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ABSTRACT
Tridiagonal Toeplitz P -matrices, M -matrices and totally positive matrices are char-
acterized. For some classes of tridiagonal matrices and tridiagonal Toeplitz matrices
it is shown that many algebraic computations can be performed with high relative
accuracy.
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1. Introduction

Toeplitz matrices arise in many important applications, but they provide an example of
an structured class of matrices for which it is not possible to perform some elementary
algebraic computations with high relative accuracy (HRA). In fact, in [1] it was proved
that the determinant of a general square Toeplitz matrix cannot be calculated with
HRA. In contrast, for other classes of structured matrices, algorithms with HRA for
many algebraic computations, in addition to the determinant, have been found. In
this paper, we prove that, for some classes of tridiagonal Toeplitz matrices, many
algebraic computations can be performed with HRA. Tridiagonal Toeplitz matrices
arise in important applications, such as the solution of ordinary and partial differential
equations, time series analysis or as regularization matrices in Tikhonov regularization
for the solution of discrete ill-posed problems (see [2–7]). Recent results on the total
positivity of some Toeplitz matrices and algorithms for determinants of tridiagonal
periodic Toeplitz matrices can be seen in [8,9], respectively.

Let us now recall some concepts and notations used in this paper. Let A be a real
matrix. We say that A is a nonnegative (positive) matrix and write A ≥ 0 (A > 0) when
all the entries of A are nonnegative (positive). A square matrix is a P -matrix if all its
principal minors are positive. Let us recall that in a Linear Complementarity Problem,
very important in the field of Optimization, there exists always a unique solution if
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and only if the associated matrix is a P -matrix. Some subclasses of P -matrices are
very important in many applications. For instance, nonsingular TP matrices. A matrix
A is said to be totally positive (TP) if all its minors are nonnegative. If all its minors
are positive, then A is called strictly totally positive (STP). TP and STP matrices
arise in many applications in Approximation Theory, Statistics, Economy, Biology and
Computer Aided Geometric Design, among other fields (see [10–12]). A real matrix
A is a Z-matrix if all its off-diagonal entries are nonpositive. The matrix A is called
an M -matrix if it can be expressed in the form A = sI − B, where I is the identity
matrix, B ≥ 0 and s ≥ ρ(B), where ρ(B) is the spectral radius of B. If s > ρ(B),
then A is a nonsingular M -matrix. Equivalently, a Z-matrix A is a nonsingular M -
matrix if and only if its inverse is nonnegative (see characterization (N38) in Theorem
(2.3) of [13, Ch. 6]). Nonsingular M -matrices arise in the discretization of partial
differential equations and in many applications to Dynamic Systems, Economy and
Optimization (see [13]). We call a square real matrix A = (aij)1≤i,j≤n sign symmetric
(sign skew-symmetric, respectively) if aijaji ≥ 0 (≤ 0, respectively) whenever i 6= j
and A is tridiagonal if aij = 0 whenever |i− j| > 1. Given a matrix A = (aij)1≤i,j≤n,
|A| := (bij)1≤i,j≤n denotes the matrix such that bij := |aij | for all 1 ≤ i, j ≤ n.
An algorithm can be performed with HRA (independently of the conditioning of the
problem) if all the included subtractions are of initial data, that is, if it only includes
products, divisions, sums of numbers of the same sign and subtractions of the initial
data (cf. [1,14,15]). A first step to obtain HRA algorithms for a class of matrices is an
adequate parametrization of the matrices. Up to now, HRA algorithms for algebraic
computations have been obtained for some subclasses of P -matrices, in particular
for diagonally dominant M -matrices and for some subclasses of TP matrices (see,
for instance, [14,16–22]). This paper shows that some classes of tridiagonal Toeplitz
matrices can be added to the previous list.

The paper is organized as follows. Section 2 includes some auxiliary results and
presents the Neville elimination and the bidiagonal factorization, which provide the
parametrization of nonsingular TP matrices that can be used to apply the HRA algo-
rithms of Koev (see [15,23,24]) for nonsingular TP matrices. With these algorithms and
the mentioned parametrization, one can perform the following algebraic calculations
with HRA: inverse, all singular values, all eigenvalues and the solution of some linear
systems. These algorithms will be used in this paper to obtain HRA computations with
some tridiagonal Toeplitz matrices. In Section 3, we introduce Toeplitz matrices and
characterize tridiagonal Toeplitz TP matrices, tridiagonal Toeplitz M -matrices and
tridiagonal Toeplitz P -matrices. Section 4 deals with sign skew-symmetric tridiagonal
matrices with positive diagonal entries. It is shown that their leading principal minors
and all minors of their inverses can be computed with HRA. In Section 5, a condition
is provided to calculate the bidiagonal decomposition of sign symmetric tridiagonal
Toeplitz P -matrices with HRA, and so their eigenvalues and singular values, as illus-
trated also with numerical experiments in Section 6. As shown in Figure 1, our results
outperform those obtained with the usual MATLAB functions. Let us also recall that
the eigenvalues of a tridiagonal Toeplitz matrix are already known (cf. page 59 of [7]),
in contrast to the singular values. Section 5 also provides the bidiagonal factorization
of the inverse of a tridiagonal Toeplitz M -matrix.
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2. Auxiliary results

Let us denote by Qk,n the set of strictly increasing sequences of k integers chosen
from {1, . . . , n}. Let α = (α1, . . . , αk), β = (β1, . . . , βk) be two sequences of Qk,n.
Then A[α|β] denotes the k × k submatrix of A formed using the rows numbered by
α1, . . . , αk and the columns numbered by β1, . . . , βk. Whenever α = β, the submatrix
A[α|α] is called a principal submatrix and it is denoted by A[α], and detA[1, . . . , k] is
called a leading principal minor of A. For each α ∈ Qk,n, the dispersion number d(α)
is defined by

d(α) := αk − α1 − (k − 1). (1)

So, α consists of consecutive integers if and only if d(α) = 0. Let D = (dij)1≤i,j≤n be
a diagonal matrix, which can be denoted by D = diag(d1, . . . , dn), where di := dii for
i = 1, . . . , n. Let us denote by Ei(x), with i = 2, . . . , n, the n × n lower elementary
bidiagonal matrix whose (i, i− 1) entry is x:

Ei(x) =



1
. . .

