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Genotype networks drive oscillating
endemicity and epidemic trajectories

in viral evolution
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Rapidly evolving viruses use antigenic drift as a key mechanism to evade host immunity and persist in
real populations. While traditional models of antigenic drift and epidemic spread rely on low-
dimensional antigenic spaces, genomic surveillance data reveal that viral evolution produces complex
antigenic genotype networks with hierarchical modular structures. In this study, we present an eco-
evolutionary framework in which viral evolution and population immunity dynamics are shaped by the
structure of antigenic genotype networks. Using synthetic networks, we demonstrate that network
topology alone can drive transitions between stable endemic states and recurrent seasonal
epidemics. Furthermore, our results show how the integration of the genotype network of the H3N2
influenza in our model allows for estimating the emergence times of various haplotypes resulting from
its evolution. Our findings underscore the critical role of the topology of genotype networks in shaping
epidemic behavior and, besides, provide a robust framework for integrating real-world genomic data

into predictive epidemic models.

Epidemic trajectories of long-lasting viruses exhibit a wide range of behaviors
and encompass diverse variant landscapes, as observed in SARS-CoV-2'",
influenza®"", dengue®, or rabies" to name a few. This diversity arises from the
intricate interplay between epidemic dynamics and viral evolution, which
operate on compatible time scales'. In particular, RNA viruses evolve rapidly
within the strain space, acquiring mutations that enable them to evade
detection by the host immune system'*""". Notably, antigenic escape is the
primary mechanism by which rapidly evolving viruses establish endemicity'®.
This occurs because mutations in antibody-binding regions not only allow
the virus to persist within a host, evading its immune response, but also enable
reinfections of previously recovered individuals*"™".

Despite the high-dimensionality of antigenic spaces, genomic sur-
veillance data revealed how some RNA viruses, such as Influenza A, have
followed low-dimensional evolutionary trajectories’. Bedford et al.***
showed by extensive simulations that the immune pressure existing in the
population canalizes the complex evolution of the virus into a traveling wave
moving across a quasi-1D path. This phenomenon greatly simplifies the
analytical characterization of the evolutionary trajectories, as assuming one-
dimensional antigenic spaces allows predicting both the shape and the speed
of the traveling wave**”. This traveling wave also appears in the evolution of

26,27

non-antigenic traits with fixed selection coefficients**". Despite the success
of one-dimensional approaches, these antigenic spaces cannot account for
speciation events, a key aspect to understand the emergence of two Influenza
B lineages or the sustained circulation of four Dengue serotypes. Along this
line, recent theoretical works™” show that these events typically occur in
multidimensional antigenic spaces when mutations induce antigenic
changes beyond the typical cross-immunity range. Therefore, the long-term
behavior of epidemics not only hinges on the total number of mutations
accumulated in antibody-binding regions but also on how the virus explores
effectively the antigenic space.

Among the vast number of possible genomic mutations, only a small
fraction of genotypes are sampled and recorded in public databases™. This is
due to two primary factors: not all genetic sequences successfully overcome
intra-host selection to emerge as viable (and thus observable) variants, and
not all circulating strains are sequenced and registered. The traditional
approach in epidemiology for tracking genotype evolution relies on phy-
logenetic trees’*’, which infer via probabilistic models viral relationships
based on large datasets of genetic sequences. There, different genotypes are
associated to different lineages, all coming from the original wild type. This
methodology results in a tree-like structure where each genotype comes

"Department of Condensed Matter Physics, University of Zaragoza, Zaragoza, Spain. 2\GOTHAM lab, Institute of Biocomputation and Physics of Complex Systems
(BIFI), University of Zaragoza, Zaragoza, Spain. *Departament d’Enginyeria Informatica i Matematiques, Universitat Rovira i Virgili, Tarragona, Spain. *Pacific
Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, USA. *Center for Computational Social Science, University of Kobe, Kobe, Japan. 5These

authors jointly supervised this work: David Soriano-Pafios, Jesis Gomez-Gardefies.

e-mail: sorianopanos@gmail.com; gardenes@unizar.es

Communications Physics| (2025)8:502


http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-025-02406-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-025-02406-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-025-02406-5&domain=pdf
http://orcid.org/0009-0004-0247-4792
http://orcid.org/0009-0004-0247-4792
http://orcid.org/0009-0004-0247-4792
http://orcid.org/0009-0004-0247-4792
http://orcid.org/0009-0004-0247-4792
http://orcid.org/0009-0008-9084-5969
http://orcid.org/0009-0008-9084-5969
http://orcid.org/0009-0008-9084-5969
http://orcid.org/0009-0008-9084-5969
http://orcid.org/0009-0008-9084-5969
http://orcid.org/0000-0003-0937-0334
http://orcid.org/0000-0003-0937-0334
http://orcid.org/0000-0003-0937-0334
http://orcid.org/0000-0003-0937-0334
http://orcid.org/0000-0003-0937-0334
http://orcid.org/0000-0002-6388-4056
http://orcid.org/0000-0002-6388-4056
http://orcid.org/0000-0002-6388-4056
http://orcid.org/0000-0002-6388-4056
http://orcid.org/0000-0002-6388-4056
http://orcid.org/0000-0001-5204-1937
http://orcid.org/0000-0001-5204-1937
http://orcid.org/0000-0001-5204-1937
http://orcid.org/0000-0001-5204-1937
http://orcid.org/0000-0001-5204-1937
mailto:sorianopanos@gmail.com
mailto:gardenes@unizar.es
www.nature.com/commsphys

