Decoupling security from applications in
CoAP-based IoT devices

Jorge David de Hoz, Member, IEEE, Jose Saldana, Member, IEEE,
Julién Fernandez-Navajas, José Ruiz-Mas

Abstract— The complex and ever changing Internet of Things
(10T) domain could benefit from standardization and a higher
degree of autonomy between different layers: standard
approaches defining the relationship between security
communication software functionalities, hardware and
applications would allow a more efficient, flexible and secure
communication. To this end, techniques in which the security of
10T devices is decoupled from the applications they run, can
provide significant benefits and enable the development of new
standardization strategies. This paper presents a study of the
benefits provided by loTsafe, a security decoupling approach,
when used in combination with the Constrained Application
Protocol (CoAP). Whereas previous work relied on HTTP/HTTP2
protocols, the present paper is focused on the analysis of the
feasibility of loTsafe in more constrained devices in channels with
high interference levels. The benefits of this technique are
illustrated by means of a battery of tests to evaluate the impact of
this scheme. The results show no performance penalty (taking
CoAP with security as a baseline) in lossless channels, even when
an overhead increment of 38% is borne. Furthermore, in lossier
channels, a transfer time reduction of 36% is achieved, a figure
that increases significantly if traffic compression is enabled.

Index Terms—IoT, CoAP, SSH, DTLS, Security decoupling

I. INTRODUCTION

THE continuous increase in the number of the loT devices is a
well-known phenomenon. Some predictions forecast a total
amount of connected devices around 500 billion by the end of
2030 [1]. As a counterpart, the concerns about the security threats
that may affect these devices are growing. Extensive literature
has already defined different taxonomies of potential threats for
these devices, and has also suggested some possible strategies to
overcome them and limit their scope [2] [3] [4] [5].

lIoT security maintenance is usually addressed following an
“ad-hoc” reactive approach, where temporary measures (patches)
are provided whenever a vulnerability is discovered by an attack
or just by public disclosure. However, the lack of incentives for
the final user to deploy these patches may render this security
paradigm insufficient [6]. To overcome this problem, a more
proactive methodology would need to include an improved
approach where security-by-design is seriously considered [7].

Each loT market is defined by specific needs addressed by
technological solutions that usually cover all concerning aspects

Jorge David de Hoz, Jose Saldana, Julian Fernandez-Navajas and José Ruiz-
Mas are with the I3A Aragon Institute of Engineering Research, University of
Zaragoza, Ada Byron Building, 50018 Zaragoza (e-mail: dhoz@unizar.es;
jsaldana@unizar.es; navajas@unizar.es; jruiz@unizar.es).

Copyright (c) 20xx IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

and layers of the 10T project in a vertical way: from devices to
services. Thus, 10T vertical markets” demands usually result in
loT vertical solutions. These technologies are devised only with
the particular market problems in mind, and the absence of
globally accepted standards at each layer hinders future
interoperability between wverticals. Advanced security
technologies will further isolate the different solutions, requiring
more complex middleware to keep connectivity but preventing
new business opportunities from arising. For the sake of
productivity, and also to benefit from new third parties’ added
value, vertical solutions should be encouraged to increase their
interoperability and potential collaboration [8].

Regulators are also addressing this problem. As an example,
the European Union is concerned about all these cybersecurity
issues and truly committed to its future regulation. Ongoing work
in this area suggests that, in some cases, all 10T security efforts
will have to be externally certified in accordance with the
Cybersecurity Act [9]. These security efforts affect any piece of
software, hardware, a device or set of devices, a technique, or a
combination of any of the previous, according to the definition of
the Target of Evaluation (TOE) by the Common Criteria for IT
Security Evaluation (ISO/IEC 15408)!. In order to achieve an
Evaluation Assurance Level 7 (EALY), the current complexity of
the design must be minimized and also a “white box " testing and
complete independent confirmation of developer test results are
required [10].

This suggests that a simplification of the certification process
is feasible if more independence between the parts of the system
is achieved. Security should be guaranteed and managed by well-
defined items (hardware, software or both), which should have to
be certified (for security purposes) according to their use, as it
similarly happens with i.e., Payment Card Industry (PCI)?
certifications in points of sale, cashiers, etc. Those devices might
be complex but, as “payment security decoupling” is successfully
implemented, only the elements that are involved in payment
procedures have to be certified by PCI.

Thus, solutions able to facilitate the future certification
processes of 10T devices are needed. This problem is being dealt
with in different works usually through a middleware approach
[11] offering hardware abstraction [12] to increase
interoperability and to improve security [13], but the Application

! Common Criteria for IT Security Evaluation,
https://www.commoncriteriaportal.org/files/ccfilessf CCPART1V3.1R5.pdf

2 payment Card Industry certifications
https://www.pcisecuritystandards.org/

mailto:pubs-permissions@ieee.org
https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf
https://www.pcisecuritystandards.org/

Programming Interfaces (APIs) required to be used by the loT
application are wont to prevent a full decoupling from
succeeding, as highlighted in [14]. In that paper, and also in [15],
a system called loTsafe was presented, where the security was
decoupled from the applications using plain sockets, Secure
Socket Shell (SSH) protocol and Linux kernel features. Such an
approach does not guarantee any certification compliance by this
alone, but simplifies the way to address security and certification
issues separating security from applications [15]. However, its
scope was limited because it was only implemented and tested
with long-standing protocols such as HTTP. In contrast, more
recent protocols specifically designed for 10T environments as
i.e., COAP, were not studied.

In the present paper, we perform an analysis of the security
decoupling feasibility in 10T environments using CoAP. An
overall study of its advantages is conducted and it is also
discussed how CoAP environments could easily benefit from
security decoupling features. Taking into account the resource
limitations of these environments, the performance impact is
also studied, by means of empirical measurements of the
penalty cost the security decoupling approach could have in
terms of transfer time, which by extension affects the energy
consumption and hardware resources required [15]. The tests
will primarily evaluate the feasibility of the security decoupling
strategy for CoAP applications and its performance in lossy
environments due to existing interferences in the channel used.

The remainder of the article is organized as follows: in the next
section we summarize the security decoupling approaches
existing today, with a particular focus in communications. In this
section are introduced as well some capital features of
constrained devices and protocols, and some ongoing efforts
which would enable such security decoupling strategy in these
devices. Section Il details the Test Scenarios, the Results are
presented in section 1V and the paper ends with the Conclusions.

