

ESX-1-induced apoptosis is involved in cell-to-cell spread of *Mycobacterium tuberculosis*.

Journal:	<i>Cellular Microbiology</i>
Manuscript ID:	CMI-13-0148.R1
Manuscript Type:	Research article
Date Submitted by the Author:	n/a
Complete List of Authors:	Aguiló, Juan; University of Zaragoza, Dpto. Microbiología, Medicina Preventiva y Salud Pública Alonso, Henar; CNRS, Institut de Pharmacologie et de Biologie Structurale Uranga, Santiago; University of Zaragoza, Dpto. Microbiología, Medicina Preventiva y Salud Pública Marinova, Dessislava; University of Zaragoza, Dpto. Microbiología, Medicina Preventiva y Salud Pública Arbues, Ainhoa; CNRS, Institut de Pharmacologie et de Biologie Structurale De Martino, Alba; IIS, Unidad Anatomía Patológica Anel, Alberto; University of Zaragoza, Dpto. Bioquímica y Biología Molecular y Celular Monzon, Marta; University of Zaragoza, Research Centre for Encephalopathies and Transmissible Emerging Diseases Badiola, Juan; University of Zaragoza, Research Centre for Encephalopathies and Transmissible Emerging Diseases Pardo, Julian; University of Zaragoza, Bioquímica y Biología Molecular y Celular Brosch, Roland; Institut Pasteur, Pathogénomique Mycobactérienne Intégrée Martín, Carlos; University of Zaragoza, Dpto. Microbiología, Medicina Preventiva y Salud Pública
Key Words:	APOPTOSIS, MACROPHAGE, SPREAD, Virulence, CELL-TO-CELL

1
2 **ESX-1-induced apoptosis is involved in cell-to-cell spread of *Mycobacterium tuberculosis*.**
3
45 JI Aguiló^{a, b}, H Alonso^{a, b, 1}, S Uranga^{a, b}, D Marinova^{a, b}, A Arbués^{a, b, 1}, A de Martino^c, A Anel^d,
6
7 M Monzon^e, J Badiola^e, J Pardo^{d,f}, Roland Brosch^g, Carlos Martín*^{a,b,h}.
8
910
11 ^a Grupo de Genética de Micobacterias, Dpto. Microbiología, Medicina Preventiva y Salud
12 Pública, Universidad de Zaragoza, C/ Domingo Miral s/n, 50009 Zaragoza, Spain.
13
1415 ^b CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.
16
1718 ^c Unidad Anatomía Patológica, IIS Aragón. Zaragoza, Spain
19
2021 ^d Grupo Apoptosis, Inmunidad y Cáncer, Dpto. Bioquímica y Biología Molecular y Celular, Fac.
22 Ciencias, Universidad de Zaragoza, Zaragoza, Spain
23
2425 ^e Research Centre for Encephalopathies and Transmissible Emerging Diseases, Universidad de
26 Zaragoza, Zaragoza, Spain
27
2829 ^f Fundación Aragón I+D (ARAID), Gobierno de Aragón, Zaragoza, Spain
30
3132 ^g Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France.
33
3435 ^h Servicio de Microbiología, Hospital Universitario Miguel Servet, ISS Aragón, Paseo Isabel la
36 Católica 1-3, 50009 Zaragoza, Spain.
37
3839 * Corresponding author: Mailing address: Dpto. Microbiología, Medicina Preventiva y Salud
40 Pública, Facultad de Medicina, Universidad de Zaragoza, C/ Domingo Miral s/n, 50009
41 Zaragoza, Spain. Phone: (+34) 976 76 17 59. Fax: (+34) 976 76 16 64. E-mail:
42
43 carlos@unizar.es.
4445 ¹ Present Address : Institut de Pharmacologie et de Biologie Structurale, UMR5089 CNRS, 205
46 Route de Narbonne, BP 64182, 31077 Toulouse, France.
47
4851 Running title: *M. tuberculosis* kills host cells to spread cell-to-cell
52
53
54
55
56
57
58
59
60

ABSTRACT

Apoptosis modulation is a procedure amply utilized by intracellular pathogens to favour the outcome of the infection. Nevertheless, the role of apoptosis during infection with *Mycobacterium tuberculosis*, the causative agent of human tuberculosis, is subject of an intense debate and still remains unclear. In this work, we describe that apoptosis induction in host cells is clearly restricted to virulent *M. tuberculosis* strains, and is associated with the capacity of the mycobacteria to secrete the 6-kD early secreted antigenic target ESAT-6 both under *in vitro* and *in vivo* conditions. Remarkably, only apoptosis-inducing strains are able to propagate infection into new cells, suggesting that apoptosis is used by *M. tuberculosis* as a colonization mechanism. Finally, we demonstrate that *in vitro* modulation of apoptosis affects mycobacterial cell-to-cell spread capacity, establishing an unambiguous relationship between apoptosis and propagation of *M. tuberculosis*. Our data further indicate that BCG and MTBVAC vaccines are inefficient in inducing apoptosis and colonizing new cells, correlating with the strong attenuation profile of these strains previously observed *in vitro* and *in vivo*.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

INTRODUCTION

Tuberculosis represents a menace to global human health, causing more than one million deaths per year, and being one of the leading infectious diseases affecting developing countries (WHO, 2012). *Mycobacterium tuberculosis*, the causative agent of the disease, is primarily an intracellular pathogen that has successfully developed strategies to colonize alveolar host macrophages and overcome their bactericidal defence mechanisms. This permits bacterial replication and propagation in the host during the early stages of the infection, in the absence of an organized protective response capable to control infection (Cooper, 2009).

ESAT-6, which is secreted via the ESX-1 secretion system, is an immunodominant antigen involved in virulence. ESAT-6 has been implicated in different host-pathogen interaction processes leading to downmodulation of macrophage activity (Novikov et al, 2011; Pathak et al, 2007), autophagy inhibition (Romagnoli et al, 2012) or phagosome membrane disruption, which allows *M. tuberculosis* to translocate to cytosol (Houben et al). *Esat-6* is encoded in the region of difference 1 (RD1), which is deleted from BCG. Although BCG's genome contains different RDs that codify for genes potentially involved in virulence (Gordon et al, 1999), RD1 deletion has been described as the main cause for the attenuation profile of BCG (Pym et al, 2002).

Apoptosis is a physiological type of cell death characterized by the preservation of the plasma membrane integrity. Apoptotic bodies express “eat-me” signals recognized by macrophages to become phagocytosed (Martin et al, 1995). Thus, release of intracellular content to the extracellular medium, as well as associated inflammatory reactions, is prevented. Modulation of host cell death as a mechanism to overtake host defences is a strategy amply exploited by intracellular bacteria. In the case of Chlamydia, an obligate intracellular type of bacteria, infected host cells are profoundly resistant to apoptosis (Fan et al, 1998). Conversely, other facultative intracellular pathogens such as *Shigella* (Zychlinsky et al, 1992) or *Salmonella* (Monack et al, 1996) cause host cell apoptosis. In the case of *M. tuberculosis*, the role of apoptosis for the infection outcome is subject to an intense debate. Several works maintain that capacity to induce apoptosis is characteristic of attenuated mycobacterial strains (Chen et al, 2006; Sly et al, 2003). Thus, apoptotic macrophages would provide mycobacterial antigens to

1
2
3 be processed and presented by dendritic cells (Schaible *et al*, 2003). On the contrary, other
4 authors describe that apoptosis is induced exclusively by virulent *M. tuberculosis* strains, both
5 *in vitro* and *in vivo* (Aporta *et al*, 2012; Seimon *et al*, 2010), in a process that involves ESAT-6
6 (Derrick & Morris, 2007; Grover & Izzo, 2012). The finding that inhibition of *Mycobacterium*
7 *marinum*-induced apoptosis impairs the spread of infection (Davis & Ramakrishnan, 2009)
8 further suggests that induction of apoptosis seems to be a potent virulence mechanism of
9 pathogenic mycobacteria. Recently, we showed that the current BCG vaccine and the attenuated
10 *M. tuberculosis* SO2 prototype vaccine candidate (Martin *et al*, 2006) were unable to induce
11 apoptosis in infected macrophages, both under *in vitro* and *in vivo* conditions (Aporta *et al*,
12 2012). These findings suggest that induction of apoptosis is a key mechanism used by the
13 pathogen that is apparently lost by attenuated strains unable to secrete ESAT-6.

