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Abstract. Totally positive matrices are related with the shape preserving representations of a
space of functions. The normalized B-basis of the space has optimal shape preserving properties.
B-splines and rational Bernstein bases are examples of normalized B-bases. Some results on the
optimal conditioning and on extremal properties of the minimal eigenvalue and singular value of the
collocation matrices of normalized B-bases are proved. Numerical examples confirm the theoretical
results and answer related questions.
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1. Introduction. Totally positive matrices, which are also called totally non-
negative in the literature, play an important role in many fields, such as approximation
theory, computer aided geometric design (CAGD), mechanics, differential or integral
equations, statistics, combinatorics, economics and biology (see [1], [10], [12], [14] or
[200). A matrix is totally positive (TP) if all its minors are nonnegative. Relevant
properties of TP matrices about algebraic computations with high relative accuracy
have been found recently (cf. [9, [I5]). In fact, for some classes of TP matrices ad-
equately parameterized, one can compute their eigenvalues, singular values, inverses
or the solutions of some linear systems with high relative accuracy independently of
their conditioning (see [9], [16] and [8]). This holds for many popular matrices, such
as positive Vandermonde matrices or Hilbert matrices, which are TP. An important
source of examples of TP matrices comes from the collocation matrices of systems of
functions. Let U be a vector space of real functions defined on a real interval I and
(uo(t), ..., un(t)) (t € I) be a basis of U. The collocation matriz of (ug(t), ..., un(t))
at to < --- <t in I is given by

UQy -+ -5 Up
(1.1) M (to ; ) = (u;(ti))i=o0,...,mj=0,....n-

The collocation matrices of a given basis are the coeflicient matrices of the linear
systems associated with Lagrange interpolation problems in that basis.

A system of functions is TP when all its collocation matrices (1.1) are TP. In
CAGD, the functions u,...,u, also satisfy that >\ ju;(t) = 1 Vt € I (i.e., the
system (uog, ..., u,) is normalized), and a normalized TP system is denoted by NTP.
It is known that shape preserving representations are associated with NTP bases (see
[19] or [2]). Clearly, the collocation matrices of NTP bases are stochastic TP matrices.
By Theorem 4.2 (ii) of [3] (see also [ [19]), given a space with an NTP basis, there
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exists a unique NTP basis of the space with optimal shape preserving properties,
which is called the normalized B-basis of the space. An important normalized B-basis
is the Bernstein basis (b, ..., b") of the space P, ([0, 1]) of polynomials of degree less
than or equal to n on [0, 1], given by

(1.2) b (t) = (Z‘)tia_t)“, i=0,1,...,n

(see [2], [3]). Other examples of normalized B-bases are presented at the end of Section
3 and include the important examples of B-splines and rational Bernstein bases.

In this paper, we prove that the minimal eigenvalue (and singular value) of a col-
location matrix of an N'TP basis is always bounded above by the minimal eigenvalue
(and singular value, respectively) of the corresponding collocation matrix of the nor-
malized B-basis of the space. The information on the minimal eigenvalue and singular
value has important potential applications. For instance, here we extend the optimal
conditioning for the oco-norm of the Bernstein basis proved in [7] to any normalized
B-basis. On the other hand, similar results for the maximal singular value of the
corresponding collocation matrices do not hold, as shown in Section 4.

The paper is organized as follows. Section 2 presents basic concepts and nota-
tions, as well as some auxiliary results for TP matrices. In particular, it recalls the
characterization of stochastic TP matrices as a product of matrices associated with
elementary corner cuttings. In Section 3, we prove that multiplying a nonsingular
TP matrix by a matrix associated with an elementary corner cutting decreases the
minimal eigenvalue and singular value and increases the co-norm condition number.
This result is a key tool to prove the mentioned result on the extremal and optimal
properties of the collocation matrices of a normalized B-basis. In Section 4, we include
numerical examples confirming our theoretical results and counterexamples answering
other related questions.

2. Basic notations and auxiliary results. By Theorem 2.6 of [19] (or by
Theorem 4.5 of [13]) we have the following characterization of a nonsingular stochastic
TP matrix.