https://doi.org/10.1038/s42005-025-02406-5

Article

from a unique genotype and leads to a number of offspring genotypes. While
phylogenetic methods provide valuable insights into viral evolution, they
present significant limitations when modeling antigenic space. Specifically,
phylogenetic reconstructions do not allow loops and thus do not account for
the possibility of multiple evolutionary pathways leading to the same strain.
This issue has been typically overlooked, as these loops are hardly observed
due to the large dimensionality of the underlying genetic space®. Indeed,
recent empirical works show that the probability of observing parallel
evolutionary pathways decreases nearly exponentially with the loop length™.
This has led previous works, such as Rouzine and Rozhnova®, to consider
tree-like antigenic topologies that explicitly reflect the absence of loops.
Despite the complexity of these antigenic spaces, their simulations also
retrieve the aforementioned canalization of the antigenic trajectories in
quasi-1D paths.

As an alternative, genotype networks™** offer a framework that cap-
tures these concurrent evolutionary trajectories, bridging the gap between
real-world genomic diversity and its representation in antigenic models. In
this approach, complex networks™* are used to describe genetic sequences
as nodes, with links connecting sequences that differ by a single point
mutation. Through a detailed modeling process, Williams et al*' con-
structed a genotype network for the highly antigenic HA protein of influ-
enza A (H3N2). Their analysis revealed the emergence of non-trivial
topological properties consistent with generative models based on linear
preferential attachment, highlighting fundamental differences between real
genotype networks and models considering simple antigenic space
embeddings. Moreover, the emergence of hierarchical modular genotype
networks following viral evolution has also been recently reported for
viruses affecting other hosts, such as Qp bacteriophages™. The inherent
complexity of antigenic space calls for the incorporation of genotype net-
works in eco-evolutionary frameworks to improve our understanding of
how antigenic drift shapes epidemic trajectories.

Here we present a minimal multi-strain epidemiological model that
capture contagion, immune dynamics, and mutation through antigenic
genotype networks. This model builds upon previous multi-strain
frameworks™*****~" but reduces the unnecessary proliferation of epide-
miological states by mapping immunity acquisition for each strain in the
shortening of their associated infectious period. In this framework, the
genotype network governs how the virus mutates across the genotype space
and determines how hosts infected by one strain build partial immunity to
other variants with closely related antigenic properties. Furthermore, our
model accounts for the infection history of the population by introducing a
memory term. This feature represents a significant improvement over
previous Markovian models***, considering genotype networks, as these
models assume that the immune response is only determined by the last
variant contracted by the host.

With our evolutionary epidemic model in place, we: (i) recover anti-
genic escape dynamics consistent with previous studies, (ii) demonstrate
that the topology of the genotype network alone can determine whether
endemic trajectories consist of persistent seasonal waves or evolve into
steady dynamics, (iii) uncover the complementary roles of mutant swarms
and cross-immunity in sustaining infections, and (iv) provide a fair
reconstruction of epidemic trajectories on real-world genotype networks.
We round off the manuscript by discussing the implications of the former
results and the research avenues that can be addressed in the future.

Results
Evolutionary epidemic model
Modeling the interplay between contagion, immune response, and muta-
tion dynamics presents a significant challenge, as these processes operate at
distinct yet compatible spatial and temporal scales. Particularly, contagion
arises from interactions between individuals in a population, immune
responses occur within the host through virus-antibody interactions, and
mutation is governed by the internal dynamics of viral populations.

Here, we introduce the Susceptible - Infectious - Mutation - Susceptible
(SIMS) model, a compartmental framework that integrates all three

processes into a unified approach. In the SIMS model, each individual
belongs to either the Susceptible (S) compartment or one of n distinct
Infectious (I;) compartments, where each I, represents an infection with a
strains; € AV. Our model considers that intra-host viral dynamics occur on
a much faster timescale than epidemiological spread. Consequently, the
model neglects intra-host viral diversity and assumes that the infectious state
of each individual is defined by a single strain.

The structure of the SIMS model is illustrated in Fig. 1, and its main
processes are described as follows:

Contagion. As shown in Fig. 1a, susceptible (S) individuals contract an
infection upon direct contact with Infectious (I;) individuals infected with
strain s; which has an associated infectivity rate 8. Upon infection, an S
individual transitions to the I; compartment, acquiring the viral genotype s;
of the infecting host. We also introduce a recovery rate 4;(t) governing how
individuals infected by strain i transit to the Susceptible state at time ¢.

