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Abstract. In stressful environments many plant species are only able to survive if they benefit from the fa-
cilitative effect of “nurse” species. Typically, these nurses are species adapted to the stressful environmental
conditions that favor the formation of vegetation patches, where other, less-adapted species can be established.
However, ecological interactions can be influenced by abiotic and biotic factors. In this study we quantified the
effect of grazing and aridity on the patch structure of gypsophilous plant communities and the role that gypso-
phytes, species adapted to gypsum soils, play in structuring these communities. Specifically, we created signed
networks (networks with positive and negative links) at grazed and ungrazed sites in two areas in the middle
Ebro Valley, Spain, that differed in aridity. We built networks connecting plant species with positive and nega-
tive links derived from the spatial associations between species. Then, we divided networks in partitions which
represented the different vegetation patches present in the community. We found that vegetation patches were
more specific (same species always were associated in the same patch type) in high aridity and grazed sites,
where environmental conditions were the most stressful and many species persisted by associating with nurse
species. Gypsophytes were more important aggregating species than nongypsophytes in grazed high aridity sites.
Independently of study sites, gypsophyte shrubs acted as nurses, but small gypsophytes segregated from other
species and formed monospecific patches. In conclusion, grazing and aridity influenced the patch structure of
gypsophilous plant communities. Gypsophytes played an important role structuring the patch community, but
this importance depended on environmental conditions and the identity of gypsophyte.

1 Introduction

In arid and semiarid regions, soils that have high gypsum
content are widespread (Mota et al., 2011; Parsons, 1976).
Gypsum soils impose severe limitations for the survival of
plants, as their physicochemical features prevent seedling
germination or the uptake of water and nutrients. In these
soils physical and biological crusts develop on the top soil
layer and form a physical barrier to plant species establish-
ment (Awadhwal and Thierstein, 1985); and some nutrients
such as P, K, Mg, and N are scarce while others such as
Ca+2 appear in toxic concentrations (Breckle, 1998; Mota
et al., 2011). These particular conditions have contributed
to the evolution of specialized flora in these environments:

gypsophytes (Parsons, 1976). Gypsophytes have characteris-
tics that allow them to resist the stressful conditions of gyp-
sum soils, including the production of mucilaginous seeds,
which can anchor and become established on crusted soils
and maintain humidity during germination (Escudero et al.,
1999), or the accumulation of soil toxic ions in their struc-
tures (Palacio et al., 2007). The specialized nature of gyps-
ophytes contributes to their rarity and has led the European
Union to treat gypsophilous communities as priority habitats
(CCE, 1992).

Although gypsophilous communities have been the sub-
ject of considerable study, more remains to be known, as
the nature of the interactions that gypsophytes establish with
other plant species in the community. In arid regions the
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creation of microhabitats by adapted plants in which the
stressful environmental conditions are ameliorated allows the
persistence of nonadapted species (an interaction called fa-
cilitation, Bruno et al., 2003). Typically, those microhabi-
tats are vegetation patches created by perennial plants that
act as “nurses” and several plants that establish under their
canopies (Fowler, 1986; Pugnaire et al., 1996). An under-
standing of the nature of the interactions between plant
species is very important for the conservation of natural com-
munities, because facilitation can be an effective tool to re-
store and conserve natural habitats (Castro et al., 2004; Pueyo
et al., 2009). Gypsophytes are good candidates for acting
as nurses and facilitating the establishment of other, less-
adapted species because they are adapted to the stressful con-
ditions of gypsum soils.

In plant communities, biotic interactions can be modulated
by abiotic and biotic factors. It has been suggested that fa-
cilitative interactions become more important with increas-
ing aridity, because nurses buffer harsh environmental condi-
tions (Pugnaire and Luque, 2001; Pugnaire et al., 2004); and
with increasing grazing intensity as palatable species benefit
from spatially associating to nonpalatable species (Graff et
al., 2007; but see Smit et al., 2009; Soliveres et al., 2012 for
examples about the interaction between aridity and grazing).
However, in gypsum soils moderate grazing intensities can
result in a decrease of importance of facilitative interactions
as the trampling of herbivores can break the soil crust and in-
crease water infiltration, which enhances seeds establishment
and survival (du Toit et al., 2009; Pueyo et al., 2013). Thus,
how grazing modulates biotic interactions in a gypsum envi-
ronment is unknown. We may expect that facilitation plays
a predominant role in most stressful and ungrazed environ-
ments where gypsophytes are more common (Pueyo et al.,
2008).

