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Abstract

The representativeness of long-term wind data at a site remains a challenge, as it is essential
for resource analysis, production adjustment in operating plants, and the simulation of hy-
bridised plants. A representative one-year hourly time series, known as a Wind Reference
Year (WRY), is required, yet the availability of long-term real data is rare, making the estima-
tion of WRY from reanalysis data and shorter measurement campaigns a common approach.
In this study, Gaussian Mixture Copula Models (GMCM) and five regression models were
applied and compared. The GMCM was trained using 15 years of reanalysis data to gen-
erate simulations, and subsequently, regression-based Measure-Correlate—Predict (MCP)
methods were applied to adapt the simulated reference year to site-specific conditions.
Finally, the Hungarian algorithm was used to reorder the simulated data series, aligning it
with a typical wind pattern and producing the WRY dataset. The results were validated
against 15 years of real measurements and benchmarked against a heuristic method based
on long-term similarity of main wind parameters and the commercial tool Windographer.
The findings demonstrate the potential of the proposed method, showing improvements
over existing techniques and providing a robust approach to constructing representative
WRY datasets.

Keywords: wind reference year; Gaussian Mixture Copula Models; measure—correlate-predict;
reanalysis; Hungarian algorithm; annual energy production

1. Introduction

In wind energy projects, due diligence in the pre-construction phase typically requires
an expensive data collection campaign lasting at least one full year, followed by long-term
extrapolation over the project lifetime. In the current energy context—with an urgent need
to reduce fossil-fuel dependence via renewables—hybrid projects that combine several
resources are expected to expand rapidly, providing greater stability in power generation.
The benefits and market opportunities of hybrid systems and renewables are discussed
in [1,2].

A central challenge when estimating expected energy production for a given scenario
is the accurate characterisation of the site’s typical wind-energy content. Recent overviews
of energy-production prediction bias and loss accounting highlight that long-term resource
characterisation and uncertainty quantification are now central elements of modern wind
project due diligence [3], underscoring the need for representative datasets that reflect multi-
year climatic variability. Most specialised simulation tools rely on reference years to estimate
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production at a site. Furthermore, recent analyses of long-term resource uncertainty
show that variability in the underlying wind resource can propagate into significant AEP
deviations in real projects [4], reinforcing the need for representative reference-year datasets.
For compatibility with such tools (e.g., WAsP, HOMER), a reference year of the relevant
resource (wind, solar, etc.) is required. This dataset must capture long-term climatic
conditions (typically 15-20 years) while condensing them into a single “typical” year of
8760 hourly values.

The concept of a typical meteorological year has been widely studied in building-
energy performance [5,6] and solar-resource assessment. Overviews and comparisons of
algorithms can be found in [7,8]. More recently, ref. [9] constructed a global TMY database
directly from ERA5, confirming the feasibility of reanalysis-based typical years for building-
and renewable-energy applications. Similarly, in the urban context, ref. [10] used ERA5
in combination with an urban canopy model to generate urban typical meteorological
year (uTMY) datasets for building-energy simulations, further illustrating the flexibility of
reanalysis-based typical years across different applications. One of the most-used methods
is the Sandia approach, which selects 12 typical months from a long-term dataset and
concatenates them into a representative year [11]. Updated versions were later developed
at NREL [12,13]. Further developments include the modification of Sandia’s method to
generate typical years at different time resolutions [14]. However, classical TMY/WRY
approaches were originally developed for building- and solar-energy applications and
were not designed to preserve multi-site dependence, long-term climatic variability, or
modern uncertainty requirements. Recent studies have shown that these aspects are critical
for contemporary wind-resource assessment [3,4].

In the wind industry, however, there is no universally accepted methodology for
generating a Wind Reference Year (WRY). As noted in [15], a method based on the
Finkelstein—Schafer statistic has been proposed and applied to a real case using reanalysis
data. Since multi-year measurements are seldom available, reliance on long-term reanalysis
products (e.g., ERA5 [16]) has increased. Reanalysis nodes exhibit substantial uncertain-
ties: they provide grid-averaged hourly values that require adaptation to the specific site.
Recent validation studies [17] show that ERA5 can provide reliable long-term wind re-
sources and AEP estimates at flat and offshore sites, but performance degrades in complex
terrain and coastal regions, highlighting the need for local adaptation methods such as
MCP. This site-adaptation process, common in climate and meteorology, adjusts long-term
modelled variables by comparison with observations. For example, refs. [18,19] explored
bias-correction techniques based on quantile mapping. A recent critical review [20] syn-
thesises the main sources of uncertainty across 15 global and regional reanalysis products
at more than 300 sites worldwide, underlining that spatial biases remain a key limitation
for long-term wind resource assessment and reinforcing the need for local adaptation
procedures such as MCP.

