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ABSTRACT
Aim: Plant functional traits can influence interaction outcomes between nurse and target plants through a “functional trait 
match”, which occurs when the traits of nurse plants ameliorate their environment, and target plants possess traits that allow 
them to benefit from this ameliorated environment. We investigated how the traits of putative nurse species affect interaction 
outcomes across global drylands and determined the functional match that promotes facilitation. We also investigated how graz-
ing pressure and global climatic and edaphic gradients affected this trait match.
Location: Global drylands.
Time Period: 2016–2019.
Major Taxa Studied: Vascular plants.
Methods: We used a collaborative survey conducted across 29 sites from five continents, where we gathered in situ co-occurrences 
of dominant species (‘nurses’) and other vascular plant species, as well as their functional traits [plant height and leaf dry matter 
content (LDMC)]. Climate, edaphic variables and grazing pressure were measured in situ or extracted from databases. We used 
a model building approach to determine the effect of dominant plant traits on interaction outcomes, and how the functional trait 
match between nurse and target species is affected by environmental variables.
Results: Tall dominant plants with conservative leaves generally had a greater positive effect on species richness and cover 
beneath their canopies, but these effects were strongly modulated by grazing pressure and soil pH. Target plants that were signif-
icantly associated with dominant plants tended to be shorter, and have more acquisitive leaves than dominant plants, regardless 
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of environmental conditions. However, the difference in height and LDMC between dominant plants and negatively associated 
target plants was strongly affected by environmental conditions.
Main Conclusions: Functional traits play a significant role in determining interaction outcomes between dryland plants. 
Facilitation in drylands is driven by a conservative-acquisitive trait match, a pattern observed regardless of grazing pressure, 
climate and soil conditions.

1   |   Introduction

Plant–plant interactions are an important community struc-
turing force (Bruno et al. 2003; Gotzenberger et al. 2012), es-
pecially in drylands, where more than 25% of species are more 
closely associated with nurse plants than expected by chance 
(Soliveres and Maestre 2014). It is, therefore, important to un-
derstand how the outcome of plant–plant interactions can vary 
through space and time, particularly since plant–plant inter-
actions influence how communities respond to global environ-
mental change (McCluney et  al.  2012). The most prominent 
theory regarding spatio-temporal variation in the outcome 
of such interactions is the Stress Gradient Hypothesis (SGH), 
which predicts that greater environmental severity (more arid 
climates or higher herbivore pressure) leads to an increase in 
the frequency of positive plant–plant interactions (Bertness 
and Callaway 1994). While many studies support this hypoth-
esis (see Adams et al. 2022; He et al. 2013; Soliveres et al. 2015 
for reviews), many contradicting trends have also been re-
ported (e.g., hump-shaped trends, Cui et al.  2023; Liancourt 
et al. 2017; Lopez et al. 2013). Furthermore, some studies re-
port that environmental gradients do not have a strong effect 
on plant–plant interactions, and that interaction outcomes are 
contingent on species' characteristics (Liancourt et  al.  2005; 
Maestre et al. 2009; Soliveres et al. 2014; Yang et al. 2022).

Species differ in their ecophysiological adaptations and toler-
ances and may not be equally stressed despite growing in the 
same environment (i.e., the idea of “individual strain”; Gross 
et  al.  2010; Liancourt et  al.  2017). Therefore, co-occurring 
species may not be equally likely to experience facilitation. 
Considering functional traits can aid in accounting for the 
species specificity of interaction outcomes, as plant functional 
traits are more informative of species environmental require-
ments and effects than growth forms or life history classifica-
tions (Schöb et al. 2013, 2017; Thomas et al. 2019). The traits 
of putative nurse plants determine how they affect the local 
environment under their canopy and can thus be expected 
to influence interaction outcomes (Schöb et  al.  2013, 2017). 
For example, the canopy compactness of Arenaria tetraquerta 
cushion plants affected their ability to ameliorate tempera-
ture and water stress, with more compact cushions improving 
soil water content and soil organic matter to a greater degree, 
resulting in a stronger facilitative effect (Schöb et  al.  2013). 
Depending on their functional traits, different nurse species 
may vary in the magnitude of their facilitative effect (e.g., 
Catorci et  al.  2016; Fagundes et  al.  2018), and host different 
communities of target species (e.g., Catorci et al. 2016; O'Brien 
et  al.  2019; Schöb et  al.  2017). In addition to being useful 
for predicting which species are likely to facilitate others, 
quantifying which nurse traits promote facilitation can also 
provide insights into the ameliorative mechanisms that are 

important for facilitation in drylands, and help select species 
for introduction in restoration projects (Gómez-Aparicio 2009; 
Navarro-Cano et al. 2019).

While the traits of nurse plants may be important in deter-
mining the ameliorative or protective effect, there are many 
instances in which target species do not benefit equally from 
the same nurse species (e.g., Fagundes et  al.  2018; Filazzola 
et al. 2020; Liancourt et al. 2005). This suggests that the traits 
of target species also play a role in determining interaction 
outcomes (Gross et al. 2009). For example, in a watering and 
fertilisation experiment in China, the shrub Artemisia or-
dosica facilitated tall species but competed with short species 
(Bai et al. 2021). Schöb et al.  (2017) suggested that the vary-
ing responses of target species to the presence of a neighbour 
can be explained by the effect and response traits of the nurse 
and target species. They suggested that facilitation is likely to 
occur between two plants when the effect traits of one plant 
are “compatible” with the response traits of another (Schöb 
et  al.  2017). In other words, for a plant to have facilitative 
effects, it must possess effect traits that enable it to relieve 
stressful conditions (Schöb et al. 2017). In turn, the target spe-
cies (the species experiencing the effects of the nurse plant) 
must possess response traits that enable it to take advantage 
of the environment created by the nurse (i.e., a compatible 
match of nurse effect traits and target species response traits; 
Schöb et al. 2017). For example, facilitation between trees and 
seedlings in a Brazilian dry forest was highest between trees 
with a low specific leaf area (SLA) and seedlings with a high 
apical growth rate (Fagundes et al. 2022). This trait match re-
flects how trees with low SLA allowed light to penetrate the 
canopy and acquired resources slowly, which had a positive 
effect on seedlings with a high apical growth rate who benefit-
ted from the availability of light and soil resources (Fagundes 
et al. 2022). The relative importance of such trait matching in 
driving plant–plant interactions across broad environmental 
gradients, regarding the effect of the environment itself, or 
interactions between the environment and nurse-target func-
tional traits, remains, however poorly understood.

