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Social polarization promoted by sparse
higher-order interactions
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Many social interactions are group-based, yet their role in social polarization remains largely
unexplored. To bridge this gap here we introduce a higher-order framework that takes into account
both group interactions and homophily. We find that group interactions can strongly enhance
polarization in sparse systems by limiting agents’ exposure to dissenting views. Conversely, they can
suppresspolarization in fully connected societies, aneffect that intensifies as thegroup size increases.
Our results highlight that polarization depends not only on the homophily strength but also on the
structure and microscopic arrangement of group interactions.

Understanding how human interactions in large-scale societies generate
consensus, cooperation, political identities, or persistent divisions remains a
central challenge inmodern social science1,2.During the last twodecades, the
statistical physics community has devoted substantial effort to explaining
how macroscopic collective behavior can emerge from simple microscopic
interaction rules3,4. Among these phenomena, the emergenceof polarization
hasbecomeaparadigmaticproblem,whose relevance continues togrowdue
to the increasing availability of data from digital media5–7.

Many mathematical models of opinion dynamics based on consensus
have successfully captured the processes of consensus formation, since the
seminal work by DeGroot8 to the traditional bounded-confidence models
like the Deffuant-Weisbuch model9 and the Hegselmann-Krause model10.
Moreover, opinion dissensus in the form of fragmentation has also been
widely reported in the latter models due to the bounded-confidence
mechanism, as well as in other works that include distancing11,12 or other
forms of antagonistic interactions13–15.

However, the typical equilibrium states of these models fail to repro-
duce the bimodal opinion distributions usually observed in empirical data
onpolarized issues16,17, which tend to show rich opinion landscapes inwhich
people place themselves in some intermediate positions distributed along
thewhole possible range, rather than in a limited set of choices populated by
a group of completely agreeing agents. Moreover, the phenomenon of
distancing is still widely contested in the literature, as it warrants further
analysis of the conditions needed for its occurrence18–20. Instead, other
models based on the phenomenon of group polarization21,22 have been
proven to capture theonset of polarization successfullywhile retaining a rich
opinion landscape23–26. Group polarization is one of the most documented
phenomena that guide opinion formation processes, and it considers that a

group of interacting individuals does not converge to the average opinion of
the group, but rather becomes more radicalized in the original average
opinion’s direction27. For example, a jury inwhichmembers are, on average,
relatively convinced of the guilt of the defendant will turn out to be strongly
convinced after deliberation28. The model we present below follows this
approach to study the emergence of opinion polarization.

All the aforementioned works, as well as other socio-physical
models29–35, represent the backbone of human interactions as complex
networks36,37. Yet, in real-world settings, opinions are rarely shaped
through isolated dyadic interactions, since they are formed, reinforced, or
challenged within actual groups of more than two individuals. From
informal discussions to deliberative assemblies, those higher-order (i.e.,
group-based) interactions38–43 represent the native environment of opi-
nion formation. This is made specially clear on the phenomenon of group
polarization where, as its name implies, most experiments are performed
on groups44–46. Although recent studies have incorporated higher-order
influence into consensus and fragmentation dynamics, either through
diffusion-like processes47–52 or by generalizing bounded confidence
models53–55, the role of group structure in driving group polarization
remains largely unexplored.

In this article, we aim to tackle this problem by introducing a
dynamical framework for opinion formation that extends the empirically
grounded mechanism of group polarization to explicitly incorporate
group interactions, encoded via higher-order networks. We find that
group interactions promote radical consensus only when they dominate
the dynamics. In contrast, when pairwise interactions prevail, sparse
higher-order interactions enhance polarization by reinforcing local
agreement within groups. Furthermore, we show through analytical
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results that the impact of group interactions intensifies with increasing
group size. Our findings show that polarization depends not only on the
homophily strength but also on the structural arrangement of social
interactions, providing new insights into how group dynamics shape
collective opinion formation.