1
x 1

. . .

1


. (2)

In particular, Ei(x) can be identified by its 2×2 principal submatrix using the rows
and columns with indices i− 1 and i. This submatrix will be denoted by

Ei(x) := (Ei(x)) [i− 1, i], i = 2, . . . , n. (3)

The matrix ETi (x) := (Ei(x))T is called upper elementary bidiagonal matrix.
The following two results will allow us to characterize tridiagonal Toeplitz P -

matrices. The next proposition characterizes a P -matrix in terms of the positivity
of the real eigenvalues of its principal submatrices.

Proposition 2.1. (cf. 2.5.6.5 in p. 120 of [25]) An n× n matrix A is a P -matrix if
and only if every real eigenvalue of every principal submatrix of A is positive.

The following theorem provides a sufficient condition for the total positivity of an
n× n nonnegative tridiagonal matrix using only the positivity of n− 1 minors.

Theorem 2.2. (Theorem 7 of [26]) Let A be an n×n (n ≥ 3) tridiagonal nonnegative
matrix. If detA[1, . . . , k] > 0 for k ≤ n− 2 and detA > 0, then A is TP.

Neville elimination (NE) has been very useful to characterize TP matrices and
for parallel computations (cf. [26,27]). Neville elimination is an alternative procedure
to Gaussian elimination that produces zeros in a column of a matrix by adding to
each row an appropiate multiple of the previous one. Given a nonsingular matrix
A = (aij)1≤i,j≤n, the NE procedure consists of n− 1 steps and leads to the following
sequence of matrices:
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A =: A(1) → Ã(1) → A(2) → Ã(2) → · · · → A(n) = Ã(n) = U, (4)

where U is an upper triangular matrix.

The matrix Ã(k) = (ã
(k)
ij )1≤i,j≤n is obtained from the matrix A(k) = (a

(k)
ij )1≤i,j≤n by

a row permutation that moves to the bottom the rows with a zero entry in column k
below the main diagonal. For nonsingular TP matrices, it is always possible to perform
NE without row exchanges (see [28]). If a row permutation is not necessary at the kth

step, we have that Ã(k) = A(k). The entries of A(k+1) = (a
(k+1)
ij )1≤i,j≤n can be obtained

from Ã(k) = (ã
(k)
ij )1≤i,j≤n using the formula:

a
(k+1)
ij =


ã

(k)
ij −

ã
(k)
ik

ã
(k)
i−1,k

ã
(k)
i−1,j , if k ≤ j < i ≤ n and ã

(k)
i−1,k 6= 0,

ã
(k)
ij , otherwise,

(5)

for k = 1, . . . , n− 1. The (i, j) pivot of the NE of A is given by

pij = ã
(j)
ij , 1 ≤ j ≤ i ≤ n.

If i = j we say that pii is a diagonal pivot. The (i, j) multiplier of the NE of A, with
1 ≤ j ≤ i ≤ n, is defined as

mij =


ã

(j)
ij

ã
(j)
i−1,j

=
pij
pi−1,j

, if ã
(j)
i−1,j 6= 0,

0, if ã
(j)
i−1,j = 0.

The multipliers satisfy that

mij = 0⇒ mhj = 0 ∀h > i.

Nonsingular TP matrices can be expressed as a product of nonnegative bidiagonal
matrices. The following theorem (see Theorem 4.2 and p. 120 of [29]) introduces this
representation, which is called the bidiagonal decomposition.

Theorem 2.3. (cf. Theorem 4.2 of [29]) Let A = (aij)1≤i,j≤n be a nonsingular TP
matrix. Then A admits the following representation:

A = Fn−1Fn−2 · · · F1DG1 · · ·Gn−2Gn−1, (6)

where D is the diagonal matrix diag(p11, . . . , pnn) with positive diagonal entries and
Fi, Gi are the nonnegative bidiagonal matrices given by
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Fi =



1
0 1

. . .
. . .

0 1
mi+1,1 1

. . .
. . .

mn,n−i 1


, (7)

Gi =



1 0

1
. . .
. . . 0

1 m̃i+1,1

1
. . .
. . . m̃n,n−i

1


, (8)

for all i ∈ {1, . . . , n− 1}. If, in addition, the entries mij and m̃ij satisfy

mij = 0⇒ mhj = 0 ∀h > i,
m̃ij = 0⇒ m̃hj = 0 ∀h > i,

(9)

then the decomposition is unique.

In the bidiagonal decomposition given by (6), (7) and (8), the entries mij and
pii are the multipliers and diagonal pivots, respectively, corresponding to the NE of
A (see Theorem 4.2 of [29] and the comment below it) and the entries m̃ij are the
multipliers of the NE of AT (see p. 116 of [29]). In general, more classes of matrices
can be represented as a product of bidiagonal matrices. The following remark shows
which hypotheses of Theorem 2.3 are sufficient for the uniqueness of a representation
following (6).

Remark 2.4. If we consider the factorization given by (6)-(9) without any further
requirement than the nonsingularity of D, by Proposition 2.2 of [30] the uniqueness of
(6) holds.

In [15] the following matrix notation BD(A) was introduced to represent the bidi-
agonal decomposition of a nonsingular TP matrix

(BD(A))ij =

 mij , if i > j,
m̃ji, if i < j,
pii, if i = j.

(10)
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Throughout this paper, BD(A) will denote the bidiagonal decomposition of a matrix
under the hypotheses of Remark 2.4.

