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ABSTRACT

Stress is associated with the onset of various neurological disorders, such as
depression, PTSD, and anxiety. Although extensively studied, the metabolic
changes triggered in response to stress remain unclear. We conducted a
descriptive observational study on acute stress responses in university students,
combining psychometric, biochemical, and untargeted metabolomic analyses,
along with machine learning (ML) predictions. In this study, forty participants
underwent both relaxation and stress induction through a modified Trier Social
Stress Test. Validated psychometric tests confirmed proper induction of both
states. Although most biomarkers show significant changes under acute stress
states, the machine learning predictive model identified salivary a-amylase and
the State-Trait Anxiety Inventory-state as potential stress markers. Additionally,
several metabolic pathways, including steroid hormone biosynthesis,
glycerophospholipid metabolism, linoleic acid metabolism, tyrosine metabolism,
and aminoacyl-tRNA biosynthesis, presented alterations under acute mental

stress.

Our findings highlight the impact of acute mental stress on multiple metabolic
pathways directly implicated in stress-related disorders. These findings advance
the understanding of the adverse effects systematically associated with stress
and provide evidence supporting the potential role of salivary a-amylase and
STAI-s as stress markers. Yet, they should be regarded as important hypothesis

generators. However, further studies are needed for final validation.

n,ou

Keywords: “Mental stress reactivity”; “Metabolic responses”; “Biomarkers”;
“Untargeted metabolomics”; “Trier social stress test”; “Direct infusion mass

spectrometry (DI-MS)”; “Machine learning”.
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ABBREVIATIONS

AAA4 (difference in salivary a-amylase concentrations between samples), AAgy
(salivary a-amylase), ACTH (adrenocorticotropic hormone), Bgs (baseline
relaxation session), Bgs (baseline stress session), CNS (Central Nervous System),
Cpp (plasma copeptin), ACrg (difference in salivary cortisol concentration
between samples), Crg (salivary cortisol), DHA (docosahexaenoic acid), DIMS
(Direct Infusion Mass Spectrometry), DOC (11-deoxycorticosterone), Epi
(epinephrine), AFRq (difference in salivary flow rate between samples),FRy
(salivary flow rate), ESI (electrospray ionization), Glus, serum glucose), HPA
(Hypothalamic-Pituitary—Adrenal), KEGG (Kyoto Encyclopedia of Genes and
Genomes), LA (linoleic acid), LC-MS (Liquid Chromatography - Mass
Spectrometry), LPC (lyso-phosphatidylcholine), MAPK (mitogen-activated
protein kinase), NAG (N-acetyl glutamine), NE (norepinephrine), NF-kB (nuclear
factor kappa B), Osmy, (plasma osmolarity), PC (phosphocholine), PSNS
(Parasympathetic Nervous System), PPC (choline-plasmalogen), PPE
(ethanolamine-plasmalogen), Pry, (plasma prolactin), PSS (Perceived Stress
Scale), PUFA (polyunsaturated fatty acids), RS (state after relaxation stage),
SNS (Sympathetic Nervous System), SS (state after stress induction stage), SSC
(Symptomatic stress scale), STAI-s/t (State-Trait Anxiety Inventory state and
trait tests, respectively), TSST-M (Modified form of the Trier Social Stress Test),
VAS (Visual Analog Scale)
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INTRODUCTION
Stress

Physiological systems in the body are inherently programmed following rigorous
fine-tuning of regulated variables. These variables must be kept within an
acceptable dynamic range, known as the Aomeostatic state, which is essential
for life and well-being [1,2]. However, this optimal balance is constantly
challenged by intrinsic and extrinsic adverse forces or stressors. While some
stressors, such as unexpected events, urgent tasks, traumatic events, and
adverse social, economic, and environmental circumstances, often produce
psychological effects [3,4], others, such as injuries, noise, or exposure to

extreme temperatures, could have physical consequences [1,2,5].

Stressors, when perceived as a threat, lead to a maladaptive stress response or
disharmony called distress (popularly referred to as bare ‘stress’). Stress
triggers a complex interplay of physiological and behavioral responses aimed at
reestablishing homeostasis, hence improving survival chances [1]. This process
involves an intricate network engaging the central nervous system (CNS) and
peripheral organs, leading to the activation of the hypothalamic-pituitary-
adrenal (HPA) axis and the sympathetic nervous system (SNS), followed by the
inhibition of the parasympathetic nervous system (PSNS) [1]. If this response is
not adequate enough to preserve the balance needed, an inflammatory response
is triggered in an attempt to restore the system to its homeostatic state [6].
These biochemical and physiological changes can consequently be used to
determine and monitor stress. However, because each individual responds
differently according to inherent personality traits along with a myriad of
genetic, environmental, and developmental parameters, inter-subject variability
is another factor that makes stress diagnosis and monitoring even more

challenging [7,8].
Stress is generally classified into three main types: acute, chronic, and negative.

Acute stress triggers a time-limited set of cognitive-behavioral and physiological
changes as an immediate response to a stressor [1,2]. Neuropsychologically,
acute stress concomitantly enhances alertness and vigilance. Physiologically,
intermediate metabolism is adjusted to increase nutrient levels; increased
respiratory and heart rates augment oxygen and cardiac output, supporting
cardiovascular tone [1]. The resulting nutrient-enriched blood is redistributed to
organs directly involved in stress response orchestration (brain, heart, and
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skeletal muscles). This comes at the expense of a critical but temporary
reduction in blood supply to energy-consuming vegetative functions such as
digestion, renal and intestinal excretion, reproduction, growth, and immunity
[1,7].

Chronic stress involves a constant stress stimulus. This can consequently lead to
a stage where the body can no longer achieve homeostatic balance, and the

individual can no longer deal with the stressors [9].

In turn, negative stress (distress) [10] has detrimental effects on several
psychological and physiological functions, such as altered cognitive and
affective capacities, mental processing, and sleep—arousal cycle disorders, along
with simultaneous inhibition of vegetative functions, such as feeding and
reproduction. It can also affect gastrointestinal and cardiovascular function,
growth, metabolism, reproduction, and immune competence. Individual
performance, behavior, and personality development can be equally affected
[7,9].

Nonetheless, stress reactivity depends on (i) the type of stressor, as different
stressors activate different metabolic pathways; (ii) the intensity and duration of
the stressor, such that the higher the degree of stress is, the lower the
specificity of the adaptive response; and (iii) inter-subject variability,

considering the manner in which each individual perceives stressors [7].
Psychological stress and distress

Given its influence on human decision-making, psychological stress (negative
stress) represents a major public health concern [11-13]. According to the
World Health Organization (WHO) [3], the prevalence of social and medical
problems associated with mental stress is increasing globally, especially in
children, which seriously affects their mental health and well-being. Many
factors contribute to the increase in global stress. The COVID-19 pandemic, for
example, has become a universal stressor that is involved in a global mental
health crisis since it implies enduring, unprecedented, short- and long-term
stressful situations that have undermined the mental health of millions of people
[12,13]. Nevertheless, especially when chronic, mental stress exacerbates our
susceptibility to several diseases, eventually becoming a common cause of
morbidity and mortality [11]. Consequently, mental stress has a visible impact
on the health system, resulting in elevated healthcare costs, invalidity, or
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productivity loss. In view of this, finding objective and precise diagnostic

methods is currently a pressing need [14,15].
Stress Diagnosis

To date, stress diagnosis and estimation remain complex and clouded, carrying
considerable chances of uncertainty. Current standard diagnostic methods build
on validated psychometric questionnaires, tracking stress-induced changes in
cognitive and behavioral abilities [16]. Although they are considered highly
reliable methods, the interpretation of the questions by the patients and/or the
results by the specialist is still highly subjective, thus leading to various biases
that can compromise the diagnosis itself [5,17,18]. In this sense, despite many
efforts, an objective and reliable method for stress diagnosis has not yet been
developed. While different biomarkers have been proposed for acute
psychological stress determination in the literature, important disparities in the

results still exist [19].