Results
Opinion dynamics with higher-order interactions
Wemodel the structure of social interactions by means of a hypergraphH
formulation. This type of structure is defined as a pairH ¼ ðN ; EÞ, where
N is the set ofNnodes (here the agents), andE is a collectionof subsets ofN
called hyperedges. Each hyperedge γ 2 E represents a group of agents that
interact simultaneously. The order of a hyperedge is given by the number of
agents it connectsminus one; that is, a hyperedge γ of sizem+ 1 is said to be
of order m. This way, 1-hyperedges correspond to pairwise interactions,
2-hyperedges to triplets, and so on, up to themaximumorder of interaction
M. The set ΓðmÞ

i is the collection of all the hyperedges of order m to which
node i belongs and its cardinality corresponds to the generalized degree of
order m of node i, defined as kðmÞ

i .
To investigate how higher-order interactions shape collective opinion

dynamics, we consider a framework in which each agent i holds a con-
tinuous opinion variable xi 2 R, whose sign σ(xi) ≡ σi represents the
qualitative position of the agent (in favor or against). In its turn, themodule
∣xi∣ captures the strength of her belief.

The opinion of each agent, i.e., the value of xi, evolves in time due to
their associated group-based interactions according to:

_xi ¼ �xiðtÞ þ
XM
m¼1

λðmÞ X
γ2ΓðmÞ

i

wγ
i ðtÞ tanh

X
j 2 γ

j≠i

xjðtÞ
m

0
BBBBB@

1
CCCCCA

2
666664

3
777775: ð1Þ

This set of coupled differential equations generalizes the model introduced
in ref. 25 to include higher-order interactions. The first term describes
memory loss, while the second term pulls agents in the direction of their
contacts’ opinions (specially thosemore radical ones). In the case of groups,
they influence agents’ opinions in the direction of the average position of the
group excluding the focal agent. This reproduces the effect of group
polarization, as a group mildly in favor or against a given issue will become
more radical after interacting. Additionally, λ(m) represents the social
interaction strength of hyperedges of orderm over the agent’s opinion, and
wγ
i represents the importance that the agent gives to hyperedge γ, and thus,

the influence that the group exerts over the agent (see Fig. 1a for a schematic
representation of the model). Each weight wγ

i evolves in time since it

depends on the opinions of the agents in hyperedge γ, being its precise form:

wγ
i ¼

P
j2γjxi � xjj þ ϵðmÞ

� ��β

P
ξ2ΓðmÞ

i

P
l2ξ jxi � xlj þ ϵðmÞ

� ��β
; ð2Þ

where β is the homophily parameter, and ϵ(m) is a small regularizing con-
stant (set to ϵ(m) = 0.002λ(m)) introduced to avoid divergences for nearly
identical opinions. This definition ensures that groups with agents having
opinions more aligned with that of agent i exert a stronger influence, thus
capturing the effect of homophily at the level of hyperedges.

Altogether, the dynamics of the system gives rise to three qualitatively
distinct collective states: a neutral consensus, where all agents converge to a
moderate opinion; a radical consensus, characterized by unanimous but
extreme views; and a polarized state, in which the population splits into
opposing opinion blocks. Figure 1b displays representative opinion trajec-
tories forM=2, corresponding to the three collective states described above.
The dynamics were simulated on a Random Simplicial Complex (RSC)
consisting of N = 1899 nodes, with average degree 〈k(1)〉 = 10 for pairwise
interactions and a sparser higher-order connectivity characterized by
〈k(2)〉 = 3. Simplicial complexes fulfill the downward closure condition:
2-hyperedges include all possible 1 − hyperedges that can be formed
between their nodes. Moreover, we impose that all agents belong to at least
one group interaction, and that the higher-order network is connected in
both interaction orders. Further information on how these configurations
are built can be found in the Methods section and in ref. 41.

Our model yields polarization either as wide opinion distributions,
with agents holding milder views, or as strongly radicalized populations,
displaying two major opposed groups with extreme opposite opinions.
These latter states, represented in the fourth trajectory, can resemble typical
fragmented states obtained in bounded confidence models like the
Hegselmann-Krause model10 or the Deffuant-Weisbuch model9. However,
we still consider such states to be polarized rather than fragmented because
(i) there is is still communication and opinion share between agents
regardless of the clusters they belong to, as weights are small but never zero,
(ii) there is a smooth transition by varying β from wide, bimodal distribu-
tions shown in the third trajectory (that can be clearly identified with
polarization) to the sharp ones shown in the fourth, indicating a clear
relationship between them, and (iii) even for higher values of β, the clusters
placed in the two most extreme opinions are always overwhelmingly
dominant, which can be arguably seen as a form of extreme polarization.