Typically, studies of plant–plant interactions have focused
on specific pairs of species and the direct effect that a partic-
ular species (nurse) has on another (Pugnaire et al., 1996;
Howard and Goldberg, 2001). However, this approach in-
cludes only a small portion of all the interactions that oc-
cur in an ecosystem and recently facilitation has started to be
studied at community level (Cavieres et al., 2006; Valiente-
Banuet and Verdu, 2007; Soliveres et al., 2012). From the
second half of the 20th century, the network approach has
been a common tool to study interactions at the commu-
nity level by ecologists (Bascompte, 2007; Heleno et al.,
2014). Treating species as nodes within a network allows
the identification of properties of the communities and the
roles that species play within the community, which can-
not be addressed otherwise (Ings et al., 2009). However, the
use of ecological networks has focused on a few types of
systems (predator–prey, pollination and seed dispersal mu-
tualisms, and parasitism; Ings et al., 2009), while neglect-
ing others. This is particularly evident for plant communi-
ties, even though facilitation and competition among plant
species are major structural forces in these communities (but

see Verdu and Valiente-Banuet, 2008, 2011, to see an exam-
ple of network analysis in plant communities).

In this study we used a network approach to quantify
the structure of the interspecific interactions in gypsophilous
plant communities and the role that gypsophytes play in
structuring these communities. To our knowledge, this is
the first study to assess plant–plant interactions in a gyp-
sophilous community at community level. We built plant–
plant signed networks (sensu lato, networks with positive
and negative links) considering the spatial association be-
tween species in the community. Spatial patterns among
plant species are a suitable indicator of the nature of the inter-
actions among plants (Tirado and Pugnaire, 2005; Cavieres
et al., 2014). Specifically, we identified vegetation patches of
gypsophilous plant communities in areas that differed in arid-
ity and livestock grazing intensity. Vegetation patches were
built attending to the structural balance criterion for signed
networks, grouping in the same partition nodes which share
positive links while separating nodes negatively linked (Dor-
eian and Mrvar, 2009). We considered that each partition
(sensu lato, group of species spatially associated among them
and segregated from other species) represented a particular
type of vegetation patch in the community. We analyzed the
specificity of the vegetation patches in the community (i.e.,
the same species always were associated in the same patch
type) and the role of gypsophytes forming and differentiat-
ing those patches. We hypothesized that gypsophytes act as
nurses forming vegetation patches where other plant species
establish. We propose that (a) in high aridity ungrazed site
gypsophilous plant community presents most specific vege-
tation patches and positive interactions are the most impor-
tant because environmental conditions are the most stress-
ful; and (b) gypsophytes have a significant role in structuring
vegetation patches at the highly arid and ungrazed sites as
they are the best-adapted species to that environment.

2 Methods

2.1 Study area

The study was conducted at the la Lomaza wildlife refuge
(municipality of Belchite) and the Alcubierre Mountain
range (municipality of Leciñena) in the middle Ebro Val-
ley, Zaragoza, Spain. Both areas have gypsum soils that have
high gypsum content, but La Lomaza is more arid than Alcu-
bierre (Table 1). Several gypsophytes occur at both locations
such asHelianthemum squamatum(L.) Pers.,G. struthium
subsp.hispanicaand Ononis tridentataL., but some other
species are only present at one of these locations. Among the
nongypsophytes, small shrub species such asThymus vul-
garis L. and grasses such asLygeum spartum(L.) Kunth.
are common in La Lomaza, and tall shrub species such as
Rosmarinus officinalisL. and Cistus clusiiDunal predom-
inate in Alcubierre (Braun-Blanquet and Bolos, 1957). At
each location a grazed and an ungrazed site were selected for
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the study. Personal interviews with landowners confirmed the
grazing management practices and were used to calculate the
stocking rate (Table 1). Stocking rates corresponded to tradi-
tional grazing management practices in the region and mod-
erate grazing intensities (Robles and Passera, 1995). Thus,
the study included four sites: one ungrazed (HU) and one
grazed (HG) site at the most arid location, La Lomaza, and
one ungrazed (LU) and one grazed (LG) site at the least arid
location, Alcubierre (Table 1).

