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 

Abstract— The complex and ever changing Internet of Things 

(IoT) domain could benefit from standardization and a higher 

degree of autonomy between different layers: standard 

approaches defining the relationship between security 

communication software functionalities, hardware and 

applications would allow a more efficient, flexible and secure 

communication. To this end, techniques in which the security of 

IoT devices is decoupled from the applications they run, can 

provide significant benefits and enable the development of new 

standardization strategies. This paper presents a study of the 

benefits provided by IoTsafe, a security decoupling approach, 

when used in combination with the Constrained Application 

Protocol (CoAP). Whereas previous work relied on HTTP/HTTP2 

protocols, the present paper is focused on the analysis of the 

feasibility of IoTsafe in more constrained devices in channels with 

high interference levels. The benefits of this technique are 

illustrated by means of a battery of tests to evaluate the impact of 

this scheme. The results show no performance penalty (taking 

CoAP with security as a baseline) in lossless channels, even when 

an overhead increment of 38% is borne. Furthermore, in lossier 

channels, a transfer time reduction of 36% is achieved, a figure 

that increases significantly if traffic compression is enabled. 

Index Terms—IoT, CoAP, SSH, DTLS, Security decoupling 

I. INTRODUCTION 

HE continuous increase in the number of the IoT devices is a

well-known phenomenon. Some predictions forecast a total 

amount of connected devices around 500 billion by the end of 

2030 [1]. As a counterpart, the concerns about the security threats 

that may affect these devices are growing. Extensive literature 

has already defined different taxonomies of potential threats for 

these devices, and has also suggested some possible strategies to 

overcome them and limit their scope [2] [3] [4] [5].  

IoT security maintenance is usually addressed following an 

“ad-hoc” reactive approach, where temporary measures (patches) 

are provided whenever a vulnerability is discovered by an attack 

or just by public disclosure. However, the lack of incentives for 

the final user to deploy these patches may render this security 

paradigm insufficient [6]. To overcome this problem, a more 

proactive methodology would need to include an improved 

approach where security-by-design is seriously considered [7]. 

Each IoT market is defined by specific needs addressed by 

technological solutions that usually cover all concerning aspects 
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and layers of the IoT project in a vertical way: from devices to 

services. Thus, IoT vertical markets’ demands usually result in 

IoT vertical solutions. These technologies are devised only with 

the particular market problems in mind, and the absence of 

globally accepted standards at each layer hinders future 

interoperability between verticals. Advanced security 

technologies will further isolate the different solutions, requiring 

more complex middleware to keep connectivity but preventing 

new business opportunities from arising. For the sake of 

productivity, and also to benefit from new third parties’ added 

value, vertical solutions should be encouraged to increase their 

interoperability and potential collaboration [8]. 

Regulators are also addressing this problem. As an example, 

the European Union is concerned about all these cybersecurity 

issues and truly committed to its future regulation. Ongoing work 

in this area suggests that, in some cases, all IoT security efforts 

will have to be externally certified in accordance with the 

Cybersecurity Act [9]. These security efforts affect any piece of 

software, hardware, a device or set of devices, a technique, or a 

combination of any of the previous, according to the definition of 

the Target of Evaluation (TOE) by the Common Criteria for IT 

Security Evaluation (ISO/IEC 15408)1. In order to achieve an 

Evaluation Assurance Level 7 (EAL7), the current complexity of 

the design must be minimized and also a “white box” testing and 

complete independent confirmation of developer test results are 

required [10].  

This suggests that a simplification of the certification process 

is feasible if more independence between the parts of the system 

is achieved. Security should be guaranteed and managed by well-

defined items (hardware, software or both), which should have to 

be certified (for security purposes) according to their use, as it 

similarly happens with i.e., Payment Card Industry (PCI)2 

certifications in points of sale, cashiers, etc. Those devices might 

be complex but, as “payment security decoupling” is successfully 

implemented, only the elements that are involved in payment 

procedures have to be certified by PCI. 

Thus, solutions able to facilitate the future certification 

processes of IoT devices are needed. This problem is being dealt 

with in different works usually through a middleware approach 

[11] offering hardware abstraction [12] to increase 

interoperability and to improve security [13], but the Application 

1 Common Criteria for IT Security Evaluation,  

https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf 
2 Payment Card Industry certifications  

https://www.pcisecuritystandards.org/ 
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Programming Interfaces (APIs) required to be used by the IoT 

application are wont to prevent a full decoupling from 

succeeding, as highlighted in [14]. In that paper, and also in [15], 

a system called IoTsafe was presented, where the security was 

decoupled from the applications using plain sockets, Secure 

Socket Shell (SSH) protocol and Linux kernel features. Such an 

approach does not guarantee any certification compliance by this 

alone, but simplifies the way to address security and certification 

issues separating security from applications [15]. However, its 

scope was limited because it was only implemented and tested 

with long-standing protocols such as HTTP. In contrast, more 

recent protocols specifically designed for IoT environments as 

i.e., CoAP, were not studied.