The environmental drivers of facilitation are well researched, 
with aridity and grazing pressure regarded as key factors 
influencing the frequency of facilitation in dryland commu-
nities (Maestre et al. 2005; Rey et al. 2016; Smit et al. 2009). 
However, how these environmental drivers relate to trait-
based predictions of plant–plant interactions is unclear. Will 
the compatible trait matches that promote facilitation shift 
as environmental conditions change the trait distributions 
of communities (Gross et  al.  2024; Le Bagousse-Pinguet 
et  al.  2017)? To address this unsolved question, we used a 
unique coordinated distributed study (Fraser et al. 2013) con-
ducted across 29 sites from 10 countries to evaluate interactive 
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effects of functional traits and environmental factors in driv-
ing plant–plant interactions across global drylands. We inves-
tigated the effects of well-researched drivers of facilitation 
such as grazing pressure and aridity, but also less well-known 
environmental factors that are known to be important in dry-
land ecosystem functioning (Le Bagousse-Pinguet et al. 2017; 
Maestre, Le Bagousse-Pinguet, et al. 2022). These include an-
nual mean temperature, rainfall seasonality, soil pH and soil 
sand content. The multiplicity of potential drivers of plant–
plant interaction outcomes, including climate characteristics 
and grazing pressure, but also soil characteristics and the 
functional traits of the species involved have, to the best of our 
knowledge, never been considered simultaneously and across 
a global scale. This could aid our understanding of the rela-
tive importance of contrasting environmental conditions and 
species-specific adaptations as drivers of plant–plant interac-
tion outcomes. Specifically, we aimed to test: (i) the relative 
importance of grazing pressure, climate and soil characteris-
tics in driving plant facilitation, (ii) whether a compatible trait 
match is required for facilitation to occur and (iii) whether 

the compatible nurse-target trait match is affected by grazing 
pressure, climate and soil characteristics.

2   |   Methods

This study was conducted across 29 dryland sites from 10 
countries (Algeria, Argentina, Australia, Chile, China, Iran, 
Israel, Namibia, South Africa and Spain) and five continents 
(Figure 1). Each site consisted of three to four 45 × 45 m plots, lo-
cated along a grazing pressure gradient ranging from ungrazed 
or low grazing pressure to medium and high grazing pressure 
(see Maestre, Eldridge, et  al.  2022 and Maestre, Le Bagousse-
Pinguet, et al. 2022 for additional information and validation of 
the local grazing gradients surveyed). A total of 97 plots were 
surveyed (14 ungrazed, 26 low, 29 medium and 28 high graz-
ing pressure plots). The aridity of the plots (1-FAO's aridity 
index, ranging from 0 [wettest] to 1 [driest]) surveyed ranged 
from 0.50 to 0.94, annual mean temperature ranged between 
5°C and 22.3°C and mean annual rainfall ranged from 89 mm 

FIGURE 1    |    Sampling design used in this study. Twenty-nine sites were sampled that each consisted of three to four plots arranged on a grazing 
pressure gradient. Each plot was subjected to a co-occurrence survey (in total 97 plots were sampled), in which vascular plant cover and species rich-
ness were sampled in 25, 50 or 75 replicates depending on whether one, two or three dominant species were present in the plot (for simplicity, only 
four replicates are shown on the figure).
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to 606 mm. Soil sand content ranged from 13.7% to 98.3%, and 
pH ranged between 5.5 and 9.9. The vegetation of the plots sur-
veyed included the main vegetation types that can be found in 
drylands (grasslands, shrublands, open forests, and savannas). 
Thus, our survey captured a wide range of vegetation and soil 
conditions, as well as hot and cold ecosystems that ranged from 
semi-arid to hyper-arid, as well as systems with highly seasonal 
and regular rainfall.

2.1   |   Co-Occurrence Dataset

Plant–plant interactions were inferred from fine-scale spatial 
associations between dominant perennial plants and other tar-
get (plants growing under or away from dominant plant cano-
pies) vascular species (following e.g., Liancourt et al. 2017). This 
approach is not without limitations, as co-occurrence patterns 
are influenced by the scale of data collection (Delalandre and 
Montesinos-Navarro 2018), and other processes besides facilita-
tion (e.g., shared microhabitat requirements) can also give rise 
to aggregated spatial patterns (Steinbauer et al. 2016). However, 
the use of co-occurrence data allows plant–plant interactions to 
be studied between many species in the community, and across 
broader environmental gradients. Furthermore, spatial asso-
ciations are often tightly linked to the outcome of plant–plant 
interactions and are a useful approach to study interaction out-
comes at the community level (Alados et  al.  2017; Tirado and 
Pugnaire 2005).

In each plot, 25 dominant plant patches (a patch could consist of 
more than one individual) were selected to form 25 “dominant 
microsites” (Figure 1). Species forming the dominant microsites 
were selected based only on their size and abundance (i.e., large, 
abundant perennial species), and not on any a priori knowledge 
of facilitative effects. Each dominant microsite was paired with 
an “open microsite”, created by emulating the canopy area of 
the dominant microsite with a wire ring, and placing the ring 
at least one microsite radius away from the dominant plant's 
canopy edge in an area lacking the dominant plant. Together, 
a dominant-open microsite pair forms a replicate. If more than 
one dominant species were present in the plot, 25 additional rep-
licates were surveyed around each dominant species to form 50 
or 75 replicates if the plot had two or three dominant species, 
respectively. The richness and cover of all perennial vascular 
plant species growing in open and dominant microsites (i.e., tar-
get species) were recorded. Co-occurrence data were collected 
from 3789 replicates (each replicate is a paired dominant-open 
microsite).