Since the distinctive feature of the stress response is the activation of the SNS
and, most importantly, the HPA axis, [20,21], the most promising biomarkers

point to metabolites released as a result.

Given the multidimensional nature of stress, determining one or only a few
reliable biomarkers for diagnosis is unlikely to be a feasible goal. The reported
inconsistencies in the literature may be the result of oversimplifying the overall

process [22].

To solve this problem, we propose an omics analysis aiming to identify a
significant set of empirically relevant biomarkers, which would result in a more
effective approach. In this proposal, metabolomics is presented as the most
appropriate strategy [23,24]. It involves systematic identification and
quantification of the metabolite profile that characterizes the phenotype of an
organism in a specific situation. Moreover, metabolomics allows the
simultaneous determination of the altered set of metabolites in response to
stress, providing a global view of the metabolic changes arising as a result.
Metabolites are the intermediate or end products of cellular regulatory
pathways, and their levels can be regarded as the ultimate response of
biological systems to genetic and environmental changes [25].

In the present study, which was integrated into an £S3-P multidisciplinary
project [19,23,26,27] aimed at assessing acute psychological stress, we propose
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that the main goal is to determine the metabolomic fingerprint of acute
psychological stress in a cohort of volunteer-university students. This would
directly contribute to the discovery of new stress biomarkers and help to unveil
the molecular basis of adverse outcomes. As a secondary goal, we will analyze
the potential utility of diverse biomarkers proposed in the literature and

determine how sex differences operate in the stress response.

RESULTS
Participant characteristics

On the basis of our study design and calculations, the suggested minimum
number of subjects for adequate study power was 32 to detect moderate-to-
large effects in paired measures (0.4-0.5 standard deviations of the difference).
From the initial group recruited, 40 participants qualified. This final group
presented a normal body mass index (BMI of 22.4 + 2.7 kg/m?) according to
WHO guidelines [28] and was composed of young male and female participants
in similar proportions (mean age of 22 = 3.4 years) (Supplementary Table S1).
Despite the sex balance, the smaller subgroup size lowers the statistical power.
These findings thus remain exploratory, especially given certain risks such as

the system’s proneness to overfitting.

The perceived stress levels measured before administering the psychometric
tests (Supplementary Table S1) were an average of 49.4 units on a scale from 0

to 100, indicating no to mild stress.

In terms of habits, the majority of the participants were nonsmokers (85%),
occasional consumers of alcoholic beverages (82.5%), engaged in
extracurricular activities (62.5%), practiced sports regularly, learned foreign
languages, or engaged in other types of artistic activities. Approximately half of
the participants (45%) reported regular coffee consumption. In terms of their
social background, most participants lived in urban areas (77.5%), were single
(72.5%), and lived with their families (72.5%). With respect to health status, the
vast majority of participants did not suffer from chronic diseases (95%) or take
medications (75%). However, a small percentage (5%) had chronic diseases
such as allergies, migraines, or intestinal reflux, and only 25% were on
prescribed medications (mainly contraceptives, antihistamines, and

antiasthmatic drugs), which did not hinder the measurement sessions.
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Stress evaluation and measurement
Psychometric tests

The State Anxiety Inventory (STAI-s), visual analog scale (VAS), and
symptomatic stress scale (SSC) scores significantly increased between the state
after the relaxation stage (RS) and the stress induction stage (SS) (Table 1),
confirming that the participants became stressed after the modified Trier Social
Stress Test (TSST-M) was applied. The Perceived Stress Scale (PSS) and Trait
Anxiety Inventory test (STAI-t) results did not significantly differ across the
states. This reflects coherence in the evaluation since these questionnaires
indicate one’s predisposition (trait) to respond to stressful situations but do not

evaluate the subject’s current state.
Biochemical variables

Significant increases in the concentrations of the biochemical stress markers
AAAq (changes in salivary a-amylase concentration), AFRg (changes in salivary
flow rate), plasma copeptin (Cpy), and plasma prolactin (Pry,) were detected
between sessions. In contrast, the levels of ACrg (changes in salivary cortisol
concentration) and the serum glucose concentration (Glug;) did not change

significantly after the stressor was applied (Table 1).

Sex-based disparities were observed in Cpp and Glug, with comparatively lower
levels in females (Table 1). Notably, all the variables were within the clinically

accepted normal range.



Table 1. Inter-subject median and median absolute deviation (MAD) of stress markers.

All Female Male
Stress markers Relax session Stress session Relax session  Stress session Relax session  Stress session
Psychometric
variables
PSS (0-40) 21.0x 2.2 20.0 = 3.0 21.67 £1.5 21.5 % 3.7 21.5 = 3.7 19.5 £ 3.7
STAI-s (0-80) 155 £ 6.7 23.0 = 8.9 16.0 £ 8.9 24.0 = 8.2 14.0 £4.5 20.0 = 8.2
STAI-t (0-60) 20.5 =+ 9.6 19.5 £ 8.9 24.0+12.6 21.5+12.6 18.5 + 8.2 18.5 £ 3.7
SSC (0-80) 17.5 £10.4 27.5 + 18.5™ 19.0 £ 12.6 32.5x15.6 17.0 £ 9.64 23.0 £ 18.5
VAS (0-100) 30.0 = 18.5 50.0 +£ 29.7"  35.0 £ 22.2 50.0 = 29.7 30.0 = 25.9 50.0 = 29.7
Biochemical
Parameters
Cpypl (pmol/L)2 59 +2.6 6.2 + 2.9 3.7+ 1.6 3.6 £1.8 7.0 £ 3.6 8.5 *+4.2
Osmyp; (mOsm/L) 303.0 = 3.0 304.0 4.0 303.0+ 5.9 299.0 £ 29 304.0 £ 2.9 306.0 = 5.2
Pry (ng/ml) 7.7 £1.7 8.3+2.1" 7.9 £ 2.5 8.9 =+27 7.1 x2.1 7.6 £ 2.8
ACrg (ng/ml) -0.06 £0.03 -0.04 +0.03 -0.03 = 0.04 -0.03 = 0.04 -0.06 = 0.03 -0.06 = 0.04
AAAg (U/ml) 2.2 +18.2 45.3 £ 282" = -2.2+44.8 64.4 + 35.3 2.3 +£26.7 31.8 = 22.8
Glug; (ng/ml)? 91.0 £ 3.0 88.0 = 5.0 89.0 £ 5.9 86.0 £ 5.9 91.0+4.4 88.5+5.9
AFRg) (ml/min) -0.1 0.4 -0.1 £ 0.27 -0.05 = 0.5 -0.1 £ 0.2 -0.05 0.4 -0.1 £ 0.1

The variations in psychometric variables and biochemical variables between RS and SS were analyzed via the Wilcoxon signed-rank test
at a significance level of «a=5%. Marked features show significant differences between sessions; *p values <0.05, **p values <0.001. 2:

Statistically significant differences between sexes (p value < 0.05).
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Correlations among the studied variables

Our findings (Figure 1) revealed a significant positive correlation (r) between
VAS score and AAAg (r = 0.351, p< 0.01) and a significant negative correlation
(r) between VAS score and AFRg (r = -0.277, p< 0.01). In addition, a positive
association was observed among all psychometric variables, whereas a much
less significant association (r) was detected for VAS score and PSS score (r =
0.198, p=0.078). The correlation (r) between AFRg and AAAg was negative (r = -
0.387, p< 0.01). In contrast, no association (r) was observed between AAAq and
ACrg.

VAS .

SSC . .

STAIlt .

STAls . .

Corr
PSS . - 1.0
dFR N 05
dAA . 00
05

i =
Glu .