2.2 Vegetation survey and data analysis

At the four study sites vegetation was surveyed using the
point-intercept method (Goodall, 1952). The point-intercept
method has limitations to account for rare species (Van de
Maarel and Franklin, 2005); thus, we recorded a large num-
ber of points at each site to overcome this problem. At each
site, six 250 m long linear transects were established and the
plants that were in contact with the transect line in points
at 20 cm intervals were recorded in May and June 2010
(T = 1251 points per transect, 1251× 6= 7506 points per
site). The presence of all the species was registered, regard-
less of its life stage. We identified four gypsophytes:Hel.
squamatum, Herniaria fruticosaL., G. struthiumsubsp.his-
panica and O. tridentata(Mota et al., 2011), all of which
were present at the four sites. For each transect, we calculated
the abundance of each speciesi (ni), total species richness
(S), community evenness (E = H ′/ln(S), whereH ′ is Shan-
non diversity index,H

′

=
∑S

i=1pi lnpi , wherepi is the pro-
portion ofni respect the total plant abundance in each tran-
sect), abundance of gypsophytes (Gypso, sum of the abun-
dances of all gypsophytes in the transect) and the amount
of bare soil (BS, number of points in the transect where
no species were present/T ). Differences between sites were
evaluated using generalized linear models that included arid-
ity (low or high) and grazing (ungrazed or grazed) as fixed
factors, in R software (http://www.Rproject.org).

2.3 Network construction and analysis

To quantify plant community organization at each site, six
plant–plant spatial association networks (one network per
transect) were created based on the transect data. In these
networks, the nodes (i,j) are plant species and the links
(lij ) represent the spatial association between each pair of
species in the transect. The spatial association between each
pair of species was calculated comparing the number of co-
occurrences of the two species on the transect and the num-
ber of expected co-occurrences based on their abundances.
The number of co-occurrences of a pair of speciesi and
j (aij ) was the number of points in the transect wherei

and j appeared together, and the expected number of co-
occurrences for each pair of speciesi andj (eij ) waseij =

n/T × n/T × T (i.e., the probability of findingi andj at

the same point on the transect multiplied by the total number
of points in the transect; Saiz and Alados, 2012).

To compare theeij andaij for each pair of species, we
calculated the lower (e−

ij ) and upper (e+

ij ) limit of the 95 %
confidence interval of the Poisson distribution fitted witheij .
The spatial association between speciesi andj was defined
as follows:

lij = 1 if aij > e+

ij , (1)

lij = −1 if aij < e−

ij , (2)

lij = 0 if aij ≥ e−

ij and aij ≤ e+

ij . (3)

The spatial association betweeni andj is positive ifaij > e+

ij ,

and negative ifaij < e−

ij .
We calculated the following indices from the network: the

proportion of nonassociative species (NAs= 1−S′/S, where
S′ is the number of species that have at least one signifi-
cant spatial association), and the number of links per species
(D = L/S, whereL =

∑S
i=1

∑S
j=1

∣∣lij ∣∣). The proportion of
nonassociative species and the number of links per species
reflect the random spatial association between plant species
in the community. High NAs indicates that several species do
not present any significant spatial association in the commu-
nity, and lowD indicates that the spatial association between
most species is neutral. The balance between positive and
negative associations was measured using the association ra-
tio (ratio = (L+

−L−)/(L+
+L−), whereL+ is the number

of positive links andL− is the number of negative links in the
network). The association ratio reflects the predominant type
of links in the network (a positive ratio value indicates that
positive links are more common than negative links, while a
negative ratio value indicates the converse). Differences be-
tween sites in their network characteristics were tested in R
using generalized linear models, which included aridity and
grazing as fixed factors.

2.4 Network partitioning and importance of gypsophytes

Each network was divided inM partitions based on the struc-
tural balance criterion (Traag and Bruggeman, 2009). A net-
work that has positive and negative links is balanced if all of
its nodes can be assigned to one unique partition, such that
all of the links between nodes that conform a partition are
positive (lij = + 1 for everyi andj within a partition) and
all of the links between nodes that conform different parti-
tions are negative (lij = −1 for every i and j in different
partitions; Doreian and Mrvar, 2009). In our study, the par-
titions represented the different types of vegetation patches
that occurred in the ecosystem, and distinguished between
patches based upon the specific species present in each type
of patch (Fig. 1). If there were isolated blocks of species (i.e.,
the network could be divided in subnetworks that were not
connected), each subnetwork was assigned to its own parti-
tion (i.e., they were considered different vegetation patches).
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Table 1. Characteristics of the study sites in the middle Ebro Valley, Spain.