In the present paper, we perform an analysis of the security 

decoupling feasibility in IoT environments using CoAP. An 

overall study of its advantages is conducted and it is also 

discussed how CoAP environments could easily benefit from 

security decoupling features. Taking into account the resource 

limitations of these environments, the performance impact is 

also studied, by means of empirical measurements of the 

penalty cost the security decoupling approach could have in 

terms of transfer time, which by extension affects the energy 

consumption and hardware resources required [15]. The tests 

will primarily evaluate the feasibility of the security decoupling 

strategy for CoAP applications and its performance in lossy 

environments due to existing interferences in the channel used. 

The remainder of the article is organized as follows: in the next 

section we summarize the security decoupling approaches 

existing today, with a particular focus in communications. In this 

section are introduced as well some capital features of 

constrained devices and protocols, and some ongoing efforts 

which would enable such security decoupling strategy in these 

devices. Section III details the Test Scenarios, the Results are 

presented in section IV and the paper ends with the Conclusions. 

II. RELATED WORK

A. Security decoupling: a “Divide and rule” policy 

The security concerns, the verticals’ interoperability and the 

regulation efforts previously introduced represent competing 

interests from different parties, all together intertwined into a 

Gordian knot that stalls most of the initiatives towards any 

direction. This has motivated a differentiated handling of the 

security in a special way, apart from the rest of functionalities 

and traditional features IoT device’s applications may offer. 

Modern processors and microcontrollers provide special 

functionalities that can help to achieve this objective. The tasks 

related to security management, integrity and trust between 

applications in a device can be addressed with specific security 

hardware entities, conforming a Trusted Execution 

Environment (TEE) [16]. This can be understood as a security 

decoupling of sorts, as the applications are relying main 

security responsibilities to these entities, so as to gain a proper 

trust. Applications running under this paradigm are considered 

under a TEE [17]. 

3 Global Platform, The standard for secure digital services and devices,  
https://globalplatform.org/ 

Nevertheless, this approach makes the final product highly 

dependent on the chosen technical scheme (the TEE solution and 

hardware architecture). Thus, some initiatives have arisen such 

as Globalplatform3, gathering about 90 organizations worldwide 

to devise the basis of a set of standards that any solution should 

follow so as to guarantee interoperability. Such standards define 

multiple interfaces according to each technical area. Network 

communications also have their own, defined by the TEE Sockets 

API [18]. 

This API enables Trusted Applications (TAs) to establish and 

use their communications through a new kind of network socket, 

known as the iSocket. This entity acts as a wrapper of a regular 

socket for the TA (Fig. 1). Rich Execution Environment 

Applications (GlobalPlatform uses the term “REE” to talk about 

applications in which the user interacts with the OS) have to rely 

on the TEE Client API in order to secure their communications 

through a TA and thus, this scheme is indeed following a security 

decoupling approach. The iSocket can be configured to establish 

a secure communication using Transport Layer Security (TLS) 

or Datagram Transport Layer Security (DTLS) protocols. In the 

case TLS/DTLS became outdated, a new TA should be devised 

and upgraded to support the new TLS version. This might not be 

straightforward, but it would imply a much easier procedure than 

upgrading the whole REE Application for every kind of device. 

This particular item (the TA) is supposed to become common, 

under heavy development and independent from REE 

Applications. However, if this upgrade (of the TA) required a 

new version of the TEE Client API, the REE Client Application 

should have to be adapted as well, and its binary code replaced, 

though this situation should become rather anecdotal (only major 

upgrades should require API changes). 

As a summary, it can be said that an IoT solution which is to 

follow this scheme to the letter would benefit from certifiable 

security, although this may imply more complexity and a certain 

loss of interoperability. Regarding networking issues in 

particular, when the application and no TEE-compliant sources 

have to communicate, then TLS/DTLS must be included in the 

REE application, preventing a security decoupling approach 

from being followed in practice. Besides, using TEE network 

security features also requires the application to be specifically 

designed for such a communication API, forcing already existing 

applications to be redesigned to get adapted to this requirement.  

Fig. 1.  Separation of Security Protocols and Pure Transport Protocols [18]. 

https://globalplatform.org/
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OPEN-TEE [19] is a related technology that provides a slightly 

different approach: it offers simplicity and compatibility between 

architectures in exchange for renouncing to the use of dedicated 

hardware features and their performance. Further bold 

approaches include virtualization techniques adapted to IoT edge 

devices. The virtualization system may or may not comply with 

Globalplatform standards, but it can benefit either way from 

dedicated security hardware features without the virtualized 

applications noticing. This type of system is transparent to the 

applications and can be more convenient for developers, as it 

simplifies the application design by truly decoupling security 

issues. Successful secure virtualization has even been carried out 

in devices with 2 mbytes of ROM and 512 kbytes of RAM [13]. 