Osm .
Cp .

Q N R s - RIS SR
R O &bv?‘gqeéy\@@%y

Figure 1. Spearman rank correlation coefficient matrix heatmap of biochemical and
physiological variables (STAI-s, STAI-t, dAA (difference in salivary «a-amylase
concentrations between stages, AAAg), dCr (difference in salivary cortisol concentrations
between stages, ACrg) dFR (difference in salivary flow rate between stages, AFRy), Pr
(plasmatic prolactin, Pry)), Cp (plasmatic copeptin, Cpy), Glu (serum glucose, Glus) and
Osm (plasmatic osmolarity, Osmy,)) generated via ggcorplotin RStudio for Windows. The
bar on the right side of the map indicates the color legend of the Spearman correlation

coefficients.

Stress Reference Scale (SRS)

To build the SRS, psychometric and biochemical variables that were statistically
significant in differentiating RS and SS states were included. The results of the
principal component analysis (PCA) with n=80 (40 RS and 40 SS) and seven
dimensions are shown in Table 2. The first four components presented

eigenvalues greater than 0.7 and explained 84% of the total variance. The
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loading vectors (correlation coefficient scores) of each component allowed for

the interpretation of the type of information collected by each component (Table

2). Thus, the first component mainly collected information corresponding to the

psychometric tests, whereas the second component was positively associated

with AFRg and negatively associated with AAAg. The third component had the

highest scores for Cpy,, and the fourth component had a strong positive

correlation with Pry. Together, these components provide information on the

different aspects (factors) involved in the response to acute psychological stress.

The proposed SRS is expressed as equation (1):

SRS = (0.15 * STAIg + 0.14 * VAS + 0.14 * SSC + 0.12 * AA;; + 0.11 *FRg; + 0.19 * Cp + 0.15 * Pr)(1)

Our findings indicated that SRS scores were significantly higher in SS than in

RS (p =1.299e-05). In addition, no significant sex-based variation was observed

in SRS scores.

Table 2. Principal component analysis (PCA) summary with eigenvalues,

explained variances, and weights of the proposed SRS reference scale.

PCA Component Weight

(%)
Variables 1 2 3 4
Pry, 0.2466550 0.00162197  0.57448912  0.776963442* 15
AAg 0.4094267 - 0.22566106  -0.143047078 12

0.74777448"

STAI-s 0.8509134" 0.38870408 -0.10066183 0.005090755 15
SSC 0.8341677* 0.30798238  -0.04963621 -0.004881756 14
VAS 0.8367070" -0.01633558 -0.19598637 -0.094137137 14
FRg -0.3964135 0.71681296" 0.20191654 -0.086553101 11
Cpypl 0.1713332 0.09291078  0.79956896" -0.518754316 19
Eigen value 2.5349358 1.3278334 1.1120487 0.9096437
Variance (%) 36.213368 18.969049 15.886410 12.994910
Cum. variance 36.21337 55.18242 71.06883 84.06374
(%)
Variance expl. 43 23 19 15 100
(%)

Cum. variance: Cumulative variance; variance expl. : Percentage of variance explained,

proportional to the total variance explained by the four components. *variables with the

highest weights in each component.

11
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Machine Learning: Decision Tree and Statistical Models

Models created to predict whether an individual is stressed or relaxed provide
similar results, indicating their robustness. Decision tree, bagging decision tree,
and logistic regression models revealed that the most important variables for
the prediction of acute psychological stress were AAAq and STAI-s, whereas the
random forest models indicated that AFRg; was an additional predictor of acute
stress (Figure 2 and Supplementary Fig. S1). The predictive accuracy of the
decision tree model was 65.21%, whereas the random forest and logistic
regression models had accuracies of 73.91% and areas under the receiver

operating curves (ROC) of 0.84 and 0.85, respectively.

1
0.51
100%

0 dAA <430
0.34
75%

0 STRALS <19 7

0.14 0.59
1% 33%

0 STRAILt <32

0.10 0.77
39% 25%

dFR >=.0.4 0 dFR >= -0.015 1
o 05 0. 50 0.33 J
35% 4% 6% %

STRAlLs < 17 O CopOsm >=0.011 CopOsm >=0.021
D 33
dFR < 0.13
0 0
(] (](} (}()(} 1 OD (} (](] 0.00 0.00 |
4% 2% 8% 4% %

Figure 2. Decision tree model obtained for stress prediction. Label 0 indicates the relaxed

dAA >= 34 7

state (RS in blue), label 1 indicates the stress state (SS in red); dAA (difference in salivary
a-amylase concentrations between stages, AAAsl (U/ml)), dCr (difference in salivary
cortisol concentrations between stages, ACrsl (ng/ml)), dFR (difference in salivary flow
rate between stages, AFRsl (ml/min)), CopOsm (plasma Copetin/plasma Osmolarity
(mOsm/L)), STRALs (STAI-s), and STRAI.t (STAI-t)). The data were generated via RStudio

for Windows.

Metabolomic Analyses

The raw direct infusion mass spectrometry (DIMS) profiles revealed
approximately 1,500 signals in each mode, electrospray ionization in positive
mode (ESI (+)) and in negative mode (ESI (-)). After data curation, the

12
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remaining features were used for subsequent statistical analysis. Quality control
analyses yielded intra-batch CVs <7% for the principal metabolites, inter-batch
CVs <10% for the main compounds, and recovery rates of 82-115%, all within
internationally accepted ranges, thereby supporting the robustness of our data.
PCA plots revealed a clear separation between blood metabolites in RS and SS
groups (Figure 3) for both the ESI (+) and ESI (-) modes, suggesting a clear

effect of acute psychological stress on the blood metabolome.

a. Scores for PC1 (56.4%) versus PC2
(26.1%), pareto

4R IR
-
-
/ 9R
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3
154/
[

b. Scores for PC1 (55.8%) versus PC2
(28.6%), pareto

0
]

2R 4R
| 28R

\ 14R  31R
51\ .
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o (8]
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Figure 3. Score plot of principal component analysis (PCA) of metabolomic data
acquired in the ESI (+) (A) and ESI (-) (B) modes. Each dot represents a blood sample.
The samples obtained after the relaxed state (R) are in blue, and those obtained after

stress induction (S) are in red.

The loading diagram for both modes revealed that the number of potential
biomarkers in SS was significantly greater than that in RS (Supplementary Fig.
S2). PLS-DA models built with ESI (+) and ESI (-) data provided good clustering
of the samples and clearly classified each state. For ESI (+) mode, the model
provided good explained variance (R?) and predictive variance (Q?) parameters,
with values of 0.8 and 0.259, respectively. Differentially abundant metabolites
with a variable importance in projection (VIP) score > 2 [29] and variation
coefficients (CV%) below 20% to avoid subjectivity in the selection process, both
for RS and SS in ESI (+), are shown in Table 3. Most of the signals obtained in
ESI (+) mode presented significantly altered blood levels (p < 0.05) of various
amino acids and related metabolites (serine, indole, alanine, phenylalanine,

valine, histidine, and N-acetyl glutamine), altered sterol and steroid hormone
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biosynthesis (hydrocortisone, aldosterone, corticosterone, 11-
deoxycorticosterone (DOC), progesterone, pregnenolone, cholesterol, 17a-
hydroxypregnenolone, 11-deoxycortisol, 17-deoxycortisol, 17p-estradiol, and
estrone), and catecholamine neurotransmitters (dopamine, norepinephrine, and
epinephrine) (Table 3a). The remaining significantly altered metabolites in SS
corresponded largely to fatty acids and cellular membrane components
(isobutyrate, choline, glycerophosphocholine, and lysophosphatidylcholine
(LPC)), sucrose sugars, and muscle-related metabolites (creatine and carnitine).
Even so, the most predominant metabolites in RS included tyrosine, tryptophan,
and its derivatives (the neurotransmitter serotonin, the neurotoxin quinolinic
acid, and the hormone melatonin), derivatives of nitrogenous bases of nucleic
acids (hypoxanthine and 2,4-dihydroxypyrimidine), and derivates of the B3
vitamin N-methylnicotinamide (NMN) (Table 3a).