3. Characterizations of tridiagonal Toeplitz P -matrices

An n× n Toeplitz matrix A = (aij)1≤i,j≤n is a real matrix such that all its diagonals
are constant. These matrices can be defined through a sequence of 2n−1 real numbers
{αk}n−1

−n+1 with

aij := αi−j , 1 ≤ i, j ≤ n. (11)

If an n× n Toeplitz matrix is also tridiagonal, it can be uniquely represented with
3 parameters,

Tn(a, b, c) :=



a c

b a
. . .

. . .
. . .

. . .
. . .

. . . c
b a

 . (12)

Given a positive matrix A = (aij)1≤i,j≤n, the following condition is sufficient for its
total positivity (see [31] or section 2.6 of [12]):

aijai+1,j+1 ≥ 4 cos2

(
π

n+ 1

)
ai,j+1ai+1,j ,

with i, j = 1, . . . , n−1. If all these inequalities are strict, then A is STP. In particular,
given an n× n Toeplitz matrix (11) with αi > 0 for i = −n+ 1, . . . , 0, . . . , n− 1, the
sufficient condition for a positive matrix A to be TP presents the following form:

α2
i ≥ 4 cos2

(
π

n+ 1

)
αi−1αi+1,

with i = −n+2, . . . , 0, . . . , n−2. This condition requires the positivity of all the entries
of the matrix. Nevertheless, we are going to prove that a similar condition (jointly with
the nonnegativity of the parameters) is sufficient and also necessary for a tridiagonal
Toeplitz matrix to be TP.

Proposition 3.1. Let A = Tn(a, b, c) be the tridiagonal Toeplitz matrix given by (12).
Then A is TP if and only if

a, b, c ≥ 0, a ≥ 2
√
bc cos

(
π

n+ 1

)
. (13)

Proof. It is known (see page 59 of [7]) that the eigenvalues of the n × n tridiagonal

6



Toeplitz matrix Tn(a, b, c) are given by

λk = a+ 2
√
bc cos

(
kπ

n+ 1

)
, k = 1, . . . , n. (14)

Let us suppose that A is a TP matrix. Then a, b, c ≥ 0 and its eigenvalues are real and
nonnegative (see Corollary 5.5 of [12]). Moreover, since we know that the eigenvalues
satisfy (14), it is sufficient to guarantee that the smallest eigenvalue, λn, is nonnegative:

λn = a+ 2
√
bc cos

(
nπ

n+ 1

)
= a− 2

√
bc cos

(
π

n+ 1

)
≥ 0,

or equivalently,

a ≥ 2
√
bc cos

(
π

n+ 1

)
,

which is precisely (14) for k = n.
Let us now suppose that conditions (13) hold. We start with the case where the

second inequality of (13) is strict. By Theorem 2.2, in order to prove that A is a TP
matrix it is sufficient to check that its leading principal minors of order h are positive
for h = 1, . . . , n− 2 and that its determinant is also positive. Due to the structure of
A we have that A[1, . . . , h] = Th(a, b, c) for h = 1, . . . , n. So, let us check the positivity
of the minors by studying the positivity of the eigenvalues of the matrices Th(a, b, c)
for h = 1, . . . , n − 2 and for h = n. We can include the case h = n − 1. Then the set

of eigenvalues to check is given by λk,h := a + 2
√
bc cos

(
kπ
h+1

)
with 1 ≤ h ≤ n and

k = 1, . . . , h, where h represents the size of the h × h matrix whose eigenvalues are
given by λk,h.

Since all the eigenvalues are real, it suffices to check that the smallest eigenvalue is
positive in order to assure that λk,h > 0 for all h = 1, . . . , n and for all k = 1, . . . , h:

min
k,h

λk,h = λn,n = a+ 2
√
bc cos

(
nπ

n+ 1

)
= a− 2

√
bc cos

(
π

n+ 1

)
> 0,

which is true by hypothesis. The value of the h × h leading principal minor of A is
equal to the product of λ1,h, . . . , λh,h, and so it is positive. By Theorem 2.2 A is TP,
and so the case where the strict inequality holds is proven.

Let us finally consider the case where the second inequality of (13) holds as an

equality, a = 2
√
bc cos

(
π
n+1

)
, which corresponds to the singular case. Let us define

the set of matrices Tn(a + ε, b, c) with ε > 0. These matrices satisfy that a + ε >

2
√
bc cos

(
π
n+1

)
, and so they are TP because of the previous case where the second

inequality of (13) was strict. Moreover, this set of matrices satisfies that limε→0 Tn(a+
ε, b, c) = Tn(a, b, c), and so Tn(a, b, c) is TP because the set of TP matrices is closed
(let us recall that this fact is a direct consequence of the continuity of the determinant
as a function of the matrix entries).

If we consider parameters b and c with nonpositive sign, we can deduce an analogous
characterization for M -matrices of the form Tn(a, b, c).
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Corollary 3.2. Let A = Tn(a, b, c) be the tridiagonal Toeplitz matrix given by (12).

Then A is an M -matrix if and only if a ≥ 2
√
bc cos

(
π
n+1

)
and b, c ≤ 0.

Proof. Since M -matrices are Z-matrices, the condition b, c ≤ 0 is mandatory. Let us
recall that a Z-matrix A is an M -matrix if and only if every real eigenvalue of A is
nonnegative (see characterization (C8) of Theorem (4.6) of [13, Ch. 6]). Since A is a
tridiagonal Toeplitz matrix we know (see page 59 of [7]) that its eigenvalues are real,
distinct and that they are given by (14). Then we only need to check that the smallest
eigenvalue, λn, is nonnegative:

λn = a+ 2
√
bc cos

(
nπ

n+ 1

)
= a− 2

√
bc cos

(
π

n+ 1

)
≥ 0,

which is true if and only if a ≥ 2
√
bc cos

(
π
n+1

)
.

