
1



Abstract— The complex and ever changing Internet of Things

(IoT) domain could benefit from standardization and a higher

degree of autonomy between different layers: standard

approaches defining the relationship between security

communication software functionalities, hardware and

applications would allow a more efficient, flexible and secure

communication. To this end, techniques in which the security of

IoT devices is decoupled from the applications they run, can

provide significant benefits and enable the development of new

standardization strategies. This paper presents a study of the

benefits provided by IoTsafe, a security decoupling approach,

when used in combination with the Constrained Application

Protocol (CoAP). Whereas previous work relied on HTTP/HTTP2

protocols, the present paper is focused on the analysis of the

feasibility of IoTsafe in more constrained devices in channels with

high interference levels. The benefits of this technique are

illustrated by means of a battery of tests to evaluate the impact of

this scheme. The results show no performance penalty (taking

CoAP with security as a baseline) in lossless channels, even when

an overhead increment of 38% is borne. Furthermore, in lossier

channels, a transfer time reduction of 36% is achieved, a figure

that increases significantly if traffic compression is enabled.

Index Terms—IoT, CoAP, SSH, DTLS, Security decoupling

I. INTRODUCTION

HE continuous increase in the number of the IoT devices is a

well-known phenomenon. Some predictions forecast a total

amount of connected devices around 500 billion by the end of

2030 [1]. As a counterpart, the concerns about the security threats

that may affect these devices are growing. Extensive literature

has already defined different taxonomies of potential threats for

these devices, and has also suggested some possible strategies to

overcome them and limit their scope [2] [3] [4] [5].

IoT security maintenance is usually addressed following an

“ad-hoc” reactive approach, where temporary measures (patches)

are provided whenever a vulnerability is discovered by an attack

or just by public disclosure. However, the lack of incentives for

the final user to deploy these patches may render this security

paradigm insufficient [6]. To overcome this problem, a more

proactive methodology would need to include an improved

approach where security-by-design is seriously considered [7].

Each IoT market is defined by specific needs addressed by

technological solutions that usually cover all concerning aspects

Jorge David de Hoz, Jose Saldana, Julián Fernández-Navajas and José Ruiz-

Mas are with the I3A Aragon Institute of Engineering Research, University of

Zaragoza, Ada Byron Building, 50018 Zaragoza (e-mail: dhoz@unizar.es;
jsaldana@unizar.es; navajas@unizar.es; jruiz@unizar.es).

Copyright (c) 20xx IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

and layers of the IoT project in a vertical way: from devices to

services. Thus, IoT vertical markets’ demands usually result in

IoT vertical solutions. These technologies are devised only with

the particular market problems in mind, and the absence of

globally accepted standards at each layer hinders future

interoperability between verticals. Advanced security

technologies will further isolate the different solutions, requiring

more complex middleware to keep connectivity but preventing

new business opportunities from arising. For the sake of

productivity, and also to benefit from new third parties’ added

value, vertical solutions should be encouraged to increase their

interoperability and potential collaboration [8].

Regulators are also addressing this problem. As an example,

the European Union is concerned about all these cybersecurity

issues and truly committed to its future regulation. Ongoing work

in this area suggests that, in some cases, all IoT security efforts

will have to be externally certified in accordance with the

Cybersecurity Act [9]. These security efforts affect any piece of

software, hardware, a device or set of devices, a technique, or a

combination of any of the previous, according to the definition of

the Target of Evaluation (TOE) by the Common Criteria for IT

Security Evaluation (ISO/IEC 15408)1. In order to achieve an

Evaluation Assurance Level 7 (EAL7), the current complexity of

the design must be minimized and also a “white box” testing and

complete independent confirmation of developer test results are

required [10].

This suggests that a simplification of the certification process

is feasible if more independence between the parts of the system

is achieved. Security should be guaranteed and managed by well-

defined items (hardware, software or both), which should have to

be certified (for security purposes) according to their use, as it

similarly happens with i.e., Payment Card Industry (PCI)2

certifications in points of sale, cashiers, etc. Those devices might

be complex but, as “payment security decoupling” is successfully

implemented, only the elements that are involved in payment

procedures have to be certified by PCI.

Thus, solutions able to facilitate the future certification

processes of IoT devices are needed. This problem is being dealt

with in different works usually through a middleware approach

[11] offering hardware abstraction [12] to increase

interoperability and to improve security [13], but the Application

1 Common Criteria for IT Security Evaluation,

https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf
2 Payment Card Industry certifications

https://www.pcisecuritystandards.org/

Decoupling security from applications in

CoAP-based IoT devices
Jorge David de Hoz, Member, IEEE, Jose Saldana, Member, IEEE,

Julián Fernández-Navajas, José Ruiz-Mas

T

mailto:pubs-permissions@ieee.org
https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf
https://www.pcisecuritystandards.org/

2

Programming Interfaces (APIs) required to be used by the IoT

application are wont to prevent a full decoupling from

succeeding, as highlighted in [14]. In that paper, and also in [15],

a system called IoTsafe was presented, where the security was

decoupled from the applications using plain sockets, Secure

Socket Shell (SSH) protocol and Linux kernel features. Such an

approach does not guarantee any certification compliance by this

alone, but simplifies the way to address security and certification

issues separating security from applications [15]. However, its

scope was limited because it was only implemented and tested

with long-standing protocols such as HTTP. In contrast, more

recent protocols specifically designed for IoT environments as

i.e., CoAP, were not studied.

In the present paper, we perform an analysis of the security

decoupling feasibility in IoT environments using CoAP. An

overall study of its advantages is conducted and it is also

discussed how CoAP environments could easily benefit from

security decoupling features. Taking into account the resource

limitations of these environments, the performance impact is

also studied, by means of empirical measurements of the

penalty cost the security decoupling approach could have in

terms of transfer time, which by extension affects the energy

consumption and hardware resources required [15]. The tests

will primarily evaluate the feasibility of the security decoupling

strategy for CoAP applications and its performance in lossy

environments due to existing interferences in the channel used.