Analysis of blood samples in ESI (-) mode revealed a comparable R? of 0.84 but a
comparatively lower Q2 of 0.04. The significant signals obtained in this mode
were identified as fatty acids and phospholipids (Table 3b), suggesting that

stress leads to a substantial alteration in the lipid profile.

Subsequent pathway analysis revealed many metabolic pathways that were
significantly altered by acute mental stress. These included steroid hormone
biosynthesis (p = 1.09e-07), glycerophospholipid metabolism (p = 4.03e-04),
linoleic acid metabolism (p = 3.27e-03), aminoacyl-tRNA biosynthesis (p =
1.09e-02), and tyrosine metabolism (p = 4.14e-02) (Figure 4).

Table 3a. Differentially abundant metabolites in positive mode (ESI (+)) after

relaxation (RS) and stress (SS) stages.

Predominant metabolites m/z Am )/ Cv

Formula VIP
in SS [M+H]* (ppm) value (%)
1.8-10-
Hydrocortisone? Cy1H3005 363.4653 -7.3 5 6.2 2.18
2.6-10°
Aldosterone? Cy1H2805 361.4485 1.8 5 7.6 2.09
2.9-10
Corticosterone? Co1H3004 347.2245 6.6 5 5.3 2.05
3.1-10-
DOCa C21H3003 331.2253 -6.0 A 6.5 2.10
4.1-10
Progesterone (P4)2 C21H300, 315.2314 -3.2 9.7 2.68
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Pregnenolone (P5)2

Cholesterol?

17-OHPa

11-deoxycortisol?

17-deoxycortisol?

17B-estradiol?

Oestrone (E1)2

Sucrose

Serine?

Indole?

Alanine

Phenylalanine?

Dopamine?

Isobutyrate

Norepinephrine?

Epinephrine?

Choline?

Valine?2

Creatine?

Histidine?

Carnitine?2

NAGa

C21H320;

C27H460

C21H3203

C21H3004

C21H3004

C18H240;

C18H2202

C12H220,

1

C3H7NO3

CgH7N

C3H7NO>

CoH11NO
2
CgH11NO

2
C4H707

CsH11NO
3
CoH13NO

3
CsH13NO

Cs5H11NO
2
C4H9N30
2
CsHoN30O
2
C7H15NO
3
C7H12N3
O4

317.2498

387.3598

333.2403

347.2257

347.2257

273.1878

271.1706

342.29648

106.0514

118.0670

89.09318

166.0858

154.0857

87.0971

170.0826

184.0959

103.1628

117.1463

131.1331

155.1545

161.1989

188.1811

5.7

-7.2

-7.8

10.1

10.1

8.8

2.9

2.05

9.4

11.8

8.32

-6.0

-7.1

-3.21

5.3

-7.6

-15.0

-7.5

-17.1

-12.2

-11.8

-10.8

4.0-10

5.1-10°

1.1-10

2.1-10

2.1-10

1.7-10

8.0-10

4.4-10

3.2:10

2.9-10

6.1-10

1.7-10

9.4-10

2.63-10

2.4-10

8.1-10

3.4-10

1.5-10

4.1-10

1.7-10

3.5-10"

1.8-10°

7.8

4.4

6.3

7.3

7.3

11.2

12.3

2.9

7.2

5.8

3.1

5.1

5.3

4.2

5.8

6.0

8.2

6.4

10.0

5.4

9.4

7.9

2.09

2.01

2.62

2.09

2.09

2.36

3.01

2.71

2.41

2.34

2.53

2.42

2.37

2.57

2.27

2.35

2.81

2.31

2.03

2.07

2.24

2.13
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CgHzoNO 2.5:10-
GPCha p 257.2212 -9.5 5 9.8 2.19
6
C26H52N 1.4-10°
LPC (18:1)a 521.6673 12.6 8.5 2.28
O,P 3
C26H54N 3.1-10-
LPC (18:0)2 523.6832 -11.2 6.4 2.11
Oo,P 3
Predominant metabolites m/z Am P Cv
Formula VIP
in RS [M+H] * (ppm) value (%)
C11H12N> 4.10-10
L-Tryptophan? o 205.0967 -4.9 3 5.3 2.56
2
C10H12N> 1.9-10-
Serotonin? o 177.1039 6.8 ) 5.6 2.18
C13H15N2 3.0-10°
Melatonin? o 233.1270 -8.6 5 6.8 2.41
2
C9H11N1 5.2:10-
Tyrosine 181.1885 -2.15 4.1 2.75
O3 2
) 3.15-10
Aminoethanol C,H7NO 61.0831 3.40 3 3.9 2.05
) 5.27-10
Hypoxanthine CsH4N4O 136.1115 2.95 3 2.7 2.98
o ) 25.0-10
Quinolinic acid CsHs5NO, 167.1189 -3.04 5 3.2 2.43
) o 7.35-10
2, 4- dihydroxypyrimidine C4HgN,O  98.1032 -5.53 3 5.0 2.12
o ) 2.90-10
N-Methylnicotinamide C7HgN,O 136.1512 -3.95 4.5 2.31

Table 3b. Differentially abundant metabolites after stress induction in negative

mode (ESI (-))

Predominant Formula MS/MS product Am p CvV VIP
metabolites in SS ions m/z (ppm) value (%)
Caprylic acid CgH1602 143.10 (—H+) -6.1 3.7-10- 5.2 2.01
2
Capric acid C10H2003 171.10 (—H+) -9.8 3.3-10- 9.2 2.45
3
Linoleic acid C18H320, 279.20 (—H+) -5.7 2.3-100 2.4 2.80
2
DHA Cy2H3209 327.20 (-H+) 3.2 5.0-10- 7.0 2.32
4
LPC (20:5) CogH4gNO7P 359.26, 184.07, -4.3 3.1-10- 10.0 2.45
104.10, 86.09 2
PPE (16:0/22:6) C43H74NO7,P 746.50 (—H+), -7.6 2.6:100 6.5 2.96

327.23, 196.07
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PPE (18:1/20:4) C43H76NO7P  748.50 (—H+), 5.2 5.4-10- 8.1 2.06

303.30, 196.10 3

PPE (18:0/20:4) C43H78NO7P  750.50 (—H+), -9.2 2.2-10- 3.4 2.32
303.20, 196.10 3

PPE (18:0/22:6) C4sH78NO7P  774.50 (—H+), 8.5 1.9-10- 9.7 2.47
327.20, 196.10 2

PC (16:0/20:5) C44H73NOgP  313.20, 359.30, -6.1 2.0-100 4.3 2.65
184.10, 104.10, 2
86.0

PPC (16:0/22:6) C46HgoNO7P 387.20, 184.0, -8.5 2.2:100 6.2 2.15
104.10, 86.0 2

PPC (18:1/22:6) C4sHgoNO7P  385.20, 184.0, 5.5 6.3-100 7.9 2.98
104.10, 86.0 3

PC (18:1/20:4) C46HgoNOgP  339.20, 361.0, -6.8 2.6-100 5.8 2.50
184.0, 104.10,86.0 2

PC (18:0/22:6) CssHgaNOgP 341.0, 38.0, 184.0, 11.4 3.0-10- 11.5 2.21
104.10, 86.0 2

MS/MS: Tandem mass spectrometry data and elucidation of fragmentation patterns for
each m/z, which confirms unequivocal structural and chemical characterization in all the
cases. The p value was calculated via t test analysis for each of the m/z/intensity
relationships, considering significant values of p ' =0.05. Am: mass error expressed in
ppm. Coefficient of variation (CV) was considered to be <20% to obtain a method with
good reproducibility. Variable importance in projection (VIP) was set at a minimum
value of 2 to ensure the selection of the predominant m/z in each group. DOC: 11-
deoxycorticosterone; 17-OHP: 17a-hydroxypregnenolone; NAG: N-acetyl glutamine;
GPCh: glycerophosphocholine; LPC: lysophosphatidylcholine. DHA: docosahexaenoic
acid; LPC: lysophosphatidylcholine; PPE: ethanolamine-plasmalogen; PC:
phosphocholine; PPC: choline-plasmalogen. 2: previously published in a preliminary
report by Lorenzo-Tejedor et al. [23]
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Figure 4. Metabolic pathways altered after psychological stress induction. Dots
represent the affected pathways. Y-axis shows the log-transformed p value adjusted for
multiple comparisons, whereas X-axis shows the pathway impact. The color indicates
significance, ranging from white (not significant) to red (most significant). Dots size

reflects the impact score. The figure was generated via MetaboAnalyst 5.0 [30].