THEOREM 2.1. A nonsingular n X n matriz A is stochastic and TP if and only
if it can be factorized in the form

A=F, 1 Fy o -F1G1-- - Gno2Gp_1,

with

F;, = 0 1
oit11 1 — iy

QA on—i 1- Qnn—i
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and

1 0
G; = 11— o141 ,

1- Qn—in On—in

1

where, ¥ (i,7), 0 < o ; < 1.

The following remark provides a new factorization in terms of elementary bidiag-
onal matrices.

REMARK 2.2. If we denote by U;(\) the bidiagonal, nonsingular and upper tri-
angular matriz with at most one nonzero off-diagonal element in the entry (i — 1,1)

(2.1) Us(\) = 1—X A , 0<A<1

and by L;(\) the bidiagonal, nonsingular and lower triangular matriz with at most
one nonzero off-diagonal element in the entry (i,i — 1)

1
0 1

(2.2) Li(\) = A 1-2A . 0< A<,

then we can write

F,=Lit1(aig11) - Ln(ann—i) and G; =Up(an—in)-- Uir1(a1,i+1).

In Section 2 of [19], it is shown that the elementary matrices (2.1) and ([2.2]) have
a geometric interpretation as elementary corner cutting transformations.

Now let us recall some notations, concepts and results of Linear Algebra that will
be used later in order to get a paper as self-contained as possible. Given two square
matrices A = (aij)lgingn and B = (bij)lgi,jgna we denote A S B if Qi S bij for
all 7,j. We say that A is nonnegative if a;; > 0 for all 4,5. If C = (¢ij)1<i,j<n IS a
complex matrix and A = (a;;)1<s,j<n IS & nonnegative matrix such that |¢;;| < a;; for
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all 4, 7, then A is said to dominate C, and so |C| := (|cij])1<i j<n < A. The following
result is due to Wienlandt (see Corollary 2.1 of Chapter II of [17]):

THEOREM 2.3. Let M be a nonnegative matriz with mazimal eigenvalue r, and
let C be a complex matriz dominated by M. Then r = p(M) > p(C).

The following result collects two properties of TP matrices which will be used in
the proofs of the main results. The first part corresponds to Corollary 6.6 of [1] and
the second part to Theorem 3.3 of [I].

THEOREM 2.4. Let A be a nonsingular TP n x n matriz. Then:

(i) All the eigenvalues of A are positive.
(i) Given the n x n diagonal matriz

(2.3) J = diag(1,—1,1,...,(=1)" 1Y),

the matriz JA=1J is TP.

Given a nonsingular matrix A, for p = 1, 2, co we shall use the condition numbers
rip(A) = [[Allp |A™Hlp-

3. Main results. The following theorem shows that the elementary matrices
corresponding to elementary corner cuttings decrease the minimal singular value and
the minimal eigenvalue and increase some condition numbers when they multiply a
TP matrix to its right or when their transposes multiply a TP matrix to its left.

THEOREM 3.1. Let M be a nonsingular TP matriz, A :== ME and C :== ETM
with E = U;(A\) or E = L;(\) an elementary matriz given by 1)) and (22), respec-
tively, for 0 < X < 1. Then the following properties hold:

(i) |A~Y and |C~Y| dominate M 1.

(i) The minimal eigenvalue of A and C are bounded above by the minimal eigen-

value of M.
(ii) The minimal singular value of A and C are bounded above by the minimal
singular value of M.

(1) Koo(M) < koo(A) and k1 (M) < k1(C)

Proof. Since E is obviously TP and M is also TP, we deduce from Theorem 3.1
of [1] that the products A = ME and C = ETM are also TP, and they also inherit
the nonsingularity of M and E. If J is the diagonal matrix given by (23], since A,
C and M are TP nonsingular, by Theorem 24 (ii), JA~'J, JC~1J and JM~1J are
TP and so, in particular, nonnegative and

(3.1) JAT T =AY, JCclT=|C7Y.