Code Site Coordinates Aridity Grazing (in Gypsum
(◦C mm−1) ha−1 year−1) (%)

LU Alcubierre 41◦46′ N, 0◦35′ W 2.94 0 49.32
LG Alcubierre 41◦46′ N, 0◦34′ W 2.87 0.66 45.83
HU La Lomaza 41◦23′ N, 0◦42′ W 4.37 0 62.39
HG La Lomaza 41◦24′ N, 0◦41′ W 4.27 0.35 43.17

Code refers to the sites with the lowest (L) and the highest (H) aridity index values and whether a site was grazed
(G) or ungrazed (U). Aridity was calculated as 100× annual mean temperature (C◦)/total annual precipitation
(mm) (Martinez-Hernandez et al., 2011). Grazing was calculated as livestock individuals (in)/hectare (ha) year
(year). Gypsum is the proportion of total soil content that was gypsum. Gypsum content above 40 % is considered
extremely rich in gypsum (Meyer, 1986).

Based on the structural balance criterion, networks might
be unbalanced systems because they can have links that do
not meet balance criteria (i.e., not all of the links within a
partition are positive or not all of the links between parti-
tions are negative; Doreian and Mrvar, 2009). An index of
frustration can quantify the extent to which a network de-
viates from perfectly balanced organization. As an index of
frustration, we used the proportion of all of the links in the
network that did not meet the structural balance criterion
(F = ((lMx 6= +1) + (lMx,My 6= −1))/L, where lMx is the
number of links within the partitionMx, and lMx,My is the
number of links between partitionsMx and My). Here,F
reflects the specificity of the vegetation patches in the com-
munity (i.e., the same species were always associated to the
same patch type): communities that have lowF values have
high species-specific patches. Network partitioning was per-
formed using Pajek (http://pajek.imfm.si/doku.php).

In a partitioned network, the role that each node has in
the organization of the network can be assessed, based on its
intrapartition degree and participation (Guimera and Amaral,
2005). Intrapartition degree (Ii) measures the extent to which
a node is connected to the other nodes within its partition.
Specifically,

Ii = (li,Mx − DMx)/σDMx
,

whereli,Mx is the number of links ofi within the partition
Mx, DMx is the number of links per node withinMx, and
σDMx

is the standard deviation of the number of links per
node withinMx. A positive Ii indicates thati is more con-
nected than the average within the partition, and a negative
Ii indicates thati is less connected than the average. Here,
Ii reflected the extent to which a species aggregated other
species in the vegetation patches where it occurred.

Participation (Pi) measures the extent to which a node is
connected to all of the partitions in a network. Specifically,

Pi = 1−

∑M

x=1
(li,Mx/li)

2,

whereli is i total number of links. APi close to 1 indicates
that li ,Mx is similar for all of theM partitions in the network
(li ,M1 ≈ li ,M2 . . .), and aPi close to 0 indicates that most of

the links ofi are concentrated within a specific partition. In
our study,Pi indicated the importance of a plant species in
differentiating among vegetation patches in the plant com-
munity.

TheIi andPi of gypsophytes represented their importance
in the network. In each network, species were assigned to a
group: species that had a low or a high intrapartition degree,
and species that had a low or a high participation. Important
species were more likely to be in the highIi and in the high
Pi groups. We assessed the importance of a species in two
ways: the importance of a species in attracting other species
in the vegetation patches (which was reflected by Ih, the pro-
portion of times that species occurred in the highIi group),
and the importance of a species in differentiating vegetation
patches (which was reflected by Ph, the proportion of times
that species occurred in the highPi group). Groups were
built using Ward’s clustering method and including all of the
species present in the network (Ward, 1963). For each study
site, the importance of gypsophytes in the network was as-
sessed using contingency tables that included low and high
Ii, or low and highPi values and plant type (gypsophyte
or nongypsophyte) as categories. In addition, the effects of
aridity and grazing on the importance of gypsophytes were
assessed using chi-square tests, with study site as category.
Contingency tables were built including the data from all
transects at each site. The importance of each species of gyp-
sophyte was assessed by comparing the Ih and Ph for all gyp-
sophytes with a chi-square test, including the data from all
transects. Group clustering and proportion comparisons were
performed with R.