II.RELATED WORK

A. Security decoupling: a “Divide and rule” policy

The security concerns, the verticals’ interoperability and the
regulation efforts previously introduced represent competing
interests from different parties, all together intertwined into a
Gordian knot that stalls most of the initiatives towards any
direction. This has motivated a differentiated handling of the
security in a special way, apart from the rest of functionalities
and traditional features IoT device’s applications may offer.

Modern processors and microcontrollers provide special
functionalities that can help to achieve this objective. The tasks
related to security management, integrity and trust between
applications in a device can be addressed with specific security
hardware entities, conforming a Trusted Execution
Environment (TEE) [16]. This can be understood as a security
decoupling of sorts, as the applications are relying main
security responsibilities to these entities, so as to gain a proper
trust. Applications running under this paradigm are considered
under a TEE [17].

% Global Platform, The standard for secure digital services and devices,
https://globalplatform.org/

Nevertheless, this approach makes the final product highly
dependent on the chosen technical scheme (the TEE solution and
hardware architecture). Thus, some initiatives have arisen such
as Globalplatform?, gathering about 90 organizations worldwide
to devise the basis of a set of standards that any solution should
follow so as to guarantee interoperability. Such standards define
multiple interfaces according to each technical area. Network
communications also have their own, defined by the TEE Sockets
API [18].

This API enables Trusted Applications (TAS) to establish and
use their communications through a new kind of network socket,
known as the iSocket. This entity acts as a wrapper of a regular
socket for the TA (Fig. 1). Rich Execution Environment
Applications (GlobalPlatform uses the term “REE” to talk about
applications in which the user interacts with the OS) have to rely
on the TEE Client API in order to secure their communications
through a TA and thus, this scheme is indeed following a security
decoupling approach. The iSocket can be configured to establish
a secure communication using Transport Layer Security (TLS)
or Datagram Transport Layer Security (DTLS) protocols. In the
case TLS/DTLS became outdated, a new TA should be devised
and upgraded to support the new TLS version. This might not be
straightforward, but it would imply a much easier procedure than
upgrading the whole REE Application for every kind of device.

This particular item (the TA) is supposed to become common,
under heavy development and independent from REE
Applications. However, if this upgrade (of the TA) required a
new version of the TEE Client API, the REE Client Application
should have to be adapted as well, and its binary code replaced,
though this situation should become rather anecdotal (only major
upgrades should require API changes).

As a summary, it can be said that an 10T solution which is to
follow this scheme to the letter would benefit from certifiable
security, although this may imply more complexity and a certain
loss of interoperability. Regarding networking issues in
particular, when the application and no TEE-compliant sources
have to communicate, then TLS/DTLS must be included in the
REE application, preventing a security decoupling approach
from being followed in practice. Besides, using TEE network
security features also requires the application to be specifically
designed for such a communication API, forcing already existing
applications to be redesigned to get adapted to this requirement.

REE TEE
TEE Client API
S Trusted Application
Client Application Using TLS over TCPAP
v
TEE iSocket API
Rich 05 v
Proprietary TLS Implementation
Network TCPIP Channel T

Implementation ¥ v

TCPIP proxy

Interface

Trusted OS Components

Fig. 1. Separation of Security Protocols and Pure Transport Protocols [18].

https://globalplatform.org/

OPEN-TEE [19] is arelated technology that provides a slightly
different approach: it offers simplicity and compatibility between
architectures in exchange for renouncing to the use of dedicated
hardware features and their performance. Further bold
approaches include virtualization techniques adapted to 10T edge
devices. The virtualization system may or may not comply with
Globalplatform standards, but it can benefit either way from
dedicated security hardware features without the virtualized
applications noticing. This type of system is transparent to the
applications and can be more convenient for developers, as it
simplifies the application design by truly decoupling security
issues. Successful secure virtualization has even been carried out
in devices with 2 mbytes of ROM and 512 kbytes of RAM [13].

This virtualization scheme could be complemented with a
security decoupling technique for communications that would
enhance an overall security solution without affecting either
applications’ portability or simplicity.

B. loT verticals: a connectivity barrier to overcome

The great number of existing verticals for different IoT areas
makes it imperative the creation of supra entities called
federations [20]. Interconnecting different verticals usually
requires complex semantic transversal middleware environments
[21], but the European Telecommunications Standards Institute
(ETSI), member of the oneM2M Global Initiative*, is working
towards “horizontalizing” the pipes [22] to simplify this feat.

To that end, it is remarked the necessity of a standardized
horizontal middleware of sorts that could homogenize all
underlying devices and technologies, simplifying
intercommunication between services of different vertical
approaches, as presented in Fig. 2.

RERUMS® can be considered as a fine example of this effort:
a middleware that helps to improve privacy and security in the
10T, but also promoting interoperability [23]. This approach
intends to become the middleware suggested by ETSI
(Common Application Infrastructure, Fig. 2) to simplify
horizontal deployments across many loT markets. However,
instead of presenting a truly way to devise loT federations
through horizontal deployment, RERUM ends up becoming
itself into an extraordinary flexible but vertical solution in
practice, because of its mandatory 10T device abstraction
scheme, a common issue in middleware-based approaches.

This abstraction is held by a local 10T device middleware (Fig.
3), which converts the 10T device (the physical device) into a
RERUM Device (RD), i.e., a virtual entity easier to handle. This
allows the main middleware modules (in servers) to benefit from
a translation of all the resources and services that the 10T devices
may provide, but as RD resources instead. Thus, this
“virtualization” cannot be truly considered a successful security
decoupling-based approach, since the loT device software
abstraction and the communication security features are not
independent: the RD Adaptor is a part of the RD Middleware
environment that lays in each 10T device and homogenizes them
all, but also assuming all security communication
responsibilities.

4 One M2M, standards for M2M and the Internet of Things,
http://www.onem2m.org/

Horizontal (based on common Layer)
Applications’'share common infrastructure; environments
and network elements

Pipe (vertical):
1 Application, 1 NW,
1 (or few) type of Device

Business
Application

| Business Business

| Business

Application Application Application
1 ! A
l | \ 2
A \ 2 2

Common Application Infrastructure

L> "«‘
W

Fig. 2. Vertical and horizontal pipe standardization scenarios [22].

ransport Network
(mobile, fixed,
Powerline ..)