Immune response. Unlike other epidemic frameworks, the recovery rate
wiis not constant over time in the SIMS model. Instead, the recovery rates
{yi(t)} store the infection history of the population. In particular, we
assume ; to represent the immune response built in the population as a
response to the proliferation of strain i (see Fig. 1b). Namely, there is a
disease-free value y, corresponding to the baseline immune response
existing in the population. Infection by strain i enhances host immunity
against that strain at a given rate a. Moreover, individuals gain partial
cross-immunity to genetically similar strains in the genotype network,
with a characteristic cross-immunity length A. Acquired immunity
wanes over time with a characteristic decay rate y.

Mutation. Viral evolution (see Fig. 1¢) is modeled as a diffusion process
through the genotype network. Specifically, an infected individual asso-
ciated with strain s; € N can mutate to a neighboring strain s; at a rate D,.
When this mutation happens, the individual transitions from I; to I;in the
compartmental dynamics (see Fig. 1a), creating a feedback loop between
mutation and contagion dynamics.

In summary, the SIMS model consists of # 4 1 compartments and is
governed by six epidemiological parameters (see Supplementary Table I in
Supplementary Note 1), capturing the interplay between contagion, immune
dynamics, and mutation in a genetically diverse viral population. The
dynamics of the SIMS model can be captured by the set of coupled differ-
ential Eqs. (7)—(8), described in Methods. These equations yield the temporal
evolution of the fraction of population infected by each strain i, p;(¢), and the
global prevalence of the disease, I(#) (defined in Eq. (10)), hereinafter used as
the principal metrics to characterize our epidemic trajectories.

Supplementary Fig. 1.1a in Supplementary Note 1 shows that the SIMS
model for a single strain represents a versatile framework that allows
reproducing the epidemic trajectories generated by multiple standard
compartmental models. Namely, SIS-like dynamics are generated when
neglecting the stimulation of the immune response, i.e., « = 0, whereas SIR-
like (SIRS-like) dynamics occur when the disease confers long-lasting
(temporal) immune memory, i.e.,, y =0 (y # 0) with « # 0. Subsequently, in
Supplementary Fig. 1.1b, ¢, we extend the analysis to multi-strain dynamics
connected through a linear chain in the antigenic space. Considering long-
lasting immune memory, ie., y =0, the model retrieves well-known phe-
nomenology reported by previous eco-evolutionary frameworks assuming
low-dimensional antigenic spaces’. Namely, we observe SIRS-like trajec-
tories generated by the antigenic drift of the virus through a traveling-wave
solution across the antigenic space. To round off the description of the SIMS
model, in the Supplementary Note 1, we derive analytically the expression
for both the stationary prevalence (further analyzed in Supplementary
Fig. 1.2) and the epidemic threshold. Likewise, in Supplementary
Figs. 2 and 3 (in Supplementary Notes 2 and 3, respectively) we explore
regions of the parameters space yielding unexpected dynamical regimes
such as genotype re-emergence and highly fluctuating and aperiodic tran-
sitory dynamics.

Communications Physics| (2025)8:502


www.nature.com/commsphys

https://doi.org/10.1038/s42005-025-02406-5

Article

A Hi(D

(b)

similar (A) strains

HoH

(c) Genotype network

Proportional (o) to the
infections of 5; and

Waning immunity ()

Fig. 1 | Schematic illustration of the SIMS dynamical model. Panel a depicts the
compartmental structure, where Susceptible individuals (S) can transition to one of
n Infectious compartments (I;), each corresponding to a distinct strain s;

(i=1, ..., n). Infection occurs at a rate 3 upon contact with an infectious individual
carrying strain s;. Infected individuals recover and return to the Susceptible com-
partment at a strain-dependent rate y;. Panel b illustrates the adaptive immune
response at the population level: the recovery rate y; increases proportionally to the
global immune pressure against strain s; and antigenically similar strains, with

proximity in the genotype network modulated by the parameter A. Counteracting
this growth, immunity wanes over time at a rate y, leading to a gradual reduction in y;
toward the basal recovery rate y,. Panel c represents viral evolution through
mutation. Infectious individuals carrying strain s; can transition to an adjacent strain
s; in the genotype network at a mutation rate D,, as indicated by the colored links in
panels (a, ¢). This mechanism establishes a feedback loop between contagion and
mutation dynamics.

The structure of the antigenic space shapes epidemic
trajectories

Once presented with the SIMS model, we are interested in exploring how the
complex structure of genotype networks governs epidemic dynamics. To
tackle this question, we should (i) decipher what makes real genotype net-
works different from low-dimensional or randomized representations of the
antigenic space and (ii) understand how these features alter the behavior of
epidemic trajectories.

The Influenza A genotype network. The influenza A (H3N2) genotype
network®' consists of multiple connected components, with eight of them
containing at least 130 nodes. Fig. 2a shows the second-largest connected
component, which exhibits a rich and complex topology. For example, its
degree distribution, displayed in Fig. 2b, follows a long-tailed pattern.
This feature was previously noted by ref. 41, when analyzing the largest
connected component, which also shows stable clustering and negative
assortativity, two structural characteristics that align with generative
models based on linear preferential attachment. These observations
suggest the presence of non-trivial processes governing the growth and
evolution of genotype networks.