14
15 MTBVAC is a recombinant live vaccine candidate, derived from the *M. tuberculosis* clinical
16 isolate MT103, attenuated by the deletion of the virulence genes *phoP* and *fadd26*, and is the
17 first such candidate to be tested in human clinical trials (Arbues *et al*. Submitted for
18 publication). PhoP is part of the two-component system PhoPR, which regulates the
19 transcription of approximately 2% of *M. tuberculosis* genome (Gonzalo-Asensio *et al*, 2008;
20 Walters *et al*, 2006), with several of the PhoP-regulated genes involved in virulence
21 mechanisms, including ESAT-6 secretion (Frigui *et al*, 2008). *Fadd26* is essential for the
22 synthesis and the transport to the bacterial surface of phthiocerol dimycocerosates
23 (PDIM/DIM), a lipid complex involved in virulence (Camacho *et al*, 1999; Cox *et al*, 1999).

24
25 In this work we have employed a panel of different virulent *M. tuberculosis* strains, including
26 various clinical isolates, to analyse their ability to induce apoptosis in comparison with the
27 attenuated mycobacterial vaccines BCG and MTBVAC. In addition, we explore whether
28 apoptosis induction leads to mycobacterial cell-to-cell spread.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

MATERIALS AND METHODS

BACTERIAL STRAINS AND GROWTH CONDITIONS

Mycobacteria used in this study were grown at 37°C in Middlebrook 7H9 broth (BD Biosciences) supplemented with 0.05% Tween 80 and 10% Middlebrook albumin dextrose catalase enrichment (ADC; BD Biosciences) and, when required, medium was supplemented with 20 µg/ml of kanamycin or hygromycin. GFP-expressing strains were generated by transformation of plasmid pMV361H *gfp* (Green Fluorescent Protein). Representative Beijing *M. tuberculosis* clinical isolates selected in European Project TB-VIR were used (Wang et al, 2010).

CELL CULTURE AND INFECTIONS

MH-S cells (HPA) were cultured at 37°C and 5% CO₂ in DMEM medium supplemented with 10% inactivated foetal bovine serum (Biological industries) and 2 mM glutamine (Biological industries). Cells were seeded in 24-plate wells and allowed to attach to the plastic overnight. After clumps removal by low-speed centrifugation of a log-phase culture, bacterial concentration was determined by optical density. Bacterial suspension for indicated MOIs was prepared in DMEM complete medium and put in contact with cells for 4 h. Afterwards, cells were washed three times with PBS to remove extracellular bacteria and fresh DMEM complete medium was added, in the presence of SB202190 inhibitor (Merck Millipore) or staurosporine (0.025, 0.05, 0.1, 0.2, 0.5 µM) (Sigma) when indicated.

APOPTOSIS ANALYSIS *IN VITRO*

Phosphatidylserine (PS) exposure and plasma membrane integrity were evaluated by AnnexinV-APC (AnnV) and 7-actinomycinD (7-AAD) (BD Biosciences) staining according to manufacturer instructions, and analyzed by flow cytometry. Briefly, cells were washed and incubated with AnnV and 7AAD in Annexin-binding buffer (ABB) for 15 min in dark at room temperature. Afterwards, cells were washed with ABB and fixed with 4% paraformaldehyde (PFA) containing CaCl₂. Nuclear morphology was analyzed by fluorescence microscopy with Hoechst 33342 (Invitrogen), according to manufacturer instructions.

IN VIVO STUDIES IN MICE

1
2
3 The protocols for animal handling were previously approved by University of Zaragoza Animal
4 Ethics Committee (protocol number PI43/10). Eight weeks old female C57BL/6 mice were
5 intranasally challenged with approximately 1000 CFUs of the indicated strains suspended in 40
6 μ l of PBS. Four weeks post-infection, animals were humanely sacrificed and lungs and/or
7 spleen were harvested.
8
9

10
11 To analyze bacterial replication, lungs or spleen were homogenized using GentleMacs
12 homogeneizer (Miltenyi Biotec) and CFU counted by plating serial dilutions on solid
13 Middlebrook 7H11 medium supplemented (BD Biosciences) with 10% Middlebrook ADC
14 enrichment.
15
16

17 Histological and immunohistochemical protocols were performed according to a previous work
18 (Aporta et al, 2012). Lungs were harvested and fixed in 4% Neutral Buffered Formalin, placed
19 into Histology cassettes and processed in the Xpress X50 rapid tissue processor (Sakura, Japan)
20 until paraffin embedding. Paraffin blocks were made and cut at 3 um. Sections were stained
21 with Hematoxylin-Eosin and Ziehl-Nielsen stain methods for histological assessment. For
22 immunohistochemistry, sections were deparaffinized in xylene and hydrated in a gradient
23 alcohol series from 100% to 70% and running water for 5 minutes. Heat mediated antigen
24 retrieval was performed by means of PT-Link (Dako, Denmark) by heating the slides at 92°C in
25 low or high pH buffer (Target Retrieval Solution, High pH or Low pH, Dako, Denmark)
26 depending on the antibody, for 20 min and then washed in wash buffer (Dako, Denmark).
27 Endogenous peroxidase was quenched (Peroxidase-Blocking Reagent, EnVisionTM, Dako,
28 Denmark) followed by incubation with Caspase-3 active (R&D systems) and F4/80 (Abcam)
29 primary antibodies. For visualization, Dako EnVision System HRP was used depending on the
30 antibody with a suitable secondary antibody (HRP labelled goat anti rabbit or rabbit anti rat)
31 following suppliers procedure. The colour reaction was developed by DAB+ chromogen in
32 substrate buffer (Dako, Denmark), resulting in a brown reaction product. Sections were
33 counterstained with Mayer's hematoxylin, dehydrated in a gradient series of alcohol, cleared in
34 xylene and mounted. In negative controls, the primary antibody was omitted.
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 For histological analysis, the whole lung of each animal was studied with a Leica DM5000B
4 microscope and representative pictures of each slide taken with a Leica DFC 420C camera at
5 indicated magnification. Histological findings and positive labelled cells and location compared
6 to negative controls were assessed and recorded.
7
8

9
10 **WESTERN BLOTH ANALYSIS**
11
12

13 Supernatants from the indicated strains were obtained by filtration and TCA precipitation of 10
14 ml log-phase cultures. Protein concentration was determined by Bradford method (BioRad) and
15 10 µg total protein were loaded in a 15% polyacrylamide gel, separated by SDS-PAGE and
16 transferred to PVDF membrane (GE Healthcare). Membranes were incubated with anti-ESAT6
17 (Abcam) or anti-Ag85A (Abcam) primary antibodies. After corresponding secondary antibodies
18 incubation, membranes were revealed using ECL plus Western Blotting system (GE
19 Healthcare).
20
21

22
23 **STATISTICAL ANALYSIS**
24
25

26 Statistical analysis were performed with the GraphPrism software, using indicated tests.
27 Differences were considered significant at $p < 0.05$.
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

RESULTS

APOPTOSIS INDUCTION IS RESTRICTED TO ESAT-6-SECRETING STRAINS

In a previous study, we showed that the clinical *M. tuberculosis* isolate MT103 triggered apoptosis in infected macrophages (Aporta et al, 2012). To find out whether this is a general feature of virulent *M. tuberculosis* strains, we analyzed the pro-apoptotic capacity of different strains, including the reference strain H37Rv, MT103 and eight clinical isolates belonging to the Beijing family (Wang et al, 2010). In this work, we used as representative host cell model the MH-S cell line, comprising immortalized murine alveolar macrophages (Mbawuike & Herscowitz, 1989), thus representing an attractive model to study the interaction of this pathogen with the host cell. This cell line has been characterized during mycobacterial infection and has been evaluated in comparison with primary alveolar macrophages, showing a comparable expression of surface markers and a similar capacity to interact with mycobacteria (Melo & Stokes, 2000). As shown in Figure 1A, the different Beijing family clinical isolates (strains W4, N4, NHN5, GC1237, HM764, HM903, CAM22 and 990172) induced cell death on MH-S cells to a similar extent as MT103 or H37Rv. The phenotype observed corresponded clearly to an apoptosis-like cell death, as most of the cells were positive for AnnexinV staining and negative for 7-AAD uptake. In addition, the nuclei of MT103-infected MH-S cells presented typical apoptotic features, such as nuclear condensation and fragmentation (Figure 1B). A similar result was found in THP-1 human macrophages (supplementary Figure 1). Contrariwise to the wild-type strains, the attenuated *M. tuberculosis* MTBVAC was unable to trigger apoptosis in the MH-S cells.

