000165776 001__ 165776
000165776 005__ 20260113234335.0
000165776 0247_ $$2doi$$a10.1007/s00032-012-0172-0
000165776 0248_ $$2sideral$$a79013
000165776 037__ $$aART-2012-79013
000165776 041__ $$aeng
000165776 100__ $$aKurdachenko, L. A.
000165776 245__ $$aAn extension of a theorem by B.H. Neumann on groups with boundedly finite conjugacy classes
000165776 260__ $$c2012
000165776 5203_ $$aThe source of this paper is a classical theorem by B. H. Neumann on groups whose conjugacy classes are boundedly finite. In a natural way this leads to the study of groups with restrictions on the normal closures of their cyclic subgroups. More concretely, in this paper we study groups G such that the normal closure of every cyclic subgroup 
 has a divisible Chernikov G-invariant subgroup D of minimax rank r such that gD has at most b conjugates in the factorgroup G/D. We prove that such groups are Chernikov-by-abelian and bound their invariants in terms of r and b only.
000165776 540__ $$9info:eu-repo/semantics/closedAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000165776 590__ $$a0.467$$b2012
000165776 591__ $$aMATHEMATICS$$b194 / 295 = 0.658$$c2012$$dQ3$$eT2
000165776 591__ $$aMATHEMATICS, APPLIED$$b197 / 247 = 0.798$$c2012$$dQ4$$eT3
000165776 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000165776 700__ $$0(orcid)0000-0002-8713-4591$$aMuñoz-Escolano, J. M.$$uUniversidad de Zaragoza
000165776 700__ $$0(orcid)0000-0002-3587-175X$$aOtal, J.$$uUniversidad de Zaragoza
000165776 7102_ $$12006$$2200$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Didáctica Matemática
000165776 7102_ $$12006$$2005$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Algebra
000165776 773__ $$g80, 1 (2012), 227-241$$pMilan Journal of Mathematics$$tMilan Journal of Mathematics$$x1424-9286
000165776 8564_ $$s304309$$uhttps://zaguan.unizar.es/record/165776/files/texto_completo.pdf$$yVersión publicada
000165776 8564_ $$s1389149$$uhttps://zaguan.unizar.es/record/165776/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000165776 909CO $$ooai:zaguan.unizar.es:165776$$particulos$$pdriver
000165776 951__ $$a2026-01-13-22:08:07
000165776 980__ $$aARTICLE