2.2   |   Grazing, Climate and Edaphic Data

Each site consisted of three to four 45 × 45 m plots, located at 
increasing distances from an artificial waterpoint to form a 
grazing pressure gradient (except for one site in China, where a 
grazing pressure gradient was created with grazing exclosures). 
Where possible, a plot in an ungrazed area was also surveyed. 
Four categories of grazing pressure were, therefore, defined: un-
grazed, low, medium and high. To ensure that the plots placed 
at different distances from a watering point corresponded to a 
gradient in grazing pressure, a heuristic assessment of grazing 

pressure was conducted by local experts, making use of historic 
records and specialist knowledge. Additionally, in each plot, 
the dung mass per hectare for each herbivore species was cal-
culated, and the depth and width of livestock tracks were mea-
sured. These three measures of grazing pressure (distance from 
water points, heuristic assessment, and dung mass) were found 
to correspond well, and to accurately predict the four different 
categories of grazing pressure. Increases in grazing pressure 
between plots (based on distance from artificial water sources) 
were correlated with increasing dung mass and area of livestock 
tracks. See Maestre, Eldridge, et al. (2022) and the supplemen-
tary text in Maestre, Le Bagousse-Pinguet, et al. (2022) for ad-
ditional information and further validation of the local grazing 
gradients surveyed in a subset of sites that had stocking data 
available.

The following climate and soil variables were selected to test for 
their effect on plant–plant interactions: aridity (1—precipitation/
potential evapotranspiration), annual mean temperature (AMT, 
measured in °C), rainfall seasonality (the coefficient of variation 
of precipitation, RASE), soil pH and soil sand content (SAC, the 
percentage mass of soil consisting of sand). Aridity was retrieved 
from the Global Aridity Index and Potential Evapotranspiration 
Climate Database v3 (Zomer et al. 2022), while AMT and RASE 
were extracted from WorldClim 2.0 (Fick and Hijmans  2017). 
The mean soil pH and SAC for each plot were estimated from 
soil samples collected at five sampling points, randomly placed 
in areas devoid of vascular plant cover, within each plot. At each 
sampling point, a composite sample was collected from four 
soil cores (7.5 cm depth) which were bulked and homogenised 
in the field. Soil pH was measured with a pH meter in a 1:1 soil 
to water mix, and sand content was measured following Kettler 
et al.  (2001). See Maestre, Eldridge, et al.  (2022) for additional 
details on the soil survey and laboratory analyses conducted.

2.3   |   Functional Trait Dataset

We measured functional traits of multiple individuals (N = 5–10) 
of most species present in our sites following standardised pro-
tocols detailed in Perez-Harguindeguy et al.  (2013) and as de-
scribed in Gross et  al.  (2024). The following functional traits 
were measured: maximum vegetative height (cm), lateral spread 
(LS, the product of the width of the plant at its widest point and 
the width perpendicular to that, cm2), leaf length (LL, cm), leaf 
area (LA, cm2), specific leaf area (SLA, cm2/g), leaf dry matter 
content (LDMC, %), and leaf C:N ratio (C:N, elemental concen-
tration of C divided by the elemental concentration of N). These 
traits are informative of the shading effect (Violle et al. 2009), 
palatability (Pontes et  al.  2007), and resource-use strategy of 
plants (Díaz et al. 2016; Reich 2014), and are therefore likely to 
be related to plant–plant interactions.

In each plot, the average (LL, LA, SLA, LDMC, C:N) or maxi-
mum (height, LS) value of each trait for each species was calcu-
lated. Five hundred forty-six species were sampled in both the 
co-occurrence and functional trait survey (comprising a mean of 
80.6% of the species richness and 86.0% of the cover in each plot 
in the co-occurrence dataset). Due to logistic constraints, 181 
species (24.9%) were not sampled for functional traits. However, 
these species were rare and only made up 8.6% of the total 
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vegetation cover represented in our dataset. For some of these 
cases (an additional 2.5% more species × plot combinations), we 
imputed data from the same species in another site with sim-
ilar environmental characteristics using the traitstrap package 
(Maitner et al. 2023), to achieve the most complete trait dataset 
for the species in the co-occurrence data.

2.4   |   Data Analysis

2.4.1   |   Quantifying Plant–Plant Interactions

We used two approaches to quantify plant–plant interaction out-
comes: χ2 tests of species' associations (species-level analysis) and 
the Neighbour-effect Intensity index with commutative symme-
try (NIntC, Díaz-Sierra et  al.  2017; community-level analysis). 
χ2 tests on species occurrences were performed to determine 
whether each species was significantly associated with open 
or dominant microsites. Yates's continuity correction for small 
sample sizes was applied. Species with expected values (i.e., the 
product of the row and column total divided by the grand total 
of the contingency table) lower than five due to low occurrence 
were excluded from this analysis. All species were classified as 
being significantly associated with dominant microsites, signifi-
cantly associated with open microsites, or not significantly asso-
ciated with either microsite (i.e., neutral association).

The Neighbour-effect Intensity index quantifies whether species 
richness or cover is higher or lower in the dominant microsite 
than in the open microsite. It is calculated as follows:

where PD and PO indicate community metrics in the dominant 
and open microsite, respectively. Here, vascular plant species 
richness, total cover and the Shannon diversity index (calculated 
with species cover) were used as community metrics (resulting in 
NIntC richness, NIntC cover and NIntC Shannon, respectively). 
NIntC has commutative symmetry, that is, it assigns equal but 
opposite values when the community metric with and without 
a dominant are exchanged. NIntC ranges from −1 (indicating 
competitive exclusion, that is, species only present in the open 
microsite), to +1 (indicating obligate facilitation, that is, species 
only present in the dominant microsite). No further analyses 
were performed with NIntC Shannon because it was highly cor-
related with NIntC richness (Pearson's r > 0.8, Figure A1).

2.4.2   |   Trait Selection

We first performed a principal component analysis on the traits 
of dominant and target plants from all sites. The first principal 
component was defined by traits related to resource use, and 
was positively related to LDMC, and negatively related to SLA. 
The second principal component was positively related to height 
and LS and thus represented a size axis. The trait with the high-
est loading on the first principal component was LDMC, and the 
trait with the highest loading on the second principal compo-
nent was height (Figure A2 and Table A1). Therefore, height and 

LDMC were selected to be used in all further analyses. Higher 
plant height is associated with greater light interception by the 
plant canopy, and less transmission of light below the canopy 
(Violle et al. 2009). Height is thus informative of the shading ef-
fect of dominant plants but is also positively associated with the 
fertile island effect, which describes the phenomenon of concen-
trated nutrients and improved soil conditions beneath perennial 
patches in drylands (Eldridge et al. 2024). LDMC is related to 
the density of leaf tissues and is thus positively correlated with 
the toughness and longevity of leaves. High LDMC is indicative 
of a more conservative resource-use strategy, characterised by 
low rates of nutrient and water uptake, and a slow growth rate 
(Díaz et  al.  2016; Reich  2014). Instead of investing in growth, 
plants with high LDMC invest more in the structural strength 
and longevity of leaves (Perez-Harguindeguy et al. 2013). Leaves 
with high LDMC are less palatable and less digestible to herbi-
vores (Pontes et al. 2007) and are also more resistant to drought 
(Stears et al. 2022; Wilcox et al. 2021).