3 Results

3.1 Effects of aridity and grazing in plant communities
and network structures

At the study sites in the middle Ebro Valley, Spain, the in-
teraction between aridity and grazing had a significant effect
on species richness (S, p < 0.001), evenness (E, p = 0.0149)
and the abundance of gypsophytes (Gypso, p < 0.001). At the
low aridity sites, grazing increasedS, E andGypso; however,
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Figure 1. Ecological meaning of partitions in plant–plant spatial as-
sociation networks.(A) Spatial association of plant species. Species
can associate forming a multispecific vegetation patch (species 1, 2
and 3 always co-occur in space), can segregate separating differ-
ent types of vegetation patches (species 1, 4 and 6 never co-occur
in space), or can associate randomly (species 7 co-occurs with all
species but also appears alone).(B) Plant–plant spatial association
networks. Nodes represent species and links represent the spatial
association between pairs of species (complete lines are positive
spatial associations, and dashed lines are negative spatial associa-
tions). Network is divided in partitions (grey circles), so that species
within a partition connect with positive links (species 1, 2 and 3)
while species from different partitions connect with negative links
(species 1, 4 and 6). Nodes that do not connect to others (species 7)
are not included in any partition.(C) Matrix for plant–plant spatial
association networks. Nodes are rows and columns of the matrix
and the intersection between two nodes represents their link (grey
squares are positive links, while black squares are negative links).
Partitions are represented as blocks within the network, so that pos-
itive links fall within partitions, and negative links fall outside.

at the high aridity sites, grazing did not have a significant ef-
fect onS andE, and reducedGypso(Table 2). Thus, aridity
modulated the effects of grazing in the plant communities.
Aridity and grazing had a significant effect on the amount of
BS (p < 0.001 andp = 0.0104, respectively). BS was higher
at the high aridity sites than it was at the low aridity sites, and
grazing increased BS independently of aridity (Table 2).

The interaction between grazing and aridity had a sig-
nificant effect on the proportion of NAs andD (p = 0.002
andp = 0.002, respectively). At the low aridity sites, graz-

Figure 2. Plant–plant spatial association networks of the plant com-
munity at four sites in middle Ebro Valley, Spain. Study site refers to
the sites with the lowest (L) and the highest (H) aridity index values
and whether a site was grazed (G) or ungrazed (U). Matrices were
divided in partitions, which represented the different types of vege-
tation patches in the community. Partitions were created following a
structural balance criterion. Positive associations (grey squares) fell
within, and negative associations (black squares) fell outside of par-
titions. Matrices were based on the transect number 6 at each study
site.

ing reduced the proportion of NAs and increasedD. At the
high aridity sites, grazing did not have a significant effect on
NAs or D (Table 3). Grazing increased the association ra-
tio (ratio, p = 0.003) and reduced the number of partitions
in the network (M; p = 0.041), independently of aridity (Ta-
ble 3), which indicates that plant species aggregated in veg-
etation patches where grazing occurs; however there were
more types of patches where grazing was absent. Networks
were more balanced (i.e.,F was lower,p < 0.001) at the high
aridity sites than they were at the low aridity sites (Table 3),
which suggests that spatial associations among plant species
in vegetation patches were more species-specific in the high
aridity sites because plant species preferentially associated
with the same species, rather than with any given species in
the community (Fig. 2).
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Table 2. Characteristics of the plant community at the four study sites in the middle Ebro Valley, Spain.

Study site Species richness Evenness Gypso Bare soil cover

LU 26.5± 1.48 0.65± 0.02 63± 8.39 0.42± 0.02
LG 42.83± 2.61 0.77± 0.01 115.67± 9.17 0.46± 0.02
HU 29.17± 2.57 0.71± 0.02 174.67± 25.82 0.59± 0.02
HG 27.83± 1.22 0.74± 0.01 77.17± 9.82 0.68± 0.03

Study site refers to the sites with the lowest (L) and the highest (H) aridity index values and whether a site
was grazed (G) or ungrazed (U).Gypso, sum of the abundances of all the gypsophytes that occurred on linear
transects. All values are given as mean± standard error.

Table 3. Characteristics of the spatial association networks of the plant community at the four study sites in the middle Ebro Valley, Spain.