As mentioned earlier, we previously showed that BCG vaccine strain is unable to induce apoptosis (Aporta et al, 2012). In order to understand this phenotype, in the present work we infected MH-S cells with recombinant BCG strains complemented with selected RD regions absent from the genome of BCG, i.e. RD1, RD4, RD5, RD7, (Gordon et al, 1999), and subsequently we analyzed the ability of these strains to trigger apoptosis. Our results clearly indicate that only the BCG::RD1 strain, which has a reconstituted ESX-1secretion system, recovered the ability to induce apoptosis. BCG strains complemented with RD4, RD5 or RD7

1
2
3 behaved like the parental BCG Pasteur control strain (Figure 1C). Of note, the initial percentage
4 of infected cells was similar for all tested strains, as analysed by using GFP expressing strains
5 (data not shown), which makes it unlikely that the observed differences in results were due to
6 possible variability in the infectious bacterial load.
7
8

9
10 ESAT-6, which is secreted through the ESX-1 system, has been shown to cause apoptosis on
11 host cells (Choi et al, 2010). Thus, we corroborated that ESAT-6 was secreted in cell culture
12 supernatants only by the apoptosis-inducing strains, as shown in Figure 1D. As a control we
13 used antigen Ag85A, which is secreted via the general SecA-dependent secretion pathway.
14 Presence of the Ag85A in the supernatants of MTBVAC and BCG cultures confirmed that the
15 absence of ESAT-6 secretion in these strains was not due to differences in the quality of
16 bacterial cultures.
17
18

19 Similarly to BCG and MTBVAC, we observed that *M. tuberculosis* H37Ra, an attenuated
20 version of *M. tuberculosis* H37 strain, did not trigger apoptosis (Supplementary Figure 2).
21 Remarkably, *M. tuberculosis* H37Ra does not secrete ESAT-6 due to a point mutation in the
22 DNA binding region of the *phoP* gene (Frigui et al, 2008; Wang et al, 2007).
23
24

33 APOPTOSIS IN VIVO IS INDUCED BY ESAT-6 SECRETING MYCOBACTERIA

35 To investigate the physiological relevance of our findings obtained with cultured cells, we
36 extended our studies to an *in vivo* infection model, using C57BL/6 mice. To this aim, we
37 intranasally challenged mice with *M. tuberculosis* MT103, MTBVAC, BCG or BCG::RD1
38 strains and measured the bacterial burden four weeks post-challenge. Replication of bacteria
39 was only observed in MT103- and BCG::RD1-infected animals, whereas attenuated MTBVAC
40 and BCG strains were unable to grow in lungs (Figure 2A). Differences in replication between
41 virulent and attenuated strains were also substantial in spleen (supplementary Figure 3).
42 Consequently, Ziehl-Neelsen staining revealed the presence of mycobacteria only in the lungs
43 of mice exposed to MT103 or BCG::RD1 strains (supplementary Figure 4A). In parallel,
44 histopathology analyses also revealed striking differences between the organs of animals from
45 the different sets of groups. In the case of MTBVAC- or BCG groups the appearance of the
46 lungs was similar to the non-infected controls. Lungs from mice infected with MT103 or
47 BCG::RD1 strains showed extensive granulomatous lesions (supplementary Figure 4B).
48 In the case of attenuated strains, the lungs of infected mice showed only a few non-specific
49 cellular infiltrates. In the case of BCG::RD1, the lungs showed extensive granulomatous
50 lesions. In the case of MTBVAC, the lungs showed only a few non-specific cellular infiltrates.
51 In the case of MT103, the lungs showed extensive granulomatous lesions.
52
53

1
2 BCG::RD1 strains presented wide areas of consolidation and inflammation with a high degree
3 of cellular infiltration (Figure 2B). F4/80 staining confirmed that most of the infiltrated cells
4 were macrophages (supplementary Figure 4B). In order to analyse whether bacterial replication
5 correlated with apoptosis in the infected tissues we analyzed the presence of active-caspase 3 in
6 the lungs. As shown in Figure 2C, only lungs infected with MT103 or BCG::RD1 presented a
7 high level of caspase-3 activation. Remarkably, presence of apoptotic cells was mainly
8 restricted to the areas of tissue consolidation and inflammation in the lung tissues of these two
9 groups. Caspase-3 activation was practically absent in the lungs of mice inoculated with BCG
10 or MTBVAC (Figure 2C). Altogether, our data indicate that apoptosis induced *in vivo* by
11 mycobacteria correlates with the presence of a functional ESX-1 system and secretion of ESAT-
12 6, suggesting that ESAT-6 also plays a pro-apoptotic role under physiological conditions in
13 mouse model.
14
15

16 *APOPTOSIS INDUCTION CORRELATES WITH CELL-TO-CELL BACTERIAL SPREAD*
17
18 *CAPACITY IN VITRO*
19

20 Previous reports from different research groups suggest that ESX-1 systems in *M. tuberculosis*
21 and in the closely related *Mycobacterium marinum* are essential for cell-to-cell spread of
22 bacteria (Davis & Ramakrishnan, 2009; Gao et al, 2004; Guinn et al, 2004). In good agreement
23 with these observations, we here show that only the ESAT-6 secreting strains MT103 and
24 BCG::RD1, but not the attenuated MTBVAC and BCG, replicated within MH-S macrophages
25 (Figure 3A). Nevertheless, such replication assays do not discern whether replication occurs
26 only in the cells initially infected, or if the bacteria are able to colonize new, yet uninfected cells
27 over time. To tackle this question in more detail, we used GFP-expressing mycobacterial strains
28 to monitor macrophage infection at the single cell level (Valdivia et al, 1996). As shown in
29 Figure 3B, the percentage of initially infected (GFP positive) host cells only increased when
30 apoptosis-inducing MT103 and BCG::RD1 strains were used. This result indicated that these
31 bacteria were spreading into new host cells that had not been initially infected. Conversely, the
32 percentage of GFP-positive cells did not change in cell cultures infected with MTBVAC or
33 BCG even though the initial percentage of GFP-positive cells was similar to that seen for
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 virulent strains, strongly suggesting that non-virulent strains are unable to spread into new host
4 cells due to efficient host control mechanisms. These findings further suggest that apoptosis
5 might be a mechanism that efficiently contributes to host colonization by pathogenic *M.*
6 *tuberculosis*.
7
8

9
10 *APOPTOSIS MODULATION IN VITRO ALTERS CAPACITY OF MYCOBACTERIA TO*
11 *INFECT NEW CELLS*
12
13

14 To assess whether apoptosis affects cell-to-cell bacterial propagation, we induced or inhibited
15 apoptosis on host cells and we monitored potential variations in the capacity of bacteria to infect
16 new cells using the GFP-expressing strains.
17
18