The remainder of the article is organized as follows: in the next

section we summarize the security decoupling approaches

existing today, with a particular focus in communications. In this

section are introduced as well some capital features of

constrained devices and protocols, and some ongoing efforts

which would enable such security decoupling strategy in these

devices. Section III details the Test Scenarios, the Results are

presented in section IV and the paper ends with the Conclusions.

II. RELATED WORK

A. Security decoupling: a “Divide and rule” policy

The security concerns, the verticals’ interoperability and the

regulation efforts previously introduced represent competing

interests from different parties, all together intertwined into a

Gordian knot that stalls most of the initiatives towards any

direction. This has motivated a differentiated handling of the

security in a special way, apart from the rest of functionalities

and traditional features IoT device’s applications may offer.

Modern processors and microcontrollers provide special

functionalities that can help to achieve this objective. The tasks

related to security management, integrity and trust between

applications in a device can be addressed with specific security

hardware entities, conforming a Trusted Execution

Environment (TEE) [16]. This can be understood as a security

decoupling of sorts, as the applications are relying main

security responsibilities to these entities, so as to gain a proper

trust. Applications running under this paradigm are considered

under a TEE [17].

3 Global Platform, The standard for secure digital services and devices,
https://globalplatform.org/

Nevertheless, this approach makes the final product highly

dependent on the chosen technical scheme (the TEE solution and

hardware architecture). Thus, some initiatives have arisen such

as Globalplatform3, gathering about 90 organizations worldwide

to devise the basis of a set of standards that any solution should

follow so as to guarantee interoperability. Such standards define

multiple interfaces according to each technical area. Network

communications also have their own, defined by the TEE Sockets

API [18].

This API enables Trusted Applications (TAs) to establish and

use their communications through a new kind of network socket,

known as the iSocket. This entity acts as a wrapper of a regular

socket for the TA (Fig. 1). Rich Execution Environment

Applications (GlobalPlatform uses the term “REE” to talk about

applications in which the user interacts with the OS) have to rely

on the TEE Client API in order to secure their communications

through a TA and thus, this scheme is indeed following a security

decoupling approach. The iSocket can be configured to establish

a secure communication using Transport Layer Security (TLS)

or Datagram Transport Layer Security (DTLS) protocols. In the

case TLS/DTLS became outdated, a new TA should be devised

and upgraded to support the new TLS version. This might not be

straightforward, but it would imply a much easier procedure than

upgrading the whole REE Application for every kind of device.

This particular item (the TA) is supposed to become common,

under heavy development and independent from REE

Applications. However, if this upgrade (of the TA) required a

new version of the TEE Client API, the REE Client Application

should have to be adapted as well, and its binary code replaced,

though this situation should become rather anecdotal (only major

upgrades should require API changes).

As a summary, it can be said that an IoT solution which is to

follow this scheme to the letter would benefit from certifiable

security, although this may imply more complexity and a certain

loss of interoperability. Regarding networking issues in

particular, when the application and no TEE-compliant sources

have to communicate, then TLS/DTLS must be included in the

REE application, preventing a security decoupling approach

from being followed in practice. Besides, using TEE network

security features also requires the application to be specifically

designed for such a communication API, forcing already existing

applications to be redesigned to get adapted to this requirement.

Fig. 1. Separation of Security Protocols and Pure Transport Protocols [18].

https://globalplatform.org/

3

OPEN-TEE [19] is a related technology that provides a slightly

different approach: it offers simplicity and compatibility between

architectures in exchange for renouncing to the use of dedicated

hardware features and their performance. Further bold

approaches include virtualization techniques adapted to IoT edge

devices. The virtualization system may or may not comply with

Globalplatform standards, but it can benefit either way from

dedicated security hardware features without the virtualized

applications noticing. This type of system is transparent to the

applications and can be more convenient for developers, as it

simplifies the application design by truly decoupling security

issues. Successful secure virtualization has even been carried out

in devices with 2 mbytes of ROM and 512 kbytes of RAM [13].

This virtualization scheme could be complemented with a

security decoupling technique for communications that would

enhance an overall security solution without affecting either

applications’ portability or simplicity.

B. IoT verticals: a connectivity barrier to overcome

The great number of existing verticals for different IoT areas

makes it imperative the creation of supra entities called

federations [20]. Interconnecting different verticals usually

requires complex semantic transversal middleware environments

[21], but the European Telecommunications Standards Institute

(ETSI), member of the oneM2M Global Initiative4, is working

towards “horizontalizing” the pipes [22] to simplify this feat.

To that end, it is remarked the necessity of a standardized

horizontal middleware of sorts that could homogenize all

underlying devices and technologies, simplifying

intercommunication between services of different vertical

approaches, as presented in Fig. 2.

RERUM5 can be considered as a fine example of this effort:

a middleware that helps to improve privacy and security in the

IoT, but also promoting interoperability [23]. This approach

intends to become the middleware suggested by ETSI

(Common Application Infrastructure, Fig. 2) to simplify

horizontal deployments across many IoT markets. However,

instead of presenting a truly way to devise IoT federations

through horizontal deployment, RERUM ends up becoming

itself into an extraordinary flexible but vertical solution in

practice, because of its mandatory IoT device abstraction

scheme, a common issue in middleware-based approaches.

This abstraction is held by a local IoT device middleware (Fig.

3), which converts the IoT device (the physical device) into a

RERUM Device (RD), i.e., a virtual entity easier to handle. This

allows the main middleware modules (in servers) to benefit from

a translation of all the resources and services that the IoT devices

may provide, but as RD resources instead. Thus, this

“virtualization” cannot be truly considered a successful security

decoupling-based approach, since the IoT device software

abstraction and the communication security features are not

independent: the RD Adaptor is a part of the RD Middleware

environment that lays in each IoT device and homogenizes them

all, but also assuming all security communication

responsibilities.

4 One M2M, standards for M2M and the Internet of Things,
http://www.onem2m.org/

Thus, it may prove difficult for already designed devices to

join the Common Application Infrastructure that RERUM

provides, as this would require major changes to each IoT

device’s software design. Besides, this hardware abstraction

technique also happens to result hardware dependent: it is only

devised for ARM technologies, limiting the scope of the

federation architecture to specific manufacturers [24].