We now consider a third case of tridiagonal Toeplitz matrices Tn(a, b, c) where the
parameters satisfy a > 0 and bc ≤ 0. This particular case, where the off-diagonal
entries have opposite sign, verifies that Tn(a, b, c) is a P -matrix without any further
requirement. Moreover, the following result proves that all tridiagonal matrices with
positive diagonal and with an analogous sign pattern are P -matrices.

Proposition 3.3. Let A = (aij)1≤i,j≤n be a tridiagonal matrix. If aii > 0 for i =
1, . . . , n and ai+1,iai,i+1 ≤ 0 for i = 1, . . . , n− 1, then A is a P-matrix.

Proof. Let us first prove by induction that the leading principal minors of A, θk :=
detA[1, . . . , k] for k = 1, . . . , n, are positive. It is straightforward to see that θ1 =
a11 > 0 and that θ2 = a11a22 − a21a12 > 0. Let us suppose that θk−1, θk−2 > 0 for
some k ∈ {3, . . . , n} and let us prove that θk > 0. Since A is a tridiagonal matrix,
using the Laplace expansion of a determinant we can write θk as

θk = akkθk−1 − ak,k−1ak−1,kθk−2, (15)

and so θk > 0 by the induction hypothesis. Now let us prove that all principal minors
using consecutive rows and columns are positive. These minors are of the form detA[α]
with α = (s, . . . , r), d(α) = 0 (see (1)) and 1 ≤ s < r ≤ n. Given an index 1 ≤
s ≤ n we consider the principal submatrix As := A[s, . . . , n]. The matrix As is a
tridiagonal matrix that satisfies the hypotheses of this proposition. Hence, we can
apply the previous case to As and deduce that its leading principal minors are positive.
These minors can be written as detAs[1, . . . , p], with 1 ≤ p ≤ n−s+1, and, since As is
a submatrix of A, these minors satisfy that detAs[1, . . . , p] = detA[s, . . . , p+ s− 1] >
0. Then we have as a direct consequence the positivity of all the principal minors
using consecutive rows and columns. Finally, it only remains to study the principal
minors detA[α] such that d(α) > 0. Given α ∈ Qk,n with d(α) > 0, let us consider
the decomposition α = (β1, . . . , βr), with |βi| ≥ 1 and d(βi) = 0 for i = 1, . . . , r,
such that d(βj , βj+1) > 0 for all j = 1, . . . , r − 1. Then A[α] is a block diagonal
matrix such that the determinant of its ith block A[βi] is a principal minor of A
using consecutive rows and columns, and hence, it is positive. So we conclude that
detA[α] = detA[β1] · · · detA[βr] > 0.

Observe that the previous result can be stated in the following way. A tridiagonal
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sign skew-symmetric matrix with positive diagonal entries is a P -matrix. We now
characterize tridiagonal Toeplitz P -matrices.

Theorem 3.4. Let A = Tn(a, b, c) be the tridiagonal Toeplitz matrix given by (12).
Then A is a P -matrix if and only if one of the following two conditions holds:

(i) bc ≤ 0 and a > 0.

(ii) bc ≥ 0 and a > 2
√
bc cos

(
π
n+1

)
.

Proof. If (i) holds, then by Proposition 3.3 A is a P -matrix. Let us now suppose that
condition (ii) holds. If b, c ≥ 0, by Proposition 3.1, A is a nonsingular TP matrix,
and hence, a P -matrix because, by Theorem 11.3 of [12], nonsingular TP matrices are
P -matrices. If b, c ≤ 0, by Corollary 3.2, A is a nonsingular M -matrix and so a P -
matrix because, by characterization (A1) of Theorem (2.3) of [13, Ch. 6], nonsingular
M -matrices are P -matrices.

Assume now that A is a P -matrix. We have to see that if (i) does not hold, then
(ii) holds. Since by definition A[1, 1] = a > 0, it is sufficient to consider parameters
b, c such that bc ≥ 0. By Proposition 2.1, the real eigenvalues of all the principal
submatrices of A are positive. Given α ∈ Qh,n, A[α] = Th(a, b, c) whenever d(α) = 0.
If d(α) > 0, then we can consider the decomposition α = (β1, . . . , βr), with |βi| ≥ 1
and with d(βi) = 0 for i = 1, . . . , r, such that d(βj , βj+1) > 0 for all j = 1, . . . , r − 1.
Then A[α] is a block diagonal matrix such that its ith block A[βi] is the tridiagonal
Toeplitz matrix T|βi|(a, b, c). In either case, the eigenvalues of A[α], α ∈ Qh,n, are

included in the set λr,h := a+ 2
√
bc cos

(
rπ
h+1

)
with 1 ≤ h ≤ n and with r = 1, . . . , h,

where h represents the size of the h×h matrix whose eigenvalues are given by λr,h (see
page 59 of [7]). Therefore, λr,h > 0 for all h = 1, . . . , n and r = 1 . . . , h. In particular,

minr,h λr,h = λn,n > 0, and hence, a > 2
√
bc cos

(
π
n+1

)
and the result holds.

Remark 3.5. From Proposition 3.1 and Theorem 3.4, we deduce that a tridiag-
onal Toeplitz matrix Tn(a, b, c) is a nonsingular TP matrix if and only if a >

2
√
bc cos

(
π
n+1

)
and b, c ≥ 0. Analogously, from Corollary 3.2 and Theorem 3.4, we

deduce that a tridiagonal Toeplitz matrix Tn(a, b, c) is a nonsingular M -matrix if and

only if a > 2
√
bc cos

(
π
n+1

)
and b, c ≤ 0. Then, by Theorem 3.4 a sign symmetric

tridiagonal Toeplitz P -matrix is either a nonsingular TP matrix or a nonsingular M -
matrix. Besides, taking into account that a tridiagonal Toeplitz matrix is either sign
symmetric or sign skew-symmetric, we can reformulate Theorem 3.4 in the following
way. A tridiagonal Toeplitz matrix A = Tn(a, b, c) is a P -matrix if and only if a > 0

and, if A is sign symmetric, then a > 2
√
bc cos

(
π
n+1

)
.