19 Since BCG, which does not trigger apoptosis in macrophages, was unable to spread to new
20 cells, we wondered whether we could revert this phenomenon if we externally induced
21 apoptosis following infection. We incubated MH-S macrophages with BCG in presence of
22 increasing concentrations of staurosporine, a potent apoptosis-inducing drug. Previously, we
23 corroborated that staurosporine was killing cells by apoptosis, which is demonstrated by the
24 predominant AnnexinV+7AAD- phenotype observed after overnight staurosporine incubation
25 (supplementary Figure 5). As shown in Figure 4A, under staurosporine treatment, the increasing
26 percentage of dead cells (AnnexinV+7AAD-) significantly correlated with the percentage of
27 GFP-positive cells infected with BCG. Hence, in the presence of apoptosis, attenuated
28 mycobacteria, which are normally unable to colonize new cells, do gain the capacity to spread.
29
30

31 To corroborate these data, we used the contrary approach: we inhibited apoptosis and tested the
32 capacity of virulent *M. tuberculosis* to spread from cell to cell. It was previously shown that
33 activation of p38MAPK leads to apoptosis of *M. tuberculosis*-infected macrophages (Kundu et
34 al, 2009) as well as neutrophils (Aleman et al, 2004). To further test the possible role of
35 apoptosis for bacterial propagation, we monitored MT103 infection in the presence of
36 SB202190, a specific p38MAPK inhibitor. Presence of the inhibitor at a concentration of 10 μ M
37 clearly abrogated MT103-induced apoptosis. More importantly, inhibition of macrophage
38 apoptosis dramatically abrogated *M. tuberculosis* colonization of new non-infected cells (Figure
39 4B). This finding corroborates that apoptosis is a much more important mechanism for *M.*
40
41

1
2
3 tuberculosis-infection than previously thought. Percentage of infected cells at 0h was similar in
4 presence or absence of the inhibitor, indicating that SB202190 was not intrinsically affecting
5 bacterial infection capacity. In addition, we also measured the influence of SB202190 on
6 bacterial replication. MT103 intracellular replication was partially impaired in the presence of
7 the inhibitor (Figure 4B). Nevertheless, replication seemed to be much less affected than
8 bacterial spread, indicating that bacterial propagation and replication are not totally dependent
9 processes. Dissociation of these two parameters has been already described by other authors
10 (Guinn et al, 2004).

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

1
2
3
4
5
DISCUSSION6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
In this work, we analyzed the pro-apoptotic capacity of several virulent and attenuated
mycobacterial strains in MH-S cells, a validated model of immortalized murine alveolar
macrophages that mimics very closely the characteristics of primary alveolar macrophages in
the interaction with mycobacteria (Melo & Stokes, 2000). In combination with our previous
results (Aporta et al, 2012), we here show that induction of host-cell apoptosis is a common
feature of virulent *M. tuberculosis* strains that is apparently lost by attenuated strains with
impaired ESX-1 secretion system. We have seen that virulent *M. tuberculosis* strains like
MT103, H37Rv, or members of the Beijing-family as well as RD1-complemented BCG::RD1
strains are able to replicate in macrophages both under *in vitro* and *in vivo* conditions, thereby
inducing high levels of apoptosis. Conversely, attenuated strains like BCG, H37Ra or the live
attenuated *M. tuberculosis*-based vaccine candidate MTBVAC are practically unable to kill host
cells. In addition, *in vivo* data obtained in this work validate these observations under
physiological conditions. Our results also indicate that the ability to induce apoptosis in host
cells is independent of the family origin of the *M. tuberculosis* strains, as no significant
differences among Beijing strains and MT103 or H37Rv strains were found.35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
The subject of whether or not mycobacteria can induce apoptosis in host cells is widely
discussed in the scientific literature. However, the observations and interpretation of data in
different experimental settings seem to be rather heterogenic. While our data, in agreement with
some recent reports, suggest that only virulent *M. tuberculosis* strains induce apoptosis on host
cells (Derrick & Morris, 2007; Grover & Izzo, 2012; Lim et al, 2011), there is also evidence
from other studies (Briken & Miller, 2008; Chen et al, 2006; Gan et al, 2008; Sly et al, 2003)
that apoptosis is triggered *in vitro* preferentially by attenuated strains and that virulent strains
showed more tendency to inhibit apoptosis in host macrophages rather than promoting it (Behar
et al, 2011; Martin et al, 2012). Use of different *in vitro* experimental models, cell lines or
protocols could provide some explanation for such discrepancies. However, most of the *in vivo*
evidences, including ours, strongly indicate that apoptosis occurs during virulent *M.*
tuberculosis infection. Apoptotic markers such as active-caspase 3 or TUNEL have been found

1
2 in infected human and mouse lungs (Aporta et al, 2012; Keane et al, 1997; Seimon et al, 2010).
3
4 Remarkably, *in vivo* data indicate that apoptosis induced by *M. tuberculosis* in lungs is
5 preferentially restricted to granulomatous lesions. This would support the idea that apoptosis is
6 an infectious mechanism, as previously described for *M. marinum* during zebra fish infection,
7 which causes apoptosis in an ESX-1 dependent mechanism, to attract and infect fresh
8 macrophages, thereby generating secondary granuloma (Davis & Ramakrishnan, 2009). In fact,
9 a similar mechanism of infection has been proposed for *M tuberculosis* (Ernst et al, 2007).
10 Supporting these findings, here we show that unlike BCG parental strain, the RD1-
11 complemented BCG::RD1 strain recovers the ability to induce apoptosis in infected lungs *in*
12 *vivo*. BCG::RD1 restores functional ESX-1 secretion system and has been shown to recover
13 virulence both *in vitro* and *in vivo* (Pym et al, 2002) in agreement with data presented in this
14 work.
15

16 To address the role of apoptosis in the dissemination of *M. tuberculosis* we monitored
17 macrophage infection using GFP-expressing strains, observing that percentage of host cells
18 initially infected increased when apoptosis-inducing virulent strains were used to infect. Our
19 interpretation of these results was that virulent bacteria were spreading from cell to cell.
20 Nevertheless, other plausible explanation of these data could be that the most of the cells could
21 be initially infected but below the sensitivity of flow cytometry to detect GFP bacteria in
22 macrophages, and simple growth of the bacteria within the cells could explain the increase of
23 GFP-positive cells. To elucidate this question, we confirmed by fluorescence microscopy,
24 which is able to detect a single bacterium within a cell, that not all the cells were initially
25 infected and the percentage of infection was equivalent to that observed by flow cytometry (data
26 not shown), supporting our hypothesis of that the results observed corresponded to cell-to-cell
27 bacterial spread. Data clearly show that only apoptosis-inducing bacteria are able to colonize
28 new cells that were initially non-infected. In agreement with the mechanism described for *M.*
29 *marinum* (Davis & Ramakrishnan, 2009), we hypothesize that colonization of new cells occurs
30 by phagocytosis of mycobacteria-containing apoptotic bodies. However, the differences
31 between virulent and attenuated strains do not allow discerning whether apoptosis is a cause, or
32

1
2
3 on the contrary, just a collateral effect of the infection. To distinguish between these
4 possibilities, we used two strategies: i) we promoted apoptosis in the presence of attenuated
5 BCG and ii) we inhibited pro-apoptotic pathways prior to infection with virulent MT103.
6 Infection follow-up in both scenarios allowed us to establish a link between apoptosis and cell-
7 to-cell propagation by ESAT-6-secreting mycobacteria. BCG spread was favoured when
8 apoptosis was induced in host cells, whereas *M. tuberculosis* was unable to infect new cells if
9 cell death was inhibited. In relation to these findings, Guinn and colleagues described that the
10 *M. tuberculosis* H37RvΔRD1 mutant accumulated in initially infected host cells, but unlike the
11 H37Rv wild-type strain, it was unable to spread to new cells (Guinn et al, 2004). Supporting the
12 role of ESAT-6-induced apoptosis for cell-to-cell bacterial spread, our data suggest that the
13 intracellular phenotype of H37RvΔRD1 could be due to the inability of this strain to induce
14 apoptosis (Derrick & Morris, 2007).