Conversely, as derived in the Methods section, reaching neutral con-
sensus is only possiblewhen the total interaction strength remains below the

Fig. 1 | Opinion dynamics with higher-order
interactions. a Schematic representation of the
model: the memory loss term pulls agents toward a
neutral opinion, while the social influence term pulls
agents in the direction of the opinions of their
acquaintances. b Temporal evolutions of agents in
the representative configurations and resulting
opinion distributions. From top to bottom: neutral
consensus (λ(1) = λ(2) = 0.4, β = 0.7), radicalization
(λ(1) = λ(2) = 10, β = 0.2) and polarization, which can
appear as wide opinion distributions (λ(1) = λ(2) = 10,
β = 0.4) or as sharp polarization (λ(1) = λ(2) = 10,
β = 1.5). All results are for a Random Simplicial
Complex (RSC) of N = 1899 nodes, 〈k(1)〉 = 10 and
〈k(2)〉 = 3. Initial opinions are randomly chosen on
the interval [x−, x+] = [− 20, 20] (except for the top
panel, where [x−, x+] = [− 1, 1]), and the final
opinion of the agents determines the color code.
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critical threshold,

XM
m¼1

λðmÞ < 1 ; ð3Þ

so that the first (dissipative) term in Eq. (1) prevails and most of opinions
concentrate around 0. Remarkably, despite the non-linear nature of the
dynamics, higher-order interactions contribute linearly across orders, with
each λ(m) playing a direct role in driving the system away from neutral
consensus. If the combined strength does not satisfy Eq. (3), the system
reaches polarized or radicalized configurations.

Sparse higher-order interactions promote polarization
Nowwemove beyond the neutral consensus scenario by investigating how
the interplay between social interaction strength, group structure, and
homophily governs the emergence of either polarization or radicalization.
To this aim, we fixM = 2, a large total interaction strength, λ(1) + λ(2) = 20,
and we define δ = λ(2)/20 to interpolate between purely pairwise (δ = 0) and
purely higher-order (δ=1) regimes. As a proxy for polarization,wemeasure
the fraction of configurations in which the standard deviation of opinions
exceeds the absolute value of the mean, i.e., σ > j�xj, where �x ¼Pixi=N
and σ2 ¼Piðxi � �xÞ2=N .

Figure 2a shows the fractionof polarized configurations as a functionof
the higher-order weight δ and the homophily parameter β. For each para-
meter set, we perform 100 independent runs with uniformly distributed
random initial opinions (seeMethods for the numerical integration details).
For δ = 0 (pairwise interactions only), we observe a clear transition from
mixed states (polarization and radical consensus) to fully polarized con-
figurations at a critical value βc = 1, a threshold that can be derived anali-
tically. Interestingly, polarization is already prominent around β ≃ 0.4, a
regime in which the low value of homophily is compensated by the limited
neighborhood of the agents imposed by the underlying structure, which
facilitates the emergence of opposing radical clusters. These findings are
already reported and explored in ref. 25, which focuses on strict pairwise
interactions. Regarding the inclusion of higher-order interactions, as δ
increases the system becomes increasingly susceptible to polarization for
high values of β, noticeable from the decrease in the value of βc required for
its onset that promotes the emergence of polarization well into β < 1.
However, this behavior is softened for δ ≳ 0.2: the threshold β for full

polarization starts to rise, and for δ ≳ 0.5 the system recovers the usual
transition at βc ≃ 1. Regarding intermediate values of β, polarization fades
around δ ≃ 0.5 when both pairwise and higher-order interactions are pre-
sent equally, but is recovered when higher-order interactions dom-
inate (δ→ 1).

These results uncover a non-trivial role of higher-order interactions in
shaping collective dynamics. When pairwise interactions dominate, even
weak group influence amplifies polarization, whereas dominant group
interactions tend to restore the behavior of purely pairwise systems. How-
ever, despite the similarities in polarization fractions found between both
regimes, there are substantial quantitative differences in the subjacent
dynamics. To illustrate them, Fig. 2b, c show the equilibrium opinion dis-
tribution of the polarized configurations at fixed homophily β = 0.4, com-
paring the pairwise limit (δ→ 0) to the regime dominated by higher-order
interactions (δ→ 1). In the latter case, opinions concentrate sharply around
the extremal values, reflecting a population split into strongly radicalized
cohesive groups holding opposite-sign views.