To further investigate whether these structural features are purely a
consequence of the connectivity distribution, we conduct a comparative
analysis between the real genotype network and its randomized counter-
parts. Specifically, in Fig. 2¢c, we examine the most relevant structural metrics
of the second-largest connected component and compare them to an
ensemble of 100 degree-preserving randomized networks (see Methods for
details). A similar analysis for the remaining components can be found in
Supplementary Fig. 4 in Supplementary Note 4.

Our results reveal substantial differences between real and randomized
genotype networks. First, real genotype networks exhibit longer average
path lengths than their randomized counterparts, indicating a more intri-
cate connectivity structure. Second, higher modularity values in the real
network suggest the presence of mesoscale organization, where clusters of

antigenically similar genotypes, commonly referred to as mutant swarms™,
could correspond to evolutionary lineages. Third, elevated clustering coef-
ficients (with lower transitivity compared to randomized networks) suggest
a higher likelihood of closed triangular structures, pinpointing the presence
of a hierarchical organization of the networked backbone. Finally, the
genotype network exhibits disassortative mixing, meaning that highly
connected genotypes tend to link with those of lower connectivity. This
disassortativity is consistent with the evolutionary process in which suc-
cessful strains generate multiple antigenically similar offspring.

Epidemic trajectories on synthetic genotype networks. As discussed
above, the H3N2 genotype network is disassortative, presents a wide
range of connectivities, and a marked modular structure. To address the
impact of the complex structure of the genotype network on the epidemic
trajectories, we first construct a minimal synthetic network presenting
these features. In particular, we model genotype networks as a con-
catenation of star-like clusters (mimicking the so-called mutant swarms),
where an intermediate node connects the leaves of each pair of con-
secutive stars (see the blue and orange structures in Fig. 3a). Regarding
the epidemiological parameters, throughout the manuscript we set y; !
10 days and f3 = 0.3, yielding a basic reproduction number R, = 3 (see
Eq. (12) in Methods). For the acquisition of immune response against the
varjants, we use an immune production rate of a=0.03 and a cross-
immunity length of A = 3. More details on the choice of these parameters
can be found in Methods.

In the presence of long-lasting immune memory, ie., y =0, the con-
structed synthetic genotype networks produce epidemic trajectories char-
acterized by a series of periodic waves that lead the system to a stationary
pattern of seasonal cycles. When the mutant swarms are composed of the
same number of leaves (blue curve in Fig. 3b), the oscillations are regular,
whereas heterogeneous mutant swarms produce variability in both size and
shape of the individual outbreak (orange curve in Fig. 3b). In particular, the
size of a mutant swarm is proportional to the magnitude of the
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(@) Second CC of the H3N2 genotype network

Fig. 2 | Structural properties of genotype networks. a Second connected compo-
nent of the Influenza A genotype network"', where the color-code represents the
sampling year. b Degree distribution of the second component of the Influenza A
genotype network. ¢ The blue dots correspond to the values of some structural
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properties of the second component of the Influenza A genotype network, while the
violin plot (labeled as configurational model, CM) corresponds to the values
obtained for an ensemble of 100 networks sharing the same degree sequence. More
details on the crafting can be found in the Methods.
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Fig. 3 | Steady versus seasonal endemicity. a Three synthetic genotype networks: a
lattice, a homogeneous concatenation of star-like swarms and a heterogeneous
concatenation of star-like swarms (see Supplementary Notes 6 and 7 for details on
the structures). b Prevalence of the epidemic trajectories (I(¢)) with the memory
mechanism activated (waning immunity rate y = 0). ¢ Prevalence of the epidemic
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trajectories (I(¢)) when the time scales governing immune acquisition and loss are
compatible (y = «). In all cases, the infectivity rate § = 0.3, the basal recovery rate
tho = 0.1, the immunity acquisition rate a = 0.03, the mutation rate D, = 10~°, and the
characteristic cross-immunity length A = 3. Note that the colors used in panel (a) for
each of the structures correspond to each of the curves in panels (b, c).

corresponding outbreak peak. This suggests that the emergence of mutant
swarms around successful genotypes may serve to counteract cross-
immunity pressure, as the simultaneous appearance of similar genotypes
leads to joint outbreaks with higher overall prevalence. For further details on
the trade-off between cross-immunity and star-like swarms, we refer the
reader to the Supplementary Fig. 5 in Supplementary Note 5.

To round off our analysis on synthetic networks, we now introduce a
lattice network in the antigenic spaces, resembling the traditional low-
dimensional representations of the antigenic space. In that case, we observe
how the epidemic quickly converges to a steady endemic equilibrium (tur-
quoise curve in Fig. 3b), retrieving the well-reported results in the literature™”.
A complementary spectral analysis confirming the differences between tra-
jectories is conducted in Supplementary Fig. 6 in Supplementary Note 6.

Interestingly, when time scales of immune acquisition and loss are
compatible & = y, Fig. 3¢ shows that the epidemic trajectories for the three
structures (lattice, concatenation of homogeneous swarms and concatena-
tion of heterogeneous swarms) become macroscopically indistinguishable.
Moreover, Supplementary Fig. 7 in Supplementary Note 7 shows that SIS-
like phenomenology is retrieved for the three structures if immune response

dynamics are neglected. Together, our findings thus confirm that the
infection history of individuals, along with the complex structure of the
antigenic space, are responsible for the complex epidemic trajectories
observed at the population level.