Study site Proportion of nonassociative species Linkage per species Association ratio Number of partitions Frustration

LU 0.43± 0.03 1.3± 0.13 0.53± 0.06 4.17± 0.6 0.06± 0.02
LG 0.23± 0.03 2.26± 0.15 0.83± 0.02 2.67± 0.56 0.04± 0.01
HU 0.39± 0.04 1.24± 0.21 0.67± 0.1 4.83± 0.4 0.01± 0.01
HG 0.42± 0.04 1.08± 0.12 0.87± 0.05 3.33± 0.33 0.01± 0.01

Study site refers to the sites with the lowest (L) and the highest (H) aridity index values and whether a site was grazed (G) or ungrazed (U). Frustration was calculated as the
proportion of links that did not fulfill the structural balance criterion.

3.2 Importance of gypsophytes in structuring plant
communities

Gypsophytes appeared in the high intranode degree group
43 % of the time (Ih= 0.43), which suggests that they had
an important role aggregating species in the study area,
while they appeared in high participation groups 10 % of the
time (Ph= 0.1). Furthermore, gypsophytes were more im-
portant, aggregating other species in vegetation patches than
the nongypsophytes in the plant community only at the high
aridity, grazed site (HG; Fig. 3). Neither aridity nor grazing
had a significant effect on the importance of gypsophytes in
the plant communities (χ2

= 0.463,p = 0.927). Thus, it ap-
pears that gypsophytes played a role in aggregating species
in the plant community independently of environmental con-
ditions, but they were not more important than nongypso-
phytes.

Attending to the importance of gypsophytes, there were
no significant differences between the species (χ2

Ih = 5.537,
pIh = 0.136,χ2

Ph = 2.177,pPh = 0.536, Fig. 4). Visual anal-
ysis of the proportions suggests thatGypsophila struthium
subsp.hispanicaandOnonis tridentatawere more important
aggregating species in the plant community than the other
gypsophytes (Fig. 4a), but the difference was not signifi-
cant. These results suggest that species-specific aggregation
in vegetation patches was not strongly linked to the special-
ization to gypsum soils of benefactor species.

4 Discussion

4.1 Effects of aridity and grazing in plant communities
and network structure

Biotic (grazing) and abiotic (aridity) factors significantly af-
fected the structure of plant communities on gypsum soils in
the middle Ebro Valley. Grazing increased the amount of bare
soil and the ratio of positive-to-negative plant–plant associ-
ations in the communities. Consumption of plant biomass
by herbivores reduces vegetation cover, which increases the
amount of bare soil (McNaughton, 1986; Milchunas and
Lauenroth, 1993), and also increases the spatial association
between grazing-resistant and vulnerable species as it is a
common defense mechanism against grazers of plants (Olff
and Ritchie, 1998). In addition, as presented in the hypoth-
esis, grazing reduced the number of partitions in the net-
work (i.e., grazed communities presented less types of veg-
etation patches). Plant consumption and trampling by her-
bivores can disrupt the plant community structure in arid
environments by randomizing the organization of vegeta-
tion patches, which creates a more homogeneous distribu-
tion of plant species among patches (Adler et al., 2001). This
homogenization increases the similarity among vegetation
patches in a plant community.

In our study, plant–plant spatial association networks indi-
cated that positive interactions dominated over negative inter-
actions in all study sites, but this dominance did not vary with
aridity. Theory posits that positive interactions become more
frequent in natural communities as stress increases (Bertness
and Callaway, 1994), but more recent formulations show that
this relationship is unimodal when stress is based on resource
limitation (Maestre et al., 2009). In our case we did not find
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Figure 3. Importance of gypsophytes in the plant association net-
works at the four study sites in the middle Ebro Valley, Spain. Study
site refers to the sites with the lowest (L) and the highest (H) aridity
index values and whether a site was grazed (G) or ungrazed (U).
(A) Proportion of times that plant species appeared in a high in-
trapartition degree group (Ih) at each study site.(B) Proportion of
times that plant species appeared in high participation group (Ph)
at each study site. Bars include the proportion of times that a gyp-
sophyte (dark bars) or a nongypsophyte (light bars) appeared in a
high value group (Ih and Ph). Nonsignificant differences between
gypsophytes and nongypsophytes at each site are represented by ns,
while marginally significant differences (p values < 0.1) are repre-
sented by “•”.