2.4.3   |   Model Selection to Determine Drivers 
of Plant–Plant Interactions

To determine whether dominant plant traits affect interaction 
outcomes, and how environmental conditions modulate this ef-
fect, a best subset model building approach was used. The full 
model was a generalised linear mixed-effect model (GLMM) 
comprising grazing pressure, climate variables (aridity, AMT, 
RASE), soil variables (soil pH and sand content) and dominant 
plant traits (height and LDMC, log transformed) as fixed effects. 
The model also included grazing × climate, grazing × soil, graz-
ing × trait, climate × trait and soil × trait interactions. The mod-
elling procedure was repeated with NIntC richness and NIntC 
cover as response variables. NIntC values were rescaled to range 
from 0 to 1 prior to modelling. The binomial distribution was 
used because the response variables had many values near their 
limits and to prevent the models from estimating values beyond 
the limits of the interaction indices. To control for possible spa-
tial autocorrelation, the latitude and longitude of each plot were 
also included in the full model (the sine of coordinates were 
used to make them linear). The identity of dominant species was 
included as a random effect. Sixty-four dominant plant species 
from 2501 replicates (from 74 plots) had height and LDMC data, 
amounting to 67% of replicates being included in this analy-
sis. Models were constructed with all possible combinations of 
predictor variables from the full model and ranked by Akaike 
Information Criterion (AIC). Latitude, longitude, and dominant 
species identity were included in all candidate models. We re-
tained the best fitting models with a difference in AIC less than 
two from the lowest AIC and averaged their coefficients. We cal-
culated the importance of each variable in the averaged model 
by summing the model Akaike weights of each model the vari-
able was included in.

2.4.4   |   Model Selection to Determine the Functional 
Trait Match and Environmental Drivers Thereof

To determine the functional trait match between dominant 
and target species, we calculated the difference in height and 
LDMC between the dominant and open-associated species 

NIntC = 2

(
PD − PO

)

PD + PO + ||PD − PO
||
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in the replicate (∆Do, difference in trait value between dom-
inant [D] and open-associated [o] species, with one value per 
species per replicate in each site) and the difference in height 
and LDMC between the dominant and dominant-associated 
species in the replicate (∆Dd, difference in trait value be-
tween dominant [D] and dominant-associated [d] species). If 
∆Do (∆Dd) < 0, it means that the trait value of open-associated 
(dominant-associated) species is higher than the trait value of 
the dominant species in the replicate. To determine whether 
dominant-associated target species were more or less sim-
ilar to dominant plants than open-associated target species, 
and whether this functional trait match was mediated by en-
vironmental conditions, we used a best-subset model build-
ing approach. The association of the target species (open or 
dominant-associated), climate (aridity, AMT, RASE), soil (pH, 
SAC), and grazing pressure, as well as the association × cli-
mate, association × soil and association × grazing pressure 
interactions were included in the full model. The sine of lat-
itude and longitude, as well as a random effect of dominant 
species identity, were included in every candidate model. 1412 
replicates from 49 plots were included in this model. The same 
model averaging procedure as described above was followed. 
All GLMMs were built with the glmmTMB package (Brooks 
et al. 2017). Model selection and model averaging were done 
with functions from the MuMIn package (Bartoń  2023). 

Nakagawa's R2 values for models were calculated with the 
performance package (Lüdecke et al. 2021). All analyses were 
done using R 4.4.2 (R Core Team 2024).

3   |   Results

The richness and cover of target species were significantly 
higher in dominant than in open microsites (mean NIntC rich-
ness ± SE = 0.13 ± 0.01, t = 14.37, Df = 3788, p < 0.001; mean 
NIntC cover ± SE = 0.15 ± 0.01, t = 13.25, Df = 3735, p < 0.001). 
NIntC values varied greatly within plots (see grey dots in 
Figures  2 and 3). A total of 720 target species were recorded, 
with 305 species adequately sampled for χ2 analyses. Of these 
species, 27.9% (85 species) were associated with dominant 
plants, 12.4% (38 species) were associated with open microsites, 
and 79.0% (241 species) showed no significant association with 
either microsite (species that occurred in multiple plots could 
show different associations in each plot).

Environmental conditions and dominant plant traits affected 
plant–plant interactions, with their effects often dependent on 
one another (Figures 2 and 3; Tables A2 and A3). All environ-
mental predictors (climate, grazing and soils) played a role in de-
termining NIntC richness and NIntC cover, either individually or 

FIGURE 2    |    The effects of interaction terms included in the summarised model of NIntC richness. Lines illustrate the predicted relationship be-
tween NIntC richness and plant traits, dependent on environmental variables. Transparent ribbons around the lines represent one standard error of the 
predictions. Grey points show the NIntC richness and dominant plant trait value of a replicate. Darker grey points indicate replicates with overlapping 
NIntC richness and trait values. Where there are interactions between continuous variables, three levels of the continuous variables (mean − standard 
deviation, mean, mean + standard deviation) are shown to illustrate the interaction. The importance of each interaction term in the summarised model 
is at the bottom of each figure. The variable importance is calculated as the sum of the Akaike weight of each model containing the variable. log(LD-
MC), dominant plant leaf dry matter content (log transformed); log(height), dominant plant height (log transformed); RASE, rainfall seasonality; 
AMT, annual mean temperature; Aridity, 1-potential precipitation/potential evapotranspiration; SAC, soil sand content; pH, soil pH.
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via their influence on the effect of dominant plant traits. The ef-
fect of dominant plant traits on interaction outcomes was mod-
ulated strongly by grazing pressure and soil pH, and to a lesser 
degree by aridity, AMT, RASE and SAC (Figures 2 and 3). The 
LDMC and height of dominant plants were generally positively 
related to NIntC richness and NIntC cover, although negative ef-
fects of LDMC occurred under ungrazed conditions (Figures 2a 
and 3a) and high pH (Figures 2j and 3k); and negative effects of 
height occurred at low pH (Figure 2l).