DISCUSSION

In this study, a modified version of the Trier Social Stress Test (TSST-M) was
used to induce acute stress in a cohort of 40 university students. We found
significant differences between RS and SS in psychometric tests (STAI-s, VAS),
SSC, and the biochemical markers AAy, FRq, Cpp, and Pry (Table 1). These
results confirmed that stress was successfully induced, in agreement with other
studies that used the TSST [31,32]. While we anticipated a significant increase
in salivary cortisol (Crg), no significant difference was found, even though
previous studies have shown that cortisol levels typically increase following
induced stress [33,34]. This discrepancy could be attributed to the dynamics of
cortisol production and saliva detection. Whereas a-amylase is released directly
into oral fluid from salivary glands in response to the activation of the SNS,
cortisol is first secreted from the adrenal glands into the bloodstream and then
passively diffuses into saliva. This process results in a delay of up to 15-20
minutes before cortisol reaches its peak concentration in saliva in comparison
with that of a-amylase [35]. Since saliva sampling was performed after
completion of the stress-induction session (25 min after initiation), the 15-20

min peak window for Crg; may not have been fully captured (Figure 5).
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Nevertheless, our metabolomic analysis identified cortisol as a relevant blood
biomarker of acute stress, with significant changes in its concentration
distinguishing RS from SS (Table 3a). Psychometric tests were standardized and
administered in a controlled, distraction-free environment, minimizing potential

bias.

Concerning sex differences, and within the limitations of this study, significantly
higher glucose and copeptin plasma levels were observed in men, in line with
findings by Spanakis et al. [31]. This result supports the hypothesis that the
response of the HPA axis to acute psychological stress varies by sex, according
to previous studies [31,36]. These findings suggest that the risk of suffering
from different diseases as a result of stress may vary by sex. However, further

research is needed to elucidate such sex-based disparities.

To reduce the multiple dimensions of psychological stress into its main
components, we performed a PCA. The top four out of seven components
explained 84% of the variance. The first component correlated most strongly
with psychometric tests, reflecting variation in the quality of individuals'
psychological states produced by the stressors. The second component was
associated with SNS activation (involving AAAq and FRg changes), whereas the
third and fourth components were linked to PA axis activation (Table 2). They
likely appeared as separate components because Cpy and Pry, are secreted from
different sources (the posterior and anterior pituitary, respectively). These
results highlight the close interaction between the SNS and the HPA axis in
eliciting the stress response. By integrating these parameters into the SRS scale
[26], we support its utility in quantifying the level of stress perceived by an
individual [27]. The scale, however, remains to be validated by additional

studies.

The predictive models built via machine learning techniques (decision trees,
logistic regression, and random forest classifiers) exhibited a high level of
robustness in determining the stress state of the subject (Figure 2). The risk of
model overfitting is acknowledged in the Limitations. Consistently, all our
models identified the AAAg and STAI-s as the main predictive biomarkers of
acute psychological stress status. These findings support the importance of AAgy
as a key biomarker in evaluating stressors that activate the SNS, which is in
agreement with previous research reports [37,38]. However, it is important to
note that AAq levels, like all other variables, may be influenced by a variety of
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factors, such as exercise and medication [39]. In the case of the random forest
model, FRg was identified as an additional significant predictor of stress status.
Although our models showed high predictive accuracy and the sample size of 40
was sufficient to provide adequate statistical power (Supplementary Fig. S1),
the homogeneous cohort reduces the generalizability of our findings to a
broader population. Despite these limitations, the present study still provides

meaningful insights and a sound basis for future investigations.

With respect to the metabolic signature of acute psychological stress explored
here, our results are in line with those of previous studies that documented
significant changes in the metabolomic profile in both animal models and
humans subjected to different stressors [40-42]. In the PCA plots of the
metabolomic data, two clusters were clearly distinguished, indicating that RS
and SS samples had markedly different metabolic compositions (Figure 3). A
total of 53 significantly differentially abundant metabolites (p<0.05, VIP>2)
were identified in both the ESI (+) and ESI (-) ion modes. Of these, 9 were
predominantly associated with RS, whereas 44 were instead associated with SS.
These findings suggest that acute psychological stress generates extensive
changes across multiple metabolic pathways involved in an organism’s adaptive
response. Prolonged stress-induced alterations can have detrimental effects on
health. As a result, chronic psychological stress is recognized as a serious risk

factor for cardiovascular diseases and metabolic disorders [42].

Notably, one of our most valuable findings was the significant changes in the
lipid profile induced by acute mental stress, particularly the substantial increase
in fatty acids, polyunsaturated fatty acids (PUFAs), phosphocholines (PCs),
plasmalogens (PPCs and PPE), and lysophosphatidylcholines (LPCs) (Table 3b).
Recent studies have indicated that these lipids and lipid-like molecules play
critical roles in cell signaling pathways related to inflammation, immunity, and

apoptosis [42,43].

The increases in PPC and PPE levels observed may be attributed to an increased
demand for plasmalogens (PPs) in the brain under acute stress conditions to
maintain adequate neural function, promote synaptic plasticity, and protect
against stress-induced oxidative damage. Several researchers have proposed
that PPs, particularly those containing omega-3 fatty acids such as LPC (20:5),
PPE 16:0/22:6, PPE 18:0/22:6, and docosahexaenoic acid (DHA), as observed in
our study, may reduce HPA axis activation in response to acute physiological
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stress, thereby protecting the brain from subsequent cellular damage [44,45].
However, when stress becomes chronic, this adaptive mechanism is reversed,
leading to a decrease in PP levels, which has been associated with degenerative

disorders and neurocognitive impairments [42,43].

In addition to the increased PP levels in SS, we also observed elevated levels of
LPC. This finding is consistent with previous studies suggesting that LPCs
containing medium-chain saturated fatty acids may serve as potential
biomarkers not only for stress but also for adiposity and inflammation [42]. LPCs
are generated through the cleavage of phosphatidylcholine, a major
phospholipid in the cell membrane, by phospholipase A, (PLA;), which releases
free fatty acids such as arachidonic acid. The observed increase in LPC levels
may therefore reflect the body's adaptive complex response to stress, involving
PLA; activation by mitogen-activated protein (MAP) kinase-related kinases, a

family of stress-activated protein kinases [46,47].