In Theorem 3.4 (ii), the condition a > 2
√
bc cos

(
π
n+1

)
(or analogously, a2 >

4bc cos2
(

π
n+1

)
) has been used to characterize tridiagonal Toeplitz P -matrices. If this

condition is satisfied independently of n, we obtain the new condition a2 > 4bc. In
fact, this inequality will play a key role in Section 5 since it is used in order to assure
HRA for some computations with the matrices Tn(a, b, c). In fact, the positive number
a2 − 4bc will be an additional natural parameter to assure the HRA. The case (i) of
Theorem 3.4 will be considered in a more general framework in the following section.
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4. Computing with HRA the minors of sign skew-symmetric tridiagonal
matrices with positive diagonal entries

Whenever a tridiagonal matrix A satisfies the hypotheses of Proposition 3.3 (sign
skew-symmetric with positive diagonal entries), it is possible to compute its bidiag-
onal decomposition accurately. Moreover, the bidiagonal decomposition allows us to
compute all its minors and its inverse with HRA. The following result provides the
BD(A) for such A.

Proposition 4.1. Let A = (aij)1≤i,j≤n be a tridiagonal matrix such that aii > 0 for
i = 1, . . . , n and ai+1,iai,i+1 ≤ 0 for i = 1, . . . , n− 1. Then

BD(A) =



δ1
a12

δ1

a21

δ1
δ2

. . .

. . .
. . .

. . .
. . .

. . . an−1,n

δn−1
an,n−1

δn−1
δn


, (16)

where δi are the diagonal pivots associated to the NE of A. The diagonal pivots satisfy
the following recurrence relation:

δ1 = a11, δi = aii −
ai,i−1ai−1,i

δi−1
i = 2, . . . , n. (17)

If we know the entries of A with HRA then we can compute BD(A) (16) to HRA, and
hence, the leading principal minors of A to HRA.

Proof. Clearly, for tridiagonal P -matrices, no row exchanges are needed in Neville
elimination and Gauss elimination, which coincide. Hence, by Proposition 3.3,
δ1, . . . , δn are also the pivots of the Gauss elimination of A and it is well known that
they satisfy that

δk =
θk
θk−1

, k = 1, . . . , n, (18)

with θ0 := 1 and θk := A[1, . . . , k] for k = 1, . . . , n. From (15) and (18) we deduce
(17). Since ai+1,iai,i+1 ≤ 0 for i = 1, . . . , n − 1, the diagonal pivots can be computed
by (17) without performing any subtraction. As a consequence, all pivots δk are com-
puted to HRA. The leading principal minors can be obtained with HRA through the
computation θk = δ1 · · · δk, for k = 1, . . . , n.

Proposition 4.1 allows us to prove that some computations can be performed with
HRA, as the following result shows.

Theorem 4.2. Let A = (aij)1≤i,j≤n be a tridiagonal matrix such that aii > 0 for
i = 1, . . . , n and ai+1,iai,i+1 ≤ 0 for i = 1, . . . , n − 1. Then all the minors and the
inverse of A can be computed to HRA.

Proof. By Proposition 4.1, we can compute the leading principal minors of A to
HRA. Following the proof of Proposition 3.3, it can be deduced that all the prin-
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cipal minors of A can be obtained without subtractions, and so, with HRA. Given
α = (i1, . . . , ik), β = (j1, . . . , jk) ∈ Qk,n, if |ir − jr| ≥ 2 for any r = 1, . . . , k
then detA[i1, . . . , ik|j1, . . . , jk] = 0 and if |is − js| = 1 for an index s = 1, . . . , k
then A[α|β] = A[i1, . . . , is−1|j1, . . . , js−1] ais,jsA[is+1, . . . , ik|js+1, . . . , jk]. Hence, any
nonzero minor of a tridiagonal matrix can be written as a product of off-diagonal en-
tries and principal minors using consecutive rows and columns. Then all the entries
of A−1 can be computed to HRA as a consequence. For example, by using formula
(1.33) of [10], corresponding to the well-known expression of the entries of the inverse
in terms of determinants.

An alternative HRA method to obtain A−1 is presented in the following remark.

Remark 4.3. Let A = (aij)1≤i,j≤n be a nonsingular tridiagonal matrix. Then, by (47)
of [32], we can give the following explicit expression of the entries of A−1 := (bij)1≤i,j≤n
in terms of principal minors of A using consecutive rows and columns. In fact,

bij =



θi−1θ̂n−j
θn

∏j−1
l=i −al,l+1, for i < j,

θi−1θ̂n−i
θn

, for i = j,

θj−1θ̂n−i
θn

∏i−1
l=j −al+1,l, for i > j,

(19)

where θ̂k := detA[n − k + 1, . . . , n] for k = 1, . . . , n. If aii > 0 for i = 1, . . . , n and
ai+1,iai,i+1 ≤ 0 for i = 1, . . . , n− 1, then A−1 can also be computed to HRA by (19).

5. Computations with sign symmetric tridiagonal Toeplitz P -matrices
with HRA

In this section, we guarantee the HRA for the bidiagonal decomposition, and so for
many other algebraic computations, in the case of sign symmetric tridiagonal Toeplitz
P -matrices with the additional parameter a2−4bc commented at the end of Section 3.
By Theorem 3.4 and Remark 3.5, the P -matrices corresponding to this case are either
nonsingular M -matrices or nonsingular TP matrices.

From now on, we assume that the parameters a, b, c are always positive:

a, b, c > 0.