Furthermore, security upgrades are to be made altogether with

the middleware (not independent).

Anyhow, including a security decoupling approach in this

scheme is feasible and can provide all its intrinsic benefits. This

would only require minimal modifications of the proposed

RERUM design, allowing a simpler IoT device abstraction

approach and also different IoT device’s architectures to join.

There exist other different approaches based on the use of

middleware which usually simplifies its implementation through

frameworks [25]. However, the majority of the solutions suffer

from similar difficulties when handling security upgrades

because the IoT device software is not fully independent from the

middleware and its APIs.

C. IoTsafe: an IoT security decoupling approach

 IoTsafe is a security decoupling scheme deployed in the

communication layers. It is able to simplify some security

problems (particularly when upgrading, see Fig. 4) and to reduce

possible threats whilst improving interoperability and helping to

comply with certification procedures [14].

This security decoupling technique is only straightforwardly

deployed when an embedded Linux variant and the SSH protocol

are present in the devices. Nevertheless, this solution should be

understood as a possible realization of a general method to enable

5 RERUM: REliable, Resilient and secUre IoT for sMart city applications,
https://ict-rerum.eu/

Fig. 2. Vertical and horizontal pipe standardization scenarios [22].

Fig. 3. RERUM device functional layers [23].

http://www.onem2m.org/
https://ict-rerum.eu/

4

the “horizontalization of verticals,” not necessarily requiring

Linux or SSH [26]. Security decoupling can be presented as an

“extension” of OSI communication layer in between the 4th and

the 5th layers: IoTsafe uses sockets as interface (layer 4) but also

operating system driven security contexts (layer 5) provided only

through standard Linux kernel features.

IoTsafe proposes simplifying all IoT application software in

the device by delegating all security and authentication issues to

a complimentary stand-alone software module in charge of

establishing a secure connection between the device and the

gateway/server (Fig. 5). This piece of software should be the only

one able to communicate, providing transparent proxification of

all communication sockets to/from the IoT gateway/server.

Conversely, the local communications between sockets

within the server (Fig. 6) are securely established from one

socket to another following a virtual circuit commutation

approach conceptually similar to the one illustrated in Fig. 7.

This local communication inside the IoT gateway/server is

fashioned and protected transparently through security contexts

[14]. Linux kernel features there as a “communication

hypervisor”, transparent to the proper communications, as

regular hypervisors deal with virtual machines. Such a security

decoupling approach inherently offers interesting benefits [14]:

 Efficient application development: Security concerns are

out of the IoT device application scope and can be delegated

to complimentary software maintained by 3rd business

parties specialized in security.

6 https://www.freertos.org/

 Simpler application’s communication: End-to-end data is

generated by insecure applications over a secure channel.

 Technology-independent communication: As secure digital

communication may be transparently transmitted through

insecure analog channels, even raw IoT devices’ resources

can be securely, transparently and independently

transmitted through the underlying communication

technology by using security decoupling techniques. Thus,

local IoT device resources can be forwarded as plain

network sockets (a much simpler interface than used by

most APIs) into an IoT gateway/server, and remote

resources can be securely forwarded back into the IoT

device as well.

As a result, all the security concerns can be delegated nearly

in full to this IoTsafe lower communication layer, and be

upgraded and maintained by external 3rd parties offering an

analogous service to, i.e., the one provided by antivirus security

firms for computers and servers. This could allow a white-box

testing procedure that would enable compliance for the highest

security certification levels more affordably through the entire

life cycle of the device. Simultaneously, interoperability would

also be simplified, as related communication layer interfaces

consist of plain local sockets handled transparently through

security contexts: IoT server applications perceive all IoT

devices’ resources as local entities (plain sockets inside the

machine) and so do the IoT devices with the ones provided by the

IoT platform/middleware of the IoT gateway/server [14].

D. Security decoupling for constrained devices

Recent surveys [27] [28] [29] conducted among developers

suggest that IoT solutions deployed into moderately constrained

devices rely on Operating Systems (OS) or Real Time Operating

Systems (RTOS) rather than on bare metal firmware. According

to the most recent of those surveys [29], FreeRTOS6 seems to be

Fig. 4. Upgrading TLS on an IoT Core Application of an IoT device: It may
require modifying the IoT Core Application in the device and rebuild it [15].

Fig. 5. Upgrading IoTsafe on an IoT device: IoTsafe stand-alone security

modules interface with the core IoT Application through local sockets, easing

security upgrading processes thanks to software independence [15].

Fig. 6. IoTsafe conceptual scheme for local connections in the gateway/server.

Core IoT

Application

1.0

IoTsafe

1.1

IoT device

Core IoT

Application

1.0

IoTsafe

1.2

IoT device

Fig. 7. IoTsafe gateway/server simplified communication scheme, rendered as

an old-style manual circuit-switched telephone network.

https://www.freertos.org/

5

one of the RTOS preferred for such projects by the developers,

thanks to its wide hardware support and also by its available

Portable Operating System Interface (POSIX) compliance.

IoTsafe’s direct approach requires at least a POSIX

environment and also SSH features available in the devices,

something that the most constrained ones were unable to achieve.

Nevertheless, novel initiatives interested in boosting SSH

development into constrained equipment have arisen. As an

example, WolfSSH7 is able to provide SSH server v2

implementations for FreeRTOS with a minimal footprint of 32

kbytes and only requiring between 1.4 and 2 kbytes of RAM.

This would enable IoTsafe to be run in more constrained devices

straightforwardly. According to a recent IETF draft classification

[30], such abled devices would be ranging from class 15 (0.5 GB

to 1 GB RAM) to virtually class 1 (10 KiB of RAM, 100 KiB of

ROM), as FreeRTOS hardware requirements are also rather slim.

Communication protocols used in constrained devices are

diverse, and sometimes long-standing ones are included, such as

HTTP, HTTP/2 and Message Queuing Telemetry Transport

protocol (MQTT). On the other hand, CoAP is relatively new,

particularly devised for constrained environments, and complies

as a REpresentational State Transfer protocol (RESTful). It

works over UDP and it is primarily aimed for small devices’

payloads like sensors’ and actuators’. Nevertheless, its bitwise

extension also provides support for occasionally larger payload

transfers, primarily for firmware upgrades [31].