We start by analyzing first the system’s behavior for intermediate
values of β. To understand the effect of higher-order interactions, we must
first briefly explain the purely pairwise scenario (δ = 0), already covered in
ref. 25 (we refer the reader to Supplementary Note 1 for a more detailed
description of the original model and its basic results). The existence of
polarization for β < 1 in sparse networks can be explained by considering
that lower degrees facilitate the presence of homogeneous environments: it
is less probable to find at least one cross-cutting interaction, thus
encouraging polarization by radicalizing agents in opposite directions. In
denser structures, cross-cutting interactions are enough to depolarize the
system. (in ref. 25 it is proven that, in a completely dense dyadic graph,
polarization is only stable if β > 1). Moreover, there is a clear effect with β,
such that intermediate values of the homophily parameter around β ≃ 0.4
greatly promote polarization compared to higher values, around β≲ 1, even
though homophily is stronger in the latter case. To understand this phe-
nomenon,wenote that agents aremore likely to hold intermediate positions
the lower the value of β, which stabilizes opinion distributions by providing
screening to agents more exposed to cross-cutting interactions.

Since groups influence agents in a similar way as individual neighbors,
the same reasoning applieswhen only group interactions are present (δ=1):
if most groups are homogeneous and few are heterogeneous, agents radi-
calize in opposite directions, leading to polarization. As can be seen in

Fig. 2 | Sparse higher-order interactions promote
polarization. a Fraction of polarized configurations
fP obtained from 100 independent realizations for
each combination of parameters (δ, β) (color code).
b, c Average opinion histograms obtained from 100
polarized configurations for δ = 0 (green dot in (a))
and δ = 1 (blue dot in (b)) given β = 0.4. d Average
exposure �Eð2Þ as a function of δ for β = 0.4, obtained
from 100 polarized configurations for each para-
meter combination. Shadowed region corresponds
to the standard deviation. All results are for an RSC
of N = 1899 nodes, 〈k(1)〉 = 10 and 〈k(2)〉 = 3. Initial
opinions are randomly chosen on the interval
[− 20, 20]. Each realizationwas run for 10,000 steps,
corresponding to 1000 time units.
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Fig. 2c, most agents hold extremely radical positions, which suggests that
cross-cutting interactions are indeed largely absent for a sizeable fraction of
them. To measure the extent of an agent’s isolation from dissent through
group interactions, we define the exposure of an agent i to cross-cutting
relationships within its higher-order neighborhood as:

Eð2Þ
i ¼ 1

jΓð2Þi j
X
γ2Γð2Þi

ð1� δσ i;σγ Þ : ð4Þ

In this expression, Γð2Þi is the set of 2-hyperedges involving agent i, σi
represents the signof agent’s iopinion, and σγdenotes the signof the average
opinionwithin group γ, excluding i. δσi ;σγ denotes theKronecker delta of the
opinions signs, so that δσ i;σγ ¼ 1 if bothhave the same sign, and0otherwise.
The quantity Eð2Þ

i therefore measures the fraction of cross-cutting higher-
order interactions for a given agent. Note that a group is not classified as
cross-cutting if the average group opinion aligns with σi, even when one
member disagrees; this occurs when agreeing agents are sufficiently
radicalized to compensate the opinions of disagreeing ones.

Figure 2d shows the average exposure �Eð2Þ ¼ N�1PN
i¼1E

ð2Þ
i as a

function of δ for fixed β = 0.4, computed from 100 polarized configurations
for each parameter combination. In the δ → 0 regime, in which pairwise
interactions prevail, exposure to cross-cutting group interactions is rela-
tively high, but theirweakness in comparison to pairwise interactionsmakes
equilibrium opinion distributions largely impervious to them, thus mostly
maintaining polarization. For increasing values of δ, the incremental
strength of group interactions reflects in the growing internal homogeneity
of 2-hyperedges, decreasing exposure. However, greater group influence
also amplifies agents’ reach, whose dynamics become dominated both by
pairwise and higher-order interactions at the same time, thus diminishing
the effective sparsity of the network and proving to be detrimental for
polarization. This effect is further amplified when relaxing the closure
condition, as the set of neighbors through pairwise and group interactions
are no longer completely overlapping, increasing the agent’s reach inside the
network (see Supplementary Fig. 2 in SupplementaryNote 2). Finally, when
δ → 1, group interactions dominate completely, making pairwise interac-
tions irrelevant and facilitating the emergence of polarized states again,
associated with sharper opinion distributions because of the very limited
exposure to cross-cutting interactions measured by the exposure
(see Fig. 2c).