Let us recall that the inverse of a nonsingular tridiagonal M -matrix is TP (see
[33]). We are going to obtain the bidiagonal decomposition of an M -matrix A =
Tn(a,−b,−c). From the BD(A) obtained in Theorem 5.1, in Theorem 5.5 we shall
deduce BD(A−1). Besides, by Remark 5.4, if we know BD(A) to HRA, then we can
also perform many algebraic computations with A to HRA.

It is well known (see p. 99 of [12]) that the principal minors of a tridiagonal matrix
A = (aij)1≤i,j≤n satisfy:

detA = detA[1, . . . , i] detA[i+ 1, . . . , n]

− ai,i+1ai+1,i detA[1, . . . , i− 1] detA[i+ 2, . . . , n]. (20)
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From (20) we deduce that the leading principal minors of a tridiagonal Toeplitz
matrix A, θj := detA[1, . . . , j] with j = 1, . . . , n, satisfy the following relation:

θn = θjθn−j − bcθj−1θn−j−1, with θ−1 = 0, θ0 = 1, j = 1, . . . , n. (21)

Theorem 5.1. Let A = Tn(a,−b,−c) be a nonsingular M -matrix given by (12). Then

BD(A) =



δ1 − c
δ1

− b
δ1

δ2
. . .

. . .
. . .

. . .
. . .

. . . − c
δn−1

− b
δn−1

δn


, (22)

where δi are the diagonal pivots associated to the NE of A and are given by:

δ1 = a, δi = a− bc

δi−1
with i = 2, . . . , n. (23)

Moreover, if we know a, b, c with HRA and a2 − 4bc is a positive number known with
HRA, then we can compute BD(A) (22) to HRA.

Proof. Since nonsingular M -matrices are P -matrices (see characterization (A1) of
Theorem 2.3 of [13, Ch. 6]), the principal minors of A are positive, and so, θi > 0
for i = 1, . . . , n. Since A is a tridiagonal Toeplitz matrix, its leading principal minors
satisfy

θi = aθi−1 − bcθi−2, with θ−1 = 0, θ0 = 1, i = 1, . . . , n (24)

by (15). Moreover, (23) is a consequence of (24) and (18). There is an explicit expres-
sion for the leading principal minors of A (see p. 15 of [34]):

θi = (
√
bc)iUi

(
a

2
√
bc

)
, (25)

where Ui(x) is the ith Chebyshev polynomial of the second kind. We can evaluate
Ui(x) through (see Section 3 of [34]):

Ui(x) =
ri+1

+ (x)− ri+1
− (x)

r+(x)− r−(x)
,

with r+(x) := x+
√
x2 − 1 and r−(x) := x−

√
x2 − 1.

(26)

Let us denote s+ := r+

(
a

2
√
bc

)
and s− := r−

(
a

2
√
bc

)
. By (25) and (26), we can write

the pivots δi as:

δi =
θi
θi−1

=
√
bc
si+1

+ − si+1
−

si+ − si−
=
√
bc s+

1 + s−
s+

+ . . .+
si−
si+

1 + s−
s+

+ . . .+
si−1
−

si−1
+

.

12



If we obtain s+ and s−
s+

with HRA, then we can compute δi for i = 1, . . . , n to HRA,

and as a direct consequence, BD(A) to HRA. We can compute s+ by

s+ =
a

2
√
bc

+

√
a2

4bc
− 1 =

a+
√
a2 − 4bc

2
√
bc

,

and the quotient s−
s+

by

s−
s+

=
s−s+

s2
+

=
4bc

2a2 − 4bc+ 2a
√
a2 − 4bc

=
4bc

a2 + (a2 − 4bc) + 2a
√
a2 − 4bc

.

Since a2 − 4bc is known with HRA by hypothesis, BD(A) can be obtained with
HRA.

Remark 5.2. The computational cost of obtaining BD(A) following Theorem 5.1 is
of 6n elementary operations, as can be checked from its proof.

Corollary 5.3. Let A := Tn(a,−b,−c) be a nonsingular M -matrix. If we know a, b, c
and a− 2 max{b, c} with HRA and a− 2 max{b, c} ≥ 0, then we can compute BD(A)
(22) to HRA.

Proof. Without loss of generality, let us suppose that b ≥ c. Then we can write the
quantity a2 − 4bc as

a2 − 4bc = (a− 2b)(a+ 2c) + 2a(b− c). (27)

Taking into account that, by hypothesis, a− 2b is known to HRA and that b− c is a
subtraction of initial data, a2 − 4bc can also be computed to HRA. As a consequence,
s+ and s−

s+
can be obtained with HRA. Finally, following the proof of Theorem 5.1 we

can compute BD(A) to HRA.

The bidiagonal decomposition of a nonsingular M -matrix is unique by Remark
2.4. If A is a tridiagonal M -matrix, then BD(A) allows us to perform some algebraic
computations with A to HRA.

Remark 5.4. Let A be a tridiagonal Toeplitz M -matrix such that we know BD(A) to
HRA. In this case, we also know the bidiagonal decomposition to HRA of |A| = JnAJn,
where Jn = diag(1,−1, . . . , (−1)n−1). Since |A| is TP by Proposition 3.1, we can apply
the HRA algorithms for TP matrices to BD(|A|) = |BD(A)|. For instance, in Section
6 we comment how to compute the singular values and eigenvalues of A to HRA.

The following result provides the bidiagonal decomposition of the inverse of a non-
singular tridiagonal Toeplitz M -matrix.

Theorem 5.5. Let A = Tn(a,−b,−c) be a nonsingular M -matrix. Then A−1 is a TP
matrix and

13



BD(A−1) =


1/δn c/δn−1 c/δn−2 · · · c/δ1

b/δn−1 1/δn−1 0 · · · 0

b/δn−2 0 1/δn−2
. . .

...
...

...
. . .

. . . 0
b/δ1 0 . . . 0 1/δ1

 , (28)

where δi are the diagonal pivots associated to the NE of A for i = 1, . . . , n.