Ga(e\xay
N
é Loca| va D
/

RERUM
mechanisms

RD Adaptor (MW)

Fig. 3. RERUM device functional layers [23].

Thus, it may prove difficult for already designed devices to
join the Common Application Infrastructure that RERUM
provides, as this would require major changes to each loT
device’s software design. Besides, this hardware abstraction
technique also happens to result hardware dependent: it is only

devised for ARM technologies, limiting the scope of the
federation architecture to specific manufacturers [24].
Furthermore, security upgrades are to be made altogether with
the middleware (not independent).

Anyhow, including a security decoupling approach in this
scheme is feasible and can provide all its intrinsic benefits. This
would only require minimal modifications of the proposed
RERUM design, allowing a simpler 10T device abstraction
approach and also different IoT device’s architectures to join.

There exist other different approaches based on the use of
middleware which usually simplifies its implementation through
frameworks [25]. However, the majority of the solutions suffer
from similar difficulties when handling security upgrades
because the 10T device software is not fully independent from the
middleware and its APIs.

C.loTsafe: an loT security decoupling approach

loTsafe is a security decoupling scheme deployed in the
communication layers. It is able to simplify some security
problems (particularly when upgrading, see Fig. 4) and to reduce
possible threats whilst improving interoperability and helping to
comply with certification procedures [14].

This security decoupling technique is only straightforwardly
deployed when an embedded Linux variant and the SSH protocol
are present in the devices. Nevertheless, this solution should be
understood as a possible realization of a general method to enable

® RERUM: REliable, Resilient and secUre loT for sMart city applications,
https://ict-rerum.eu/

http://www.onem2m.org/
https://ict-rerum.eu/

the “horizontalization of verticals,” not necessarily requiring
Linux or SSH [26]. Security decoupling can be presented as an
“extension” of OSI communication layer in between the 4" and
the 5™ layers: loTsafe uses sockets as interface (layer 4) but also
operating system driven security contexts (layer 5) provided only
through standard Linux kernel features.
loTsafe proposes simplifying all 10T application software in
the device by delegating all security and authentication issues to
a complimentary stand-alone software module in charge of
establishing a secure connection between the device and the
gateway/server (Fig. 5). This piece of software should be the only
one able to communicate, providing transparent proxification of
all communication sockets to/from the 10T gateway/server.
Conversely, the local communications between sockets
within the server (Fig. 6) are securely established from one
socket to another following a virtual circuit commutation
approach conceptually similar to the one illustrated in Fig. 7.
This local communication inside the 10T gateway/server is
fashioned and protected transparently through security contexts
[14]. Linux kernel features there as a “communication
hypervisor”, transparent to the proper communications, as
regular hypervisors deal with virtual machines. Such a security
decoupling approach inherently offers interesting benefits [14]:
o Efficient application development: Security concerns are
out of the 10T device application scope and can be delegated
to complimentary software maintained by 3™ business
parties specialized in security.

»JHE&!

Fig. 4. Upgrading TLS on an loT Core Application of an loT device: It may
require modifying the 10T Core Application in the device and rebuild it [15].

-
Corje IqT loTsafe
Application 1.2
1.0 ’
-

loT device loT device

Fig. 5. Upgrading loTsafe on an loT device: loTsafe stand-alone security
modules interface with the core loT Application through local sockets, easing
security upgrading processes thanks to software independence [15].

| NetFilter
J \

TLS 1.0

Core loT

Application loTsafe

1.0

1.4

T TrreT
Local loT

platform sockets
LULCLLLLL L)

loT Middleware / Platform

T T T TerTT
Securely forwarded

1oT device's sockets
)00,

SSHD processes tree

SSH sessions
from loT

Permission
policies

User Space | Kernel Space

Proxified communications

loT GATEWAY/SERVER

loTsafe control systems calls
Local communications through security contexts
Fia. 6. loTsafe concentual scheme for local connections in the aatewav/server.

8 https://www.freertos.org/

Securely forwarded Permission policies
loT devices’ sockets +

Local 10T platform Netfilter Kernel module
sockets l

Local security contexts

Fig. 7. loTsafe gateway/server simplified communication scheme, rendered as
an old-style manual circuit-switched telephone network.
e Simpler application’s communication: End-to-end data is
generated by insecure applications over a secure channel.
¢ Technology-independent communication: As secure digital
communication may be transparently transmitted through
insecure analog channels, even raw IoT devices’ resources
can be securely, transparently and independently
transmitted through the underlying communication
technology by using security decoupling techniques. Thus,
local 10T device resources can be forwarded as plain
network sockets (a much simpler interface than used by
most APIs) into an loT gateway/server, and remote
resources can be securely forwarded back into the loT
device as well.

As a result, all the security concerns can be delegated nearly
in full to this loTsafe lower communication layer, and be
upgraded and maintained by external 3" parties offering an
analogous service to, i.e., the one provided by antivirus security
firms for computers and servers. This could allow a white-box
testing procedure that would enable compliance for the highest
security certification levels more affordably through the entire
life cycle of the device. Simultaneously, interoperability would
also be simplified, as related communication layer interfaces
consist of plain local sockets handled transparently through
security contexts: 10T server applications perceive all 10T
devices’ resources as local entities (plain sockets inside the
machine) and so do the 10T devices with the ones provided by the
loT platform/middleware of the 10T gateway/server [14].

D.Security decoupling for constrained devices

Recent surveys [27] [28] [29] conducted among developers
suggest that 10T solutions deployed into moderately constrained
devices rely on Operating Systems (OS) or Real Time Operating
Systems (RTOS) rather than on bare metal firmware. According
to the most recent of those surveys [29], FreeRTOS® seems to be

https://www.freertos.org/

one of the RTOS preferred for such projects by the developers,
thanks to its wide hardware support and also by its available
Portable Operating System Interface (POSIX) compliance.
loTsafe’s direct approach requires at least a POSIX
environment and also SSH features available in the devices,
something that the most constrained ones were unable to achieve.
Nevertheless, novel initiatives interested in boosting SSH
development into constrained equipment have arisen. As an
example, WOoIfSSH” is able to provide SSH server v2
implementations for FreeRTOS with a minimal footprint of 32
kbytes and only requiring between 1.4 and 2 kbytes of RAM.
This would enable loTsafe to be run in more constrained devices
straightforwardly. According to a recent IETF draft classification
[30], such abled devices would be ranging from class 15 (0.5 GB
to 1 GB RAM) to virtually class 1 (10 KiB of RAM, 100 KiB of
ROM), as FreeRTOS hardware requirements are also rather slim.