The function of LPCs depends on the length and degree of saturation of the fatty
acid chain attached to the glycerol moiety [48]. For example, elevated levels of
LPC (18:0) and related PPs, PPC (18:0/20:4) and PPC (P18:0/22:6), have been
associated with reduced inflammation, lower adiposity, and a decreased risk of
cancer [42,48]. On the other hand, LPCs, such as 18:1 and 20:4 LPCs, exert
their biological effects by activating many downstream signaling pathways,
including the mitogen-activated protein kinase (MAPK) and nuclear factor kappa
B (NF-kB) pathways. These pathways promote cell division, chemotaxis,
oxidative stress, inflammatory cytokine release, and apoptosis, thereby
accelerating the development of atherosclerosis [48]. Additionally, LPC (20:4) is
associated with the stress index, and its free fatty acid arachidonic acid (20:4)

has been suggested as a marker of depression and stress in humans [42,49].

Another predominant metabolite found under acute stress conditions was
linoleic acid (18:2-n6), the most abundant PUFA in human nutrition. Linoleic
acid (LA) is an essential n-6 PUFA and a precursor to arachidonic acid. While
normal levels of LA are crucial for neurological and cognitive development and
overall health, elevated levels of LA have been linked to inflammation and
metabolic diseases [50]. Our data indicate that its metabolic pathway was
among the most significantly affected. One such alteration involves the
inhibition of the enzymes responsible for catalyzing LA epoxidation, leading to a
reduction in its hypocholesterolemic effect [51,52], followed by the consequent
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accumulation of arachidonic acid. Additionally, LA can undergo nonenzymatic
oxidation to produce Oxlams, metabolites that have been shown to promote a

strong proinflammatory response in rats [50].

An elevated level of cholesterol in SS, such as that observed here (Table 3a),
may lead to the generation of a variety of corticosteroids via steroidogenesis.
Owing to their lipophilic nature, corticosteroids cannot be presynthesized and
stored in adrenal glands but must be rapidly synthesized upon
adrenocorticotropic hormone (ACTH) stimulation, which is instead-regulated by
the HPA axis [53]. Corticosteroids regulate multiple physiological processes,
including metabolism, development, homeostasis, cognition, and inflammation
[53]. Corticosteroids such as cortisol increase the bioavailability of glucose and
the consequent release of energy to the brain [53], as evidenced by the
increased levels of carnitine, creatine, and glucogenic amino acids observed in
this study, supporting the findings of Singh et al. [40]. Additionally, these amino
acids could also serve as substrates for the synthesis of proteins required for the

stress response process [54].

Each stressor has a neurochemical signature with distinct central and
peripheral mechanisms [55]. In contrast, some studies have demonstrated that
the two branches of the sympathoadrenal system (SAS), the adrenal medulla and
the sympathetic nerves, can be activated independently by different stressors
[55,56]. Nonetheless, our study indicated that acute psychological stress
induced by the TSST-M activated both components of the SAS. This stimulates
the adrenal medulla system, elevates plasma Epi levels, and activates the

sympathetic nervous system, increasing NE and dopamine plasma levels.

Epi is known as the hormone that prepares the body for a fight-or-flight
response [57]. NE, which is the main sympathetic neurotransmitter in
circulatory regulation, is also a central neurotransmitter thought to be involved
in alertness, memory of distressing events, nociception, and anxiety [58].
Dopamine (DA) is a key neurotransmitter that regulates many processes in the
CNS, including reward, motivation, and cognition. Importantly, DA can also be
produced locally in several peripheral organs, where it has autocrine and
paracrine effects influencing many organ functions [59,60] and is released in
plasma in response to stress. This response is partly influenced by circulating
cortisol levels in the body [61,62]. Moreover, DA regulates critical functions

such as metabolic homeostasis, hormone release, sodium balance, blood
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pressure, renal activity, and gastrointestinal motility. It also modulates
inflammatory and immunological processes [59,60]. Prolonged exposure to
intense stressors may inhibit DA release and thus disrupt the dopaminergic
pathway, leading to psychological disorders such as depression and
schizophrenia [63,64].

The elevated levels of cholesterol, steroid hormones, and adrenal
catecholamines observed in this study could be explained accordingly by the
increase in prolactin, known as a stress hormone, along with cortisol. There is
substantial evidence supporting the multifaceted role of prolactin in the adrenal
response to stress [65]. More specifically, it has been shown to increase the
secretion of ACTH, enhance the storage of cholesterol esters, and induce
adrenal hypertrophy [65-67]. Under acute stress, prolactin secretion appears to
play a crucial and complex role in maintaining metabolic and immune system
homeostasis [67-69]. Therefore, while Pr may induce a protective
proinflammatory state during acute stress, chronic exposure to prolactin can, by
contrast, lead to habituation and potentially contribute to the development of

cardiovascular pathologies [70].

Interestingly, we identified several metabolites that the literature suggests may
have protective effects during acute stress. For example, progesterone and
pregnenolone (Table 3a) are known to suppress HPA activity, thereby reducing
stress levels [71,72]. Additionally, caprylic and capric acids have been identified
as possessing anti-inflammatory properties, which counteract the inflammatory
process often associated with stress [73,74]. Furthermore, 17B-estradiol and
estrone have been shown to play neuroprotective roles against stress-related
damage [75,76]. Collectively, these metabolites contribute to the body’s
adaptive response aimed at restoring homeostasis and mitigating the adverse

effects of stress.

CONCLUSIONS

In this study, the TSST-M was used to induce acute psychological stress and
explore multifaceted stress responses through the integration of psychometric
assessments, biochemical analyses, and metabolomic profiling. Our findings
provide preliminary evidence of sex-related differences in the stress response,

particularly in glucose and copeptin plasma levels, further suggesting that
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stress may affect men and women differently. These observations support the

importance of considering sex-sensitive approaches in future stress research.

Our exploratory results also point to the potential utility of the stress reference
scale and machine learning prediction models for distinguishing stressed from
relaxed states in individuals. Specifically, they present AAy and STAI-s as
promising markers and support the use of direct infusion MS as a minimally

invasive method suitable for metabolomic analysis in this context [23].

Within the limits of this study, acute psychological stress appeared to
significantly influence several metabolic pathways, reinforcing the possibility of
metabolomic profiling as a useful tool for investigating stress-related processes.
However, given the relatively small and homogeneous sample, these findings
should be regarded as exploratory, requiring validation in larger and more
diverse samples to understand the intricate interplay between physiological and
psychological domains in acute mental stress responses and clarify the role of

the identified altered pathways and biomarkers in stress-related disorders.

LIMITATIONS AND FUTURE DIRECTIONS

This study has several limitations, as mentioned above in the corresponding
sections. Most importantly, the relatively small sample size and the focus on a
homogeneous group of healthy university students limit the generalizability of the
findings. A further limitation is the absence of an independent control cohort,
which substantially weakens causal inference and reduces the external validity of
our results. Nevertheless, the within-subject repeated-measures design is a key
strength of the study, as it allowed each participant to serve as their own control.
This minimized inter-individual variability (e.g., genetic, physiological, and
lifestyle factors) and increased statistical power with a modest sample size,
thereby enabling sensitive detection of dynamic changes in psychological and

biochemical stress markers within the same individuals.

Despite these advantages, this design also has limitations. The fixed order of
sessions (baseline — relaxation — baseline — stress) raises the possibility of carry-
over effects, although the two-week interval between sessions was intended to
reduce fatigue and practice influences. Repeated testing may still have introduced
learning or adaptation effects, and the lack of follow-up sampling prevents

conclusions about the long-term dynamics of the stress response.
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Unmeasured variables such as diet, sleep, or hormonal fluctuations, due, for
example, to the menstrual cycle phase of female participants or the use of
contraceptives, could have influenced the results, specifically variations in
prolactin, estrogen, progesterone and other hormone levels. However, the strict
focus on acute stress responses over a narrow timeframe minimizes the impact of
cyclical hormonal fluctuations. Similarly, since the study evaluated the variation
(A) between pre- and post-relaxation/stress induction, the prevalence of regular
medication use (e.g., antihistamines or bronchodilators) was considered not

relevant.