This virtualization scheme could be complemented with a 

security decoupling technique for communications that would 

enhance an overall security solution without affecting either 

applications’ portability or simplicity. 

B. IoT verticals: a connectivity barrier to overcome 

The great number of existing verticals for different IoT areas 

makes it imperative the creation of supra entities called 

federations [20]. Interconnecting different verticals usually 

requires complex semantic transversal middleware environments 

[21], but the European Telecommunications Standards Institute 

(ETSI), member of the oneM2M Global Initiative4, is working 

towards “horizontalizing” the pipes [22] to simplify this feat. 

To that end, it is remarked the necessity of a standardized 

horizontal middleware of sorts that could homogenize all 

underlying devices and technologies, simplifying 

intercommunication between services of different vertical 

approaches, as presented in Fig. 2. 

RERUM5 can be considered as a fine example of this effort: 

a middleware that helps to improve privacy and security in the 

IoT, but also promoting interoperability [23]. This approach 

intends to become the middleware suggested by ETSI 

(Common Application Infrastructure, Fig. 2) to simplify 

horizontal deployments across many IoT markets. However, 

instead of presenting a truly way to devise IoT federations 

through horizontal deployment, RERUM ends up becoming 

itself into an extraordinary flexible but vertical solution in 

practice, because of its mandatory IoT device abstraction 

scheme, a common issue in middleware-based approaches. 

This abstraction is held by a local IoT device middleware (Fig. 

3), which converts the IoT device (the physical device) into a 

RERUM Device (RD), i.e., a virtual entity easier to handle. This 

allows the main middleware modules (in servers) to benefit from 

a translation of all the resources and services that the IoT devices 

may provide, but as RD resources instead. Thus, this 

“virtualization” cannot be truly considered a successful security 

decoupling-based approach, since the IoT device software 

abstraction and the communication security features are not 

independent: the RD Adaptor is a part of the RD Middleware 

environment that lays in each IoT device and homogenizes them 

all, but also assuming all security communication 

responsibilities.  

4 One M2M, standards for M2M and the Internet of Things,  
http://www.onem2m.org/ 

Thus, it may prove difficult for already designed devices to 

join the Common Application Infrastructure that RERUM 

provides, as this would require major changes to each IoT 

device’s software design. Besides, this hardware abstraction 

technique also happens to result hardware dependent: it is only 

devised for ARM technologies, limiting the scope of the 

federation architecture to specific manufacturers [24]. 

Furthermore, security upgrades are to be made altogether with 

the middleware (not independent).  

Anyhow, including a security decoupling approach in this 

scheme is feasible and can provide all its intrinsic benefits. This 

would only require minimal modifications of the proposed 

RERUM design, allowing a simpler IoT device abstraction 

approach and also different IoT device’s architectures to join.  

There exist other different approaches based on the use of 

middleware which usually simplifies its implementation through 

frameworks [25]. However, the majority of the solutions suffer 

from similar difficulties when handling security upgrades 

because the IoT device software is not fully independent from the 

middleware and its APIs. 

C. IoTsafe: an IoT security decoupling approach 

 IoTsafe is a security decoupling scheme deployed in the 

communication layers. It is able to simplify some security 

problems (particularly when upgrading, see Fig. 4) and to reduce 

possible threats whilst improving interoperability and helping to 

comply with certification procedures [14].  

This security decoupling technique is only straightforwardly 

deployed when an embedded Linux variant and the SSH protocol 

are present in the devices. Nevertheless, this solution should be 

understood as a possible realization of a general method to enable 

5 RERUM: REliable, Resilient and secUre IoT for sMart city applications, 
https://ict-rerum.eu/ 

Fig. 2.  Vertical and horizontal pipe standardization scenarios [22]. 

Fig. 3.  RERUM device functional layers [23]. 

http://www.onem2m.org/
https://ict-rerum.eu/
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the “horizontalization of verticals,” not necessarily requiring 

Linux or SSH [26]. Security decoupling can be presented as an 

“extension” of OSI communication layer in between the 4th and 

the 5th layers: IoTsafe uses sockets as interface (layer 4) but also 

operating system driven security contexts (layer 5) provided only 

through standard Linux kernel features.  

IoTsafe proposes simplifying all IoT application software in 

the device by delegating all security and authentication issues to 

a complimentary stand-alone software module in charge of 

establishing a secure connection between the device and the 

gateway/server (Fig. 5). This piece of software should be the only 

one able to communicate, providing transparent proxification of 

all communication sockets to/from the IoT gateway/server.  

