leaf nutrients, biodiversity
and soil. This procedure enabled a clearer visualisation of the results

while preserving the interpretability of each category's contribution.

3 | RESULTS

Plot-level estimates showed that woody plants had significantly
higher leaf phenolic concentration (7.51 to 186.85mgg™, with an
average of 71‘66mgg’1) compared to herbaceous plants (4.76 to
123.22mgg ™}, with an average of 33.79mgg™; t=13.51, df=411.26,
p<0.001).

3.1 | Predictors of leaf phenolic concentration
across global drylands

Grazing pressure accounted for 52.2% of the variation in leaf pheno-
lics in herbaceous species, while leaf nutrients accounted for 42.8%
of the variation observed (Figure 1), with leaf iron having a positive
effect and leaf nitrogen showing a negative impact on leaf pheno-
lics concentration (Figure 1). The relationship between leaf nutrients
and leaf phenolics was, however, dependent on grazing pressure. As
grazing pressure increased, the positive effect of leaf iron on leaf
phenolics became negative, implying that higher iron content re-
sulted in lower levels of leaf phenolics. Conversely, the interaction
between leaf nitrogen and grazing pressure reduced the negative
effects of leaf nitrogen on leaf phenolics. This suggests that with
higher grazing pressure, higher leaf nitrogen content is associated
with increased concentration of leaf phenolics (Figure 2).

Climatic variables explained 4% of the observed variation in the
leaf phenolic concentration of herbaceous species, with their in-
teraction with grazing pressure accounting for a minor fraction of
this variation (Figure 1). Increasing soil WHC was associated with
declines in leaf phenolic concentration irrespective of grazing pres-
sure, whereas increases in MAP were strongly grazing pressure
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dependent. Specifically, increasing precipitation was associated
with increasing leaf phenolics, but only under low grazing pres-
sure (Figure 2). Biodiversity and soil WHC had minimal explanatory
power, contributing less than 2.0% of the overall variation of pheno-
lics on herbaceous plants (Figure 1). While species richness generally
had a negative impact on leaf phenolics, the interaction between
species richness and grazing pressure showed that this effect varied
with grazing pressure (Figure 2).

As grazing pressure increased, the negative impact of species
richness on leaf phenolics was reduced. There was a significant
negative relationship between soil WHC and leaf phenolic content
(Figure 1), as soil WHC increased, leaf phenolic concentration de-
creased (Table S1).

Climatic factors were the main drivers of leaf phenolics in woody
species, accounting for 80.6% of the variation observed (Figure 1).
Both MAP and MAT showed a strong positive effect on leaf phe-
nolics, suggesting that increased precipitation and temperature
were associated with higher phenolic concentration. Leaf nutrients
explained 14.0% of the variation in the phenolic concentration of
woody species, with nitrogen showing a negative effect on leaf
phenolics (Figure 1). An interaction between MAT and leaf nitrogen
was associated with a decrease in phenolic production, suggesting
that higher MAT and nitrogen levels together reduced leaf phenolic
concentration (Table S2). Leaf carbon content accounted for 5.4% of
the variation in phenolic concentration in woody species (Figure 1).
The interaction between leaf carbon and MAT observed suggests

that higher temperatures strengthened the positive relationship be-
tween leaf carbon and phenolic concentration (Figure 3). This means
that as MAT increased, plants with higher leaf carbon tended to pro-

duce more phenolics.

4 | DISCUSSION

Our results supported our hypothesis, that is, grazing pressure more
strongly influences phenolic concentration in herbaceous plants
than in woody plants, particularly when they interacted with factors
like leaf iron, leaf nitrogen, MAP and species richness. Herbaceous
plants, which favour rapid growth and reproduction, are often pre-
ferred by herbivores, while woody plants, which grow more slowly,
allocate resources towards long-term survival and invest in chemical
defences (Coley et al., 1985; Saravi Cisneros et al., 2022). Consistent
with previous research (Coley et al., 1985; Dudt & Shure, 1994),
woody plants exhibited higher phenolic levels than herbaceous
plants, likely reflecting the adaptive advantages of defence com-
pounds in slow-growing species that experience greater environ-
mental stress.

Grazing pressure and leaf nutrients emerged as the primary driv-
ers of phenolic concentration in herbaceous plants across global
drylands. This includes the observed interactions between grazing
pressure and leaf nitrogen as well as grazing pressure and leaf iron.
While nitrogen alone had a negative effect on leaf phenolics, its
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FIGURE 2 The effect of mean annual precipitation (MAP, a), leaf iron (b), leaf nitrogen (c) and species richness (d) on leaf phenolic
concentration of herbaceous plants, as well as their interaction with grazing pressure, with 95% confidence intervals shown as shaded
regions around the regression lines. The data points represent the observed values for each variable, and the regression lines show the
estimated relationships between leaf phenolics and MAP, leaf iron, leaf nitrogen and species richness at different grazing pressure levels.