As explained in the Introduction, the security decoupling

approach should be independent from the underlying technology

and thus, it is feasible to design different stand-alone modules

(based for example on CoAP rather than on SSH), allowing this

security-decoupling scheme also to use UDP. Such an approach

would help to deal with security concerns, thanks to IoTsafe

general security decoupling procedures, once they are found

feasible in CoAP deployments. Besides, this decoupling

functionality would help to separately address other problems,

such as improving the behavior of the communications in lossy

environments without modifying the core IoT CoAP application

binaries.

Anyhow, in the pursuit of simplicity, the straightforward

approach (based on Linux and SSH) is chosen for the tests

presented in the next section, in order to simplify the procedure

and also to allow cross-analyses with existing results for other

protocols found in the literature [15].

7 https://www.wolfssl.com/products/wolfssh/

III. TEST SCENARIOS

The comparison of a security-decoupled approach and the

standard one involves multiple test series where the IoT device

performs several GET petitions to a gateway/server, requesting

a resource. Both server and client pieces of software supporting

CoAP are devised in Java using the Californium framework8.

The resource offered is dynamic and provides random text. The

figures of merit to be evaluated in the tests are the overhead, the

loss rate of 802.15.4 frames and the required transfer time.

These measurements are devised to feature the possible

performance impact that a common lossy environment may

have in each configuration. Other concerns left aside such as

payload behavior dependence, 802.15.4 fragmentation or server

security and scalability, have already been studied in depth [14].

The test series are run in two scenarios: the first one uses an

almost lossless channel, and the second one is lossier with ~1%

UDP’s lost 802.15.4 frames. The test procedure in the lossy

environment is devised to affect similarly the four cases and

evidence of this is thoroughly elaborated in the Results. In both

scenarios, 100 interleaved sets of 100 GET requests each with

1024 bytes of payload, are performed for each protocol

configuration to analyze (a case). Once a set of 100 GET

requests of one of the cases is finished, the following one

proceeds until the four cases are completed (an iteration). The

whole test battery comprises 100 iterations for each scenario.

Each set of 100 GET requests is performed in a row, i.e.,

serial, to avoid penalizing DTLS-based cases. In general, DTLS

should perform a full secure handshake for each request while

SSH approaches just establish a connection reusable for all the

100 requests. Thus, when CoAPs (CoAP with DTLS support)

is run, DTLS can benefit from this, reusing the cryptographic

established configuration for the 99 remaining requests. The

four cases to consider at each scenario are as follows:

 CoAP, used straightforwardly, including a server and a client

without any other special feature.

 CoAPs, similar to the previous one, but with DTLS.

 CoAP with SSH (denoted as CoAP_SSH in the graphs). It

uses security decoupling based on an OpenSSH embodiment.

This protocol provides security to CoAP server and client by

socket proxification. To allow this, firstly all CoAP

bidirectional traffic should be encapsulated into a TCP stream

using Linux socat command, and then forwarded to the server

trough an SSH established connection.

8 https://www.eclipse.org/californium/

Fig. 8. IoT device test diagram to compare SSH vs. DTLS performance in CoAP communications.

https://www.wolfssl.com/products/wolfssh/
https://www.eclipse.org/californium/

6

 CoAP with SSH with compression (CoAP_SSH_C). It is

similar to the previous case, but enabling the compression

features provided by the ZLIB library [32] used by the SSH

implementation.

The proposed scenarios (depicted in Fig. 8) comprise one

device acting as a client and another one as a gateway/server.

Both devices are Raspberry Pi 3 Model B V1.2 equipped with

802.15.4 Openlabs interfaces (based on the at86rf233 Amtel

transceiver). Communications are established between the two

Raspberries over WPAN.

The first scenario uses channel 26 (2480 MHz) so as to avoid

802.11 interferences. The second scenario employs channel 22

(2460 MHz) to benchmark a lossy channel (a common case in

IoT scenarios), because of the existing interferences with the

802.11 channel 11 (in our case, 34 WiFi networks ranging from

-59 to -75 dBm were present). Both 802.15.4 interfaces are

configured at -2 dBm, placed one meter away from each other. A

virtual LoWPAN interface is configured on both devices to

fragment packets when needed: IPv6 requires a minimum MTU

of 1280 bytes, while 802.15.4’s MTU is 127 bytes (working with

LoWPAN fragmentation, it only offers 96 bytes of payload).

Linux kernel 4.7.4 is used, which includes a stable IEEE 802.15.4

LoWPAN implementation. The transfer rate of this device is set

to 250 kbps, i.e. the maximum specified in the 802.15.4 standard.

CoAPs implementation uses DTLS 1.2. During the tests, the

‘TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256’ al-

gorithm is used, one of those recommended as Extensible

Authentication Protocol-Transport Layer Security (EAP-TLS)

Approved Algorithms [33]. This suite implements the Elliptic-

curve Diffie-Hellman Ephemeral key exchange, using the

Elliptic-curve Digital Signature Algorithm (ECDSA), with AES-

128 as the block cipher, and SHA-256 for the hash message

authentication code (HMAC).

SSH is provided by OpenSSH, configured to work with close

(but safer) algorithms to establish connection: it uses

curve25519-sha256 as an ECDSA key exchange algorithm,

aes256-gcm as block cypher and hmac-512 as HMAC (this last

algorithm is stronger than the one used in TLS because hmac-

sha384 is no longer available as an HMAC algorithm in current

OpenSSH default implementations). SSH compression is

provided by ZLIB and can be activated by default editing the

ssh_config file. TCP standard Raspbian parameters are used, and

CoAP default values are slightly modified to be able to bear with

the tests. The only modified variables are the following ones:

blockwise_status_lifetime, max_resource_body_size and

max_peer_inactivity_period.