15
16 A recently proposed mechanism of virulence is the capacity of *M. tuberculosis* to disrupt
17 phagosome membrane in an ESAT-6-dependent fashion, reaching the cytosol and causing cell
18 death (Houben et al, 2012; Simeone et al, 2012; van der Wel et al, 2007). A clear correlation
19 between contact of bacteria with cytosol and cell death induction was noted, which suggests that
20 *M. tuberculosis* needs to gain access to the cytoplasm to activate p38MAPK signalling cascade
21 leading to host cell death. Finally, it is not clear whether ESAT-6 is involved only in the process
22 of disruption of the phagosomal membrane, or if it also actively participates in triggering cell
23 death, even though data obtained using purified ESAT-6 protein seem to point to it as a pro-
24 apoptotic molecule on its own (Choi et al, 2010).

25
26 For an intracellular pathogen, it is logical to speculate that the most successful way to infect the
27 host is to spread from cell to cell without exposing itself to extracellular milieu. In the case of
28 *M. tuberculosis*, multiple mechanisms to prevent intracellular defences have been described, but
29 there is little evidence for other mycobacterial strategies to overcome extracellular antimicrobial
30 barriers. Consistent with what has been observed for other intracellular pathogens, such as
31 *Salmonella* (Guiney, 2005), apoptotic cells may be the perfect Trojan horse for *M. tuberculosis*
32 to colonize fresh macrophages and ensure a safe replication niche.

In vivo replication studies in mice indicate that despite the low number of bacteria used initially to infect, *M. tuberculosis* is able to replicate in the lungs for approximately three weeks without the opposition of an adapted immune response (Cooper, 2009; Wolf et al, 2008). Why this pathogen remains “hidden” from the immune system during this crucial early phase of the infection remains unclear. Apoptosis induction by *M. tuberculosis* could help elucidate such questions. By triggering apoptosis, *M. tuberculosis* could create new niches for intracellular replication preventing exposition to extracellular host defences, and in the absence of the inflammatory reaction associated with necrotic cell death. Additionally, *M. tuberculosis* has been shown to inhibit autophagy in an ESAT-6-dependent manner (Romagnoli et al, 2012). This could contribute to keep bacteria occult, as autophagy has been shown to be an important bactericidal process that leads to pathogen antigen presentation (Gutierrez et al, 2004; Jagannath et al, 2009).

A better understanding of the mechanisms implicated in the dissemination of *M. tuberculosis* from cell-to-cell, which could result important for bacterial escape from the host immune system, should allow the design of new strategies to attenuate mycobacterial strains and to develop new better vaccines that protect against pulmonary tuberculosis.

1
2
3 **Funding:** This work was supported by grant BIO2011-23555, SAF2011-25390 from Spanish
4
5 Ministry of Economy and Competitiveness, DGA-FSE and FP7 European NEWTBVAC
6
7 241745 and TB-VIR 200973 Grants. The funders had no role in study design, data collection
8
9 and analysis, decision to publish, or preparation of the manuscript.
10
11
12
13
14

ACKNOWLEDGEMENTS

15 AA was supported by fellowship BES-2006-11950 from Spanish Ministry of Science and
16
17 Innovation. JP was supported by Aragón I+D (ARAID). The plasmid gfppMV361Hgfp was
18
19 kindly provided by Christophe Guilhot (IPBS, Toulouse, France). We thank L.Frangeul, R.
20
21 Ruimy, C. Pierre-Audigier, J. Rauzier and V. Cadet-Daniel for providing some of the strains
22
23 that were used in the study. “Authors would like to acknowledge the use of Servicios
24
25 Científico-- Técnicos del CIBA (Instituto Aragonés de Ciencias de la Salud□SAI Universidad
26
27 de Zaragoza).
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4
5
6
7 REFERENCES
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Aleman M, Schierloh P, de la Barrera SS, Musella RM, Saab MA, Baldini M, Abbate E, Sasiain MC (2004) Mycobacterium tuberculosis triggers apoptosis in peripheral neutrophils involving toll-like receptor 2 and p38 mitogen protein kinase in tuberculosis patients. *Infect Immun* **72**: 5150-5158

Aporta A, Arbues A, Aguiló JI, Monzon M, Badiola JJ, de Martino A, Ferrer N, Marinova D, Anel A, Martin C, Pardo J (2012) Attenuated Mycobacterium tuberculosis SO2 Vaccine Candidate Is Unable to Induce Cell Death. *PLoS One* **7**: e45213

Behar SM, Martin CJ, Booty MG, Nishimura T, Zhao X, Gan HX, Divangahi M, Remold HG (2011) Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis. *Mucosal immunology* **4**: 279-287

Briken V, Miller JL (2008) Living on the edge: inhibition of host cell apoptosis by Mycobacterium tuberculosis. *Future microbiology* **3**: 415-422

Camacho LR, Ensergueix D, Perez E, Gicquel B, Guilhot C (1999) Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. *Mol Microbiol* **34**: 257-267

Chen M, Gan H, Remold HG (2006) A mechanism of virulence: virulent Mycobacterium tuberculosis strain H37Rv, but not attenuated H37Ra, causes significant mitochondrial inner membrane disruption in macrophages leading to necrosis. *J Immunol* **176**: 3707-3716

Choi HH, Shin DM, Kang G, Kim KH, Park JB, Hur GM, Lee HM, Lim YJ, Park JK, Jo EK, Song CH (2010) Endoplasmic reticulum stress response is involved in Mycobacterium tuberculosis protein ESAT-6-mediated apoptosis. *FEBS Lett* **584**: 2445-2454

Cooper AM (2009) Cell-mediated immune responses in tuberculosis. *Annual review of immunology* **27**: 393-422

Cox JS, Chen B, McNeil M, Jacobs WR, Jr. (1999) Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. *Nature* **402**: 79-83

Davis JM, Ramakrishnan L (2009) The role of the granuloma in expansion and dissemination of early tuberculous infection. *Cell* **136**: 37-49

1
2
3
4 Derrick SC, Morris SL (2007) The ESAT6 protein of *Mycobacterium tuberculosis*
5 induces apoptosis of macrophages by activating caspase expression. *Cell Microbiol*
6 **9**: 1547-1555
7
8

9
10 Ernst JD, Trevejo-Nunez G, Banaiee N (2007) Genomics and the evolution,
11 pathogenesis, and diagnosis of tuberculosis. *The Journal of clinical investigation*
12 **117**: 1738-1745
13
14

15 Fan T, Lu H, Hu H, Shi L, McClarty GA, Nance DM, Greenberg AH, Zhong G (1998)
16 Inhibition of apoptosis in chlamydia-infected cells: blockade of mitochondrial
17 cytochrome c release and caspase activation. *J Exp Med* **187**: 487-496
18
19

20 Frigui W, Bottai D, Majlessi L, Monot M, Josselin E, Brodin P, Garnier T, Gicquel B,
21 Martin C, Leclerc C, Cole ST, Brosch R (2008) Control of *M. tuberculosis* ESAT-6
22 secretion and specific T cell recognition by PhoP. *PLoS Pathog* **4**: e33
23
24

25 Gan H, Lee J, Ren F, Chen M, Kornfeld H, Remold HG (2008) *Mycobacterium*
26 tuberculosis blocks crosslinking of annexin-1 and apoptotic envelope formation on
27 infected macrophages to maintain virulence. *Nat Immunol* **9**: 1189-1197
28
29

30
31 Gao LY, Guo S, McLaughlin B, Morisaki H, Engel JN, Brown EJ (2004) A
32 mycobacterial virulence gene cluster extending RD1 is required for cytolysis,
33 bacterial spreading and ESAT-6 secretion. *Mol Microbiol* **53**: 1677-1693
34
35

36 Gonzalo-Asensio J, Soto CY, Arbues A, Sancho J, del Carmen Menendez M, Garcia MJ,
37 Gicquel B, Martin C (2008) The *Mycobacterium tuberculosis* phoPR operon is
38 positively autoregulated in the virulent strain H37Rv. *J Bacteriol* **190**: 7068-7078
39
40