Besides, JA™1J, JC~'J and JM ~'J are similar to A=, C~! and M !, respectively.
(i) Taking into account that J = J~! we derive

JATY S =J(ME) T = (JE*)(JM ).
So, in order to prove that |A~!| dominates M ~!, it is sufficient by (B.I)) to see that
(3.2) JM < JAT VT = (JETY ) (JIM ).

We can observe that the matrix JE~1'J is also nonnegative. In addition, JE~'J has
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one of the two following forms:

with 0 < X < 1. Taking into account the previous formula, that JM ~1.J is nonnegative
and that 1/(1 — \) > 1, it can be deduced that (JE=*J)(JM~1J) > JM~'J and
formula ([3.2) holds, and so |A~!| dominates M 1. Since CT = MTE, we can deduce
that [(CT)~Y = [(C~1)T| dominates (MT)~! = (M~1)T and so |C~!| dominates
M~ and (i) holds.

(ii) By Theorem [Z4] (i), the eigenvalues of A are positive. By B), (i) and
Theorem 23], we derive

(3.4) p(JATLT) > p(JM 1))

and, since JA™1J and JM ~1.J are similar to A= and M ! (respectively), the minimal
eigenvalue of A is bounded above by the minimal eigenvalue of M. Using again that
CT = MTE and that the eigenvalues do not change when transposing a matrix, we
also conclude that the minimal eigenvalue of C' is bounded above by the minimal
eigenvalue of M, and (ii) holds.

(iil) The minimal singular values of M and A = M E are the minimal eigenvalues
of MTM and ETMT ME, respectively. By Theorem 3.1 of [I], the product M7 M is
TP. Then, by (ii), the minimal eigenvalue of M7 M is greater than or equal to the
minimal eigenvalue of M7 M E. Applying (i) again, the minimal eigenvalue of M7 M E
is greater than or equal to the minimal eigenvalue of ET MTME. In conclusion, the
minimal singular value of A = M F is bounded above by the minimal singular value
of M. Taking into account that C¥ = MTE and that the singular values do not
change when transposing a matrix, we also have that the minimal singular value of
C' is bounded above by the minimal singular value of M, and (iii) holds.

(iv) From (i), we derive |[M 1|« < [|A7!||oo. Since A and M are TP, they
are nonnegative. Since F is stochastic, if we denote e := (1,...,1)T, then we have
[Alloe = [[Aelloc = [MEe[loc = [[Meé[loc = [[M]|co. Therefore roo(M) < foo(A).
Finally, we deduce that k1(C) = keo(CT) = koo (MTE) > koo (MT) = k1(M), and
the result follows. O

The following corollary shows that any nonsingular stochastic TP matrix pro-
duces the same effects as those described in Theorem Bl for the elementary matrices
corresponding to elementary corner cuttings when multiplying TP matrices.

COROLLARY 3.2. Let M be a nonsingular TP matriz, K a nonsingular stochastic
TP matriz, A := MK and C := KTM. Then the following properties hold:

(i) |A7Y and |C~Y| dominate M 1.

(i) The minimal eigenvalue of A and C are bounded above by the minimal eigen-

value of M.
(i4i) The minimal singular value of A and C are bounded above by the minimal
singular value of M.
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(1) Koo(M) < koo(A) and k1 (M) < k1(C)

Proof. By Theorem [2.1land Remark 2.2 we deduce that K = []!_, E;, where r is
a positive integer and each E; is equal to U;(\;) or L;(\;) given by 2I) and ([2.2),
respectively, for 0 < A; < 1. Therefore, we get that

ks
A=M (H E) ,
i=1
with E; = U;(\;) or Lj(\;) for 0 < A < 1landi € {1,...,7}. So, applying in an
iterative way Theorem Bl to the previous formula, the result follows for A.
Analogously, since C = (E! .- Ef )M with each E; a matrix of the form (ZJ)) or
22), we can apply Theorem Bl in an iterative way to prove the result for C. O
The next corollary applies previous results to deduce some extremal and optimal
properties of the collocation matrices of the normalized B-basis of a space.
COROLLARY 3.3. Let u = (uq,...,up) be an NTP basis on [a,b] of a space of
functions U and let v = (bo,...,b,) the normalized B-basis of U. If we consider an
increasing sequence of nodes t = (t;)i—o on [a,b], let us denote by A to the collocation
matriz of uw at t and by M to the collocation matriz of v at t. Then the minimal
eigenvalue and singular value of M are greater than or equal to the minimal eigenvalue
and singular value of A, respectively. Moreover, if A and M are nonsingular, then
K1(MT) = koo (M) < Koo (A) = k1 (AT).
Proof. Since v is the normalized B-basis of U« and u an NTP basis, by Theorem
4.2 (ii) of [3], we have that there exists a nonsingular TP stochastic matrix K such
that