IV. RESULTS

The DTLS vs SSH comparison is performed using CoAPs

directly and CoAP over SSH. The CoAP case (without security)

is evaluated just to provide a reference. The server offers the

CoAP/CoAPs text resource explained in the previous section, as

IoT payloads are usually plain text with semantic-based

descriptions [34]. Although this resource does not include binary

executable data for payload testing, it is assumed it would have

also moderate compressibility [35]. The tests are devised to

measure several traffic features:

 Treq, the time required to fulfill 100 consecutive GET requests

of 1024 bytes of random text each. Other payload values

(lower and higher ones) and 802.15.4 fragmentation related

issues have already been studied in depth in other TLS/SSH

works [14], confirming that, the higher the payload is, the

better SSH solutions render when its compression features are

enabled. The value of 1024 has been chosen for the payload

as it is low enough to avoid favoring SSH alternatives, whilst

it is also large enough to generate 802.15.4 fragmentation.

 Overhead: percentage of extra information received at the

network interface (beyond 1024*100 bytes) due to

communication protocols, retransmissions, etc.

 Error rate: percentage of lost frames (sent or to be received).

A. Lossless scenario

Fig. 9 and Fig. 10 present the results of the tests in a nearly

lossless environment. The scenario is static with just one

802.15.4 sender and one receiver in a channel free of 802.11

transmissions and thus, this assumption can be considered as

valid. In these tests’ results, it can be observed the effect that the

default TCP/IP congestion control algorithm (Reno) has in the

missing 802.15.4 frames metric for CoAP_SSH and

CoAP_SSH_C cases. This algorithm tries to fully leverage the

channel capacity potential at the cost of causing such missing

frames. On the other hand, the more conservative approach

followed by CoAP and CoAPs does not appreciably increase the

frame loss rate.

These results show that the missing frame rate in CoAP_SSH

and CoAP_SSH_C is not valid to clearly measure the quality of

the channel. On the contrary, CoAP and CoAPs metrics in this

field are not being affected by such a congestion control

algorithm and thus, can be taken into consideration.

Fig. 9. Treq dispersion for sets of 100 CoAP GET requests of 1024 bytes of
payload each with an avg. LQI causing ~0.1% UDP's lost 802.15.4 frames.

Fig. 10. CDF Treq of 100 GET requests of 1024 bytes of payload each with an

avg. LQI causing ~0.1% UDP's lost 802.15.4 frames.

0

1

2

3

4

5

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

80
2.

15
.4

 l
o

st
 f

ra
m

es
 (

%
)

TREQ (s)

[CoAP] Treq 100 requests [CoAP_SSH] Treq 100 requests
[CoAPs] Treq 100 requests [CoAP_SSH_C] Treq 100 requests
[CoAP] Log regression [CoAP_SSH] Log regression

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

C
D

F

TREQ (s)

[CoAP] [CoAP_SSH] [CoAPs] [CoAP_SSH_C]

7

A summary of these results is presented in Table I. It is worth

remarking that, although CoAP_SSH has an increase of 38% of

overhead over CoAPs, it slightly outperforms the latter (2.29%)

thanks to a better use of the channel; and when SSH compression

features are enabled, this performance boost rises up to 14.26%.

During all the tests, the possible interferences are handled as

interfering noise [36]. Such is the default configuration of the

chip (cca_mode = 1) 9 for all interfering signals over -77 dBm

(cca_ed_level = -77). An accepted approach to deal with

interferences caused by 802.11 transmissions in 802.15.4 links is

to consider them as noise causing channel fadings [37].

In 802.15.4 links, the Link Quality Indicator9 (LQI) is

presented as a better metric to assess the true quality state of the

channel rather than the traditional Received Signal Strength

Indicator (RSSI). This is mainly due to the effect that a narrow-

band interferer inside the channel bandwidth may have in the

transmissions (a fading), but with an RSSI unaltered or even

higher in value [38]. Thus, the LQI may be better worked out

considering chip error rate metrics [38]. Likewise, the 802.15.4

missing frames could serve as a valid indicator of the LQI if there

is no other cause of its variability, as in CoAP and CoAPs cases.

B. Lossy scenario

Fig. 11 and 12 present the tests’ results of a lossy scenario: a

real channel with 802.11 interferences, where the sources of such

interferences are not under control.

The nature of other protocols causing cross interferences with

802.15.4 has been studied in depth already using anechoic

chambers [39]. However, we are considering a realistic scenario

with multiple 802.11 interferences impractical to model. This

poses a challenge, as we need to guarantee that the channel

presents the same statistics in the four cases, so as not to draw

skewed conclusions.

To address this question, the effect of the 802.11 interferences

on the channel has been analyzed in each case by comparing the

correlation of the required time (Treq) for each test, with the

percentage of 802.15.4 missed frames. These results are plotted

in Fig. 11 as a dispersion graph, and then a logarithmic regression

is obtained for each result series.

The resilience to frame loss of each case can be featured using

the frame loss metric in place of the LQI as error rate metric when

the major cause of the Treq variability is the lossy effect of the

channel. In our scenario configuration (a static sender and

receiver) this could be confirmed if a tight correlation between

the loss frame rate and Treq was observed. This fact is validated

through the F-test [40] only in the cases where a conservative

congestion control algorithm is implemented. This outcome

9http://ww1.microchip.com/downloads/en/devicedoc/atmel-8351-
mcu_wireless-at86rf233_datasheet.pdf

confirms that CoAP and CoAPs cases’ results (missing frames

and Treq) are not randomly scattered with a 90-95% of certainty

and thus, due to such a high correlation it is valid to assume that

in this particular testbed, for a specific LQI value (unknown) there

are close values of ‘percentage of 802.15.4 missing frames’ as

well. Due to the relationship between Treq and the missing frames

metric, it can be stated as well that for a specific ‘percentage of

802.15.4 missing frames’ there is a close range of the channel

capacity. In our case, this behavior can be easily appreciated in

Fig. 11 but also in Fig. 9, where the affinity that CoAP and

CoAPs have to their respective regression functions is observed.

The channel used can be considered a stochastic process of

unknown properties and it is not expected to be stationary, nor

even in a wide sense. Thus, it is not feasible to calculate long-term

statistical properties of the channel such as its capacity (ergodic

capacity), even after averaging enough channel fading episodes

[41]. Nevertheless, if the channel’s statistical features (though

time dependent) progress slowly enough, it can be considered as

a local sense stationary process [42]. Thus, it is possible to devise

a testbed where the four cases are interleaved in a way that each

case suffers similar interferences (fading) statistically, and at the

same time, that the evolution of such a channel is slow enough so

as to allow statistic similar interferences affect nearly equally to

the four cases during the multiple (100 in our case) iterations, that

is, the long term.