Conversely, the local communications between sockets 

within the server (Fig. 6) are securely established from one 

socket to another following a virtual circuit commutation 

approach conceptually similar to the one illustrated in Fig. 7. 

This local communication inside the IoT gateway/server is 

fashioned and protected transparently through security contexts 

[14]. Linux kernel features there as a “communication 

hypervisor”, transparent to the proper communications, as 

regular hypervisors deal with virtual machines. Such a security 

decoupling approach inherently offers interesting benefits [14]: 

 Efficient application development: Security concerns are

out of the IoT device application scope and can be delegated

to complimentary software maintained by 3rd business

parties specialized in security.

6 https://www.freertos.org/ 

 Simpler application’s communication: End-to-end data is

generated by insecure applications over a secure channel.

 Technology-independent communication: As secure digital

communication may be transparently transmitted through

insecure analog channels, even raw IoT devices’ resources

can be securely, transparently and independently

transmitted through the underlying communication

technology by using security decoupling techniques. Thus,

local IoT device resources can be forwarded as plain

network sockets (a much simpler interface than used by

most APIs) into an IoT gateway/server, and remote

resources can be securely forwarded back into the IoT

device as well.

As a result, all the security concerns can be delegated nearly

in full to this IoTsafe lower communication layer, and be 

upgraded and maintained by external 3rd parties offering an 

analogous service to, i.e., the one provided by antivirus security 

firms for computers and servers. This could allow a white-box 

testing procedure that would enable compliance for the highest 

security certification levels more affordably through the entire 

life cycle of the device. Simultaneously, interoperability would 

also be simplified, as related communication layer interfaces 

consist of plain local sockets handled transparently through 

security contexts: IoT server applications perceive all IoT 

devices’ resources as local entities (plain sockets inside the 

machine) and so do the IoT devices with the ones provided by the 

IoT platform/middleware of the IoT gateway/server [14].   

D. Security decoupling for constrained devices 

Recent surveys [27] [28] [29] conducted among developers 

suggest that IoT solutions deployed into moderately constrained 

devices rely on Operating Systems (OS) or Real Time Operating 

Systems (RTOS) rather than on bare metal firmware. According 

to the most recent of those surveys [29], FreeRTOS6 seems to be 

Fig. 4.  Upgrading TLS on an IoT Core Application of an IoT device: It may 
require modifying the IoT Core Application in the device and rebuild it [15]. 

Fig. 5.  Upgrading IoTsafe on an IoT device: IoTsafe stand-alone security 

modules interface with the core IoT Application through local sockets, easing 

security upgrading processes thanks to software independence [15]. 

Fig. 6.  IoTsafe conceptual scheme for local connections in the gateway/server. 
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Fig. 7.  IoTsafe gateway/server simplified communication scheme, rendered as 

an old-style manual circuit-switched telephone network. 

https://www.freertos.org/
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one of the RTOS preferred for such projects by the developers, 

thanks to its wide hardware support and also by its available 

Portable Operating System Interface (POSIX) compliance. 

IoTsafe’s direct approach requires at least a POSIX 

environment and also SSH features available in the devices, 

something that the most constrained ones were unable to achieve. 

Nevertheless, novel initiatives interested in boosting SSH 

development into constrained equipment have arisen. As an 

example, WolfSSH7 is able to provide SSH server v2 

implementations for FreeRTOS with a minimal footprint of 32 

kbytes and only requiring between 1.4 and 2 kbytes of RAM. 

This would enable IoTsafe to be run in more constrained devices 

straightforwardly. According to a recent IETF draft classification 

[30], such abled devices would be ranging from class 15 (0.5 GB 

to 1 GB RAM) to virtually class 1 (10 KiB of RAM, 100 KiB of 

ROM), as FreeRTOS hardware requirements are also rather slim. 

Communication protocols used in constrained devices are 

diverse, and sometimes long-standing ones are included, such as 

HTTP, HTTP/2 and Message Queuing Telemetry Transport 

protocol (MQTT). On the other hand, CoAP is relatively new, 

particularly devised for constrained environments, and complies 

as a REpresentational State Transfer protocol (RESTful). It 

works over UDP and it is primarily aimed for small devices’ 

payloads like sensors’ and actuators’. Nevertheless, its bitwise 

extension also provides support for occasionally larger payload 

transfers, primarily for firmware upgrades [31]. 

As explained in the Introduction, the security decoupling 

approach should be independent from the underlying technology 

and thus, it is feasible to design different stand-alone modules 

(based for example on CoAP rather than on SSH), allowing this 

security-decoupling scheme also to use UDP. Such an approach 

would help to deal with security concerns, thanks to IoTsafe 

general security decoupling procedures, once they are found 

feasible in CoAP deployments. Besides, this decoupling 

functionality would help to separately address other problems, 

such as improving the behavior of the communications in lossy 

environments without modifying the core IoT CoAP application 

binaries.  