Communication protocols used in constrained devices are
diverse, and sometimes long-standing ones are included, such as
HTTP, HTTP/2 and Message Queuing Telemetry Transport
protocol (MQTT). On the other hand, COAP is relatively new,
particularly devised for constrained environments, and complies
as a REpresentational State Transfer protocol (RESTful). It
works over UDP and it is primarily aimed for small devices’
payloads like sensors’ and actuators’. Nevertheless, its bitwise
extension also provides support for occasionally larger payload
transfers, primarily for firmware upgrades [31].

As explained in the Introduction, the security decoupling
approach should be independent from the underlying technology
and thus, it is feasible to design different stand-alone modules
(based for example on CoAP rather than on SSH), allowing this
security-decoupling scheme also to use UDP. Such an approach
would help to deal with security concerns, thanks to loTsafe
general security decoupling procedures, once they are found
feasible in CoAP deployments. Besides, this decoupling
functionality would help to separately address other problems,
such as improving the behavior of the communications in lossy
environments without modifying the core 10T CoAP application
binaries.

Anyhow, in the pursuit of simplicity, the straightforward
approach (based on Linux and SSH) is chosen for the tests
presented in the next section, in order to simplify the procedure
and also to allow cross-analyses with existing results for other
protocols found in the literature [15].

CoAPs Client

CoAP Client
*(:OAP over UDP

Socat

*(:oAP over TCP

CoAPs

SSH Client

CoAP CoAP
SSH SSH_C

v v v
802.15.4 LoOWPAN

AP
(with DTLS) |©° I|
CoAPs CoAP

ubP 1

1oT Device as Client

I1l. TEST SCENARIOS

The comparison of a security-decoupled approach and the
standard one involves multiple test series where the 10T device
performs several GET petitions to a gateway/server, requesting
a resource. Both server and client pieces of software supporting
COoAP are devised in Java using the Californium framework®,
The resource offered is dynamic and provides random text. The
figures of merit to be evaluated in the tests are the overhead, the
loss rate of 802.15.4 frames and the required transfer time.
These measurements are devised to feature the possible
performance impact that a common lossy environment may
have in each configuration. Other concerns left aside such as
payload behavior dependence, 802.15.4 fragmentation or server
security and scalability, have already been studied in depth [14].

The test series are run in two scenarios: the first one uses an
almost lossless channel, and the second one is lossier with ~1%
UDP’s lost 802.15.4 frames. The test procedure in the lossy
environment is devised to affect similarly the four cases and
evidence of this is thoroughly elaborated in the Results. In both
scenarios, 100 interleaved sets of 100 GET requests each with
1024 bytes of payload, are performed for each protocol
configuration to analyze (a case). Once a set of 100 GET
requests of one of the cases is finished, the following one
proceeds until the four cases are completed (an iteration). The
whole test battery comprises 100 iterations for each scenario.

Each set of 100 GET requests is performed in a row, i.e.,
serial, to avoid penalizing DTLS-based cases. In general, DTLS
should perform a full secure handshake for each request while
SSH approaches just establish a connection reusable for all the
100 requests. Thus, when CoAPs (CoAP with DTLS support)
is run, DTLS can benefit from this, reusing the cryptographic
established configuration for the 99 remaining requests. The
four cases to consider at each scenario are as follows:

o COAP, used straightforwardly, including a server and a client
without any other special feature.

o COAPs, similar to the previous one, but with DTLS.

o COAP with SSH (denoted as CoAP_SSH in the graphs). It
uses security decoupling based on an OpenSSH embodiment.
This protocol provides security to CoAP server and client by
socket proxification. To allow this, firstly all CoAP
bidirectional traffic should be encapsulated into a TCP stream
using Linux socat command, and then forwarded to the server
trough an SSH established connection.

CoAPs server| —» CoAP server
*COAP over UDP
Socat
?COAP over TCP

SSH Server

CoAPs CoAP

| 1 |
802.15.4 LOWPAN

1oT Device as Server

Fig. 8. 10T device test diagram to compare SSH vs. DTLS performance in CoAP communications.

7 https://www.wolfssl.com/products/wolfssh/

8 https://www.eclipse.org/californium/

https://www.wolfssl.com/products/wolfssh/
https://www.eclipse.org/californium/

e CoAP with SSH with compression (CoAP_SSH_C). It is
similar to the previous case, but enabling the compression
features provided by the ZLIB library [32] used by the SSH
implementation.

The proposed scenarios (depicted in Fig. 8) comprise one
device acting as a client and another one as a gateway/server.
Both devices are Raspberry Pi 3 Model B V1.2 equipped with
802.15.4 Openlabs interfaces (based on the at86rf233 Amtel
transceiver). Communications are established between the two
Raspberries over WPAN.

The first scenario uses channel 26 (2480 MHz) so as to avoid
802.11 interferences. The second scenario employs channel 22
(2460 MHz) to benchmark a lossy channel (a common case in
loT scenarios), because of the existing interferences with the
802.11 channel 11 (in our case, 34 WiFi networks ranging from
-59 to -75 dBm were present). Both 802.15.4 interfaces are
configured at -2 dBm, placed one meter away from each other. A
virtual LOWPAN interface is configured on both devices to
fragment packets when needed: IPv6 requires a minimum MTU
of 1280 bytes, while 802.15.4’s MTU is 127 bytes (working with
LoWPAN fragmentation, it only offers 96 bytes of payload).
Linux kernel 4.7.4 is used, which includes a stable IEEE 802.15.4
LoWPAN implementation. The transfer rate of this device is set
to 250 kbps, i.e. the maximum specified in the 802.15.4 standard.
CoAPs implementation uses DTLS 1.2. During the tests, the
“TLS_ECDHE_ECDSA WITH_AES 128 CBC_SHA256° al-
gorithm is used, one of those recommended as Extensible
Authentication Protocol-Transport Layer Security (EAP-TLS)
Approved Algorithms [33]. This suite implements the Elliptic-
curve Diffie-Hellman Ephemeral key exchange, using the
Elliptic-curve Digital Signature Algorithm (ECDSA), with AES-
128 as the block cipher, and SHA-256 for the hash message
authentication code (HMAC).