This behavior is presented in Fig. 13, where it is shown the

analogous behavior the cumulative loss frame average has on

CoAP and CoAPs cases. This explains why the percentage of lost

802.15.4 frames (inherent to the channel quality and capacity) is

nearly the same in both CoAP and CoAPs cases after 100

Fig. 11. Treq dispersion for sets of 100 CoAP GET requests of 1024 bytes of

payload each with an avg. LQI causing ~1% UDP's lost 802.15.4 frames.

Fig. 12. CDF Treq of 100 GET requests of 1024 bytes of payload each with an

avg. LQI causing ~1% UDP's lost 802.15.4 frames.

0

1

2

3

4

5

6

7

8

10 20 30 40 50 60 70 80 90 100 110 120 130 140

80
2.

15
.4

 l
o

st
 f

ra
m

es
 (

%
)

TREQ (s)

[CoAP] Treq 100 requests [CoAP_SSH] Treq 100 requests

[CoAPs] Treq 100 requests [CoAP_SSH_C] Treq 100 requests
[CoAP] Log regression [CoAP_SSH] Log regression

[CoAPs] Log regression [CoAP_SSH_C] Log regression

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100 110 120 130 140
C

D
F

TREQ (s)

[CoAP] [CoAP_SSH] [CoAPs] [CoAP_SSH_C]

TABLE I
SUMMARY RESULTS 1ST

 SCENARIO

Case
Avg. frame
error (%)

Avg.
Treq (s)

ΔP*
(%)

Avg. overhead
(%)

CoAP 0.03 21.07 27.00 11.92

CoAPs 0.16 28.86 0.00 20.23
CoAP_SSH 1.49 28.20 2.29 58.92

CoAP_SSH_C 3.82 24.74 14.26 -8.14

* ΔP (%) = 100*(Treq_CoAPs-Treq)/Treq_CoAPs

http://ww1.microchip.com/downloads/en/devicedoc/atmel-8351-mcu_wireless-at86rf233_datasheet.pdf
http://ww1.microchip.com/downloads/en/devicedoc/atmel-8351-mcu_wireless-at86rf233_datasheet.pdf

8

iterations ([CoAP lost frames avg.]: 1.014% and [CoAPs lost

frames avg.]: 0.986%). Furthermore, as the four cases are

interleaved, it is reasonable to assume that CoAP_SSH and

CoAP_SSH_C were also affected in the same way by the channel

during the entirety of the tests. Therefore, it is feasible to

statistically compare the behavior of the four different cases with

different values of LQI, by considering the missing frame rate

mark of CoAP or CoAPs as indirect references of the LQI status

of the channel or its capacity.

On the other hand, the two cases in which SSH is used do not

present such a correlation and thus, there exist multiple tests with

similar Treq marks that suffer a wide range of frame error rate

values (dispersion). This indicates that those cases (CoAP_SSH

and CoAP_SSH_C) are more resilient to interferences than just

plain CoAP/CoAPs: even though the LQI decreases (increase of

missing frames for CoAP and CoAPs), SSH-based cases are able

to adapt and make a better usage of the channel thanks to TCP

default congestion control algorithm (Reno) and its ability to

better adapt to the capacity of the channel.

C. Interference effects analysis

In the results displayed in Fig. 11, the CoAPs’ lack of

resilience to interference or noise is clearly made manifest. In

addition, the left-aligned swarms of dots of the SSH cases, not

only present a better harnessing of the channel capacity, but also

a better resilience to interferences. In Fig. 12, it is shown how

CoAP_SSH_C’s ability for slashing the overhead and payload

through compression proves to be instrumental this time: a

decrease of the amount of information to be sent reduces the loss

probability and also the time required to complete each request.

Compression can also contribute to reduce the components

(software and hardware) work load for longer periods of time.

The extra energy needed by these compressing features reduces

transmission times, which saves a greater amount of energy that

would be required otherwise by the application and the entire

device’s communication system [43] [14].

A summary of the average results is displayed in Table II. In

this scenario, the overhead is higher: more retransmissions are

requested in the four cases, because of the lossier behavior of the

channel. Remarkably, CoAP_SSH significantly improves its

transfer time when compared to CoAPs (up to 36%) and, when

the compression feature is enabled, this figure rises up to 63%.

V. CONCLUSIONS

IoT devices are in constant growth and ad-hoc vertical

solutions are arising as responses to the foremost challenges our

world faces today. New opportunities may appear from synergies

between verticals, but connectivity between them is usually

complex. Besides, security and privacy have become major

concerns, not only for IoT developers, but between regulatory

bodies as well. CoAP is frequently used as an application level

protocol in constrained devices, as a substitute for HTTP to give

support to IoT services of different kinds; and security

decoupling proves to be an instrumental technique to enable the

rise of new certification frameworks that grant a more

standardized management of security and privacy.

This paper has provided evidence of the feasibility of security

decoupling in applications using CoAP, and has also documented

beneficial side effects that this approach can provide to 802.15.4

IoT devices in presence of 802.11 interference sources.

Particularly, the straightforward IoTsafe approach has been

evaluated against traditional CoAP deployments. The results

show that this implementation is feasible allowing the IoT device

application and the server software to use the unsecure version of

CoAP (without DTLS) while seamlessly entrust security

concerns to IoTsafe without requiring any other particular feature

to be included in their design.

The performance impact of this straightforward approach does

not penalize the communication performance in lossless

environments, despite a 39% of overhead increase compared to

CoAPs standard deployment.

In lossier scenarios because of 802.11 interferences, the

decoupled scheme can reduce transfer time by 36% with respect

to CoAPs, even though the overhead difference between

CoAP_SSH and CoAPs increases (54.9%). If SSH compressing

features are also put into action, the global overhead is the lowest

of all cases (even negative, thanks to the compressibility of the

payload) and the performance in transfer time boosts up to 14%

in interference-free scenarios, and up to 63% when the channel

experiments fading events causing an average of ~1% of CoAP

or CoAPs 802.15.4 frames to be lost.