interaction with grazing led to a positive effect, which suggests that
grazing pressure mitigates the negative impact of nitrogen on phe-
nolic production. This relationship indicates that grazing pressure in-
fluences plants' nutrient-use strategies (Bi et al., 2020). Leaves with
high nitrogen concentration may be more attractive to herbivores,
potentially promoting a greater investment in defensive mechanisms
to mitigate herbivory pressure (Li et al., 2024; Mattson, 1980). Plants
may invest more resources in growth rather than in secondary me-
tabolites like phenolics (Herms & Mattson, 1992), as leaf nitrogen
is often associated with a higher growth rate, which may enable

plants to tolerate herbivory. In such cases, plants might rely less on
phenolic-based defences, as their growth strategy reduces the need
for high phenolic investment (Mattson, 1980). This aligns with the
findings by Valim et al. (2020), who showed that plants adjust their
defence strategies by prioritising the synthesis of nitrogen-rich de-
fensive molecules and reallocating nitrogen resources in response to
herbivore-induced stress. These findings also correspond well with
the Carbon-Nutrient Balance (CNB) concept articulated by Bryant
et al. (1983), which asserts that the nature and intensity of chemical
defences utilised by plants are determined by the relative availability
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of carbon and nutrients in their environments. In nutrient-deficient
conditions, plants would diminish growth and nutrient absorption,
yet photosynthesis may proceed mostly unaffected, leading to an
excess of carbon. This excess carbon is then diverted to the syn-
thesis of secondary metabolites such as phenolics. On the contrary,
when nitrogen is readily available and growth is stimulated, carbon
tends to be allocated towards growth and protein synthesis rather
than defence, leading to a lower concentration of carbon-based
compounds like phenolics (Koricheva et al., 1998). Stamp (2003) re-
visited and synthesised these and related hypotheses, including the
Growth-Differentiation Balance Hypothesis (GDBH), emphasising
that plant defensive responses are context-dependent and shaped
by both internal resource status and external pressures such as her-
bivory. Our observation that leaf nitrogen was negatively related to
phenolic concentration reflects these underlying resource allocation
trade-offs.

The interaction between grazing pressure and leaf iron was asso-
ciated with low leaf phenolic concentration, suggesting a more com-
plex role foriron in phenolic synthesis under grazing. Although iron is
critical for physiological processes (Briat et al., 2007; Neilands, 1974;
Rout, 2015), its contribution to phenolic production during grazing
appears to be context-dependent. Herbaceous plants may prioritise
resource allocation towards growth, and iron enhances photosyn-
thesis and metabolism over defence, especially in resource-limited
environments (Li et al., 2021; Tripathi et al., 2018). This focus on
growth is typically intensified under higher grazing pressure (Hernan
et al., 2019), which could explain the negative relationship between
leaf iron and the concentration of phenolics observed.

Although MAP had a positive effect on leaf phenolic concen-
tration of herbaceous plants, its interaction with grazing pressure
reduced this effect, suggesting that grazing acts as a buffer to the
MAP-phenolic relationship. This contrasts with previous studies
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showing that leaf phenolic concentration tends to increase under
drought (Aninbon et al., 2016; Espadas et al., 2019; Sarker &
Oba, 2018, 2019) and grazing pressure (Fagerstrom et al., 1987). The
stronger association between higher MAP and phenolic production
could be attributed to plants adopting a less conservative resource-
use strategy in ecosystems with higher water availability. In such
environments, plants may invest more resources in producing phe-
nolic compounds as a defence against herbivory (Lin et al., 2023).
However, when grazing pressure is high, plants may shift their in-
vestment towards alternative structural defence strategies that are
more immediately effective against herbivores, for example, spines-
cence, pubescence, sclerophylly and raphides (Hanley et al., 2007).
These structural defences may reduce the need for chemical de-
fences like phenolics, particularly in arid environments.

Higher species richness was associated with lower phenolic
production, which may suggest that in ecosystems characterised
by high species richness, plants may prioritise growth and resource
acquisition rather than investing in defensive secondary metabolites
such as phenolics, resulting in reduced phenolic production (Bazzaz
et al,, 1987; Herms & Mattson, 1992). However, the interaction
with grazing pressure made this relationship less negative or even
positive. Grazing pressure can act as a trigger for phenolic produc-
tion, as plants prioritise defence to mitigate herbivory (Carmona
et al., 2011). The interaction between grazing pressure and species
richness highlights the dynamic nature of plant resource allocation,
where herbivore pressure can reduce the negative effect of compe-
tition on phenolic production (Diaz et al., 2001). This aligns with eco-
logical theories stating that since plants in diverse ecosystems face
both direct resource competition and indirect herbivory pressures,
higher species richness may increase competition for resources
(Tilman, 1982).

Higher soil water-holding capacity was associated with lower
leaf phenolic concentration. These findings agree with Chadha
et al. (2019), who found that plants under higher WHC (100% WHC)
exhibited lower phenolic concentration compared to those at lower
WHC (25% WHC). Soils with higher WHC minimise water stress
(Martinez-Vidaurre et al., 2024), decreasing the necessity for plants
to produce phenolics (Yang et al., 2018).