Epidemic trajectories on real-world genotype networks. After
demonstrating that synthetic genotype networks can shape epidemic tra-
jectories and the role of mutant swarms, we now turn our attention to the
Influenza A genotype network constructed by ref. 41. To follow the virus’s
evolution through antigenic space, we identified the most predominant
mutant swarms in each connected component of the network using com-
munity detection (see Methods). For example, Fig. 4a displays the largest
connected component of the Influenza A network, with nodes in its seven
communities colored differently. We set y = 0 hereafter, as memory B cells
persist for a long time in this class of viruses. The remaining parameter
choices are detailed in the Methods section and in the figure captions.

In Fig. 4b, the epidemic trajectory I(t) is shown for this giant compo-
nent, with the first sampled genotype serving as the wild type. The colored
segments under the prevalence curve indicate the fraction of the population
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Fig. 4 | Epidemic trajectories in real-world geno- (@) E‘F
type networks. Graphical representations and i TR Sely
absolute (I(t)) and relative (I"/(t)) prevalence of the K 1

epidemic trajectories for the first (a, b), second (¢, d),
and seventh (e, f) largest connected components of
the INFV A (H3N2) network®. The colors corre-

spond to the mutant swarms of nodes on each of the

structures. In all panels, the infectivity rate §=0.3,
the basal recovery rate y, = 0.1, the immunity
acquisition rate a = 0.03, the waning immunity rate
y =0, the mutation rate D, = 10~°, and the char-
acteristic cross-immunity length A = 3.
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Fig. 5 | SIMS model reproduce partially the evo- (a) (b) 1.0
lutionary trajectories of the H3N2 virus. a Scheme
of the methodology used to compare simulations @ }'\ 0.8
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peak and sampling times. Measurements of dia- ® 0.4 41
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while those of the circle strain would be correlated. ’
b Density scatter plot showing the correlation L L * O.%
between peak times (7p) and sampling times (7s) for 0 €<— Tg —> 1 Sampletime .00.20406081.0
the second-largest connected component. The dar- Tp
ker the color, the more measurements correspond to . el o " g
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the basal recovery rate po = 0.1, the immunity KR T
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y =0, the mutation rate D, = 10>, and the char-
acteristic cross-immunity length A = 3.

infected by each community. Initially, infections are dominated by the teal
swarm, but as immunity is acquired, the antigenic escape shifts the
dynamics toward the adjacent swarms. Eventually, the dynamics become
dominated by the orange and red swarms, which are the most antigenically
different from the wild type. For clarity, the lower panel of Fig. 4b presents
the relative prevalence I(#), i.e., the fraction of infections attributable to
each swarm (see Eq. (11) in Methods), clearly showing the transition from
the teal to the ocher communities.

In Fig. 4c, we present the second-largest component of the Influenza A
network, which contains six prominent mutant swarms. Due to its more
intricate topology around the wild type, the epidemic trajectory shown in
Fig. 4d is correspondingly complex, with several swarms evolving almost
concurrently within the most tightly connected region of the genotype
network. Nonetheless, toward the end of the trajectory, the orange swarm
emerges as dominant because of its greater genetic distance from the other
regions. The mutant swarm landscape captured by I*’(t) in this component
is elaborate, as several swarms appear and fade, resembling the complex
lineage patterns reported in public data repositories™.

Similarly, Fig. 4e, f depicts the seventh largest component of the
Influenza A network. This component exhibits a more hierarchical struc-
ture, similar to the synthetic concatenation of star-like clusters presented in
Fig. 3. As a result, identifying mutant swarms corresponding to distinct
peaks in the epidemic trajectory is more straightforward.

In all the cases shown in Fig. 4, epidemic trajectories are notably more
complex than those derived from lower-dimensional representations, such as
the linear chain shown in Supplementary Fig. 1.1 or the lattice used in Fig. 3.
Mesoscopically, our results show how antigenic drift across genotype networks
yields complex dynamic variants’ landscapes whose shape and dynamics, e.g.,
the emergence and turnover of lineages due to antigenic fitness or the clonal
interference between lineages, are reminiscent of those observed in real out-
breaks. This correspondence arises from the interplay between the infection
history and the trajectory of the virus across the antigenic network. Supple-
mentary Fig. 8 in Supplementary Note 8 shows how neglecting these features
indeed leads to unrealistic variant landscapes, characterized by continuous
genotype swarm alternations or the re-emergence of all lineages when cross-
immunity or immune memory are not accounted for, respectively.