NIntC richness and NIntC cover generally increased with harsher 
climatic conditions (high AMT, RASE aridity) and in soils with 
higher SAC and pH (Figures 2 and 3). However, differences in 
grazing pressure caused deviations from this trend. The effect 
of RASE on NIntC richness and NIntC cover was only positive 
in ungrazed conditions (Figures 2b and A3b), and the effect of 
aridity on NIntC cover was only positive at high grazing pres-
sure (Figure 3b). The effect of SAC on NIntC richness and NIntC 
cover was only positive in low grazing or ungrazed conditions 
(Figures 2c and A3c). While all environmental predictors were 
included in the averaged models for NIntC richness and NIntC 
cover, aridity had a markedly lower importance than the other 
variables (Tables A2 and A3; Figures 2d and 3b). A large amount 
of variation remained unexplained by the averaged models of 

NIntC richness (marginal R2 = 4.2%) and NIntC cover (marginal 
R2 = 8.1%).

The analysis of the difference in height and LDMC between 
dominant and target plants showed that the functional match be-
tween dominant and target plants also plays a role in determining 
interaction outcomes. Dominant-associated and open-associated 
target plants differed in their similarity to the dominant plant 
(Tables A4 and A5), and this was modulated by environmental 
conditions (Figures 4 and 5). The difference in height and LDMC 
between dominant and open-associated plants was strongly af-
fected by grazing pressure, climate and soil conditions, often 
shifting from having a higher trait value than the dominant plant 
to having a low value under harsher conditions (e.g., Figures 4b 
and 5e). However, the functional match between dominant and 
dominant-associated species was not strongly influenced by 
grazing pressure, climate and soil conditions (Figures 4 and 5). 
Regardless of differences in broad-scale climate or local grazing 
and soil factors, plants that were shorter, with lower LDMC than 
dominant plants (∆Dd was generally greater than zero) were 
more likely to benefit from association with dominant plants. 
Thus, while the compatible match in traits that promoted facilita-
tion stayed relatively consistent across gradients of climate, graz-
ing pressure and soil, incompatible trait syndromes varied.

FIGURE 3    |    The effects of interaction terms included in the summarised model of NIntC cover. Only interaction terms with relationships that 
differ from those with NIntC richness are shown (See Figure A3 for the rest of the interaction terms). Lines illustrate the predicted relationship be-
tween NIntC cover and plant traits, dependent on environmental variables. Transparent ribbons around the lines represent one standard error of the 
predictions. Grey points show the NIntC richness and dominant plant trait value of a replicate. Darker grey points indicate replicates with overlapping 
NIntC richness and trait values. Where there are interactions between continuous variables, three levels of the continuous variables (mean − standard 
deviation, mean, mean + standard deviation) are shown to illustrate the interaction. The importance of each interaction term in the summarised 
model is shown to the left of each figure. The variable importance is calculated as the sum of the Akaike weight of each model containing the vari-
able. log(LDMC), dominant plant leaf dry matter content (log transformed); log(height), dominant plant height (log transformed); RASE, rainfall 
seasonality; AMT, annual mean temperature; Aridity, 1-potential precipitation/potential evapotranspiration; SAC, soil sand content; pH, soil pH.
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FIGURE 4    |    The effects of interaction terms included in the summarised model predicting the difference in height between dominant and tar-
get plants. ∆Do, Difference in height between dominant and open-associated plants. ∆Dd, Difference in height between dominant and dominant-
associated plants. Ribbons around the fitted lines represent standard errors but are often very small due to the large sample size. RASE, rainfall 
seasonality; AMT, annual mean temperature; Aridity,1-potential precipitation/potential evapotranspiration; SAC, soil sand content; pH, soil pH.

FIGURE 5    |    The effects of interaction terms included in the summarised model predicting the difference in LDMC between dominant and tar-
get plants. ∆Do, ifference in LDMC between dominant and open-associated plants. ∆Dd, Difference in LDMC between dominant and dominant-
associated plants. Ribbons around the fitted lines represent standard errors but are often very small due to the large sample size. RASE, rainfall 
seasonality; AMT, annual mean temperature; Aridity, 1-potential precipitation/potential evapotranspiration; SAC, soil sand content; pH, soil pH.
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4   |   Discussion

We analyzed a comprehensive co-occurrence dataset covering 
global drylands to explore how plant functional traits influence 
interaction outcomes and how their effects are modulated by 
grazing pressure, climate, and soil conditions. Our study shows 
the prevalence of plant functional traits as drivers of the outcome 
of plant–plant interactions in drylands. Dominant plants with 
higher LDMC and plant height generally had a greater positive 
effect on vascular plant species richness and cover. However, it 
was not only the traits of the dominant plant that affected in-
teraction outcomes, but also the traits of the target species and 
the relation between the trait syndromes of these two groups. 
Here, a conservative-acquisitive functional trait match between 
dominant and target plants promoted facilitation. Target plants 
that were associated with dominant plants tended to be smaller 
and have less conservative leaves than dominant plants, and this 
remained true under a large range of environmental conditions. 
While the nurse-target functional match was not strongly af-
fected by changes in grazing pressure, climate or soil conditions, 
the competitive trait mismatch (dominant vs. open-associated 
species) was highly dependent on such environmental condi-
tions, suggesting that competitive interactions are more sensi-
tive to the environment than facilitative ones.