Apart from the aforementioned results, weakhigher-order interactions
strongly promote polarization for β≲ 1, although this effect vanishes when
they become dominant. Therefore, it emerges when groups interactions
could be considered as a perturbation with respect to pairwise coupling,
slightly displacing the equilibrium opinions of the agents and creating new

positions where they can get trapped, but without the strength to overturn
the sign of an agent’s opinion regardless of her exposure to cross-cutting
interactions. This effect can be understood again by the limited exposure to
cross-cutting groups product of the higher-order network sparsity: asmany
agents have low higher-order degrees, they belong only to either homo-
geneous or heterogeneous groups that displace their equilibrium opinions
slightly to one side or the other. In the former case, they act as a net
polarizing force, as they pull opposite agents farther apart. In the latter, they
displace the agents toward milder views, contributing to wider opinion
distributions while lacking the force to overturning agents’ opinions com-
pletely, also reinforcing polarization. For increasing higher-order strength
(δ ≃ 0.5), this effect disappears again for the same reason explained for the
scenario around β≃ 0.4: both interaction orders compete in equal manner,
increasing the effective reach of the agents that get exposed to a higher share
of cross-cutting interactions with the potential of turning them, and ulti-
mately negating the beneficial effect of sparse networks in polarization.
Therefore, this effect is highly contingent on the network structure, as we
will explore in the next section.

Dense higher-order interactions suppress polarization
Having established that sparse higher-order interactions can promote
polarization, we now investigate the role of increasing the net structural
prominence of group interactions. To do so, we consider three different
higher-order networks with 〈k(1)〉 = 10 and different connectivities of group
interactions 〈k(2)〉 ∈ {3, 7, 15}. Additionally, as the downward closure con-
dition cannot be fulfilled for higher degrees, instead of simplicial complexes
we construct hypergraphs that exhibit the maximum possible inter-order
hyperedge overlap56 for each chosen pair of macroscopic connectivities
(〈k(1)〉, 〈k(2)〉) (see Methods for the crafting details).

In Fig. 3a, we show the fraction of polarized configurations as a
function of δ and the homophily parameter β, for the three different con-
nectivities. The results reveal that polarization is strongly suppressed as
agents’ reach increases (larger connectivity values), confirming the struc-
tural originof thephenomena reported in theprevious section. Inparticular,
polarized states at intermediate values of β (around β≈ 0.5) disappear in the
regime of dominating higher-order interactions, confirming that they were
caused by the network sparsity.Moreover, the size of the polarization bump
foundunderweakhigher-order influence also shrinks as the 2−hyperedges
degree increases.

To showcase the effect of higher-order degree in polarization, we show
in Fig. 3b the distribution of exposures in equilibrium polarized opinion
distributions, computed for a parameter combination inside the polariza-
tion bump in the three cases contemplated in panel a. For low degrees, it is
clear that some agents retain cross-cutting interactions (Eð2Þ

i ≠0), while
others are embedded in completely homogeneous environments (Eð2Þ

i ¼ 0).

Fig. 3 | Dense group interactions suppress polarization. a Fraction of polarized
configurations obtained from 100 independent realizations for each combination of
parameters (δ, β) (color code), for structures with different 〈k(2)〉, 〈k(1)〉 = 10, and
maximum inter-order hyperedge overlap. b Distribution of exposures Eð2Þ

i for 100
polarized configurations generated with parameters δ = 0.125 and β = 0.9 and

different 〈k(2)〉 (pinpointed with a black triangle in a). c Average exposure �Eð2Þ as a
function of 〈k(2)〉, for δ = 0.125 and β = 0.9 (points highlighted on a), obtained from
100 independent realizations for each point. Bars represent the standard deviation.
Networks are comprised ofN = 2000 nodes, except the graph of 〈k(2)〉 = 3, which has
N=1899. Each realizationwas run for 10000 steps, corresponding to 1000 time units.
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However, as 〈k(2)〉 increases, the neighborhoods of agents become more
diverse, and it is increasingly difficult to avoid cross-cutting interactions.
This tendency is clearly captured bymeasuring the average exposure �Eð2Þ as
a functionof 〈k(2)〉, whichwe represent inFig. 3c: it becomes clear thathigher
degrees entail greater exposures, negating the occurrence of homogeneous
environments and making polarization more difficult.