SSH is provided by OpenSSH, configured to work with close
(but safer) algorithms to establish connection: it uses
curve25519-sha256 as an ECDSA key exchange algorithm,
aes256-gcm as block cypher and hmac-512 as HMAC (this last
algorithm is stronger than the one used in TLS because hmac-
sha384 is no longer available as an HMAC algorithm in current
OpenSSH default implementations). SSH compression is
provided by ZLIB and can be activated by default editing the
ssh_config file. TCP standard Raspbian parameters are used, and
CoAP default values are slightly modified to be able to bear with
the tests. The only modified variables are the following ones:
blockwise_status_lifetime, max_resource_body_size and
max_peer_inactivity _period.

IV. RESULTS

The DTLS vs SSH comparison is performed using CoAPs
directly and CoAP over SSH. The CoAP case (without security)
is evaluated just to provide a reference. The server offers the
CoAP/CoAPs text resource explained in the previous section, as
loT payloads are usually plain text with semantic-based
descriptions [34]. Although this resource does not include binary
executable data for payload testing, it is assumed it would have

also moderate compressibility [35]. The tests are devised to
measure several traffic features:

o Treq, the time required to fulfill 100 consecutive GET requests
of 1024 bytes of random text each. Other payload values
(lower and higher ones) and 802.15.4 fragmentation related
issues have already been studied in depth in other TLS/SSH
works [14], confirming that, the higher the payload is, the
better SSH solutions render when its compression features are
enabled. The value of 1024 has been chosen for the payload
as it is low enough to avoid favoring SSH alternatives, whilst
it is also large enough to generate 802.15.4 fragmentation.

e Overhead: percentage of extra information received at the
network interface (beyond 1024*100 bytes) due to
communication protocols, retransmissions, etc.

o Error rate: percentage of lost frames (sent or to be received).

A. Lossless scenario

Fig. 9 and Fig. 10 present the results of the tests in a nearly
lossless environment. The scenario is static with just one
802.15.4 sender and one receiver in a channel free of 802.11
transmissions and thus, this assumption can be considered as
valid. In these tests’ results, it can be observed the effect that the
default TCP/IP congestion control algorithm (Reno) has in the
missing 802.15.4 frames metric for CoAP_SSH and
CoAP_SSH_C cases. This algorithm tries to fully leverage the
channel capacity potential at the cost of causing such missing
frames. On the other hand, the more conservative approach
followed by CoAP and CoAPs does not appreciably increase the
frame loss rate.

These results show that the missing frame rate in CoAP_SSH
and CoAP_SSH_C is not valid to clearly measure the quality of
the channel. On the contrary, CoAP and CoAPs metrics in this
field are not being affected by such a congestion control
algorithm and thus, can be taken into consideration.

[CoAP] Treq 100 requests

[CoAPs] Treq 100 requests
[CoAP] Log regression

[CoAP_SSH] Treq 100 requests
[CoAP_SSH_C] Treq 100 requests
[CoAP_SSH] Log regression

802.15.4 lost frames (%)
N

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
Taeq (5)
Fig. 9. T dispersion for sets of 100 CoAP GET requests of 1024 bytes of
payload each with an avg. LQI causing ~0.1% UDP's lost 802.15.4 frames.

[CoAP] [CoAP_SSH] [CoAPs] [CoAP_SSH_C]

0.9
0.8
0.7
0.6
0.4
0.3
0.2
0.1

19 20 21 22 23 24 25 26_27, 28 29 30 31 32 33 34 35
Treq (5)

Fig. 10. CDF Treq of 100 GET requests of 1024 bytes of payload each with an
avg. LQI causing ~0.1% UDP's lost 802.15.4 frames.

CDF
o
«n

A summary of these results is presented in Table I. It is worth
remarking that, although CoAP_SSH has an increase of 38% of
overhead over CoAPs, it slightly outperforms the latter (2.29%)
thanks to a better use of the channel; and when SSH compression
features are enabled, this performance boost rises up to 14.26%.

During all the tests, the possible interferences are handled as
interfering noise [36]. Such is the default configuration of the
chip (cca_mode = 1) ° for all interfering signals over -77 dBm
(cca_ed_level = -77). An accepted approach to deal with
interferences caused by 802.11 transmissions in 802.15.4 links is
to consider them as noise causing channel fadings [37].

In 802.15.4 links, the Link Quality Indicator® (LQI) is
presented as a better metric to assess the true quality state of the
channel rather than the traditional Received Signal Strength
Indicator (RSSI). This is mainly due to the effect that a narrow-
band interferer inside the channel bandwidth may have in the
transmissions (a fading), but with an RSSI unaltered or even
higher in value [38]. Thus, the LQI may be better worked out
considering chip error rate metrics [38]. Likewise, the 802.15.4
missing frames could serve as a valid indicator of the LQI if there
is no other cause of its variability, as in COAP and CoAPs cases.

B. Lossy scenario

Fig. 11 and 12 present the tests’ results of a lossy scenario: a
real channel with 802.11 interferences, where the sources of such
interferences are not under control.

The nature of other protocols causing cross interferences with
802.15.4 has been studied in depth already using anechoic
chambers [39]. However, we are considering a realistic scenario
with multiple 802.11 interferences impractical to model. This
poses a challenge, as we need to guarantee that the channel
presents the same statistics in the four cases, so as not to draw
skewed conclusions.

To address this question, the effect of the 802.11 interferences
on the channel has been analyzed in each case by comparing the
correlation of the required time (Trq) for each test, with the
percentage of 802.15.4 missed frames. These results are plotted
in Fig. 11 as a dispersion graph, and then a logarithmic regression
is obtained for each result series.