The conservative-acquisitive trait match that increased the prob-
ability of plant–plant facilitation in drylands is likely driven by 
associational resistance and the fertile island effect (Eldridge 
et al. 2024; Fagundes et al. 2022; Ochoa-Hueso et al. 2018; Smit 
et al. 2009). Dominant plants with conservative leaves (charac-
terised by high LDMC) are less palatable and digestible (Perez-
Harguindeguy et al. 2013; Pontes et al. 2007), making them less 
likely to be grazed, and thus able to offer herbivore protection to 
plants growing beneath their canopies. Species with conservative 
leaf traits are typically slow growing and have a low photosyn-
thetic rate, meaning that they do not take up large quantities of 
water or nutrients (Díaz et al. 2016; Reich 2014), thus reducing 
their potential competitive effect on neighbouring plants. Large, 
conservative species also enhance the fertile island effect by 
adding more persistent leaf litter to the soil (Eldridge et al. 2024; 
Ochoa-Hueso et al. 2018), which decomposes more slowly than 
litter from short-lived, acquisitive leaves, and can, therefore, 
decrease evaporative water loss and improve soil fertility to a 
greater degree (Ochoa-Hueso et  al.  2018). In contrast, species 
with acquisitive leaf traits (i.e., low LDMC) are faster growing and 
require more water and nutrients (Díaz et al. 2016; Reich 2014; 
Stears et al. 2022). Such species will benefit from the higher water 
and nutrient availability under a large, conservative species, 
while suffering minimal competition owing to the low resource 
requirements of the conservative species. Our findings align with 
studies conducted across smaller extents that found that less well 
adapted (i.e., more “strained”, sensu Liancourt et al. 2017) species 
benefit more from the presence of a neighbour than species that 
are better adapted to the prevailing environmental stressors (e.g., 
Filazzola et al. 2020; Graff and Aguiar 2017; Liancourt et al. 2005; 
Soliveres, Eldridge, et al. 2011). In drylands, specifically, species 
with low LDMC are assumed to be more strained, because they 
are less resistant to drought (Stears et al. 2022; Wilcox et al. 2021).

Although high LDMC and plant height in dominant plants gener-
ally promoted facilitative interactions, exceptions occurred when 

grazing was absent, or soil pH was high. The reason why LDMC 
was no longer positively related to facilitation at high soil pH is 
difficult to understand. It is possible that more acquisitive domi-
nant plants had greater nurse effects at high soil pH due to their 
ability to add leaf litter that can decompose quickly and improve 
the low phosphorus and micronutrient values typically found in 
alkaline soils (Diaz et al. 2004; Whitford 2002). The LDMC and 
height of dominant plants were positively related to NIntC rich-
ness and NIntC cover, except in ungrazed plots. This may be due 
to the decreased benefit of associational resistance from plants 
with high LDMC when herbivores are absent (Pontes et al. 2007; 
Smit et al. 2009). The higher plant cover in ungrazed plots may 
also mean that the shading effect of tall plants is less desirable, 
as drought-adapted target species are often intolerant of heavy 
shading (Soliveres, Garcia-Palacios, et  al.  2011). Thus, without 
herbivore pressure, shorter, more acquisitive species may be able 
to offer the same advantage as tall conservative species in grazed 
plots, and may even be preferred due to their lower shading effect.

The difference in LDMC and height between dominant and 
dominant-associated species stayed relatively constant across 
gradients of grazing pressure, climate and soil conditions. 
However, the trait syndrome enabling survival without a neigh-
bour changed along the environmental gradients. This is likely 
due to environmental filtering, whereby only those species that 
possess traits conferring tolerance to environmental conditions 
can survive (Kraft et al. 2015; Le Bagousse-Pinguet et al. 2017). 
Dominant plants can relax this environmental filter by improv-
ing microclimatic and soil conditions beneath their canopies, en-
abling species with less well-adapted trait syndromes to survive 
(McIntire and Fajardo 2014; O'Brien et al. 2019; Schöb et al. 2013). 
Our results suggest that the ameliorative effect of dominant spe-
cies on their environment stays relatively constant, benefitting 
target species with the same trait syndrome (shorter species with 
more acquisitive leaves) across broad environmental gradients. 
However, the trait syndrome of open-associated species is the 
result of the interplay between environmental filtering and net 
competition and therefore seems more sensitive to changing en-
vironmental conditions (McIntire and Fajardo 2014).

Despite the significant effect of plant traits and some of the en-
vironmental characteristics included in our study, we were only 
able to explain a small proportion of the variance in plant–plant 
interactions. Other potential drivers of such interactions could be 
the evolutionary relationships between the interacting species 
(e.g., Soliveres et al. 2012; Valiente-Banuet and Verdú 2007; Verdú 
et  al.  2009), or the different grazing history characterizing our 
sites (Price et al. 2022). Regarding the former, evolutionary rela-
tionships can implicitly include species characteristics not easy to 
address with commonly measured functional traits, such as the 
regeneration niche that can drastically determine their preferred 
microsites (Valiente-Banuet and Verdú 2007), or the presence of 
allelochemicals and plant-defence compounds, which could alter 
plant–plant interactions (Ehlers and Thompson 2004). Regarding 
the latter, more recent impacts of extensive livestock grazing 
by sheep and cattle, such as that in Australia or South America 
could drive weaker grazing-adaptation syndromes in these areas 
(Milchunas et al. 1988), and therefore a higher proportion of fa-
cilitated species (if target species are less adapted) or a weaker 
nurse effect of the dominant species (if dominant species are less 
adapted and therefore provide weaker associational resistance). 
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These evolutionary drivers should be further considered together 
with the environmental and species-specific drivers addressed 
here, in order to enhance our explanatory power regarding the 
outcome of plant–plant interactions in drylands.

From a theoretical perspective, our findings may explain the 
high variability in interaction outcomes that can occur within 
communities. Drylands are characterised by high functional di-
versity, especially in the most arid regions where trait covaria-
tion is reduced (Gross et al. 2024). While such variation exists in 
the size and leaf traits of plants, there will be plants that are rela-
tively more acquisitive and will benefit from increased resource 
and water availability, and there will also be plants with incom-
patible trait syndromes that prefer to grow away from such ef-
fects. Thus, in drylands, irrespective of the climate or grazing 
conditions, there will always likely be species that are facilitated 
by, and compete with, large dominant plants due to the high 
plant functional diversity in these habitats (Gross et al. 2024). 
Practically, functional traits also provide a way to predict the 
outcome between pairs of species, where, at least within dry-
lands, a conservative-acquisitive functional match promotes fa-
cilitation between dominant and target vascular plants.
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Appendix A

FIGURE A1    |    Pearson's r correlation coefficients between interac-
tion intensity indices. Darker shading represents stronger correlations; 
all correlations are significant.