Taken together, our work should be considered preliminary. Within-subject
design and a standardized baseline relaxation were used to mitigate short-term
hormonal variability; however, menstrual-cycle phase was not stratified and
follow-up sampling was not performed. It provides baseline parameters for future
research that will be needed to confirm the relationship between the biochemical,
metabolic, and psychometric stress measures proposed here. Validation in larger
and more heterogeneous samples will increase the generalizability of our findings

and further establish the diagnostic and measurement tools introduced.

MATERIALS AND METHODS
Study Design

To ascertain the effects of acute psychological stress on biochemical,
psychological, and metabolomic variables, we conducted an experimental cross-
sectional study in a cohort of university volunteers. Each participant was
evaluated under both a relaxed condition and an acute stress condition, allowing
individuals to serve as their own control, thereby reducing inter-individual
variability and increasing the sensitivity to detect stress-related changes. The
study, designed and performed under the ES3-P [19,23,26,27] framework,
included two sessions: a 35-minute relaxation stage (RS) as a control condition,
followed by a 35-minute stress-induction protocol based on a modified form of
the Trier Social Stress Test (TSST-M) previously described by Arza et al. [19],

yielding acute psychological SS. Protocol details are summarized in Figure 5.
Sample size calculation

To determine the minimum number of participants required for adequate study

power in our within-subject (paired) experimental design, we employed a
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standard parametric approach for a paired #test [77,78]. A two-sided
significance level of a = 0.05 and a statistical power of 1-f = 0.8 were assumed.

The calculation was performed via equation (2):

_ (Zapp + Z1p)%.05
n= Az \2)

where A is the minimum clinically relevant mean difference and where o4 is the
standard deviation of the within-subject differences (SS-RS). When the standard
deviation (o) of each condition and the correlation between measures (r) are

known, then (equation (3)):

Og = 0\N2(1-r)(3)

Assuming a moderate correlation between measures (r = 0.5) on the basis of
recommendations for paired designs without prior data and o4 = 0o, it was
estimated that a total of approximately 30 participants would be sufficient to
detect significant differences in our continuous variables, with a small allowance

for participant withdrawal from the study.
Participants and ethical declaration

Volunteers aged 20-30 years (both sexes) were recruited from the University of
Zaragoza. The exclusion criteria included the following: (1) signs of depression
or a history of other mental disorders; (2) regular use of psychotropic
substances; and (3) pregnancy or breastfeeding at the time of the study (see
Supplementary Table S1 for participant details). All participants were informed
about the study procedures and provided written informed consent. This
documentation is securely archived at the Psychiatric Unit, HCULB, in
compliance with the EU’s General Data Protection Regulation. The entire study
was conducted in accordance with the World Medical Association (WMA)
Declaration of Helsinki (2013) and was approved by the Clinical Research Ethics
Committee of Aragon (CEICA; protocol number P114/0044).

Stress Induction and Relaxation Protocols

The sessions were carried out on different days but at the same hour,
approximately 10:00 AM, to avoid variations in the circadian rhythm [79]. The
relaxation session (RS) comprises a baseline (Bgrs) and relaxation stage (Rgs),
whereas the stress session (SS) comprises a baseline stage (Bss) and five
distinct stages to induce acute psychological stress [27]. For the relaxation

session, the subjects were seated in a comfortable position in a dimly lit room
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and were exposed to audio recording and guided relaxation to induce autogenic
relaxation following Schultz’s method [80]. The stress sessions followed a TSST-
M, which is a robust, reliable, and well-documented protocol widely used in
stress research [31,32,79,81-83], with slight modifications described in [19] to
induce social and cognitive stress. The stress session consisted of storytelling
(STS), a memory test (MTS), stress anticipation (SAS), a video display (VDS),
and an arithmetic task (ATS) (Figure 5).

At the end of each session, RS and SS, the participants were required to
complete psychometric questionnaires. Saliva samples were collected at the
beginning (after the baseline stages, Brs and Bss) and again after RS and SS
sessions, with approximately 25 minutes between collections, corresponding to
the duration of each session. These paired samples were used to calculate
cortisol (Acortisol) and a-amylase (Aa-amylase) variation per session. Salivette
tubes were used to collect saliva following the manufacturer’s recommendations
(Sarstedt AG & Co., Numbrecht, Germany). The samples were immediately
preserved on ice and subsequently frozen at —20°C until processing, according
to the protocol previously described by Garcia Pages et al. [27] in the
Endocrinology and Radioimmune Analysis Service of Neurosciences Institute at

the Universitat Autonoma de Barcelona (UAB).

Blood and plasma samples were collected only after RS and SS sessions by
professional hospital staff. The extraction of blood and plasma for biochemical
marker determination was carried out in two tubes: one with the anticoagulant
ethylenediaminetetraacetic acid (EDTA) and the other with a gel separator to
obtain the serum. Both were preserved on ice until they were centrifuged in the
laboratory at 3000 rpm for 10 min. Plasma and serum were then separated into
fresh and sterile tubes with the identifying data of the subject, type of session
and date. These tubes were kept frozen at -20°C until processing at the Core
Laboratory of Biochemistry and Molecular Genetics, part of the Biomedical

Diagnostic Center (CDB) at Barcelona Clinic Hospital.

Blood samples for metabolomics analysis were taken by pricking the
participants' fingers, and approximately 0.3 ml was collected in a sterilized
container tube with no chelating agent. These samples were immediately
protected from light and stored at -80°C until analysis at the Proteomics Core
Research Facility of the Aragon Health Sciences Institute (IACS-CIBA). No blood

sample underwent any pre-treatment prior to mass spectrometry analysis.
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Figure 5. Schematic representation of the research approach. The stress
induction/relaxation protocol steps and sample-collection timeline are shown.
Instructions: Participants were asked to wake up at least 2 hours before the sessions;
have a light caffeine-free breakfast; refrain from exercising; take psychotropic
substances; and consume alcohol, tobacco, or any other mood-altering substances 24 h
before the session. Four saliva samples were collected: two after each baseline stage
(Brs, Bss) and two at the end of each session (RS, SS). At the end of each session, blood
samples for biochemical and metabolomic analysis and psychometric tests were
administered. For TSST-M, a series of stressful tasks—the storytelling stage (STS),
memory test stage (MTS), stress anticipation stage (SAS), video display stage (VDS), and

arithmetic task stage (ATS)—were administered.

Stress Evaluation and Measurement: Psychometric Evaluation

Professionals from the ZARADEMP group, based in the Psychiatric Service
(HCU-LB) and the Department of Medicine and Psychiatry (University of
Zaragoza), selected the tests, verified the corresponding Spanish versions, and
interpreted the results (Data collection notebook published via Zenodo) [84]).
Several coordination meetings were held before the start of the study to
standardize the administration and interpretation criteria. Before administering
the psychometric questionnaires, the participants were asked to indicate their
perception of their stress levels (perceived stress) on a scale of 0-100 arbitrary
units (Supplementary Table 1). All questionnaires were self-administered and
completed in a dedicated quiet room at the Research Psychiatric Department of

the University Clinical Hospital. Sessions were monitored to ensure that no
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interferences occurred during administration other than those required by the

study protocol and that there was no time limit for completion.

This team also applied a test designed by themselves on behalf of the ES3
project, the symptomatic stress scale (SSC). The SSC scale is a Likert-type scale
that consists of 20 questions that evaluate the subjective effect of the stressor
on the subject from somatic and psycho-cognitive points of view. This scale was

validated and applied in a recent study by Garcia Pages et al. [27]

The validated psychometric tests used were the Spanish versions of the
Perceived Stress Scale (PSS) [85], the visual analog scale (VAS), and the State-
Trait Anxiety Inventory (STAI) [86]. The PSS is widely used to assess stress
levels in young people and adults [87]. It evaluates the degree to which an
individual perceives life as unpredictable, uncontrollable, or overloading. The
VAS measures subjective stress on a numeric scale ranging from 0 to 100 [88].
This test highlights the differences in stress levels between groups and
determines the connection between the VAS stress assessment and the
evaluation of various related concepts [89,90]. Finally, two STAI questionnaires
were used: one to measure the trait or general tendency to increase anxiety in
stressful situations (STAI-t) and another to evaluate the state of the subject in a
specific situation (STAI-s) [91].