These results remark the importance of a congestion control

algorithm and how decoupled solutions based on SSH/TCP can

benefit from it without altering IoT core software and/or

protocols. As future work, further optimized security decoupling

approaches should be taken into consideration, such as new SSH

UDP-based deployments or full security decoupling CoAP

solution with more advanced congestion control algorithms,

which may provide room for further improvement.

VI. ACKNOWLEDGEMENTS

This work was supported in part by Fondo Europeo de Desarrollo

Regional Aragón Operative Programme 2014-2020 “Building

Europe from Aragon” (Research Group T31_17R).

Fig. 13. Cumulative average of the percentage of lost 802.15.4 frames through

the 100 set of tests in the second scenario.

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90 100

Lo
st

 8
02

.1
5.

4
fr

am
es

 (
%

)

Iterations

[CoAP] Lost frames [CoAPs] Lost frames

[CoAP] Cumulative lost frames avg. [CoAPs] Cumulative lost frames avg.

TABLE II
SUMMARY RESULTS 2ND

 SCENARIO

Case
Avg. frame

error (%)

Avg. Treq

(s)

ΔP*

(%)

Avg. overhead

(%)

CoAP 1.02 76 8.42 25.72

CoAPs 0.99 83 0 34.81

CoAP_SSH 2.91 53 36.30 89.71
CoAP_SSH_C 4.55 30 63.33 -4.54

* ΔP (%) = 100*(Treq_CoAPs-Treq)/Treq_CoAPs

9

VII. REFERENCES

[1] Cisco, "Internet of Things at a Glance" [Online]. Available:
https://www.cisco.com/c/dam/en/us/products/collateral/se/internet-of-

things/at-a-glance-c45-731471.pdf [Accessed 30 09 2019].

[2] J. Lin et. al., "A Survey on Internet of Things: Architecture, Enabling
Technologies, Security and Privacy, and Applications", IEEE Internet

of Things Journal, vol. 4, no. 5, pp. 1125 - 1142, 2017.

[3] I. Stellios, P. Kotzanikolaou, M. Psarakis, C. Alcaraz and J. Lopez, "A
Survey of IoT-Enabled Cyberattacks: Assessing Attack Paths to

Critical Infrastructures and Services", IEEE Communications Surveys

& Tutorials, vol. 20, no. 4, pp. 3453 - 3495, 2018.

[4] M. Al-Fuqaha et al., "Internet of Things: A survey on enabling

technologies protocols and applications", IEEE Communications
Surveys & Tutorials, vol. 17, no. 4, pp. 2347-2376, 2015.

[5] I. Yaqoob et al., ", Internet of things architecture: Recent advances

taxonomy requirements and open challenges", IEEE wireless
communications, vol. 4, no. 3, pp. 10-16, 2017.

[6] B. Schneier, "Patching is failing as a security paradigm", in Click Here

to Kill Everybody: Security and Survival in a Hyper-connected World,
New York, W. W. Norton & Company, 2018.

[7] F. Restuccia, S. D’Oro and T. Melodia, "Securing the Internet of Things

in the Age of Machine Learning and Software-Defined Networking",
IEEE Internet of Things Journal, vol. 5, no. 6, pp. 4829 - 4842, 2018.

[8] A. Ghanbari et al., "Business Development in the Internet of Things: A

Matter of Vertical Cooperation", IEEE Communications Magazine,
vol. 55, no. 2, pp. 135 - 141, 2017.

[9] Directorate-General for Communications Networks, Content and

Technology, "Cybersecurity Act", 19 September 2017. [Online].
Available: https://eur-lex.europa.eu/legal-

content/EN/ALL/?uri=COM:2017:477:FIN [Accessed 18 07 2019]

[10] G. Gianmarco Baldini and A. L. Giannopoulos, "Analysis and
recommendations for a European certification and labelling framework

for cybersecurity in Europe [12183/17 ADD 9] ", Luxembourg:

European Commission Joint Research Centre, 2017.

[11] M. A. Razzaque et al., "Middleware for Internet of Things: A Survey",

IEEE Internet of Things Journal, vol. 3, no. 1, pp. 70 - 95, 2015.

[12] A. H. Ngu et al., "IoT Middleware: A Survey on Issues and Enabling
Technologies", IEEE Internet of Things Journal, vol. 4, no. 1, 2017.

[13] R. T. Tiburski, C. R. Moratelli, S. F. Johann, et al., "Lightweight

Security Architecture Based on Embedded Virtualization and Trust
Mechanisms for IoT Edge Devices," IEEE Communications

Magazine, vol. 57, no. 2, pp. 67 - 73, 2019.

[14] J. D. de Hoz-Diego, J. Saldana, J. Fernandez-Navajas and J. Ruiz-
Mas, "IoTsafe, Decoupling Security From Applications for a Safer

IoT", IEEE Access, vol. 7, pp. 29942 – 29962, 2019.

[15] J. D. de Hoz-Diego, J. Saldana, J. Fernández-Navajas, J. Ruiz-Mas,
et al. "SSH as an Alternative to TLS in IoT Environments using

HTTP", in Global Internet of Things Summit, Bilbao, 2018.

[16] G. Arfaoui, S. Gharout and J. Traoré, "Trusted Execution
Environments: A Look under the Hood", in IEEE International

Conference on Mobile Cloud Computing, Services, and

Engineering, Oxford, UK, 2014.

[17] M. Sabt, M. Achemlal and A. Bouabdallah, "Trusted Execution

Environment: What It is, and What It is Not", in IEEE

Trustcom/BigDataSE/ISPA, Helsinki, Finland, 2015.

[18] GlobalPlatform Inc., "GlobalPlatform Device Technology: TEE Sockets

API Specification", January 2017. [Online]. Available:

https://globalplatform.org/specs-library/tee-sockets-api-specification-v1-

0-1/ [Accessed 16 08 2019].