41 Gordon SV, Brosch R, Billault A, Garnier T, Eiglmeier K, Cole ST (1999)
42 Identification of variable regions in the genomes of tubercle bacilli using bacterial
43 artificial chromosome arrays. *Mol Microbiol* **32**: 643-655
44
45

46
47 Grover A, Izzo AA (2012) BAT3 regulates *Mycobacterium tuberculosis* protein
48 ESAT-6-mediated apoptosis of macrophages. *PLoS One* **7**: e40836
49
50

51 Guiney DG (2005) The role of host cell death in *Salmonella* infections. *Current*
52 *topics in microbiology and immunology* **289**: 131-150
53
54

55 Guinn KM, Hickey MJ, Mathur SK, Zakel KL, Grotzke JE, Lewinsohn DM, Smith S,
56 Sherman DR (2004) Individual RD1-region genes are required for export of ESAT-
57
58
59
60

1
2
3 6/CFP-10 and for virulence of *Mycobacterium tuberculosis*. *Mol Microbiol* **51**: 359-
4 370
5
6

7 Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004)
8 Autophagy is a defense mechanism inhibiting BCG and *Mycobacterium*
9 tuberculosis survival in infected macrophages. *Cell* **119**: 753-766
10
11

12 Houben D, Demangel C, van Ingen J, Perez J, Baldeon L, Abdallah AM, Caleechurn L,
13 Bottai D, van Zon M, de Punder K, van der Laan T, Kant A, Bossers-de Vries R,
14 Willemse P, Bitter W, van Soolingen D, Brosch R, van der Wel N, Peters PJ (2012)
15 ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria.
16 *Cell Microbiol* **14**: 1287-1298
17
18

19 Jagannath C, Lindsey DR, Dhandayuthapani S, Xu Y, Hunter RL, Jr., Eissa NT (2009)
20 Autophagy enhances the efficacy of BCG vaccine by increasing peptide
21 presentation in mouse dendritic cells. *Nature medicine* **15**: 267-276
22
23

24 Keane J, Balcewicz-Sablinska MK, Remold HG, Chupp GL, Meek BB, Fenton MJ,
25 Kornfeld H (1997) Infection by *Mycobacterium tuberculosis* promotes human
26 alveolar macrophage apoptosis. *Infect Immun* **65**: 298-304
27
28

29 Kundu M, Pathak SK, Kumawat K, Basu S, Chatterjee G, Pathak S, Noguchi T, Takeda
30 K, Ichijo H, Thien CB, Langdon WY, Basu J (2009) A TNF- and c-Cbl-dependent
31 FLIP(S)-degradation pathway and its function in *Mycobacterium tuberculosis*-
32 induced macrophage apoptosis. *Nat Immunol* **10**: 918-926
33
34

35 Lim YJ, Choi JA, Choi HH, Cho SN, Kim HJ, Jo EK, Park JK, Song CH (2011)
36 Endoplasmic reticulum stress pathway-mediated apoptosis in macrophages
37 contributes to the survival of *Mycobacterium tuberculosis*. *PLoS One* **6**: e28531
38
39

40 Martin C, Williams A, Hernandez-Pando R, Cardona PJ, Gormley E, Bordat Y, Soto
41 CY, Clark SO, Hatch GJ, Aguilar D, Ausina V, Gicquel B (2006) The live
42 *Mycobacterium tuberculosis* phoP mutant strain is more attenuated than BCG and
43 confers protective immunity against tuberculosis in mice and guinea pigs. *Vaccine*
44 **24**: 3408-3419
45
46

47 Martin CJ, Booty MG, Rosebrock TR, Nunes-Alves C, Desjardins DM, Keren I,
48 Fortune SM, Remold HG, Behar SM (2012) Efferocytosis is an innate antibacterial
49 mechanism. *Cell Host Microbe* **12**: 289-300
50
51

52 Martin SJ, Reutelingsperger CP, McGahon AJ, Rader JA, van Schie RC, LaFace DM,
53 Green DR (1995) Early redistribution of plasma membrane phosphatidylserine is a
54
55
56
57
58
59
60

1
2
3 general feature of apoptosis regardless of the initiating stimulus: inhibition by
4 overexpression of Bcl-2 and Abl. *J Exp Med* **182**: 1545-1556
5
6

7 Mbawuike IN, Herscowitz HB (1989) MH-S, a murine alveolar macrophage cell
8 line: morphological, cytochemical, and functional characteristics. *J Leukoc Biol* **46**:
9 119-127
10
11

12 Melo MD, Stokes RW (2000) Interaction of *Mycobacterium tuberculosis* with MH-S,
13 an immortalized murine alveolar macrophage cell line: a comparison with primary
14 murine macrophages. *Tuber Lung Dis* **80**: 35-46
15
16

17 Monack DM, Raupach B, Hromockyj AE, Falkow S (1996) *Salmonella typhimurium*
18 invasion induces apoptosis in infected macrophages. *Proc Natl Acad Sci U S A* **93**:
19 9833-9838
20
21

22 Novikov A, Cardone M, Thompson R, Shenderov K, Kirschman KD, Mayer-Barber
23 KD, Myers TG, Rabin RL, Trinchieri G, Sher A, Feng CG (2011) *Mycobacterium*
24 tuberculosis triggers host type I IFN signaling to regulate IL-1beta production in
25 human macrophages. *J Immunol* **187**: 2540-2547
26
27

28 Pathak SK, Basu S, Basu KK, Banerjee A, Pathak S, Bhattacharyya A, Kaisho T,
29 Kundu M, Basu J (2007) Direct extracellular interaction between the early secreted
30 antigen ESAT-6 of *Mycobacterium tuberculosis* and TLR2 inhibits TLR signaling in
31 macrophages. *Nat Immunol* **8**: 610-618
32
33

34 Pym AS, Brodin P, Brosch R, Huerre M, Cole ST (2002) Loss of RD1 contributed to
35 the attenuation of the live tuberculosis vaccines *Mycobacterium bovis* BCG and
36 *Mycobacterium microti*. *Mol Microbiol* **46**: 709-717
37
38

39 Romagnoli A, Etna MP, Giacomini E, Pardini M, Remoli ME, Corazzari M, Falasca L,
40 Goletti D, Gafa V, Simeone R, Delogu G, Piacentini M, Brosch R, Fimia GM, Coccia EM
41 (2012) ESX-1 dependent impairment of autophagic flux by *Mycobacterium*
42 tuberculosis in human dendritic cells. *Autophagy* **8**: 1357-1370
43
44

45 Schaible UE, Winau F, Sieling PA, Fischer K, Collins HL, Hagens K, Modlin RL,
46 Brinkmann V, Kaufmann SH (2003) Apoptosis facilitates antigen presentation to T
47 lymphocytes through MHC-I and CD1 in tuberculosis. *Nature medicine* **9**: 1039-
48 1046
49
50

51 Seimon TA, Kim MJ, Blumenthal A, Koo J, Ehrt S, Wainwright H, Bekker LG, Kaplan
52 G, Nathan C, Tabas I, Russell DG (2010) Induction of ER stress in macrophages of
53 tuberculosis granulomas. *PLoS One* **5**: e12772
54
55

56
57
58
59
60

1
2
3
4 Simeone R, Bobard A, Lippmann J, Bitter W, Majlessi L, Brosch R, Enninga J (2012)
5 Phagosomal rupture by *Mycobacterium tuberculosis* results in toxicity and host
6 cell death. *PLoS Pathog* **8**: e1002507
7
8

9 Sly LM, Hingley-Wilson SM, Reiner NE, McMaster WR (2003) Survival of
10 *Mycobacterium tuberculosis* in host macrophages involves resistance to apoptosis
11 dependent upon induction of antiapoptotic Bcl-2 family member Mcl-1. *J Immunol*
12 **170**: 430-437
13
14