Finally, we remark that heterogeneous groups can sustain intermediate
opinions closer to the focal agent, which exert stronger influence and thus
enhance the depolarizing effect compared to simple pairwise interactions,
where cross-cutting ties aremore distant and extreme. This effect is reflected
in the gradual increase in the value of βc with δ for strong higher-order
interactions, i.e. for δ > 0.5. The following section provides a plausible
explanation for the detrimental effect of group interactions in polarization,
derived by their effect on the polarization threshold βc.

Analytical derivation of the polarization threshold
To quantify the shift on the polarization threshold when higher-order
interactions are dense and dominant, we analyze the stability of fully
polarized states in fully connected hypergraphs, where each agent partici-
pates in all possible m-hyperedges up to order M. We consider a config-
uration in which N+ agents hold a positive opinion x+ and N− = N − N+

hold a negative opinion x−. Through a linear stability analysis (detailed in
Methods and Supplementary Note 3), we reveal that such polarized states
are stable provided the homophily parameter β exceeds a critical threshold
βc, determined implicitly by

βc
XM
m¼1

λðmÞf ðm; λðmÞ; βcÞ ¼ 1; ð5Þ

where f(m, λ(m), βc) is detailed in the Methods section.
In Fig. 4a we show the behavior of βc as a function of M for two

scenarios. Firstly, we consider the case of fully connected simplicial com-
plexeswith interactions up to orderM (with λ(m) = 20/M∀m), and secondly,
fully connectedM-uniform hypergraphs only containing all possible order-
M interactions, with λ(M) = 20. In both cases, βc increases withM, indicating
that polarization becomes progressively harder to sustain with increasing
group size. Our analytical predictions are in excellent agreement with
numerical integration of the full dynamics for N = 100 agents.

As hinted before, the mechanism behind this effect lies on the exis-
tence of cross-cutting hyperedges that also include agreeing agents,
making the group more influential while still acting as a depolarizing
force, thus requiring higher values of homophily, β, to compensate. As we

saw before, in the case of networked populations these heterogeneous
groups could be absent for a non-negligible set of agents, but in the case of
fully connected hypergraphs or orderm, for a given agent holding opinion
x+, there are

nmðbÞ ¼
Nþ

m� b

� �
N�
b

� �
ð6Þ

such groups with b neighbors with opposite opinion (x−), andm− b with
the same opinion (x+).

In Fig. 4b we represent nm(b) as a function of the average opinion of
these groups basedon theorderm. For pairwise interactions (m=1),wefind
that the neighboring agents can exhibit only purely positive/negative opi-
nions. However, as group size increases, a rich repertoire of mixed com-
positions emerges. In larger groups, agents often share cross-cutting m-
hyperedges with some like-minded individuals, rather than being com-
pletely isolated. For example, a positive-opinion node in a 3-hyperedge
might encounter two negative agents and one other positive agent. While
the group average remains negative, it is much closer to zero than if all three
other members held negative views. In other words, larger groups that
produce more moderate collective opinions include agreeing neighbors. As
a result, they are more effective at pulling agents toward the center and the
opposite view, resulting in radicalized societies.

Discussion
In this article, we have introduced a dynamical framework for opinion
formation considering the group polarization phenomenon that explicitly
incorporates homophily and group interactions through higher-order
networks. Our results reveal a fundamental asymmetry in how group
structure shapes collective opinion dynamics. While sparse group interac-
tions amplify polarization, with agents encountering limited
dissenting views, dense group interactions suppress polarization by expos-
ing agents to more moderate collective opinions through compositional
diversity. Moreover, the larger the group size, the more prominent those
effects are.