significant effects because, as we only have two aridity lev-
els, the difference in stress intensity might not have been suf-
ficient to test this hypothesis (Maestre et al., 2006). However,
specificity of vegetation patches was higher at high aridity
sites. High aridity contributes to more restrictive soil con-
ditions and a thick soil crust (reflected by the large amount
of bare soil in HU and HG sites; Pueyo et al., 2007), which
results in a plant community that is highly specialized for
resisting those types of stresses (Escudero, 2009). In high
aridity sites, gypsum-tolerant species created the vegetation
patches of the community (e.g., with roots that can break
through the soil crust; Romao and Mota, 2005), and the com-
position of these patches was highly species-specific. This
result coincides with our initial hypothesis and other works
suggesting that facilitative interactions are related to species-
specific attributes like indirect facilitation or differential re-
sponse to allelopathy (Soliveres et al., 2012). At the low arid-
ity sites environmental conditions are more benign, which
can be related to an increase of competition in the commu-
nity as a result of an increase in the relative abundance of
competitor species (Michalet et al., 2006). Thus, although
the decrease in the importance of positive interaction was
not significant, less species-specific vegetation patches sug-
gests that facilitated species competed amongst themselves
for the space under nurses, but were not associated to a spe-
cific patch type.

We also found that the effect of livestock grazing on sev-
eral community indices was modulated by aridity. At the

Figure 4. Importance of each gypsophyte species in the study area
of the middle Ebro Valley, Spain.Gypso: G. struthiumsubsp.his-
panica; Ono: O. tridentata; Hel: Hel. Squamatum; Her: Her. fru-
ticosa. (A) Proportion of times that each gypsophyte appeared in
high intrapartition degree group (Ih) in the study area.(B) Propor-
tion of times that each gypsophyte appeared in high participation
group (Ph) in the study area. There were no significant differences
between gypsophytes.

high aridity sites, grazing did not affect species richness and
reduced the abundance of gypsophytes. Grazing increases
the bare soil cover in arid environments and the number of
species tends to decrease at local scales, which results in a
decreasing or constant trend for richness with grazing inten-
sity (de Bello et al., 2007). Attending to gypsophytes, grazing
can affect the hydrophysical properties of the soil by remov-
ing the surface soil crust (du Toit et al., 2009), resulting in a
more benign environmental condition which can limit the es-
tablishment of specialized flora. At the low aridity sites, how-
ever, livestock grazing increased species richness, commu-
nity evenness and gypsophytes abundance. At the low arid-
ity sites, the plant community was dominated byR. offici-
nalis and herbivores that feed on it (althoughR. officinalisis
not as nutritious as other species, it was very common and
easy to find in the community; Barrantes et al., 2004). Thus,
grazing created gaps on vegetation where other species (in-
cluding gypsophytes) became established (Rook et al., 2004)
and reduced the abundance of the dominant species (Olff and
Ritchie, 1998). These species created new vegetation patches
where other species became established, providing protec-
tion against grazers and resulting in an increase of the density
of links in the network.

Although widely employed to study food webs or plant-
pollinator systems, the analysis of interactions in plant com-
munities with networks remains scarce (Verdu and Valiente-
Banuet, 2008, 2011). Traditionally, plant community struc-
ture has been studied with multivariate methods or incidence
matrices. Multivariate methods study the structure of the
communities by grouping species which shared similar prop-
erties (e.g., cluster analysis), and linking community species
to environmental properties (e.g., principal component anal-
ysis; James and McCulloch, 1990). However, these methods
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do not specifically address biotic interactions among species.
Incidence matrices employ co-occurrence patterns among
species to describe species assembly rules of the community,
which can be related to biotic interactions, but do not focus
on the specific role of species in the community (Gotelli,
2000). In contrast, network analyses are specifically meant
to study the interactions established among organisms, and
provide valuable information about the general structure of
the community and the role that each species plays in that
structure (Newman, 2003). Thus, we believe that networks
are a valuable method to identify species which play a key
role sustaining the structure of the plant community through
their biotic interactions.