To round off our analysis, we now focus on the microscopic properties of
the generated trajectories under the SIMS model. In particular, we are inter-
ested in analyzing whether the temporal dynamics of strains in our model
resembles the timeline of the different H3N2 strains extracted from genomic
surveillance data, ie., the time at which the individual peak of each strain
(genotype) occurred. To perform this comparison, we record the sequence of
peak times of each strain i in the simulation, 77, and the day at which the first
sample corresponding to the strain was recorded in the genomic surveillance
data, 77. As the global time scales of the dynamics might be different in both
distributions, we normalize the values as illustrated in Fig. 5a so that 73 = 0
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(¥ = 0)and 7§ = 1 (¥ = 1) correspond to the first and last strain recorded
in the simulations (real data), respectively. Figure 5b reports a high correlation
between the synthetic and real time series, indicating that the SIMS model can
reproduce the evolutionary trajectory of the strains composing the second-
largest component of the antigenic genotype network of the H3N2 virus. This
correspondence between the genomic data generated in silico by the SIMS
model and the empirically sampled genomic data is further supported in
Fig. 5¢, d, which visualizes the synthetic and real epidemic trajectories over the
genotype network. In both cases, nodes are colored according to the time of
their first appearance in the epidemic trajectory.

Discussion

Antigenic drift has been long stated as the major driver of the sustained
circulation of endemic viruses in real populations. From a dynamical point
of view, the incidence of endemic communicable diseases spans a wide range
of temporal patterns. Some diseases, such as tuberculosis’' and malaria™ in
many regions of Africa, maintain relatively stable, quasi-constant levels of
incidence while others, such as influenza-like illnesses, often exhibit quasi-
periodic seasonal fluctuations™”. While low-dimensional representations of
antigenic spaces allow obtaining the former dynamical behavior, setting a
formal connection between the structure of the antigenic space and the
emergence of seasonal epidemics remains elusive. To solve this puzzle, here
we have introduced the SIMS model, an eco-evolutionary framework where
the antigenic space is explicitly represented as a complex genotype network.
Another particularly salient feature of the model, compared to other fra-
meworks relying on genotype networks is the incorporation of a memory
core. That allows the system to keep track of the infection history of the
population instead of only accounting for the most recent infection™*”.
Unlike previous frameworks, the infection history of the population is
encoded in the recovery rates for each strain rather than in the depletion of
their associated pool of susceptible agents™*****>**, In particular, our mean-
field equations assume that, when a host contracts one strain, they develop
an immune response which increases the expected recovery rate of a ran-
domly chosen agent in the population.

Focusing on the H3N2 virus, we have found that real antigenic gen-
otype networks present complex features, such as long-tailed degree dis-
tributions, high modularity, and pronounced disassortative mixing of
strains, which cannot be accommodated in low-dimensional antigenic
spaces. We have proposed a minimal synthetic model presenting these
features, assuming a complex network composed of a consecution of gen-
otype swarms. The epidemic trajectories observed across this antigenic
space exhibit oscillatory (seasonal) behavior, while assuming homogeneous
lattices instead results in steady endemic epidemics. Remarkably, seasonality
here emerges from the complex interplay between antigenic evolution and
immunity*** rather than from the periodic behavior of the force of infection
as in other diseases™ . Overall, our results show that the topology of the
structure of antigenic space is a critical determinant of the dynamical
behavior of epidemic trajectories.

The SIMS model not only captures macroscopic epidemic patterns
but also sheds light on the complex mesoscopic and microscopic ecological
dynamics created by the antigenic drift of the H3N2 virus. When analyzing
mesoscale dynamics, we have found how the interplay between immune
memory, cross-immunity among strains and mutant swarms yields
viral trajectories mirroring the complex lineage patterns documented in
public data repositories”. From a microscopic perspective, we have
found that the emergence times of the strains in the model and their first
associated record in the actual genomic data are highly correlated, showing
how the SIMS model can partially reconstruct the evolutionary history of
the virus.

Despite the advantages of the SIMS model, providing a full recon-
struction of both epidemiological and evolutionary dynamics with our
framework still remains challenging. This limitation arises because genotype
networks display multiple disconnected components, which typically differ
by only two or three point mutations from at least one other component,
indicating the possibility of unobserved genotypes linking otherwise distinct

clusters”’. To overcome this issue, promising avenues for future research
could involve leveraging Bayesian inference or machine learning techniques
to reconstruct the complete network”* or the formulation of generative
models linking the microscopic genomic structure of viruses with the
topology of their antigenic spaces'’. Furthermore, the immunity mechanism
here introduced is a mean-field approach that reduces the effective repro-
ductive number of previously prevalent strains below 1. Although this
assumption effectively reduces the strains’ population fitness, it is less
restrictive than considering a directed, tree-like structure that explicitly
forbids loops® and imposes an evolutionary direction’. This could poten-
tially lead to an overestimation of the role of very old infections in the
population. Despite the spurious long memory effects introduced by the
mean-field assumption, the SIMS model provides a minimal description of
the impact of antigenic escape across complex multidimensional antigenic
spaces on the epidemic trajectories.

Looking forward, our work establishes a quantitative framework for
integrating genomic data into epidemic models and opens promising ave-
nues for future research. Moving from mean-field approaches to an
individual-based framework® would allow us to describe more accurately
the infection history of hosts and introduce heterogeneous contact rates”.
rates. Together with host mobility®"*’, dynamic strain-specific features (such
as variable infectivity'®), and more detailed within-host dynamics®, this
could improve the realism and predictive power of the model. Moreover,
investigating the role of immunocompromised individuals* in facilitating
extensive antigenic drift, especially for emerging pathogens like SARS-CoV-
2, may yield deeper insights into viral persistence and evolution. Beyond the
biological aspects, incorporating the effect of public health policies®**
together with the behavioral responses of individuals to them®”* will help to
devise realistic control scenarios”.