FIGURE A2    |    The traits of dominant and target species plotted 
along the first and second principal components calculated by princi-
pal component analysis. The arrows represent the eigenvectors of each 
trait along the first and second principal components. The first princi-
pal component (standardizedPC1) encompasses 29.6% of the variation 
in traits, while the second principal component (standardizedPC2) de-
scribes 22.4% of the variation in the traits of dominant and target spe-
cies. MaxH, plant height; MaxLS, lateral spread; MeanLA, leaf area; 
MeanLDMC, leaf dry matter content; MeanLL, leaf length; MeanSLA, 
specific leaf area; C_N_ratio, leaf carbon to nitrogen ratio.

 14668238, 2025, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/geb.70158 by U

niversidad D
e Z

aragoza, W
iley O

nline L
ibrary on [13/01/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1111/geb.12783
https://doi.org/10.1111/j.1600-0706.2005.14094.x
https://doi.org/10.1111/j.1461-0248.2007.01100.x
https://doi.org/10.1111/j.1365-2745.2009.01565.x
https://doi.org/10.1007/s00442-009-1333-x
https://doi.org/10.1111/nph.17000
https://doi.org/10.1111/ele.14010
https://doi.org/10.1111/ele.14010
https://doi.org/10.1038/s41597-022-01493-1


14 of 18 Global Ecology and Biogeography, 2025

TABLE A1    |    Loadings of each trait on the principal components retrieved from principal component analysis on the traits of dominant and target 
species.

PC 1 PC 2 PC3 PC 4 PC 5 PC 6 PC 7

Height 0.489 0.488 0.713

LS 0.464 0.478 0.183 −0.114 −0.286 −0.652

LA 0.320 −0.598 −0.690 −0.127 0.207

LDMC 0.506 −0.260 0.430 0.662 −0.211

LL −0.715 0.666 −0.195

SLA −0.380 0.444 0.123 0.790

C:N 0.379 −0.406 −0.288 −0.221 0.350 −0.654 0.101

Abbreviations: C:N, leaf carbon to nitrogen ratio; Height, plant height; LA, leaf area; LDMC, leaf dry matter content; LL, leaf length; LS, lateral spread; SLA, specific leaf area.

TABLE A2    |    Predictors included in the best models (there were eight best models with ΔAIC < 2) for NIntC richness.

Predictors selected Estimate Standard error p n
Variable importance (sum of 

weights)
Whole model R2c and 

R2m

Latitude (sin) −0.042 0.162 0.796 8 1.00 R2m = 0.042, R2c = 0.071

Longitude (sin) −0.014 0.142 0.920 8 1.00

AMT 0.045 0.039 0.248 8 1.00

aridity 0.086 0.436 0.844 1 0.12

RASE 0.007 0.007 0.356 8 1.00

graz1 1.512 0.758 0.011 8 1.00

graz2 2.149 0.714 0.683

graz3 1.846 0.723 0.802

pH −2.601 0.739 < 0.001 8 1.00

SAC −0.008 0.009 0.405 8 1.00

Height −3.958 1.584 0.012 8 1.00

LDMC 28.340 9.347 0.002 8 1.00

graz1:RASE −0.017 0.006 0.004 8 1.00

graz2:RASE −0.006 0.006 0.300

graz3:RASE −0.009 0.006 0.153

graz1:SAC 0.020 0.008 0.011 8 1.00

graz2:SAC 0.003 0.008 0.683

graz3:SAC −0.002 0.008 0.802

AMT:Height 0.002 0.014 0.859 1 0.11

AMT:LDMC 0.011 0.060 0.849 1 0.12

Height:RASE < 0.001 0.002 0.896 1 0.10

LDMC:RASE 0.002 0.009 0.845 1 0.12

graz1:LDMC 3.395 1.457 0.020 8 1.00

graz2:LDMC 4.170 1.209 < 0.001

graz3:LDMC 2.274 1.024 0.026

Height:pH 0.562 0.212 0.008 8 1.00

LDMC:pH −4.235 1.254 < 0.001 8 1.00

Height:SAC < −0.001 0.002 0.982 1 0.09

LDMC:SAC < 0.001 0.009 0.981 1 0.09

Note: n is the number of times the variable was included in the set of best models. The variable importance is the sum of the Akaike weights over all models including 
each explanatory variable.
Abbreviations: AMT, annual mean temperature, °C; aridity, 1-precipitation/potential evapotranspiration; graz1, low grazing pressure; graz2, medium grazing 
pressure; graz3, high grazing pressure; Height, plant height, cm; LDMC, leaf dry matter content, %; pH, soil pH; R2c, conditional R2, that is, the fraction of variation 
explained by the model including the random effect; R2m, marginal R2, that is, the fraction of variation explained by the model not including random effects; RASE, 
rainfall seasonality, the coefficient of variation of monthly precipitation; SAC, soil sand content, %.
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TABLE A3    |    Predictors included in the best models (there were 13 best models with ΔAIC < 2) for NIntC cover.