Anyhow, in the pursuit of simplicity, the straightforward 

approach (based on Linux and SSH) is chosen for the tests 

presented in the next section, in order to simplify the procedure 

and also to allow cross-analyses with existing results for other 

protocols found in the literature [15]. 

7 https://www.wolfssl.com/products/wolfssh/ 

III. TEST SCENARIOS

The comparison of a security-decoupled approach and the 

standard one involves multiple test series where the IoT device 

performs several GET petitions to a gateway/server, requesting 

a resource. Both server and client pieces of software supporting 

CoAP are devised in Java using the Californium framework8. 

The resource offered is dynamic and provides random text. The 

figures of merit to be evaluated in the tests are the overhead, the 

loss rate of 802.15.4 frames and the required transfer time. 

These measurements are devised to feature the possible 

performance impact that a common lossy environment may 

have in each configuration. Other concerns left aside such as 

payload behavior dependence, 802.15.4 fragmentation or server 

security and scalability, have already been studied in depth [14]. 

The test series are run in two scenarios: the first one uses an 

almost lossless channel, and the second one is lossier with ~1% 

UDP’s lost 802.15.4 frames. The test procedure in the lossy 

environment is devised to affect similarly the four cases and 

evidence of this is thoroughly elaborated in the Results. In both 

scenarios, 100 interleaved sets of 100 GET requests each with 

1024 bytes of payload, are performed for each protocol 

configuration to analyze (a case). Once a set of 100 GET 

requests of one of the cases is finished, the following one 

proceeds until the four cases are completed (an iteration). The 

whole test battery comprises 100 iterations for each scenario. 

Each set of 100 GET requests is performed in a row, i.e., 

serial, to avoid penalizing DTLS-based cases. In general, DTLS 

should perform a full secure handshake for each request while 

SSH approaches just establish a connection reusable for all the 

100 requests. Thus, when CoAPs (CoAP with DTLS support) 

is run, DTLS can benefit from this, reusing the cryptographic 

established configuration for the 99 remaining requests. The 

four cases to consider at each scenario are as follows:  

 CoAP, used straightforwardly, including a server and a client

without any other special feature.

 CoAPs, similar to the previous one, but with DTLS.

 CoAP with SSH (denoted as CoAP_SSH in the graphs). It

uses security decoupling based on an OpenSSH embodiment.

This protocol provides security to CoAP server and client by

socket proxification. To allow this, firstly all CoAP

bidirectional traffic should be encapsulated into a TCP stream

using Linux socat command, and then forwarded to the server

trough an SSH established connection.

8 https://www.eclipse.org/californium/ 

Fig. 8.  IoT device test diagram to compare SSH vs. DTLS performance in CoAP communications. 

https://www.wolfssl.com/products/wolfssh/
https://www.eclipse.org/californium/
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 CoAP with SSH with compression (CoAP_SSH_C). It is

similar to the previous case, but enabling the compression

features provided by the ZLIB library [32] used by the SSH

implementation.

The proposed scenarios (depicted in Fig. 8) comprise one 

device acting as a client and another one as a gateway/server. 

Both devices are Raspberry Pi 3 Model B V1.2 equipped with 

802.15.4 Openlabs interfaces (based on the at86rf233 Amtel 

transceiver). Communications are established between the two 

Raspberries over WPAN.  

The first scenario uses channel 26 (2480 MHz) so as to avoid 

802.11 interferences. The second scenario employs channel 22 

(2460 MHz) to benchmark a lossy channel (a common case in 

IoT scenarios), because of the existing interferences with the 

802.11 channel 11 (in our case, 34 WiFi networks ranging from 

-59 to -75 dBm were present). Both 802.15.4 interfaces are 

configured at -2 dBm, placed one meter away from each other. A 

virtual LoWPAN interface is configured on both devices to 

fragment packets when needed: IPv6 requires a minimum MTU 

of 1280 bytes, while 802.15.4’s MTU is 127 bytes (working with 

LoWPAN fragmentation, it only offers 96 bytes of payload). 

Linux kernel 4.7.4 is used, which includes a stable IEEE 802.15.4 

LoWPAN implementation. The transfer rate of this device is set 

to 250 kbps, i.e. the maximum specified in the 802.15.4 standard. 