Unlike previous models, in which only pairwise interactions were
considered, here the existence of higher-order interactions provides a
mechanism for the emergence and loss of polarization that can be
understood through the exposure of agents to opposite opinions through
groups. In this respect, networked populations with sparse higher-order
interactions are prone to the presence of homogeneous groups in which
everyone agreeswithout any dissent, thus becoming a net polarizing force.

Fig. 4 | Analytical derivation of the polarization threshold. a Stability thresholds
βc for a polarized configuration computed from Eq. (18) consideringM-uniform
hypergraphs (black circles) and fully-connected hypergraphs up to orderM (blue
circles), as a function of the highest order present in the network. Results are shown
togetherwith thenumerical values obtained by running the systemofN equations for
validation purposes (red crosses). Throughout the figure, we consider networks
comprised ofN= 100 agents. bNumber of groupsnm(b) towhich an agent is exposed

comprised by b neighbors of opinion x− and m − b neighbors of opinion x+, as a
function of b. The color code reflects the proportion of the groups, going from blue
corresponding to groupswith all agentswith positive opinions to redwhere all agents
hold negative opinions.Multiple orders of interaction are shown, fromm= 1 (top) to
m = 4 (bottom). An schematic representation of the interactions of order m is
presented alongside its corresponding histogram,where the shadowed regiondepicts
the hyperedge connecting the m + 1 nodes (represented by black dots).
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However, when group interactions aremore prominent in connecting the
network, either because of being dense or because having low hyperedge
overlap56,57, cross-cutting groups become increasingly probable while
usually containing agreeing individuals at the same time. This increases
their influence and drives their constituents towards the majority,
encouraging agreement.

Indeed, our results are consistent with recent findings pinpointing
that higher-order interactions favor consensus, as being exposed to
intermediate opinions greatly favors agreement within a group49,53,54.
However, as we have discussed, this effect is contingent upon certain
network characteristics, that cannot be overlooked. Our framework thus
provides a foundation for the development ofmore advanced frameworks
that capture key structural features of higher-order networks, such as their
temporal evolution58–60, andhow they shape the emergence of polarization
in real-world systems.

Methods
Crafting of higher-order structures
Random Simplicial Complex (RSC). In our manuscript, we considered
Random Simplicial Complexes (RSCs) of orderM = 2 generated following
themodel introduced by Iacopini et al.41. Given a set ofNnodes, each pair of
nodes (i, j) is connected with probability p(1), resulting in an Erdős-Rényi
graph with average 1-degree 〈k(1)〉 = (N − 1)p(1). Moreover, each triplet
(i, j,k) isfilledwitha2-simplexwithprobabilityp(2), regardless ofwhether its
edges are already present. The average 2-degree is then
hkð2Þi ¼ ðN�1ÞðN�2Þ

2 pð2Þ. Each 2-simplex contributes, on average, 2(1− p(1))
additional links to the 1-degree of its nodes, depending on whether
the corresponding edges (1-faces) were already present. As a result,
the expected total 1-degree becomes:hkð1Þitotal � ðN � 1Þpð1Þþ
2hkð2Þið1� pð1ÞÞ. As a consequence, to craft aRSCwith target values of 〈k(1)〉
and 〈k(2)〉, the connection probabilities to be chosen are:

pð1Þ ¼ hkð1Þi � 2hkð2Þi
ðN � 1Þ � 2hkð2Þi ;

ð7Þ

pð2Þ ¼ 2hkð2Þi
ðN � 1ÞðN � 2Þ : ð8Þ

Note that, in order to ensure the connectedness of the structure, we
remove the nodes which are disconnected. This is the reason why the
structure utilized in Figs. 1 and 2 has N = 1899 instead of the origi-
nal N = 2000.