(’U,O, N ,’U,n) = (bo, ce ,bn)K
Taking collocation matrices in the previous expression at t we have that
(3.5) A= MK.

Since the bases u and v are NTP, A and M are stochastic and TP. If A (or equivalently
M) is singular, then the minimal eigenvalue and singular value of both matrices are
equal to 0. Otherwise, the result follows from B3] and from (ii), (iii) and (iv) of
Corollary 3.2l O

We now give a list of examples of important normalized B-bases. By the pre-
vious result, their collocation matrices satisfy the mentioned extremal and optimal
properties.

EXAMPLES 3.4.

(a) The space of polynomials of degree at most n on a compact interval [a,b],

Pr([a,b]), has the normalized B-basis given by (b ..., b") with

7

1=0,1...,n

(see [3, [T1)] and Section 4 of [Z]).
(b) Let us consider a sequence (w;)o<i<n 0f positive weights. Then the system of

functions (rfy,...,r") defined on the compact interval [a,b] by

w; b (t; a, b) )
2(t) = ¢ =0,1,...
O S a0




(c)

(d)

(¢)
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is the normalized B-basis of the corresponding spanned space of functions (see
Ezample 4.14 of [19]), and is called the rational Bernstein basis of its space.
Observe that, if all weights w; = 1 for all i, then (r§,...,r7) = (b ...,b})
is the Bernstein basis on [a,b].
The space of even trigonometric functions given by

Cn, = span{l,cos t,cos 2t, ..., cos nt}

on the compact interval [0,n] has the normalized B-basis (uf),...,ul) given

by
ul(t) = (n) cos?=D(t/2)sin®(t/2), i=0,1,...,n
i

(see [18]).

The space of trigonometric polynomials
Trn = {1,cost,sint, cos 2t,sin 2t, . .., cosnt,sinnt}

on I = [-A, A] with A < § has the normalized B-basis (vo,...,vm), m = 2n,
defined by

(s (30 [sin (24"
vz(t)—dz< A A , 1=0,1,...,m

with

d-wi] m/2 i_k(ZCoA)i_% i =0,1
i = i—k k S , =U,L,....m

k=0

(see Section 3 of [21)]).

A very important example is the case of B-spline bases (see [22]) and NURBS.
Let us consider a sequence of positive weights (w;)o<i<n and a knots vector
(to, .-y tnta) with t; <t;pq for alli=0,1,...,n+d—1. Then the B-spline
basis (No,d, N1,d, - - -y Nn,a) defined over the previous knots vector by

- B 1, ift; <t <ty
Nio(t) = { 0, otherwise,

t—t; tivka1 —t
—— N1 (t) + LNM—I,I@—I@)? k=1,...,d,

N; 1 (t) =
k(t) tivk — t; tivkr1 — tit1

is the mormalized B-basis of the corresponding splines space (see [3]). The
basis (ro,...,rn) defined by

wiNl-ﬁd(t)

ri(f) = Do wiNja(t)’

1=0,1...,n,

is the normalized B-basis of the corresponding NURBS space (see Section 4
of [3).
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4. Numerical experiments and further questions. For the construction of

the numerical examples we shall consider three different TP bases u = (ug,...,ul)
of P,,([0,1]). For each of the bases, given a sequence of positive weights (w;)?_, we
can construct a rational NTP basis (r{,...,r") defined by

u; (¢ :
(4.1) rt) = i @) i=0,1,...,n.