15 Valdivia RH, Hromockyj AE, Monack D, Ramakrishnan L, Falkow S (1996)
16 Applications for green fluorescent protein (GFP) in the study of host-pathogen
17 interactions. *Gene* **173**: 47-52
18
19

20 van der Wel N, Hava D, Houben D, Fluitsma D, van Zon M, Pierson J, Brenner M,
21 Peters PJ (2007) *M. tuberculosis* and *M. leprae* translocate from the
22 phagolysosome to the cytosol in myeloid cells. *Cell* **129**: 1287-1298
23
24

25 Walters SB, Dubnau E, Kolesnikova I, Laval F, Daffe M, Smith I (2006) The
26 *Mycobacterium tuberculosis* PhoPR two-component system regulates genes
27 essential for virulence and complex lipid biosynthesis. *Mol Microbiol* **60**: 312-330
28
29

30 Wang C, Peyron P, Mestre O, Kaplan G, van Soolingen D, Gao Q, Gicquel B, Neyrolles
31 O (2010) Innate immune response to *Mycobacterium tuberculosis* Beijing and
32 other genotypes. *PLoS One* **5**: e13594
33
34

35 Wang S, Engohang-Ndong J, Smith I (2007) Structure of the DNA-binding domain of
36 the response regulator PhoP from *Mycobacterium tuberculosis*. *Biochemistry* **46**:
37 14751-14761
38
39

40 WHO (2012) Global Tuberculosis Report.
41
42

43 Wolf AJ, Desvignes L, Linas B, Banaiee N, Tamura T, Takatsu K, Ernst JD (2008)
44 Initiation of the adaptive immune response to *Mycobacterium tuberculosis*
45 depends on antigen production in the local lymph node, not the lungs. *J Exp Med*
46 **205**: 105-115
47
48

49 Zychlinsky A, Prevost MC, Sansonetti PJ (1992) *Shigella flexneri* induces apoptosis
50 in infected macrophages. *Nature* **358**: 167-169
51
52

53
54
55
56
57
58
59
60

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Figure 1. Apoptosis on MHS cells is restricted to ESAT6-secreting strains.

A, C, MH-S murine macrophages were mock-treated or infected (MOI 10:1) with the indicated strains. 72 hours post-infection, cells were stained with annexinV and 7-AAD and analyzed by flow cytometry. A representative experiment is shown in the right panels. Data in the graphs (left panels) are represented as mean \pm SD. Three independent experiments were at least performed. Statistical analysis was done with one-way ANOVA and Bonferroni's post-test comparing each strain to non-infected control. Upper symbols = statistical analyses of Ann+AAD+ cells; lower symbols = statistical analyses of Ann+AAD- cells. ns = not statistically significant; *, **, *** = statistically significant; * p<0,05; ** p<0,01; *** p<0,001. **B**, for fluorescence microscopy studies MH-S cells were infected with GFP-expressing MT103 bacteria and stained 72 hours post-infection with Hoechst 33342. A representative image is shown in the figure. **D**, ESAT-6 secretion was analyzed by Western-blot. Log-phase cultures supernatants from the indicated strains were obtained, and 10 μ g of total protein per well were loaded for SDS-PAGE. A representative Western blot image is shown.

Figure 2. *In vivo* apoptosis is limited to ESAT6-secreting strains.

Groups of five C57BL/6 mice were intranasally infected with approximately 1000 CFUs/mouse of MT103, MTBVAC, BCG or BCG::RD1 strains. At 28 days post-infection, animals were humanely sacrificed and lungs harvested for *in vivo* studies. **A**, CFUs in lungs were determined. Representative data of two independent studies are shown. Statistical analysis was done with one-way ANOVA and Bonferroni's post-test. *, **, *** = statistically significant; * p<0,05; ** p<0,01; *** p<0,001. **B**, lung histopathology was evaluated by haematoxylin/eosin (HE) staining. **C**, apoptosis incidence was evaluated by immunohistochemical staining with a specific antibody for the active form of the caspase 3. Representative images (10x magnification for HE and 600x for caspase 3 staining) of mock-treated or MT103-, MTBVAC-, BCG- and BCG::RD1- infected lungs are shown.

Figure 3. Intracellular replication and cell-to-cell bacterial spread correlates with capacity to induce apoptosis.

1
2
3 MH-S murine macrophages were mock-treated or infected with the indicated GFP-expressing
4 strains at the described MOIs. **A**, at 0 and 72 hours post-infection (MOI 5:1), cells were lysed
5 and bacterial burden counted. A representative experiment of two independent studies is shown.
6
7 **B**, at the indicated times post-infection, percentage of GFP-positive cells was determined by
8 flow cytometry. Representative dot-plot diagrams are shown in the upper panels. Data in the
9 graphs (lower panels) are represented as mean \pm SD. Two independent experiments were
10 performed. Statistical analysis was done with two-way ANOVA and Bonferroni's post-test. ns =
11 not statistically significant; *, **, *** = statistically significant; * p<0,05; ** p<0,01; ***
12
13 p<0,001.
14
15
16
17
18
19
20

21 **Figure 4. Apoptosis modulation alters cell-to-cell bacterial spread.**

22
23 MH-S murine macrophages were mock-treated or infected with 5 to 10 bacteria per cell of the
24 indicated GFP-expressing strains. **A**, BCG-infected cells were incubated for 20 hours with
25 increasing concentrations of staurosporine (up to 0.5 μ M), and percentage of GFP-positive cells
26 was evaluated by flow cytometry. Representative dot-plot diagrams are shown in the upper
27 panels. Percentage of GFP-positive cells determined at each concentration of staurosporine was
28 represented against percentage of apoptotic cells (AnnV $+$ AAD $-$ cells). A representative graph of
29 two independent experiments demonstrating significant positive correlation between both
30 parameters is shown in the lower graph. **B**, MH-S cells were infected with MT103 in presence
31 of the indicated concentrations of the SB202190 inhibitor. 72 hours post infection, apoptosis
32 determined by AnnexinV and 7-AAD staining (left graph), percentage of GFP-positive cells
33 (right upper graph) and bacterial burden (right lower graph) were evaluated. Data in the graphs
34 are represented as mean \pm SD. Two independent experiments were at least performed. Statistical
35 analysis was done with one-way ANOVA (left panel), two-way ANOVA (right upper panel),
36 both with Bonferroni's post-test, or with t-student test (right lower graph) *, **, *** =
37 statistically significant; * p<0,05; ** p<0,01; *** p<0,001.
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

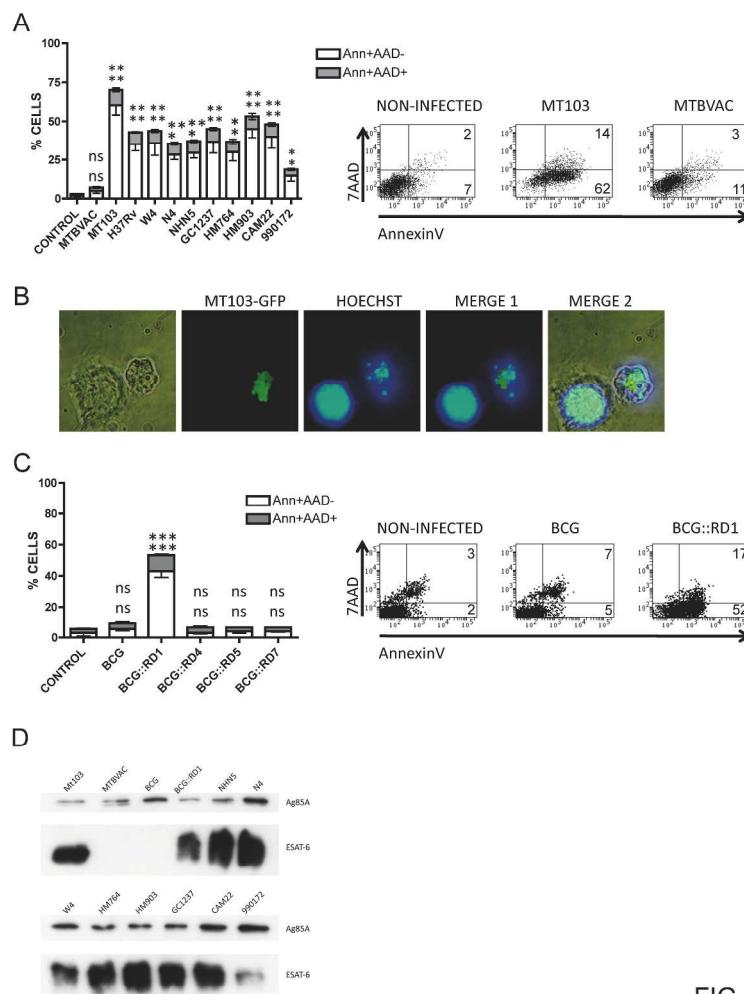


FIG.1

297x420mm (300 x 300 DPI)