Proof. A−1 is TP because it is the inverse of a tridiagonal M -matrix (see Theorem
2.2 of [33]). Let us define D := diag(δ1, . . . , δn). By Theorem 5.1, we can write A as

A = E2

(
−b
δ1

)
· · ·En

(
−b
δn−1

)
DETn

(
−c
δn−1

)
· · ·ET2

(
−c
δ1

)
,

and so

A−1 = ET2

(
c
δ1

)
· · ·ETn

(
c

δn−1

)
D−1En

(
b

δn−1

)
· · ·E2

(
b
δ1

)
. (29)

The factorization (29) is different from the bidiagonal decomposition (6). In order to

obtain BD(A−1) from (29), we first need to rewrite ETn

(
c

δn−1

)
D−1En

(
b

δn−1

)
as the

product of a lower elementary bidiagonal matrix En(α), a diagonal matrix and an
upper elementary bidiagonal matrix ETn (β), with α, β ∈ R.

Let us start by computing the following product:

ETn

(
c

δn−1

)
D−1En

(
b

δn−1

)
=



1
δ1

. . .
1

δn−2

1
δn−1

+ bc
δ2n−1δn

c
δn−1δn

b
δn−1δn

1
δn

 . (30)

By (23) for i = 1, n, the (n− 1, n− 1) entry of (30) can be written as:

1

δn−1
+

bc

δ2
n−1δn

=
1

δn−1δn

(
δn +

bc

δn−1

)
=

1

δn−1δn

(
a− bc

δn−1
+

bc

δn−1

)
=

δ1

δn−1δn
.

The effect of the matrices En(α), ETn (β) over D is restricted to the submatrix D−1[n−
1, n]. Hence, using the notation (3), we can decompose the principal submatrix of (30)
using the n− 1, n rows as(

δ1
δn−1δn

c
δn−1δn

b
δn−1δn

1
δn

)
= En

(
b

δ1

)( δ1
δn−1δn

1
δn
− cb

δn−1δnδ1

)
E
T
n

(
c

δ1

)
. (31)

Then by (31) we have that the required elementary matrices are En

(
b
δ1

)
and ETn

(
c
δ1

)
.

Moreover, using again (23) we can write the last entry of the diagonal matrix in (31)
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as:

1

δn
− cb

δn−1δnδ1
=

1

δ1δn

(
δ1 −

bc

δn−1

)
=

δn
δ1δn

=
1

δ1
.

If we denote by D(2) := diag(δ−1
1 , . . . , δ−1

n−2,
δ1

δnδn−1
, δ−1

1 ) then, by (31), we have that

En

(
b
δ1

)
D(2)ETn

(
c
δ1

)
= ETn

(
c

δn−1

)
D−1En

(
b

δn−1

)
,

and so we have achieved our first goal. Let us now express A−1 as the following matrix
product

A−1 = ET2

(
c
δ1

)
· · ·ETn−1

(
c

δn−2

)
En

(
b
δ1

)
D(2)ETn

(
c
δ1

)
En−1

(
b

δn−2

)
· · ·E2

(
b
δ1

)
. (32)

Since the elementary bidiagonal matrices satisfy that Ej(αj)E
T
n (αn) = ETn (αn)Ej(αj)

whenever j < n, we can reorder the matrices in (32) and deduce that

A−1 = En

(
b
δ1

)
ET2

(
c
δ1

)
· · ·ETn−1

(
c

δn−2

)
D(2)En−1

(
b

δn−2

)
· · ·E2

(
b
δ1

)
ETn

(
c
δ1

)
. (33)

After rearranging the matrices we arrive at an analogous problem to (29). Hence,

our aim is now expressing ETn−1

(
c

δn−2

)
D(2)En−1

(
b

δn−2

)
as the product of a matrix

En−1(α), a diagonal matrix that will be denoted by D(3) and a matrix ETn−1(β). Then
we could rearrange again the elementary bidiagonal matrices as we did in (33). In
general, after performing this procedure k − 1 times we would obtain the following
factorization:

A−1 = En

(
b
δ1

)
· · ·En−k+2

(
b

δk−1

)
ET2

(
c
δ1

)
· · ·ETn−k+1

(
c

δn−k

)
D(k)

· En−k+1

(
b

δn−k

)
· · ·E2

(
b
δ1

)
ETn−k+2

(
c

δk−1

)
· · ·ETn

(
c
δ1

)
, (34)

where D(k) = diag(δ−1
1 , . . . , δ−1

n−k,
θk−1θn−k

θn
, δ−1
k−1, . . . , δ

−1
1 ).

When k = n, (34) coincides with the decomposition (28). Therefore, let us prove
that (34) holds by induction on k ∈ {2, . . . , n}. We have already checked the first step,
k = 2. So, let us assume that (34) holds for k ∈ {2, . . . , n− 1} and let us prove that it
also holds for k + 1. Let us first see that

ETn−k+1

(
c

δn−k

)
D(k)En−k+1

(
b

δn−k

)
= En−k+1

(
b
δk

)
D(k+1)ETn−k+1

(
c

δn−k

)
.

In general, the effect of the matrices En−k+1(α), ETn−k+1(β) is restricted to the sub-
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matrix D(k)[n− k, n− k + 1]. Using the notation (3) we deduce that

E
T
n−k+1

(
c

δn−k

)( 1
δn−k

θk−1θn−k

θn

)
En−k+1

(
b

δn−k

)

=

(
θn−k−1

θn−k
+

bcθk−1θ2n−k−1

θnθn−k

θk−1θn−k−1

θn
c

θk−1θn−k−1

θn
b θk−1θn−k

θn

)
. (35)

By (21) with j = k, the first diagonal entry of (35) can be written as

θn−k−1θn + bcθk−1θ
2
n−k−1

θnθn−k
=
θ2
n−k−1

θnθn−k

(
θn

θn−k+1
+ bcθk−1

)
=
θ2
n−k−1

θnθn−k

(
θk

θn−k
θn−k−1

− bcθk−1 + bcθk−1

)
=
θkθn−k−1

θn
.