Z?:o wju?(t) 7

In fact, it is straightforward to check that, if « is TP, then (rf,...,r?) is NTP. In

the case that u = (b2, ...,b") is the normalized B-basis of the space P, (]0,1]) given
in Examples B4 (a) for a = 0 and b = 1 (see ([[2))), then it is well known that the

corresponding rational Bernstein basis rg = (1}, ..., r) is the normalized B-basis of
its spanned space (rg) (see Examples [34] (b)).
Now, let us consider the Said-Ball basis s = (sf, ..., s!) (for more details see [6]

and the references therein) given by

Sn(t) _ (\_n/ﬂ +i>ti(1 _t)\_n/2j+1, 0<i< L(n_ 1)/2J7
Sn(t) — (\_n/ﬂ +ﬁ— i)t\_n/2j+l(1 _ t)n_i, |_n/2J +1<i<n,

and, if n is even

sialt) = )20 = 012

where |m] is the greatest integer less than or equal to m. In [6] it was proved that
the Said-Ball basis is NTP. In the case that u = (s{, ..., s?), the corresponding NTP
basis rsp = (rf,...,m"), constructed as in ([@I]), will be called rational Said-Ball
basis.

Finally, let us consider the DP basis ¢ = (cf,...,c") of P,([0,1]) given by (see
I5])

cp(t) =1 —-1)",

A=t -t)"" 1<i<|n/2] -1,
qt)=t1-t), [(n+1)/2]+1<i<n-1,
cr(t)y =1",

and, if n is even
c(t)=1—t3 — (11—t

and, if n is odd,

n 1 n n
cb(t)zt(l—t)#Jri[l—t N

1 n n n
B (1) = 5 1—¢"5 (1 —¢) 2““} Ft (1 —0).
2
In [5] it was also proved that the DP basis is also NTP. In the case that v =
(cy,...,cl), the corresponding basis rpp = (ry,...,71), constructed as in (@I]), will

be called rational DP basis.
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As commented above, the rational Said-Ball and DP bases are also NTP.

If we consider a sequence of positive weights (w]*)?, and taking into account that
Yo wjb(t) € Pp([0,1]) and that s and c are bases of P, ([0,1]), then there exist
two sequences of weights (W)™, and (@), satisfying

Zw"b” =Y wsp(t) =Y wiep(t), telo,1].

j=0 j=0
If w},w) > 0 for all i = 0,...,n, then the rational Said-Ball basis rgp formed with
the weights (w})!_, and the rational DP basis rpp formed with the weights (w")?,
are both NTP bases of the space of rational functions (rg), where rp is the rational
Bernstein basis formed with the weights (w})?_,. So, sequences of positive weights
(w), have been randomly generated for each n in {3,...,8}, where each w} is an
integer in the interval [1,1000], until we have obtained a sequence such that there
exists positive sequences (W), and (@), satisfying ([@2). Then we have the
normalized B-basis 75, and the NTP bases rsp and rpp of (rg).

Let (t;)"1! be the sequence of points given by t; = i/(n +2) fori =1,.
Then we have considered the following collocation matrices:

(4.2)

n+1.

0<;5<
Zk 0 wgb ( i) 1<i<n+1
E?S?(t) 0<j<n w;?, ?(tz) 0<j<n
Bil = _ and B;l = n )
ko TRsE(t) ) 1<icnin b0 WReR (i) ) 1 cicnin
for n = 3,...,8. We have computed the eigenvalues and the singular values of M",

BT and By for n = 3,...,8 with Mathematica using a precision of 100 digits. We can
see the corresponding minimal eigenvalues and singular values in Table LIl It can be
observed that the minimal eigenvalue, resp. singular value, of M, is higher than the
minimal eigenvalue, resp. singular value, of B} and By as Corollary 3.3 has proved.