CoAPs implementation uses DTLS 1.2. During the tests, the 

‘TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256’ al-

gorithm is used, one of those recommended as Extensible 

Authentication Protocol-Transport Layer Security (EAP-TLS) 

Approved Algorithms [33]. This suite implements the Elliptic-

curve Diffie-Hellman Ephemeral key exchange, using the 

Elliptic-curve Digital Signature Algorithm (ECDSA), with AES-

128 as the block cipher, and SHA-256 for the hash message 

authentication code (HMAC).  

SSH is provided by OpenSSH, configured to work with close 

(but safer) algorithms to establish connection: it uses 

curve25519-sha256 as an ECDSA key exchange algorithm, 

aes256-gcm as block cypher and hmac-512 as HMAC (this last 

algorithm is stronger than the one used in TLS because hmac-

sha384 is no longer available as an HMAC algorithm in current 

OpenSSH default implementations). SSH compression is 

provided by ZLIB and can be activated by default editing the 

ssh_config file. TCP standard Raspbian parameters are used, and 

CoAP default values are slightly modified to be able to bear with 

the tests. The only modified variables are the following ones: 

blockwise_status_lifetime, max_resource_body_size and 

max_peer_inactivity_period. 

IV. RESULTS

The DTLS vs SSH comparison is performed using CoAPs 

directly and CoAP over SSH. The CoAP case (without security) 

is evaluated just to provide a reference. The server offers the 

CoAP/CoAPs text resource explained in the previous section, as 

IoT payloads are usually plain text with semantic-based 

descriptions [34]. Although this resource does not include binary 

executable data for payload testing, it is assumed it would have 

also moderate compressibility [35]. The tests are devised to 

measure several traffic features:  

 Treq, the time required to fulfill 100 consecutive GET requests

of 1024 bytes of random text each. Other payload values

(lower and higher ones) and 802.15.4 fragmentation related

issues have already been studied in depth in other TLS/SSH

works [14], confirming that, the higher the payload is, the

better SSH solutions render when its compression features are

enabled. The value of 1024 has been chosen for the payload

as it is low enough to avoid favoring SSH alternatives, whilst

it is also large enough to generate 802.15.4 fragmentation.

 Overhead: percentage of extra information received at the

network interface (beyond 1024*100 bytes) due to

communication protocols, retransmissions, etc.

 Error rate: percentage of lost frames (sent or to be received).

A. Lossless scenario 

Fig. 9 and Fig. 10 present the results of the tests in a nearly 

lossless environment. The scenario is static with just one 

802.15.4 sender and one receiver in a channel free of 802.11 

transmissions and thus, this assumption can be considered as 

valid. In these tests’ results, it can be observed the effect that the 

default TCP/IP congestion control algorithm (Reno) has in the 

missing 802.15.4 frames metric for CoAP_SSH and 

CoAP_SSH_C cases. This algorithm tries to fully leverage the 

channel capacity potential at the cost of causing such missing 

frames. On the other hand, the more conservative approach 

followed by CoAP and CoAPs does not appreciably increase the 

frame loss rate.  

These results show that the missing frame rate in CoAP_SSH 

and CoAP_SSH_C is not valid to clearly measure the quality of 

the channel. On the contrary, CoAP and CoAPs metrics in this 

field are not being affected by such a congestion control 

algorithm and thus, can be taken into consideration.  

Fig. 9.  Treq dispersion for sets of 100 CoAP GET requests of 1024 bytes of 
payload each with an avg. LQI causing ~0.1% UDP's lost 802.15.4 frames. 

Fig. 10.  CDF Treq of 100 GET requests of 1024 bytes of payload each with an 

avg. LQI causing ~0.1% UDP's lost 802.15.4 frames. 
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A summary of these results is presented in Table I. It is worth 

remarking that, although CoAP_SSH has an increase of 38% of 

overhead over CoAPs, it slightly outperforms the latter (2.29%) 

thanks to a better use of the channel; and when SSH compression 

features are enabled, this performance boost rises up to 14.26%. 

During all the tests, the possible interferences are handled as 

interfering noise [36]. Such is the default configuration of the 

chip (cca_mode = 1) 9 for all interfering signals over -77 dBm 

(cca_ed_level = -77). An accepted approach to deal with 

interferences caused by 802.11 transmissions in 802.15.4 links is 

to consider them as noise causing channel fadings [37].  

In 802.15.4 links, the Link Quality Indicator9 (LQI) is 

presented as a better metric to assess the true quality state of the 

channel rather than the traditional Received Signal Strength 

Indicator (RSSI). This is mainly due to the effect that a narrow-

band interferer inside the channel bandwidth may have in the 

transmissions (a fading), but with an RSSI unaltered or even 

higher in value [38]. Thus, the LQI may be better worked out 

considering chip error rate metrics [38]. Likewise, the 802.15.4 

missing frames could serve as a valid indicator of the LQI if there 

is no other cause of its variability, as in CoAP and CoAPs cases. 