The resilience to frame loss of each case can be featured using
the frame loss metric in place of the LQI as error rate metric when
the major cause of the Tq variability is the lossy effect of the
channel. In our scenario configuration (a static sender and
receiver) this could be confirmed if a tight correlation between
the loss frame rate and Treq was observed. This fact is validated
through the F-test [40] only in the cases where a conservative
congestion control algorithm is implemented. This outcome

TABLE |
SUMMARY RESULTS 1°" SCENARIO
Case Avg. frame Avg. AP* Avg. overhead

error (%) Treq (s) (%) (%)
CoAP 0.03 21.07 27.00 11.92
CoAPs 0.16 28.86 0.00 20.23
CoAP_SSH 1.49 28.20 2.29 58.92
CoAP_SSH C 3.82 24.74 14.26 -8.14

* AP (%) = 100*(Treq_COAPS-Treq)/ Treq_COAPS

°http://ww1.microchip.com/downloads/en/devicedoc/atmel-8351-
mcu_wireless-at86rf233 _datasheet.pdf

[CoAP] Treq 100 requests
[CoAPs] Treq 100 requests
[CoAP] Log regression
[CoAPs] Log regression

[CoAP_SSH] Treq 100 requests
[CoAP_SSH_C] Treq 100 requests
[CoAP_SSH] Log regression
[CoAP_SSH_C] Log regression

802.15.4 lost frames (%)
O = N W & U1 O N ®
.
.
o
o

10 20 30 40 50 60 70 80 920
Treq ()

Fig. 11. Treq dispersion for sets of 100 CoOAP GET requests of 1024 bytes of
payload each with an avg. LQI causing ~1% UDP's lost 802.15.4 frames.

100 110 120 130 140

[CoAP]

[CoAP_SSH]

[CoAPs] [CoAP_SSH_C]

10 20 30 40 50 60 70 80 90
Treq (s)
Fig. 12. CDF Treq Of 100 GET requests of 1024 bytes of payload each with an
avg. LQI causing ~1% UDP's lost 802.15.4 frames.

100 110 120 130 140

confirms that CoAP and CoAPs cases’ results (missing frames
and Treq) are not randomly scattered with a 90-95% of certainty
and thus, due to such a high correlation it is valid to assume that
in this particular testbed, for a specific LQI value (unknown) there
are close values of ‘percentage of 802.15.4 missing frames’ as
well. Due to the relationship between Ty and the missing frames
metric, it can be stated as well that for a specific ‘percentage of
802.15.4 missing frames’ there is a close range of the channel
capacity. In our case, this behavior can be easily appreciated in
Fig. 11 but also in Fig. 9, where the affinity that CoAP and
CoAPs have to their respective regression functions is observed.

The channel used can be considered a stochastic process of
unknown properties and it is not expected to be stationary, nor
even in a wide sense. Thus, itis not feasible to calculate long-term
statistical properties of the channel such as its capacity (ergodic
capacity), even after averaging enough channel fading episodes
[41]. Nevertheless, if the channel’s statistical features (though
time dependent) progress slowly enough, it can be considered as
a local sense stationary process [42]. Thus, it is possible to devise
a testbed where the four cases are interleaved in a way that each
case suffers similar interferences (fading) statistically, and at the
same time, that the evolution of such a channel is slow enough so
as to allow statistic similar interferences affect nearly equally to
the four cases during the multiple (100 in our case) iterations, that
is, the long term.

This behavior is presented in Fig. 13, where it is shown the
analogous behavior the cumulative loss frame average has on
CoAP and CoAPs cases. This explains why the percentage of lost
802.15.4 frames (inherent to the channel quality and capacity) is
nearly the same in both CoAP and CoAPs cases after 100

http://ww1.microchip.com/downloads/en/devicedoc/atmel-8351-mcu_wireless-at86rf233_datasheet.pdf
http://ww1.microchip.com/downloads/en/devicedoc/atmel-8351-mcu_wireless-at86rf233_datasheet.pdf

. [CoAP] Lost frames
--------- [CoAP] Cumulative lost frames avg.

~——o—— [COAPs] Lost frames
-------- [CoAPs] Cumulative lost frames avg.

¥
0 10 20 30 40 50 60 70 80 920 100

Iterations

Fig. 13. Cumulative average of the percentage of lost 802.15.4 frames through
the 100 set of tests in the second scenario.

iterations ([CoAP lost frames avg.]: 1.014% and [CoAPs lost
frames avg.]: 0.986%). Furthermore, as the four cases are
interleaved, it is reasonable to assume that CoAP_SSH and
CoAP_SSH_C were also affected in the same way by the channel
during the entirety of the tests. Therefore, it is feasible to
statistically compare the behavior of the four different cases with
different values of LQI, by considering the missing frame rate
mark of CoAP or CoAPs as indirect references of the LQI status
of the channel or its capacity.

On the other hand, the two cases in which SSH is used do not
present such a correlation and thus, there exist multiple tests with
similar Treq marks that suffer a wide range of frame error rate
values (dispersion). This indicates that those cases (CoOAP_SSH
and CoAP_SSH_C) are more resilient to interferences than just
plain CoAP/CoAPs: even though the LQI decreases (increase of
missing frames for CoAP and CoAPs), SSH-based cases are able
to adapt and make a better usage of the channel thanks to TCP
default congestion control algorithm (Reno) and its ability to
better adapt to the capacity of the channel.

C. Interference effects analysis

In the results displayed in Fig. 11, the CoAPs’ lack of
resilience to interference or noise is clearly made manifest. In
addition, the left-aligned swarms of dots of the SSH cases, not
only present a better harnessing of the channel capacity, but also
a better resilience to interferences. In Fig. 12, it is shown how
CoAP_SSH_C’s ability for slashing the overhead and payload
through compression proves to be instrumental this time: a
decrease of the amount of information to be sent reduces the loss
probability and also the time required to complete each request.

Compression can also contribute to reduce the components
(software and hardware) work load for longer periods of time.
The extra energy needed by these compressing features reduces
transmission times, which saves a greater amount of energy that
would be required otherwise by the application and the entire
device’s communication system [43] [14].

A summary of the average results is displayed in Table Il. In
this scenario, the overhead is higher: more retransmissions are

TABLE Il
SUMMARY RESULTS 2"° SCENARIO
Case Avg. frame Avg. Trq AP* Avg. overhead
error (%) (s) (%) (%)

CoAP 1.02 76 8.42 25.72
CoAPs 0.99 83 0 34.81
CoAP_SSH 291 53 36.30 89.71
CoAP_SSH C 4,55 30 63.33 -4.54

* AP (%) = 100*(T eq_COAPs-Treq)/Teq_ COAPS

requested in the four cases, because of the lossier behavior of the
channel. Remarkably, CoAP_SSH significantly improves its
transfer time when compared to CoAPs (up to 36%) and, when
the compression feature is enabled, this figure rises up to 63%.