Hypergraphs with maximum inter-order hyperedge overlap. If
2〈k(2)〉 > 〈k(1)〉, Eq. (7) yields negative values, as there are no enough
1 − hyperedges to fill all the faces of the 2 − hyperedges. Therefore, in
these situations, we craft hypergraphs that maintain the downward clo-
sure to the best extent, i.e., with maximum inter-order hyperedge
overlap56. In order to do so, we first create the set of 2 − hyperedges
according to Eq. (8), and afterwards, we sample as 1 − hyperedges a
fraction of the faces of the 2 − hyperedges, according to the probability

�pð1Þ ¼ kð1Þ

2kð2Þ
: ð9Þ

Analytical derivation of the transition to consensus
Neutral consensus corresponds to the fixed point xi ¼ 0 8i 2 N . To
determine its stabilityweperformameanfield analysis fromEqs. (1)−(2) by
assuming that all agents hold similar opinions, i.e., xj ≈ x. We therefore
approximate each group average as∑j∈γxj/m ≈ x, and the weights become
uniform across hyperedges. This reduces Eq. (1) to

_x ¼ �x þ
XM
m¼1

λðmÞ tanhðxÞ: ð10Þ

In the stationary state, where _x ¼ 0, Eq. (10) yields a scalar fixed-point
equation:

x ¼
XM
m¼1

λðmÞ tanhðxÞ: ð11Þ

Since tanhð0Þ ¼ 0, the solution x= 0 always exists. To assess its stability, we
linearize Eq. (10) around x = 0, using tanhðxÞ � x, yielding

_ε � �εþ
XM
m¼1

λðmÞ
 !

ε ¼ ε �1þ
XM
m¼1

λðmÞ
 !

: ð12Þ

Hence, x = 0 is stable if

XM
m¼1

λðmÞ < 1; ð13Þ

and unstable otherwise. This condition defines the critical surface in para-
meter space where the neutral consensus loses stability and non-zero
solutions (corresponding to polarization or radical consensus) emerge.

Numerical integration details
The systemofN coupleddifferential equations is integratedusing an explicit
fourth-order Runge-Kutta method with a time step dt = 0.1.

Stability analysis of a polarized configuration
We perform a linear stability analysis of a polarized configuration, in which
N+ agents take a positive opinion x+ andN− =N−N+ a negative opinion
x−. In Supplementary Note 3 we derive that, in the equilibrium, both opi-
nions fulfill the system of equations:

xþ ¼
XM
m¼1

λðmÞXm
b¼0

nmðbÞ tanh
ðm� bÞxþ þ bx�

m

� �
f ðbÞβPm

b0¼0nmðb0Þf ðb0Þβ

( )
;

ð14Þ

x� ¼
XM
m¼1

λðmÞXm
b¼0

nmðbÞ tanh
ðm� bÞxþ þ bx�

m

� �
f ðm� bÞβPm

b0¼0nmðb0Þf ðm� b0Þβ

( )
;

ð15Þ

where

nmðbÞ ¼
Nþ

m� b

� �
N�
b

� �
ð16Þ

counts the number of possiblem-hyperedges containingm− b agents with
opinion x+ and b agents with opinion x−. These terms reflect the statistical
weight of each group configuration in a polarized population.Moreover, the
function

f ðbÞ ¼ ϵðmÞ

bðxþ � x�Þ þ ϵðmÞ ð17Þ

defines the homophilic influence weight associated with a group
where there are b agents with opinion x−. The function decays as the
internal disagreement in the group increases (i.e., as b grows), cap-
turing the idea that agents are less influenced by dissimilar peers.
Note that the small constant ϵ(m) ensures regularization near zero
opinion difference.

The polarized configuration given by Eqs. (14)–(15) is stable under
perturbation of one of the agents if the following condition applies (see
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Supplementary Note 3 for the analytical derivation): where the function

gðbÞ ¼ mbðxþ � x�Þ þ 2bϵðmÞ

bðxþ � x�Þ þ ϵðmÞ� �2 ð19Þ

appears in the derivative of the weighted influence term f(b) and captures
how sensitive the homophilic weight is to small perturbations in the agent’s
opinion. It depends on the opinion gap x+− x−, the group composition b,
and the small constant ϵ(m) to avoid divergence.

The full stability condition in Eq. (18) ensures that small perturbations
around the polarized configuration decay over time. Intuitively, it expresses
a balance between the strength of homophilic influence (parametrizedbyβ),
the intensity of interactions λ(m), and the structure of group compositions. If
this condition is violated, small perturbations grow and the polarized con-
figuration becomes unstable.

Data availability
The numerical data used to generate the figures can be generated with the
code provided in the manuscript. Moreover, these numerical data are also
available from the authors upon request.

Code availability
The code needed to reproduce the results of themanuscript can be found in
https://github.com/hperezmartinez/opinionHO.
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