Overall, our findings underscore the critical influence of genotype
network topology on epidemic trajectories and viral endemicity. This study
provides valuable insights into the mechanisms by which emerging
pathogens navigate antigenic space and lays a robust foundation for future
research at the interface of viral genomics and infectious disease modeling.
In doing so, it has the potential to inform public health interventions that
account for both antigenic drift and viral circulation.

Methods

Genotype networks

Formally, a genotype network is defined as a graph, G = (N, £), where
nodes represent the N distinct genetic sequences (genotypes) s; € N
(i=1, ..., N) associated to the same virus. Each sequence s; consists of a
concatenation of S genetic elements, i.e.,s; = eil ey eg. In addition, the links
in the set £ connect sequences that differ by a single mutation. The adjacency
matrix A = {a;} encodes these connections, where a;; = 1 if 5; and s; differ by
one genetic element, and a;; = 0 otherwise. Another important matrix char-
acterizing G is the out-degree normalized Laplacian matrix: L= {Eij}, whose
elements are defined as €; = §;; — a;/k; where k; = Zjliﬂij is the degree of
genotype i. Finally, we introduce the genetic distance matrix X = {x;}, whose
elements are X = qu:l 8(é , ey), where 8(x, y) is the Kronecker delta.
Notably, if G is connected, x;jis the shortest path length between s; and sj.

Genotype networks can be constructed at different genetic scales. A
node in the network may represent a genotype at three possible levels of
resolution: (i) nucleotide sequences, the most fine-grained representation™;
(i) amino acid sequences, where nodes represent amino acids"'; or (iii) gene-
level representations, where mutations involve entire functional units.
Coarse-grained representations introduce degeneracy, as multiple nucleo-
tide sequences can encode the same amino acid, and different genetic
sequences may correspond to the same node when only a section of the
genome is considered.

Among all genomic regions, those encoding proteins involved in
host-pathogen interactions are of particular interest, as they directly
influence immune evasion. In particular, in this study we use the genotype
network for the highly antigenic hemagglutinin protein of influenza A
(H3N2), constructed in ref. 41 using data from the Influenza Research
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Database’". This network, built at the amino acid level, connects genotypes
differing by an amino acid.

Configurational model

To build the ensembles of 100 synthetic networks utilized in Fig. 2 and
Supplementary Fig. 4, we have utilized the function configuration_model of
the networkx library in Python™. Through this method, for each of the
connected components of the Influenza A network, we build 100 networks
that have the same degree sequence (i.e., each node has the same number of
connections), but with randomized connections. Note that, in case the
generated structures were disconnected, we have added the least possible
number of extra links to ensure connectedness.

Structural metrics

To analyze the structural properties of the genotype networks G = (N, £),

we compute the following metrics by using the networkx library in Python™:
Average shortest path length (L(G))"":

1
L9 =gw—p 2 (1)

i#]

where l,-j is the shortest genetic distance between strains s; and s with
L(G) = oo if G is disconnected.
Degree assortativity coefficient(r(G))"*":

Y ipecki = k)k; = k)

G = = 2
' S opeclk— K @

The assortativity coefficient assesses similarity in degrees (connections)
between nodes, where k is the average degree over all nodes in \V.
Average clustering coefficient (C(G))"™™

cQ = %Z G 3)

ieN
where ¢; is the local clustering coefficient of node i, defined as

2E;
= fork.>1
c Kk —1) or k;>1, 4)

with E; denoting the number of edges between the k; neighbors of node i. If
ki<1, ¢;=0. C(G) quantifies the tendency of nodes to form locally dense
clusters.

Transitivity (T(G)):

3 - # triangles

TG = #triads

(©)

where a triangle is a set of three nodes all mutually connected, and a triad isa
set of three nodes where at least two are connected. T(G) evaluates the global
tendency of the network to form closed triplets.

Modularity (Q(G))”:

1 k;k;
Q) = M,Z Ay — TEJJ 8¢, 8); (6)

JEN

where the cardinality of the set of links | £| is the number of connections, and
(g5 gj) equals 1 if nodes i and j are in the same community and 0 otherwise.
Therefore, Q(G) measures the density of intra-community edges relative to
inter-community edges.

Note that the communities have been inferred with the Infomap
method, described in the subsection below.

Community detection algorithm

Community detection was performed using the Infomap method™* as
implemented in the infomap library in Python. This algorithm encodes the
network structure as a compressed map of information flow by minimizing
the description length of random walks. It iteratively partitions nodes into
communities based on flow patterns, recursively refining the hierarchy until
further compression is not possible.