V.CONCLUSIONS

loT devices are in constant growth and ad-hoc vertical
solutions are arising as responses to the foremost challenges our
world faces today. New opportunities may appear from synergies
between verticals, but connectivity between them is usually
complex. Besides, security and privacy have become major
concerns, not only for 10T developers, but between regulatory
bodies as well. CoAP is frequently used as an application level
protocol in constrained devices, as a substitute for HTTP to give
support to loT services of different kinds; and security
decoupling proves to be an instrumental technique to enable the
rise of new certification frameworks that grant a more
standardized management of security and privacy.

This paper has provided evidence of the feasibility of security
decoupling in applications using CoAP, and has also documented
beneficial side effects that this approach can provide to 802.15.4
IoT devices in presence of 802.11 interference sources.
Particularly, the straightforward loTsafe approach has been
evaluated against traditional CoAP deployments. The results
show that this implementation is feasible allowing the 10T device
application and the server software to use the unsecure version of
CoAP (without DTLS) while seamlessly entrust security
concerns to loTsafe without requiring any other particular feature
to be included in their design.

The performance impact of this straightforward approach does
not penalize the communication performance in lossless
environments, despite a 39% of overhead increase compared to
CoAPs standard deployment.

In lossier scenarios because of 802.11 interferences, the
decoupled scheme can reduce transfer time by 36% with respect
to CoAPs, even though the overhead difference between
CoAP_SSH and CoAPs increases (54.9%). If SSH compressing
features are also put into action, the global overhead is the lowest
of all cases (even negative, thanks to the compressibility of the
payload) and the performance in transfer time boosts up to 14%
in interference-free scenarios, and up to 63% when the channel
experiments fading events causing an average of ~1% of CoAP
or CoAPs 802.15.4 frames to be lost.

These results remark the importance of a congestion control
algorithm and how decoupled solutions based on SSH/TCP can
benefit from it without altering loT core software and/or
protocols. As future work, further optimized security decoupling
approaches should be taken into consideration, such as new SSH
UDP-based deployments or full security decoupling CoAP
solution with more advanced congestion control algorithms,
which may provide room for further improvement.

VI. ACKNOWLEDGEMENTS

This work was supported in part by Fondo Europeo de Desarrollo
Regional Aragon Operative Programme 2014-2020 “Building
Europe from Aragon” (Research Group T31 17R).

[1]

[2]

[3]

[4]

[5]

[6]

[71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

VII. REFERENCES

Cisco, "Internet of Things at a Glance" [Online]. Available:
https://www.cisco.com/c/dam/en/us/products/collateral/se/internet-of-
things/at-a-glance-c45-731471.pdf [Accessed 30 09 2019].

J. Lin et. al., "A Survey on Internet of Things: Architecture, Enabling
Technologies, Security and Privacy, and Applications”, IEEE Internet
of Things Journal, vol. 4, no. 5, pp. 1125 - 1142, 2017.

I. Stellios, P. Kotzanikolaou, M. Psarakis, C. Alcaraz and J. Lopez, "A
Survey of loT-Enabled Cyberattacks: Assessing Attack Paths to
Critical Infrastructures and Services", IEEE Communications Surveys
& Tutorials, vol. 20, no. 4, pp. 3453 - 3495, 2018.

M. Al-Fugaha et al., "Internet of Things: A survey on enabling
technologies protocols and applications”, IEEE Communications
Surveys & Tutorials, vol. 17, no. 4, pp. 2347-2376, 2015.

I. Yaqoob et al., ", Internet of things architecture: Recent advances
taxonomy requirements and open challenges”, IEEE wireless
communications, vol. 4, no. 3, pp. 10-16, 2017.

B. Schneier, "Patching is failing as a security paradigm", in Click Here
to Kill Everybody: Security and Survival in a Hyper-connected World,
New York, W. W. Norton & Company, 2018.

F. Restuccia, S. D’Oro and T. Melodia, "Securing the Internet of Things
in the Age of Machine Learning and Software-Defined Networking",
IEEE Internet of Things Journal, vol. 5, no. 6, pp. 4829 - 4842, 2018.

A. Ghanbari et al., "Business Development in the Internet of Things: A
Matter of Vertical Cooperation”, IEEE Communications Magazine,
vol. 55, no. 2, pp. 135 - 141, 2017.

Directorate-General for Communications Networks, Content and
Technology, "Cybersecurity Act", 19 September 2017. [Online].
Available: https://eur-lex.europa.eu/legal-
content/EN/ALL/?uri=COM:2017:477:FIN [Accessed 18 07 2019]

G. Gianmarco Baldini and A. L. Giannopoulos, "Analysis and
recommendations for a European certification and labelling framework
for cybersecurity in Europe [12183/17 ADD 9] ", Luxembourg:
European Commission Joint Research Centre, 2017.

M. A. Razzaque et al., "Middleware for Internet of Things: A Survey",
IEEE Internet of Things Journal, vol. 3, no. 1, pp. 70 - 95, 2015.

A. H. Ngu etal., "loT Middleware: A Survey on Issues and Enabling
Technologies”, IEEE Internet of Things Journal, vol. 4, no. 1, 2017.

R. T. Tiburski, C. R. Moratelli, S. F. Johann, et al., "Lightweight
Security Architecture Based on Embedded Virtualization and Trust
Mechanisms for loT Edge Devices," IEEE Communications
Magazine, vol. 57, no. 2, pp. 67 - 73, 2019.

J. D. de Hoz-Diego, J. Saldana, J. Fernandez-Navajas and J. Ruiz-
Mas, "loTsafe, Decoupling Security From Applications for a Safer
loT", IEEE Access, vol. 7, pp. 29942 — 29962, 2019.

J. D. de Hoz-Diego, J. Saldana, J. Fernandez-Navajas, J. Ruiz-Mas,
etal. "SSH as an Alternative to TLS in loT Environments using
HTTP", in Global Internet of Things Summit, Bilbao, 2018.

G. Arfaoui, S. Gharout and J. Traoré, “Trusted Execution
Environments: A Look under the Hood", in IEEE International
Conference on Mobile Cloud Computing, Services, and
Engineering, Oxford, UK, 2014.

M. Sabt, M. Achemlal and A. Bouabdallah, "Trusted Execution
Environment: What It is, and What It is Not", in IEEE
Trustcom/BigDataSE/ISPA, Helsinki, Finland, 2015.