Measurement of Biochemical Variables

All of the samples were processed in the same batch to avoid any inter-test
variability, achieving an intra-test CV< 5% in all the cases. Serum glucose
(Glugy) was quantified via a glucose oxidase-based enzymatic assay on an ADVIA
Chemistry 2400 system (Siemens Healthcare Diagnostics, Erlangen, Germany)
at 505/694 nm. Plasma copeptin (Cpp) was measured with a sandwich enzyme
immunoassay kit (Cloud Clone Corp., TX, USA), with a lower limit of detection of
2.9 pg/ml, an intra-assay CV <10% and an inter-assay CV<12%. The plasma
prolactin (Pry) concentration was determined via an immunometric ELISA kit
(Cayman Chemical, MI, USA), which has a minimum detectable concentration of
0.12 ng/ml, an intra-assay CV of 2.8-3.71%, and inter-assay CV of 4.6-5.49%.
Concentrations of salivary cortisol (Crg) and salivary a-amylase (AAg) were
quantified via commercial kits from Salimetrics (Salimetrics, State College, PA,
United States). Crg was measured with a competitive ELISA (catalog #1-3002).
The activity of the AAy enzyme was quantified via a kinetic enzyme assay (#1-
1902) [27], which employs a chromogenic substrate, 2-chloro-p-nitrophenol
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linked to maltotriose. Enzymatic cleavage releases 2-chloro-p-nitrophenol, as
measured spectrophotometrically at 405 nm. Changes in salivary cortisol (ACry),
o-amylase (AAAg), and flow rate (AFRg) were calculated as the difference
between baseline values (Bgrs or Bs) and those obtained at the end of the RS or

SS stages, respectively.
Stress Reference Scale

The stress reference scale (SRS)was proposed by Garzon-Rey et al. [26] as a
reference standard for measuring acute emotional stress. Significant
biochemical and psychometric parameters were used to compute the scale via a
multivariate approach as described previously. To assign weights to the
different variables, their mean scores were first normalized by rescaling to a 0--
100 range of arbitrary units via equation (4):

_100*(x-Min +0%05)
= T Max-Min+o) &Y

where the variable (x) with a standard deviation (o), minimum (AZin), and
maximum (Max) values are transformed into a variable (y) ranging from 0--100.
Afterwards, principal component analysis (PCA) was performed to assign the
corresponding weights to each variable. Only features with eigenvalues greater
than 0.8, which explained 84% of the total variance, were selected to build the

scale.
Statistical analyses

Statistical analyses were performed via IBM® SPSS® Statistics 25.0 and RStudio
for Microsoft Windows, along with the corresponding packages available on the

CRAN or Bioconductor repositories.

The states of the volunteers at the end of each session, RS and SS, were
considered to be the lower and higher ranges of the stress state. The variations
in psychometric, biochemical, and SRS variables between RS and SS were
analyzed via the Wilcoxon signed-rank test, a nonparametric statistical test,
because the data were not normally distributed after testing for normality via
the Lilliefors test. Correlations were computed via Spearman’s rank correlation
for nonparametric distributions. For all analyses, the significance level was set
at a=5%.

The variables were passed on to create predictive models. Categorical variables

were encoded as factors. The grouping RS or SS was considered the response
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variable for the models, and the other variables were considered predictors of
the state of the group. The study employed the recursive PARTitioning (zpart)
algorithm based on CART (classification and regression tree) to build decision

tree models (https://cran.r-project.org/web/packages/rpart/rpart.pdf). The
adabag package [92] was used to build a bagging prediction model, and the

random forest algorithm software package (https://cran.r-
roj rg/w k randomFor index.html) was used to obtain the

variable relative importance rankings of the variables. We used 70% of the
original data as a training set and the remaining data as a testing set to assess
the model afterwards. The Gini index was used to split nodes, and pruning was
performed to avoid overfitting the model. A multivariate logistic regression
model was constructed and compared with the decision tree, bagging, and

random forest models.

Metabolomic Sample Processing and Data Analysis

A semiquantitative direct-infusion mass spectrometry (DI-MS) untargeted
metabolomic study was conducted to characterize biochemical responses to
acute psychological stress and as a biomarker development tool. This innovative
technique, involving direct injection into the ionization source of the mass
spectrometer without prior chromatographic separation with an electrospray
ionization (ESI) source, already presents proven advantages and robust results
[23,93,94].

Blood samples were collected by pricking the participants’ fingers before and
after each session (Figure 5). Approximately 0.5 mL of total blood was collected
into an empty and sterilized Eppendorf™ tube. No anticoagulants were used.
The samples were immediately protected from light and stored at -80°C until
analysis. Sample preparation was carried out as previously described [23].

For positive mode MS detection, immediately before analysis, each sample was
diluted 1:1000 with a protonating agent solution of LC-MS-grade methanol with
0.1% formic acid (Fluka) at 99% purity. For negative mode detection, the sample
was diluted 1:1000 with MS-grade dichloromethane (Fluka):methanol (ratio of
1:1). The samples to be analyzed were pumped directly into the mass

spectrometer.

Measurements were taken in both positive and negative modes via a hybrid
triple quadrupole/linear ion trap mass spectrometer 4000 QTRAP LC/MS/MS
System (AB Sciex) with an electrospray ionization (ESI) source interface for
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high-sensitivity, full-scan MS, MS/MS, and MS3 spectra with high selectivity
from true triple quadrupole precursor ion (PI) and neutral loss (NL) scans. Data
acquisition and preprocessing were carried out via Analyst® software version
1.5.2 (Build 5704) (Sciex) as previously described [23]. A scan range of 50-1,200
m/z was used. The mass accuracy and resolution were 5 ppm and 20,000 ppm,
respectively. The instrument settings were as follows: ion spray voltage, 5,000
V; curtain gas, 20 AU; GS1 and GS2, 50 and 30 psi, respectively; probe
temperature, 550°C; and run time, 10.0 min. For MS/MS analysis, collision-
induced dissociation (CID) mode was used and was set to 30% to 50%
normalized collision energy (CE) for selected mass—charge ratio (m/z) peaks. To
ensure the quality and reliability of the metabolomic data, several analytical
quality control parameters were systematically monitored during the DI-MS

runs.

Analytical quality control: intra-batch precision was assessed via repeated
measurements (n = 5) of a standard reference sample included within each
batch [95]. Coefficient of variation (CV) across replicates was <7% for the major
peaks analyzed. Inter-batch precision was evaluated by including a pooled
sample composed of aliquots from the study samples as a control in each
analytical sequence. The inter-batch CV of the main compounds was <10%. The
recovery rate was assessed by spiking a random subset of samples with internal
standards of selected metabolites (amino acids and lipids). Recovery ranged
from 82% to 115%. CVs and RRs obtained from the analytical controls were
within internationally accepted ranges for untargeted, semiquantitative

metabolomics studies [95].

Data normalization, statistical and functional analyses, and compound
identification were performed following the protocol previously described by

Lorenzo et al. [23].

Enrichment and pathway topology analyses were performed via the
corresponding modules of MetaboAnalyst 5.0 [30] and categorized with the
KEGG pathway Homo sapiens database [96,97]. Pathway enrichment analysis
allowed the identification of those pathways significantly affected by the
stressor and thus improved our understanding of the impact of acute
psychological stress on an individual’s metabolism.

DATA AVAILABILITY
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