Predictors selected Estimate Standard error p n
Variable importance (sum of 

weights)
Whole model R2c and 

R2m

Latitude (sin) −0.019 0.199 0.925 13 1.00 R2m = 0.081, R2c = 0.146

Longitude (sin) −0.038 0.173 0.827 13 1.00

AMT −0.077 0.096 0.420 12 0.94

Aridity −2.642 4.521 0.559 5 0.41

RASE 0.010 0.008 0.212 13 1.00

graz1 0.724 3.765 0.848 13 1.00

graz2 1.136 3.622 0.754

graz3 0.695 3.974 0.861

pH −2.798 0.971 0.004 13 1.00

SAC −0.001 0.014 0.944 13 1.00

Height −5.400 2.705 0.046 12 0.94

LDMC 31.140 11.440 0.007 13 1.00

graz1:RASE −0.023 0.007 < 0.001 13 1.00

graz2:RASE −0.010 0.007 0.137

graz3:RASE −0.019 0.007 0.009

graz1:SAC 0.015 0.011 0.196 13 1.00

graz2:SAC −0.003 0.011 0.774

graz3:SAC −0.007 0.012 0.595

graz1:aridity 1.834 3.782 0.628 3 0.26

graz2:aridity 2.047 4.102 0.618

graz3:aridity 2.428 4.633 0.603

AMT:Height 0.072 0.056 0.200 10 0.80

AMT:LDMC 0.004 0.048 0.927 1 0.06

Height:RASE < −0.001 0.002 0.962 1 0.06

LDMC:RASE < 0.001 0.007 0.947 1 0.06

graz1:Height 0.124 0.502 0.806 1 0.07

graz2:Height 0.088 0.386 0.819

graz3:Height 0.100 0.423 0.813

graz1:LDMC 3.766 1.738 0.030 13 1.00

graz2:LDMC 4.336 1.405 0.002

graz3:LDMC 2.325 1.225 0.058

Height:pH 0.617 0.309 0.046 12 0.94

LDMC:pH −4.596 1.592 0.003 13 1.00

Height:SAC < −0.001 0.002 0.997 1 0.06

LDMC:SAC 0.003 0.016 0.824 2 0.13

Note: n is the number of times the variable was included in the set of best models. The variable importance is the sum of the Akaike weights over all models including 
each explanatory variable.
Abbreviations: AMT, annual mean temperature, °C; aridity, 1-precipitation/potential evapotranspiration; graz1, low grazing pressure; graz2, medium grazing 
pressure; graz3, high grazing pressure; Height, plant height, cm; LDMC, leaf dry matter content, %; pH, soil pH; R2c, conditional R2, that is, the fraction of variation 
explained by the model including the random effect; R2m, marginal R2, that is, the fraction of variation explained by the model not including random effects; RASE, 
rainfall seasonality, the coefficient of variation of monthly precipitation; SAC, soil sand content, %.
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FIGURE A3    |    The effects of interaction terms included in the summarised model of NIntC cover. The relationships between these interaction 
terms and NIntC cover do not differ from relationships with NIntC richness. Lines illustrate the predicted relationship between NIntC cover and plant 
traits, dependent on environmental variables. Where there are interactions between continuous variables, three levels of the continuous variables 
(mean, mean + standard deviation, mean − standard deviation) are shown to illustrate the interaction. The importance of each interaction term in 
the summarised model is shown to the left of each figure. The variable importance is calculated as the sum of the Akaike weight of each model con-
taining the variable. log(LDMC), dominant plant leaf dry matter content (log transformed); log(Height), dominant plant height (log transformed); 
RASE, rainfall seasonality; AMT, annual mean temperature; Aridity, 1-potential precipitation/potential evapotranspiration; SAC, soil sand content; 
pH, soil pH.
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TABLE A4    |    Predictors included in the best models (there were two best models with ΔAIC < 2) for the difference in height between dominant 
and target species.

Predictors selected Estimate Standard error p n Variable importance Whole model R2c and R2m

Latitude (sin) −17.380 24.3101 0.475 2 1.00 R2m = 0.306, R2c = 0.944

Longitude (sin) 56.742 12.594 < 0.001 2 1.00

Association (dominant) −7.463 47.8035 0.876 2 1.00

AMT 3.460 4.014 0.389 2 1.00

Aridity −579.190 114.931 < 0.001 2 1.00

RASE 3.064 0.700 < 0.001 2 1.00

graz1 −3.374 9.154 0.713 2 1.00

graz2 12.633 9.204 0.170

graz3 16.081 8.696 0.065

pH 36.197 7.660 < 0.001 2 1.00

SAC −1.555 0.259 < 0.001 2 1.00

AMT:association −14.562 1.614 < 0.001 2 1.00

aridity:association 562.153 55.377 < 0.001 2 1.00

RASE:association −1.109 0.122 < 0.001 2 1.00

graz1:association −3.374 9.154 0.713 2 1.00

graz2:association 12.633 9.204 0.170

graz3:association 16.081 8.696 0.065

pH:association −24.822 6.801 < 0.001 2 1.00

SAC:association −0.1101 0.178 0.537 1 0.45

Note: n is the number of times the variable was included in the set of best models. The variable importance is the sum of the Akaike weights over all models including 
each explanatory variable.
Abbreviations: AMT, annual mean temperature, °C; aridity, 1-precipitation/potential evapotranspiration; graz1, low grazing pressure; graz2, medium grazing 
pressure; graz3, high grazing pressure; Height, plant height, cm; LDMC, leaf dry matter content, %; pH, soil pH; R2c, conditional R2, that is, the fraction of variation 
explained by the model including the random effect; R2m, marginal R2, that is, the fraction of variation explained by the model not including random effects; RASE, 
rainfall seasonality, the coefficient of variation of monthly precipitation; SAC, soil sand content, %.
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TABLE A5    |    Predictors included in the best models (there were two best models with ΔAIC < 2) for the difference in LDMC between dominant 
and target species.

Predictors selected Estimate Standard error p n Variable importance Whole model R2c and R2m

Latitude (sin) 0.010 0.085 0.902 3 1.00 R2m = 0.280, R2c = 0.890

Longitude (sin) −0.022 0.063 0.731 3 1.00

association (dominant) 1.342 0.177 < 0.001 3 1.00

AMT −0.070 0.012 < 0.001 3 1.00

aridity 0.805 0.352 0.022 3 1.00

RASE 0.003 0.002 0.040 3 1.00

graz1 −0.285 0.036 < 0.001 3 1.00

graz2 −0.076 0.032 0.019

graz3 −0.236 0.029 < 0.001

pH 0.201 0.027 < 0.001 3 1.00

SAC 0.006 < 0.001 < 0.001 3 1.00

AMT:association −0.009 0.006 0.138 2 0.84

aridity:association 1.338 0.185 < 0.001 3 1.00

RASE:association < 0.001 < 0.001 0.422 2 0.57

graz1:association −0.285 0.036 < 0.001 3 1.00

graz2:association −0.076 0.032 0.019

graz3:association −0.236 0.029 < 0.001

pH:association −0.239 0.023 < 0.001 3 1.00

SAC:association −0.004 < 0.001 < 0.001 3 1.00

Note: n is the number of times the variable was included in the set of best models. The variable importance is the sum of the Akaike weights over all models including 
each explanatory variable.
Abbreviations: AMT, annual mean temperature, °C; aridity, 1-precipitation/potential evapotranspiration; graz1, low grazing pressure; graz2, medium grazing 
pressure; graz3, high grazing pressure; Height, plant height, cm; LDMC, leaf dry matter content, %; pH, soil pH; R2c, conditional R2, that is, the fraction of variation 
explained by the model including the random effect; R2m, marginal R2, that is, the fraction of variation explained by the model not including random effects; RASE, 
rainfall seasonality, the coefficient of variation of monthly precipitation; SAC, soil sand content, %.
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