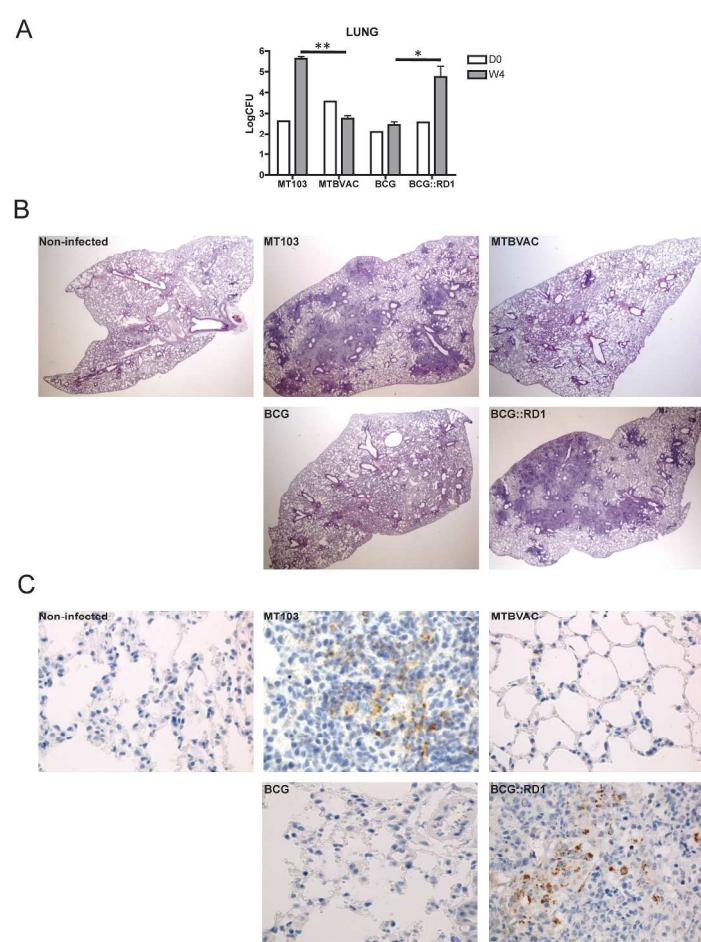


FIG.2

297x421mm (300 x 300 DPI)

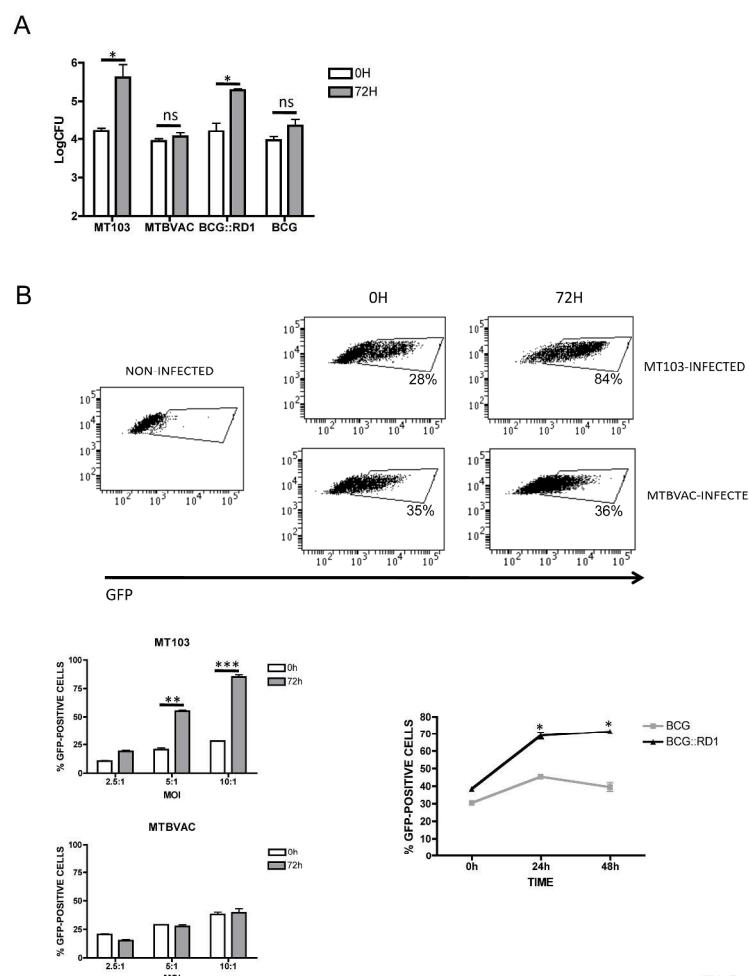
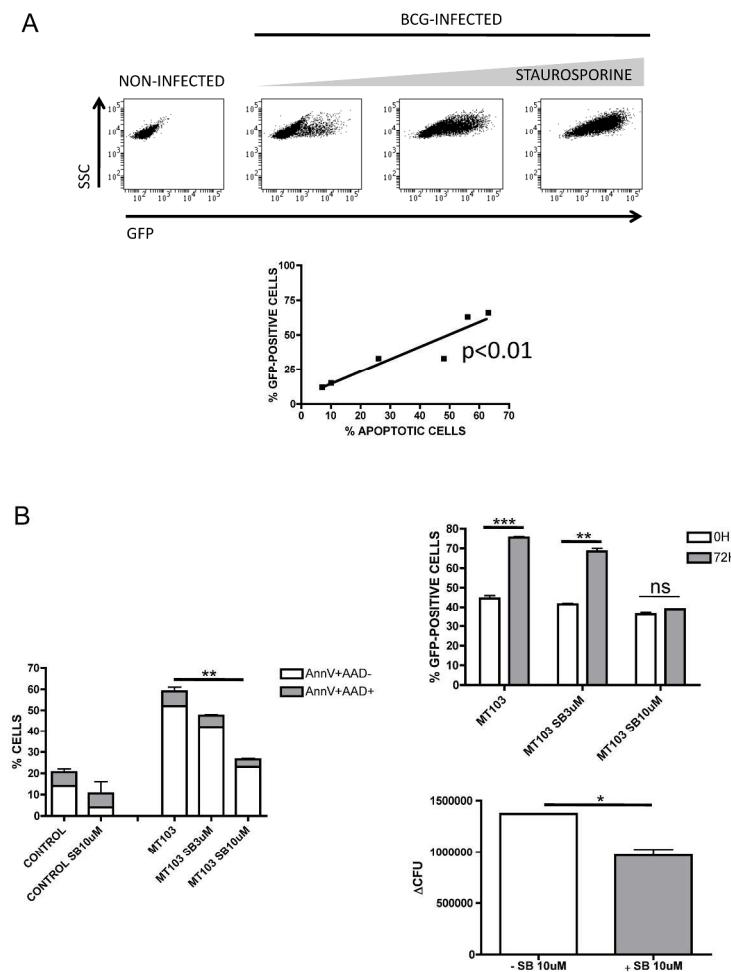



FIG.3

297x421mm (300 x 300 DPI)