4.2 Importance of gypsophytes structuring plant
communities

In the middle Ebro Valley, gypsophytes had a more impor-
tant role than the other species in the plant communities only
in one site (HG); however, neither aridity nor grazing had a
significant effect on their overall importance. Independently
of the presence of gypsophytes, some nongypsophytes, par-
ticularly dominant species such asL. spartumandR. offic-
inalis, formed vegetation patches and played a significant
role in the plant communities. At high aridity sites, vege-
tation patches were formed by gypsophytes andL. spartum
(in HU, Ihlygeum =0.8, Phlygeum = 1), which is a very thick
grass that can survive in gypsum soils, that can survive in
gypsum soils and allows several small plant species tp es-
tablish at its edges (Pugnaire et al., 1996). At those sites,
grazing reduced the abundance ofL. spartum, and gypso-
phytes became more important in aggregating other species.
At low aridity sites, vegetation patches were formed byR. of-
ficinalis (in LU, IhRosmarinus = 0.67, PhRosmarinus = 0.83),
which is a shrub taller than the gypsophytes and dominates
the space in the community.Rosmarinus officinaliscreated
low-diversity patches, and displaced most of the plant species
in the community to the gaps that it did not occupy. That
dominance could be associated with an allelopathic strategy
that is typical of several species that are in the same genus
or family (Angelini et al., 2003). Grazing reduced the abun-
dance ofR. officinalis, which allowed gypsophytes to form
vegetation patches that differed from those ofR. officinalis
(but differences were not statistically significant; Fig. 3).

There were no significant differences in the impor-
tance of gypsophytes structuring the networks. How-
ever, Fig. 4 suggests thatG. struthium subsp. hispan-
ica and O. tridentata were more important in aggre-
gating species (Ih). These species are tall shrubs, while
Hel. squamatumand Her. fruticosa are smaller. Typi-
cally, shrubs are responsible for the formation of vegeta-
tion patches in semiarid environments (Sala and Aguiar,
1995) and bigger canopy size is related to more facili-
tated species richness (Tewksbury and Lloyd, 2001). Fur-
thermore, a chi-square analysis comparing the importance

of tall and small gypsophytes (IhG. struthium+ IhO. tridentata

vs. IhHel. squamatum+ IhHer. f ruticosa) showed significant
differences between both groups (χ2

Ihtallvssmall= 4.192,
pIh tallvssmall= 0.041).Gypsophylla struthiumsubsp.hispan-
ica formed vegetation patches in which several plant species
became established, but at the low aridity sites where plant
community was dominated byR. officinalis, G. struthium
subsp.hispanicadid not form proper patches. On the con-
trary, Ononis tridentataformed vegetation patches in the
low aridity sites (it was less abundant at high aridity sites,
nononis = 5± 1.03 in high aridity sites;nononis = 30.4± 4.73
in low aridity sites; values are presented as mean± standard
error). In high aridity sitesO. tridentatapresented low cov-
erage and, thus, did not contribute to community structure as
did the other, more abundant gypsophyte shrubG. struthium
subsp.hispanica.

The other gypsophytes,Hel. squamatumand Her. fruti-
cosa, did not aggregate other species. Those species present
smaller canopies and tend to occur in monospecific patches
at all of the study sites. This can be explained by differ-
ent mechanisms. For example, as they are small plants, it
is unlikely that they can facilitate other species, (Sala and
Aguiar, 1995). Furthermore, they can establish on bare soil
(where others cannot) because they have traits that make
them adapted to semiarid environments (e.g., the seeds of
Hel. squamatumpresent mucilage, which helps them to an-
chor to the soil surface; Escudero et al., 1999). Thus, it ap-
pears that plant traits (e.g., plant size, life form) are more
important in structuring vegetation patches in gypsophilous
plant communities than the tolerance to gypsum soils.

5 Conclusions

The analysis of plant–plant spatial association networks re-
vealed that abiotic and biotic factors such as aridity and live-
stock grazing influence the structure of plant communities
on gypsum soils in the middle Ebro Valley, Spain. At the
high aridity sites, grazing reduced the abundance of gypso-
phytes, but they continued conforming vegetation patches of
the plant community. However, at the low aridity sites, graz-
ing reduced the dominance of a few species, which enabled
the establishment of other species that can form vegetation
patches. Gypsophytes played an important role in structuring
the vegetation patch organization in the plant communities
on gypsum soils, independently of environmental factors. For
example, tall gypsophyte shrubs such asG. struthiumsubsp.
hispanicaand O. tridentatawere important in aggregating
species, while small gypsophytes such asHel. squamatum
andHer. fruticosadid not because they were able to estab-
lish themselves on bare soils, where other species cannot. In
addition to the gypsophytes, other species such asL. spartum
or R. officinalisplayed an important role in structuring vege-
tation patches. To understand the mechanisms that drive the
organization of gypsophilous communities, it is important to
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consider both the biotic and the abiotic environmental fac-
tors that might be operating, in addition to the role of gyps-
ophytes. However, other less specialized species might also
play a significant role in the structuring process. Community-
level approaches such as plant–plant networks might help
to find the keystone species and improve our understanding
about the most important processes that underlie ecosystems.
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