B. Lossy scenario 

Fig. 11 and 12 present the tests’ results of a lossy scenario: a 

real channel with 802.11 interferences, where the sources of such 

interferences are not under control.  

The nature of other protocols causing cross interferences with 

802.15.4 has been studied in depth already using anechoic 

chambers [39]. However, we are considering a realistic scenario 

with multiple 802.11 interferences impractical to model. This 

poses a challenge, as we need to guarantee that the channel 

presents the same statistics in the four cases, so as not to draw 

skewed conclusions.  

To address this question, the effect of the 802.11 interferences 

on the channel has been analyzed in each case by comparing the 

correlation of the required time (Treq) for each test, with the 

percentage of 802.15.4 missed frames. These results are plotted 

in Fig. 11 as a dispersion graph, and then a logarithmic regression 

is obtained for each result series.  

The resilience to frame loss of each case can be featured using 

the frame loss metric in place of the LQI as error rate metric when 

the major cause of the Treq variability is the lossy effect of the 

channel. In our scenario configuration (a static sender and 

receiver) this could be confirmed if a tight correlation between 

the loss frame rate and Treq was observed. This fact is validated 

through the F-test [40] only in the cases where a conservative 

congestion control algorithm is implemented. This outcome 

9http://ww1.microchip.com/downloads/en/devicedoc/atmel-8351-
mcu_wireless-at86rf233_datasheet.pdf 

confirms that CoAP and CoAPs cases’ results (missing frames 

and Treq) are not randomly scattered with a 90-95% of certainty 

and thus, due to such a high correlation it is valid to assume that 

in this particular testbed, for a specific LQI value (unknown) there 

are close values of ‘percentage of 802.15.4 missing frames’ as 

well. Due to the relationship between Treq and the missing frames 

metric, it can be stated as well that for a specific ‘percentage of 

802.15.4 missing frames’ there is a close range of the channel 

capacity. In our case, this behavior can be easily appreciated in 

Fig. 11 but also in Fig. 9, where the affinity that CoAP and 

CoAPs have to their respective regression functions is observed.  

The channel used can be considered a stochastic process of 

unknown properties and it is not expected to be stationary, nor 

even in a wide sense. Thus, it is not feasible to calculate long-term 

statistical properties of the channel such as its capacity (ergodic 

capacity), even after averaging enough channel fading episodes 

[41]. Nevertheless, if the channel’s statistical features (though 

time dependent) progress slowly enough, it can be considered as 

a local sense stationary process [42]. Thus, it is possible to devise 

a testbed where the four cases are interleaved in a way that each 

case suffers similar interferences (fading) statistically, and at the 

same time, that the evolution of such a channel is slow enough so 

as to allow statistic similar interferences affect nearly equally to 

the four cases during the multiple (100 in our case) iterations, that 

is, the long term.  

This behavior is presented in Fig. 13, where it is shown the 

analogous behavior the cumulative loss frame average has on 

CoAP and CoAPs cases. This explains why the percentage of lost 

802.15.4 frames (inherent to the channel quality and capacity) is 

nearly the same in both CoAP and CoAPs cases after 100 

Fig. 11.  Treq dispersion for sets of 100 CoAP GET requests of 1024 bytes of 

payload each with an avg. LQI causing ~1% UDP's lost 802.15.4 frames. 

Fig. 12.  CDF Treq of 100 GET requests of 1024 bytes of payload each with an 

avg. LQI causing ~1% UDP's lost 802.15.4 frames.  
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TABLE I 
SUMMARY RESULTS 1ST

 SCENARIO 

Case 
Avg. frame 
error (%) 

Avg. 
Treq (s) 

ΔP* 
(%) 

Avg. overhead 
(%) 

CoAP 0.03 21.07 27.00 11.92 

CoAPs 0.16 28.86 0.00 20.23 
CoAP_SSH 1.49 28.20 2.29 58.92 

CoAP_SSH_C 3.82 24.74 14.26 -8.14 

* ΔP (%) = 100*(Treq_CoAPs-Treq)/Treq_CoAPs

http://ww1.microchip.com/downloads/en/devicedoc/atmel-8351-mcu_wireless-at86rf233_datasheet.pdf
http://ww1.microchip.com/downloads/en/devicedoc/atmel-8351-mcu_wireless-at86rf233_datasheet.pdf
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iterations ([CoAP lost frames avg.]: 1.014% and [CoAPs lost 

frames avg.]: 0.986%). Furthermore, as the four cases are 

interleaved, it is reasonable to assume that CoAP_SSH and 

CoAP_SSH_C were also affected in the same way by the channel 

during the entirety of the tests. Therefore, it is feasible to 

statistically compare the behavior of the four different cases with 

different values of LQI, by considering the missing frame rate 

mark of CoAP or CoAPs as indirect references of the LQI status 

of the channel or its capacity.  