n MT By By
/\min Omin /\mln Omin /\mln Omin
31 29940e —2 1.2267e—2 | 2.6333e —2 1.2097e—2 | 7.1114e—3 5.2420e—3
416.7992e —3 5.4745e -3 | 6.3025e — 3 5.3558e — 3 | 5.8627e —3 5.2003e — 3
5 | 7.1826e —3 6.6451le —3 | 3.0020e — 3 2.9674e — 3 | 4.0691le —4 3.5263e —4
6 | 2.1129e —3 2.0654e — 3 | 6.96bde —4 5.8389e —4 | 4.1580e —4 3.2558¢ — 4
71 1.0044e —3 4.2778e —4 | 2.7894e —4 2.2178e —4 | 2.1500e — 5 1.6099e — 5
8 | 3.3227e —4  3.2780e — 4 | 4.2257e —5 1.8605e —5 | 2.4263e —6 1.0410e —6
TABLE 4.1
The minimal eigenvalue and singular value of M™, BT and By
We have also computed koo (M™), Koo(B7T) and koo(BY) for n = 3,...,8 with

Mathematica. The results can be seen in Table[4.2] It can be observed that ko, (M™) <
Koo(BP) for i = 1,2, as it has been shown in Corollary B3l
REMARK 4.1. On the one hand, we have seen in Corollary [3.3 that the minimal

eigenvalue and the minimal singular value of the collocation matriz of the normal-
ized B-basis are always greater than the minimal eigenvalue and the minimal singular
value, respectively, of the corresponding collocation matrixz of the NTP bases of the
corresponding space of functions. This fact has also been illustrated in the previous
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n| Keo(M") Koo (BY') Koo (BY)

3| 1.4138e+2 | 1.4138e+ 2 | 2.9393¢e + 2
4| 3.4704e+2 | 3.4704e + 2 | 3.4704e + 2
5 | 1.6822¢ + 2 | 4.3900e + 2 | 4.3526e + 3
6 | 7.5191e+2 | 3.1923e+ 3 | 4.2045e¢+ 3
7| 4.7287e+ 3 | 5.5742¢ + 3 | 8.1522e + 4
8 | 4.2039e¢+ 3 | 1.2637e+ 5 | 1.6388e + 6

TABLE 4.2

Infinity conditions numbers of M™, BT and B%

numerical experiments. On the other hand, the mazimal eigenvalue of the collocation
matriz of an NTP basis of a space of functions, including the corresponding normal-
ized B-basis, is always equal to 1 because all these collocation matrices are stochastic.
So, an interesting question arises: does there exist any relation between the mazimal
singular value of the collocation matrices of the normalized B-basis of a space of func-
tions and those of the corresponding collocation matrices of NTP bases of the same
space? In order to answer this question Table [{-3 also shows the mazimal singular
value of M™, By and By forn = 3,...,8. We can observe that in some cases the
mazimal singular value of M™ is lower than the maximal singular value of By and
B%, for example for n = 5. In other cases, the mazimal singular value of M™ is
higher than the maximal singular value of BT and BY, for example for n = 4. Hence,
we can conclude that there is not a relation between the maximal singular value of the
collocation matriz of a normalized B-basis and that of the corresponding collocation
matriz of the NTP bases of the corresponding space of functions.

By Corollary [3.3, we have that Koo(M™) < Koo(BI) and that opmin(M™) >
Omin(BlY) fori = 1,2 and n = 3,...,8. Taking into account that ra(A) is equal
t0 Tmaz(A)/Omin(A), another interesting question arises: does there exist an analo-
gous relation with ko instead of koo for the collocation matrices of normalized B-bases
and NTP bases? From the data in Tables[J1) and[{.3, we have that ko(M?) > ka(B})
and r2(M®) < ko(B?) fori=1,2. Hence, there is no any relation between the condi-
tion number ko of the collocation matrices of the normalized B-basis and these of the
corresponding collocation matrices of NTP bases.

| Omae(M™) | Omaz(BY) | Omaz(BY)
31 1.1934e+0 | 1.1215e+0 | 1.4619¢+0
4 | 1.1074e+0 | 1.0977¢+0 | 1.0542¢+0
51 1.0608¢ +0 | 1.0764e + 0 | 1.5601e+ 0
6 | 1.0709¢+0 | 1.1728¢+0 | 1.2136e+0
71 1.1237e+0 | 1.4003e+0 | 1.5872¢+0
8 | 1.0968e+ 0 | 1.3374e+0 | 1.6461e+0
TABLE 4.3

The mazimal singular value of M™, By and B3
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