In woody plants, climate was the primary factor influencing phe-
nolic concentration, with both MAT and MAP showing positive ef-
fects. This agrees with studies indicating that temperature increases
phenolic levels in woody species such as Salix myrsinifolia (Veteli
et al., 2002) and Betula nana (Graglia et al., 2001). Like herbaceous
plants, woody plants unexpectedly showed a positive relationship
between MAP and phenolic concentration, despite the general
expectation that phenolic concentration increases in response to
drought stress (Kumar et al., 2023; Misra et al., 2023). This could
be explained by the fact that plants in dryland environments em-
ploy diverse strategies to cope with water limitations beyond the
production of phenolic compounds. For instance, drought-adapted
species may rely on structural adaptations, deeper root systems or
osmotic adjustments to maintain water balance (Comas et al., 2013;
Peguero-Pina et al., 2020). These findings suggest that the positive
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relationship between MAP and phenolics in woody plants could
result from species-level trade-offs between growth, defence, and
resource-use strategies.

The positive correlation between leaf carbon and phenolic con-
centration observed is consistent with the fact that phenolic com-
pounds are synthesised through carbon-based metabolic pathways,
primarily via the shikimate and phenylpropanoid pathways (Caretto
et al., 2015; Read et al., 2009). High carbon allocation to leaves pro-
vides the necessary precursors for phenolic synthesis, which plants
use as a defence strategy against herbivory and environmental
stressors (Caretto et al., 2015; Coley et al., 1985). According to the
CNB theory, when carbon availability is relatively high compared to
nitrogen, plants tend to allocate excess carbon towards secondary
metabolite production, including phenolics, as a way to maximise fit-
ness under resource-limited conditions (Bryant et al., 1983; Estiarte
& Pefuelas, 1999; Prescott, 2022; Read et al., 2009). This is consis-
tent with findings by Chen et al. (2013), who reported that plants
growing under high nitrogen availability typically exhibit lower levels
of phenolic compounds due to a shift in resource allocation towards
primary metabolic processes. Therefore, the observed impact of leaf
carbon on leaf phenolics highlights the importance of understanding
resource allocation strategies in plants as they adapt to varying en-
vironmental conditions and resource availability.

It is important to note that we used tannic acid as the reference
standard in the Folin-Ciocalteu assay. We acknowledge that gallic
acid may have been a more suitable choice due to its simpler struc-
ture and higher number of hydroxyl binding sites per unit mass (Chun
& Kim, 2004; Prior et al., 2005; Rover & Brown, 2013). Tannic acid
is a polymeric gallotannin with a variable structure and larger mo-
lecular weight (~1700g/mol) that can lead to lower chromophore
development and consequent underestimation of total phenolic
concentration (Chun & Kim, 2004; Prior et al., 2005; Rover & Brown,
2013). However, as the final phenolic concentration values are usu-
ally proportional to the number of reacting phenolic hydroxyl groups
(Karadag et al., 2009), the approach followed, which has been used
in multiple studies in the past (Everette et al., 2010; Singleton et al.,
1999), is suitable to estimate phenolic concentration in dryland
plants. As such, we believe the effects found in our model are in-

dicative of important drivers of phenolic content in global drylands.

5 | CONCLUDING REMARKS

Grazing pressure, combined with leaf nutrients such as nitrogen and
iron, played a pivotal role in driving phenolic production in herba-
ceous plants across global drylands. These findings highlight the
strategies plants employ to balance growth and defence under en-
vironmental stressors. They also illustrate the significant influence
herbivores exert not only on plant community dynamics but also on
biochemical pathways important for plant defence, especially under
conditions of high nutrient availability. While herbaceous plants pri-
oritise phenolic production under grazing and nutrient-rich condi-
tions, woody plants rely more on climatic factors like temperature
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and precipitation, reflecting their longer lifespans and greater in-
vestment in defence compounds for survival. The unexpected posi-
tive relationship observed between mean annual precipitation and
phenolic concentration in woody plants evidences the complex in-
terplay between environmental factors and secondary metabolite
synthesis. Our findings show the importance of considering both
biotic and abiotic (e.g. herbivory, climatic and soil conditions) drivers
in understanding plant defence mechanisms across different plant
functional types. The information provided in this study contributes
to a better understanding of plant adaptation strategies in response
to ongoing global changes, including increased grazing pressure and
climate shifts.
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SUPPORTING INFORMATION

Additional supporting information can be found online in the
Supporting Information section at the end of this article.

Table S1. Statistical summary of GLMM analyses of leaf phenolic
concentration. The predictors include leaf iron (Fe), grazing pressure
(categorized as low (GRAZ1), medium (GRAZ2), and high (GRAZ3)),
mean annual precipitation (MAP), leaf nitrogen (N), species richness,
water-holding capacity, cosine of longitude (cosLong), latitude (Lat_
decimal), and sine of longitude (sinLong). p-values below 0.05 are in
bold.

Table S2. Summarises the results of GLMM analyses evaluating the
effects of various environmental and leaf nutrients predictors on
leaf phenolic concentration.

Figure S1. Geographic distribution of the 98 surveyed sites, including
examples (insets a-g) illustrating local grazing gradients.
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