GlobalPlatform Inc., "GlobalPlatform Device Technology: TEE Sockets
API Specification", January 2017. [Online]. Available:
https://globalplatform.org/specs-library/tee-sockets-api-specification-v1-
0-1/ [Accessed 16 08 2019].

B. McGillion, T. Dettenborn, T. Nyman and N. Asokan, "Open-
TEE -- An Open Virtual Trusted Execution Environment", in IEEE
Trustcom/BigDataSE/ISPA, Helsinki, Finland, 2015.

L. Sanchez et al., "Federation of Internet of Things Testbeds for the
Realization of a Semantically-Enabled Multi-Domain Data
Marketplace", Sensors, vol. 18, no. 10, p. 3375, 2018.

P. P. Ray, "A survey of 10T cloud platforms", Future Computing
and Informatics Journal, vol. 1, no. 1-2, pp. 35-46, 2016.

[22] R. Minerva, A. Biru and D. Rotondi, "Towards a definition of the
Internet of Things (1oT)", IEEE Internet Initiative, no. 1, 2015.

[23] RERUM consortium members, "Final System Architecture,
RERUM FP7-1CT-609094", 4 September 2015.

[24] G. Moldovan et al, "An loT Middleware for Enhanced Security and
Privacy: The RERUM Approach", IFIP International Conference on
New Technologies, Mobility and Security, Larnaca, Cyprus, 2016.

[25] M. Ammar, G. Russello and B. Crispo, "Internet of Things: A survey
on the security of 10T frameworks", Journal of Information Security
and Applications, vol. 38, pp. 8-27, February 2018.

[26] J. D. de Hoz-Diego, "Secure Communication Method And System
Using Network Socket Proxying". PCT Application WO/2019/059754

[27] Eclipse loT Working Group, IEEE I0T, AGILE IoT, "loT Developer
Survey" [Online]. Available: http://iot.ieee.org/images/files/pdf/iot-
developer-survey-2016-report-final.pdf [Accessed 2019 07 18].

[28] Eclipse lIoT Working Group, IEEE 10T, AGILE IoT, "loT Developer
Survey", 04 2017. [Online]. Available:
https://ianskerrett.wordpress.com/2017/04/19/iot-developer-trends-
2017-edition/ [Accessed 18 07 2019].

[29] Eclipse Foundation, "loT Developer Survey 2019 Results", 04 2019.
[Online]. Available: https://iot.eclipse.org/resources/iot-developer-
survey/iot-developer-survey-2019.pdf. [Accessed 18 07 2019].

[30] C.Bormann, M. Ersue, A. Keranen and C. Gomez, "Terminology for
Constrained-Node Networks: draft-bormann-lwig-7228bis-04", 11
March 2019. [Online]. Available: https://tools.ietf.org/html/draft-
bormann-lwig-7228bis-04 [Accessed 18 07 2019].

[31] C.Bormann and Z. Shelby, "Block-Wise Transfers in the Constrained
Application Protocol (CoAP)", August 2016. [Online]. Available:
https://tools.ietf.org/html/rfc7959 [Accessed 18 07 2019].

[32] T. Ylonen and C. Lonvick, "“The Secure Shell (SSH) Transport Layer
Protocol", Internet Engineering Task Force, January 2006. [Online].
Auvailable: https://tools.ietf.org/html/rfc4253 [Accessed 18 07 2019].

[33] NSA: Information Assurance Directorate, “Wireless Local Area Network
Capability Package V.2.2", June 2018 [Online]. Available:
https://www.nsa.gov/Portals/70/documents/resources/everyone/csfc/capa
bility-packages/WLANCPv2.2_20180626.pdf [Accessed 18 07 2019].

[34] S. Kanti Datta and C. Bonnet, "Describing Things in the Internet of
Things. From CoRE Link Format to Semantic Based Descriptions", in
International Conference on Consumer Electronics, Taiwan, 2016.

[35] D. Chanet, et al. "Automated reduction of the memory footprint of the
Linux kernel", ACM Transactions on Embedded Computing Systems
(TECS) - Special Section LCTES'05, vol. 6, no. 4, 2007.

[36] J.-H. Hauer and V. Handziski, "Experimental Study of the Impact of
WLAN Interference on IEEE 802.15.4 Body Area Networks", in
EWSN '09 Proceedings of the 6th European Conference on Wireless
Sensor Networks, Cork, Ireland, 2009.

[37] Y. Dong et al., "Wireless coexistence between IEEE 802.11 and IEEE
802.15.4 based networks: A survey", International Journal of Distributed
Sensor Networks, pp. 1550-1329, July 2011.

[38] Chipcon, "CC24202.4 GHz IEEE 802.15.4 / ZigBee-ready RF
Transceiver", 09 06 2004.

[39] A. Hithnawi, H. Shafagh and S. Duguennoy, “802.15.4, Understanding
the Impact of Cross TechnologyInterference on IEEE", in 9th ACM
international workshop on Wireless network testbeds, experimental
evaluation and characterization , Maui, Hawaii, USA, 2014.

[40] R. G. Lomax and D. L. Hahs-Vaughn, Statistical Concepts: A Second
Course., Routledge, 2000.

[41] U. A. Chude-Okonkwo, R. Ngah and T. Abd Rahman, "Time-scale
domain characterization of non-WSSUS wideband channels",
EURASIP Journal on Advances in Signal Processingvolume, 2011.

[42] U. A. Chude Okonkwo et al., "Time-scale domain characterization of
nonstationary wideband vehicle-to-vehicle propagation channel”, in
IEEE Asia-Pacific Conference on Applied Electromagnetics
(APACE), Port Dickson, Malaysia, 2010.

[43] M. Suérez-Albela et al., "A Practical Evaluation of a High-Security
Energy-Efficient Gateway for l1oT Fog Computing Applications",
Sensors, no. 9, p. 1978, 2017.

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=COM:2017:477:FIN
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=COM:2017:477:FIN
https://tools.ietf.org/html/draft-bormann-lwig-7228bis-04
https://tools.ietf.org/html/draft-bormann-lwig-7228bis-04
https://tools.ietf.org/html/rfc7959
https://tools.ietf.org/html/rfc4253
https://www.nsa.gov/Portals/70/documents/resources/everyone/csfc/capability-packages/WLANCPv2.2_20180626.pdf
https://www.nsa.gov/Portals/70/documents/resources/everyone/csfc/capability-packages/WLANCPv2.2_20180626.pdf