Effective dynamical equations of the SIMS model

The dynamics of the SIMS model can be captured by a set of coupled
differential equations. For simplicity, we assume a well-mixed population
where all individuals are equivalent from a microscopic perspective. This
leads to a mean-field description in which the relevant variables are the
probability of being susceptible, p*(£) and the probabilities of being infectious
with each of the n viral strains, pl(t) (i=1, ..., n). Equipped with these
variables, we are ready to formulate the set of differential equations
describing the dynamical evolution of the SIMS framework:

pit) = Bl(p°(1) — u(Dp}(H) — D, D 43! (1), @)
j=1
(0 = &> (PlO) =y (0 = ), ®)
j=1

where the relevant parameters and matrices introduced before are present.
Since the sum of probabilities associated with the state of the population at
some time ¢ must fulfill:

PO=1-> p(®), ©)
i=1

the evolution of the dynamical system is fully described by the set of 2n
Egs. (7)-(8).

Let us describe the terms of Eqs. (7)-(8) associated with the three key
mechanisms of the SIMS model. The first two terms in Eq. (7) describe the
contagion dynamics following a mean-field SIS process for each viral gen-
otype. Thus, infection occurs at a rate f, while recovery takes place at a
strain-dependent rate y,(f). Unlike the standard SIS model, where the
recovery rate is constant, here it evolves dynamically according to Eq. (8) to
incorporate the effects of immune response.

In particular, Eq. (8) captures how recovery rate increases as immunity
isacquired, with the gain being proportional to the prevalence of the strain at
the population level p(f), modulated by the immunity acquisition rate a.
This term serves as a memory core, allowing the system to keep track of past
infections.

In addition to immunity gained from direct infection, Eq. (8) also
accounts for how individuals acquire cross-immunity from related strains.
The strength of this effect depends on the genetic distance between the
strains, encoded in the matrix X = {x;}. Strains that are antigenically similar
contribute more to immunity gain than those that are more genetically
distinct. The extent of cross-immunity is controlled by the characteristic
immunity length A. When A — 0, immunity is strain-specific, while for
A — oo, all strains confer maximal cross-immunity. Finally, the last term in
Eq. (8) incorporates the effect of waning immunity over time, modeled as a
decay toward the basal recovery rate y, with rate y.

To round off, we turn our attention again to Eq. (7). There, the last term
accounts for mutation dynamics, that allows infected individuals to change
infectious compartments during the course of their infection. This process is
represented through the diffusion term (and thus is governed by the nor-
malized Laplacian L = {£;}) across the genotype network. The importance of
this term is weighted by the mutation rate D,.
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Table 1 | Empirical measurements of mutation rates of the
influenza A virus

Mutation rate Mutation rate Specifically N3H2  Reference
per cycle per day

1.5x10° 514x10°° No 83
12x10° 411x10° Yes 84
2.3x107° 7.89x10°° No 85
25x107* 8.57x107* Yes 86

For Influenza A, the mutation rate per nucleotide per cycle takes values in the range [10~#, 10-%], with
a cycle lasting ~7 h*. The particular genotype network of influenza A used in the manuscript
corresponds to the H3N2 type of influenza A, and only refs. 84,86 account for that specific strain.
Therefore, we assume as a compromise that D, = 107°.

Integration of the dynamical equations

Epidemic trajectories are obtained by integrating Egs. (7)-(8) through a
fourth-order Runge-Kutta with a time step 8¢ = 0.01. There, in addition to
tracking the fraction of the population infected by each viral strain, p!(¥), we
also use the global prevalence of the disease,

1) ="> pl®), (10)
i=1
and the relative prevalence of each strain,
pi(t)
e =522 (11)

I’

as the primary metrics to characterize the disease.

Control parameters
Below, we define the three control parameters utilized in the article.

Basic reproduction number of the SIMS model. Provided f is the
effective infectivity rate and y, the basal recovery rate, the basic repro-
duction number Ry, is defined as follows:

B

Ry=—.

0 Ho
Maximum peak infectivity in the SIR model. For a pathogen char-
acterized by Ry, the incidence in the peak of the epidemic reads as
follows*:

(12)

Iy =1— Ri [14In(Ry)]. (13)

0
Effective reproduction number of the SIMS model. For a genotype s;,
provided S is the effective infectivity rate and y;(t) the recovery rate, the
effective reproduction number R;’ﬂ () is defined as follows:

R = L)

w0 (14)

Values of the model parameters

For simulations in Figs. 3b, 4, and 5, we chose values within the biologically
plausible range for rapidly evolving viruses. In particular, we set the
mutation rate to D, = 10~ based on references™*® (see Table 1 for details).
For the basal recovery rate, we choose y; ! = 10 days. We have set the
infectivity rate to § = 0.3, yielding a basic reproduction number R, = 3. For
the immunity-related parameters, we set y=0 because memory B cells
persist for along time in this class of viruses. Furthermore, we have chosen «
such that, for an isolated strain, the prevalence peak corresponds to that
predicted by the traditional SIR model via Eq. (13). Finally, we set the
characteristic cross-immunity length to A =3 to account for its trade-off
with the swarm sizes. See Supplementary Fig. 5 for further analysis on the

effect of this latter parameter. Finally, we would like to point out that in
refs. 23,24, the authors fitted the epidemiological parameters to the data.

Data availability

The Influenza A genotype network can be obtained in ref. 41.

Code availability
The code is available at https://github.com/santiagolaot/SIMS-model.
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