On the other hand, the two cases in which SSH is used do not 

present such a correlation and thus, there exist multiple tests with 

similar Treq marks that suffer a wide range of frame error rate 

values (dispersion). This indicates that those cases (CoAP_SSH 

and CoAP_SSH_C) are more resilient to interferences than just 

plain CoAP/CoAPs: even though the LQI decreases (increase of 

missing frames for CoAP and CoAPs), SSH-based cases are able 

to adapt and make a better usage of the channel thanks to TCP 

default congestion control algorithm (Reno) and its ability to 

better adapt to the capacity of the channel.  

C. Interference effects analysis 

In the results displayed in Fig. 11, the CoAPs’ lack of 

resilience to interference or noise is clearly made manifest. In 

addition, the left-aligned swarms of dots of the SSH cases, not 

only present a better harnessing of the channel capacity, but also 

a better resilience to interferences. In Fig. 12, it is shown how 

CoAP_SSH_C’s ability for slashing the overhead and payload 

through compression proves to be instrumental this time: a 

decrease of the amount of information to be sent reduces the loss 

probability and also the time required to complete each request. 

Compression can also contribute to reduce the components 

(software and hardware) work load for longer periods of time. 

The extra energy needed by these compressing features reduces 

transmission times, which saves a greater amount of energy that 

would be required otherwise by the application and the entire 

device’s communication system [43] [14].  

A summary of the average results is displayed in Table II. In 

this scenario, the overhead is higher: more retransmissions are 

requested in the four cases, because of the lossier behavior of the 

channel. Remarkably, CoAP_SSH significantly improves its 

transfer time when compared to CoAPs (up to 36%) and, when 

the compression feature is enabled, this figure rises up to 63%.   

V. CONCLUSIONS 

IoT devices are in constant growth and ad-hoc vertical 

solutions are arising as responses to the foremost challenges our 

world faces today. New opportunities may appear from synergies 

between verticals, but connectivity between them is usually 

complex. Besides, security and privacy have become major 

concerns, not only for IoT developers, but between regulatory 

bodies as well. CoAP is frequently used as an application level 

protocol in constrained devices, as a substitute for HTTP to give 

support to IoT services of different kinds; and security 

decoupling proves to be an instrumental technique to enable the 

rise of new certification frameworks that grant a more 

standardized management of security and privacy.  

This paper has provided evidence of the feasibility of security 

decoupling in applications using CoAP, and has also documented 

beneficial side effects that this approach can provide to 802.15.4 

IoT devices in presence of 802.11 interference sources. 

Particularly, the straightforward IoTsafe approach has been 

evaluated against traditional CoAP deployments. The results 

show that this implementation is feasible allowing the IoT device 

application and the server software to use the unsecure version of 

CoAP (without DTLS) while seamlessly entrust security 

concerns to IoTsafe without requiring any other particular feature 

to be included in their design.  

The performance impact of this straightforward approach does 

not penalize the communication performance in lossless 

environments, despite a 39% of overhead increase compared to 

CoAPs standard deployment. 

In lossier scenarios because of 802.11 interferences, the 

decoupled scheme can reduce transfer time by 36% with respect 

to CoAPs, even though the overhead difference between 

CoAP_SSH and CoAPs increases (54.9%). If SSH compressing 

features are also put into action, the global overhead is the lowest 

of all cases (even negative, thanks to the compressibility of the 

payload) and the performance in transfer time boosts up to 14% 

in interference-free scenarios, and up to 63% when the channel 

experiments fading events causing an average of ~1% of CoAP 

or CoAPs 802.15.4 frames to be lost. 

These results remark the importance of a congestion control 

algorithm and how decoupled solutions based on SSH/TCP can 

benefit from it without altering IoT core software and/or 

protocols. As future work, further optimized security decoupling 

approaches should be taken into consideration, such as new SSH 

UDP-based deployments or full security decoupling CoAP 

solution with more advanced congestion control algorithms, 

which may provide room for further improvement. 
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Fig. 13.  Cumulative average of the percentage of lost 802.15.4 frames through 

the 100 set of tests in the second scenario. 
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TABLE II 
SUMMARY RESULTS 2ND

 SCENARIO 

Case 
Avg. frame 

error (%) 

Avg. Treq 

(s) 

ΔP* 

(%) 

Avg. overhead 

(%) 

CoAP 1.02 76 8.42 25.72 

CoAPs 0.99 83 0 34.81 

CoAP_SSH 2.91 53 36.30 89.71 
CoAP_SSH_C 4.55 30 63.33 -4.54 

* ΔP (%) = 100*(Treq_CoAPs-Treq)/Treq_CoAPs
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