Applying Gauss elimination to the submatrix (35) we obtain, by (18), the following
multiplier

θk−1θn−k−1θn
θn−k−1θkθn

b =
θk−1

θk
b =

b

δk
.

Analogously, applying Gauss elimination to the transpose of that submatrix we obtain
the multiplier c

δk
. Hence, we can decompose (35) as

En−k+1

(
b

δk

)( θkθn−k−1

θn
θk−1θn−k

θn
− bc θk−1θn−k−1

θnδk

)
E
T
n−k+1

(
c

δk

)
. (36)

Using (21), we express the last entry of the diagonal matrix in (36) in terms of the
diagonal pivots

θk−1

θnδk

(
θn−k

θk
θk−1

− bcθn−k−1

)
=

θn
θnδk

=
1

δk
.

Then we have deduced that D(k+1) = diag(δ−1
1 , . . . , δ−1

n−k−1,
θkθn−k−1

θn
, δ−1
k , . . . , δ−1

1 ),

and so we can factorize A−1 as

A−1 = En

(
b
δ1

)
· · ·En−k+2

(
b

δk−1

)
ET2

(
c
δ1

)
· · ·ETn−k

(
c

δn−k−1

)
En−k+1

(
b
δk

)
·D(k+1)ETn−k+1

(
c
δk

)
En−k

(
b

δn−k−1

)
· · ·E2

(
b
δ1

)
ETn−k+2

(
c

δk−1

)
· · ·ETn

(
c
δ1

)
. (37)

Finally, reordering the elementary bidiagonal matrices of (37) we deduce (34) for k+1.
Therefore, (34) holds for k = 2, . . . , n, and, taking k = n in (34), we deduce that

A−1 = En

(
b
δ1

)
· · ·E2

(
b

δn−1

)
D(n)ET2

(
c

δn−1

)
· · ·ETn

(
c
δ1

)
with D(n) = diag(δ−1

n , . . . , δ−1
1 ), which is precisely BD(A−1).
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6. Numerical experiments

In [15,23], assuming that the parameterization BD(A) of an square TP matrix A is
known with HRA, Plamen Koev presented algorithms to solve some algebraic problems
for A to HRA. Let us focus on the computation of the eigenvalues and the singular
values. Koev implemented these algorithms in order to be used with Matlab and
Octave in the software library TNTool available in [24]. The corresponding functions
are TNEigenValues and TNSingularValues, respectively. The functions require as
input argument the data determining the bidiagonal decomposition (6) of A, BD(A)
given by (10), to HRA.

Let

A = Tn(a,−b,−c), a, b, c > 0,

be a tridiagonal Toeplitz matrix satisfying a2 ≥ 4bc cos2
(

π
n+1

)
. Let us denote by

Jn the n × n matrix diag(1,−1, . . . , (−1)n−1). Then, by Proposition 3.1, the matrix
JnAJn = |A| is TP. In addition, taking into account that J−1

n = Jn, the matrix A is
similar to the TP matrix |A| = JnAJn. Thus, A and |A| have the same eigenvalues and,
since Jn is unitary, also the same singular values. In Algorithm 1, the pseudocode for
the computation of BD(A) to HRA can be seen. Taking into account that BD(|A|) =
|BD(A)|, the eigenvalues and singular values of A can be computed to HRA by using
Koev’s algorithms and Algorithm 1 if a2 − 4bc is known to HRA.

Algorithm 1 Computation of the bidiagonal decomposition of A to HRA

Require: n, a > 0, b, c < 0 such that m = a2 − 4bc > 0, and m known to HRA
Ensure: The n× n BD(A) of A = Tn(a,−b,−c) to HRA

s−
s+

= 4bc
a2+m+2a

√
m

s+ = a+
√
m

2
√
bc

num = 1 + s−
s+

den = 1
for i = 0 : n do

δi =
√
bc s+

num
den

den = num
num = num s−

s+
+ 1

end for
(BD(A))ij = 0 for 1 ≤ i, j ≤ n
(BD(A))11 = δ1

(BD(A))12 = − c
δ1

for i=2:n-1 do
(BD(A))i,i−1 = − b

δi−1

(BD(A))ii = δi
(BD(A))i+1,i = − c

δi
end for
(BD(A))n,n−1 = − b

δn−1

(BD(A))nn = δn

In order to illustrate the accuracy of TNEigenValues and TNSingularValues

with Algorithm 1, the sequence of matrices A5, A10, . . . , A100, given by An =
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Figure 1. Relative error for the minimal eigenvalues and singular values of A5, A10, . . . , A100

Tn(4,−1/4,−15), has been considered. First, we have computed the eigenvalues and
the singular values of these matrices with Mathematica using a precision of 100 digits.
We have also computed approximations to the eigenvalues of those matrices in Matlab
with eig and also with TNEigenValues using the absolute value of the bidiagonal de-
composition provided by Algorithm 1. Then we have computed the relative errors of
the approximations obtained considering the eigenvalues obtained with Mathematica
as exact computations.

In Figure 1 (a) we can see the relative error for the minimal eigenvalue of each
matrix A5, A10, . . . , A100 for both eig and TNEigenValues.

We have also computed approximations to the singular values of the matrices
A5, . . . , A100 in Matlab with svd and also with TNSingularValues using the abso-
lute value of the bidiagonal decomposition provided by Algorithm 1. Then we have
computed the relative errors of the approximations obtained considering the singular
values obtained with Mathematica as exact computations. In Figure 1 (b) we can see
the relative error for the minimal singular value of each matrix A5, A10, . . . , A100 for
both svd and TNSingularValues.
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