[19] B. McGillion, T. Dettenborn, T. Nyman and N. Asokan, "Open-

TEE -- An Open Virtual Trusted Execution Environment", in IEEE
Trustcom/BigDataSE/ISPA, Helsinki, Finland, 2015.

[20] L. Sánchez et al., "Federation of Internet of Things Testbeds for the

Realization of a Semantically-Enabled Multi-Domain Data
Marketplace", Sensors, vol. 18, no. 10, p. 3375, 2018.

[21] P. P. Ray, "A survey of IoT cloud platforms", Future Computing
and Informatics Journal, vol. 1, no. 1-2, pp. 35-46, 2016.

[22] R. Minerva, A. Biru and D. Rotondi, "Towards a definition of the

Internet of Things (IoT)", IEEE Internet Initiative, no. 1, 2015.

[23] RERUM consortium members, "Final System Architecture,
RERUM FP7-ICT-609094", 4 September 2015.

[24] G. Moldovan et al, "An IoT Middleware for Enhanced Security and

Privacy: The RERUM Approach", IFIP International Conference on
New Technologies, Mobility and Security, Larnaca, Cyprus, 2016.

[25] M. Ammar, G. Russello and B. Crispo, "Internet of Things: A survey

on the security of IoT frameworks", Journal of Information Security
and Applications, vol. 38, pp. 8-27, February 2018.

[26] J. D. de Hoz-Diego, "Secure Communication Method And System

Using Network Socket Proxying". PCT Application WO/2019/059754

[27] Eclipse IoT Working Group, IEEE IoT, AGILE IoT, "IoT Developer

Survey" [Online]. Available: http://iot.ieee.org/images/files/pdf/iot-

developer-survey-2016-report-final.pdf [Accessed 2019 07 18].

[28] Eclipse IoT Working Group, IEEE IoT, AGILE IoT, "IoT Developer

Survey", 04 2017. [Online]. Available:

https://ianskerrett.wordpress.com/2017/04/19/iot-developer-trends-
2017-edition/ [Accessed 18 07 2019].

[29] Eclipse Foundation, "IoT Developer Survey 2019 Results", 04 2019.

[Online]. Available: https://iot.eclipse.org/resources/iot-developer-
survey/iot-developer-survey-2019.pdf. [Accessed 18 07 2019].

[30] C. Bormann, M. Ersue, A. Keranen and C. Gomez, "Terminology for

Constrained-Node Networks: draft-bormann-lwig-7228bis-04", 11
March 2019. [Online]. Available: https://tools.ietf.org/html/draft-

bormann-lwig-7228bis-04 [Accessed 18 07 2019].

[31] C. Bormann and Z. Shelby, "Block-Wise Transfers in the Constrained
Application Protocol (CoAP)", August 2016. [Online]. Available:

https://tools.ietf.org/html/rfc7959 [Accessed 18 07 2019].

[32] T. Ylonen and C. Lonvick, "The Secure Shell (SSH) Transport Layer

Protocol", Internet Engineering Task Force, January 2006. [Online].

Available: https://tools.ietf.org/html/rfc4253 [Accessed 18 07 2019].

[33] NSA: Information Assurance Directorate, "Wireless Local Area Network
Capability Package V.2.2", June 2018 [Online]. Available:

https://www.nsa.gov/Portals/70/documents/resources/everyone/csfc/capa

bility-packages/WLANCPv2.2_20180626.pdf [Accessed 18 07 2019].

[34] S. Kanti Datta and C. Bonnet, "Describing Things in the Internet of

Things. From CoRE Link Format to Semantic Based Descriptions", in

International Conference on Consumer Electronics, Taiwan, 2016.

[35] D. Chanet, et al. "Automated reduction of the memory footprint of the

Linux kernel", ACM Transactions on Embedded Computing Systems

(TECS) - Special Section LCTES'05, vol. 6, no. 4, 2007.

[36] J.-H. Hauer and V. Handziski, "Experimental Study of the Impact of

WLAN Interference on IEEE 802.15.4 Body Area Networks", in

EWSN '09 Proceedings of the 6th European Conference on Wireless
Sensor Networks, Cork, Ireland, 2009.

[37] Y. Dong et al., "Wireless coexistence between IEEE 802.11 and IEEE

802.15.4 based networks: A survey", International Journal of Distributed
Sensor Networks, pp. 1550-1329, July 2011.

[38] Chipcon, "CC24202.4 GHz IEEE 802.15.4 / ZigBee-ready RF

Transceiver", 09 06 2004.

[39] A. Hithnawi, H. Shafagh and S. Duquennoy, "802.15.4, Understanding

the Impact of Cross TechnologyInterference on IEEE", in 9th ACM
international workshop on Wireless network testbeds, experimental

evaluation and characterization , Maui, Hawaii, USA, 2014.

[40] R. G. Lomax and D. L. Hahs-Vaughn, Statistical Concepts: A Second
Course., Routledge, 2000.

[41] U. A. Chude-Okonkwo, R. Ngah and T. Abd Rahman, "Time-scale

domain characterization of non-WSSUS wideband channels",
EURASIP Journal on Advances in Signal Processingvolume, 2011.

[42] U. A. Chude Okonkwo et al., "Time-scale domain characterization of

nonstationary wideband vehicle-to-vehicle propagation channel", in
IEEE Asia-Pacific Conference on Applied Electromagnetics

(APACE), Port Dickson, Malaysia, 2010.

[43] M. Suárez-Albela et al., "A Practical Evaluation of a High-Security
Energy-Efficient Gateway for IoT Fog Computing Applications",

Sensors, no. 9, p. 1978, 2017.

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=COM:2017:477:FIN
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=COM:2017:477:FIN
https://tools.ietf.org/html/draft-bormann-lwig-7228bis-04
https://tools.ietf.org/html/draft-bormann-lwig-7228bis-04
https://tools.ietf.org/html/rfc7959
https://tools.ietf.org/html/rfc4253
https://www.nsa.gov/Portals/70/documents/resources/everyone/csfc/capability-packages/WLANCPv2.2_20180626.pdf
https://www.nsa.gov/Portals/70/documents/resources/everyone/csfc/capability-packages/WLANCPv2.2_20180626.pdf