Most often, Measure—Correlate-Predict (MCP) is used to obtain representative long-
term series: short-term site measurements are related to long-term references and corrected
accordingly. In [21,22], the bin method is compared to linear regression, and ref. [23]
provides an extensive review of MCP methods since the 1940s, highlighting limitations and
uncertainties. The MEASNET guide [24] recommends combining site data (e.g., met-mast
measurements) with concurrent long-term reference series, whether reanalysis or off-site
measurements. More recent developments continue to demonstrate the relevance of ad-
vanced MCP formulations for long-term wind-resource assessment. For example, ref. [25]
applied an enhanced MCP framework to transfer wind speeds from MERRA?2 reanalysis to
turbine hub heights, achieving substantial improvements in long-term representativeness.
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These results highlight the importance of robust MCP-based site-adaptation procedures
when reanalysis data exhibit spatial or height-related discrepancies.

To complement these developments and situate our work within the broader land-
scape of modern wind-energy modelling, several hybrid learning—observer approaches
have also been explored to address uncertainty, noise, and stochastic variability. For in-
stance, ref. [26] proposed ANFIS-based interval observers for robust fault detection in
wind turbines, while ref. [27] developed MANFIS architectures combined with zonotopic
observers to enhance resilience against measurement disturbances and model inaccura-
cies. Although these methods focus primarily on short-term operational dynamics rather
than long-term climatological representativeness, they illustrate the increasing adoption of
advanced data-driven and hybrid estimation techniques in wind-energy applications.

A notable example of reference-year construction is PVGIS (Photovoltaic Geographical
Information System) [28], which provides typical meteorological years for nine climatic
variables by selecting the most representative months over a long-term period. The method-
ology, described in [29] and based on ISO 15927-4 [30], relies on the Finkelstein—Schafer
statistic, with primary variables (irradiance, temperature, humidity) and secondary vari-
ables (such as wind speed). Although PVGIS targets solar energy and building applications,
it also reports wind speed at 10 m without site adaptation. Commercial tools such as
Windographer [31] use Markov chains to generate representative years and include an
MCP module for long-term extrapolation. Combining MCP-based site adaptation with a
Markov chain generator enables a site-specific WRY.

In this work, machine-learning models are applied to capture long-term wind be-
haviour from 15 to 20 years of reanalysis. Specifically, Gaussian Mixture Copula Models
(GMCMs) are used [32]. Prior studies have leveraged GMCMs to augment machine-
learning inputs with synthetic series [33]. Here, synthetic data are generated to emulate
long-term behaviour in an 8760-h dataset. Copula-based modelling has also seen increas-
ing use in power-system applications, where it enables the generation of spatiotemporal
wind-power scenarios together with explicit treatment of forecast errors [34]. While such ap-
proaches focus on short-term operational uncertainty, the GMCM-based WRY developed in
this work addresses a complementary problem: the long-term climatological representation
of wind-resource variability.

Alternative approaches to impose temporal dependence on synthetic resource series
include dependent-bootstrap schemes and sequence-assembly methods. In wind and
solar applications, moving-block bootstrap techniques are widely used to reconstruct
short-term persistence by resampling contiguous blocks of historical data [35-37]. A
second family of techniques relies on rank-based reordering, most notably the Schaake
Shuffle and its more recent variants, which restore temporal and spatial consistency by
imposing the rank structure of historical observations [38-40]. While these methods are
effective for generating coherent time series, they either replicate historical blocks or impose
dependence indirectly through rank structure. In contrast, assignment-based approaches
such as that introduced by Naimo [41] provide a deterministic and distribution-preserving
way to enforce persistence. Building on this line of work, the present study applies the
Hungarian algorithm to introduce realistic temporal structure without altering the marginal
or multivariate characteristics learned from long-term reanalysis.

The proposed pipeline proceeds in three steps. First, copulas capture inter-variable
dependencies and generate synthetic data consistent with the training period (GMCM).
Second, the simulated series are adapted to site conditions via multiple regression models
following the MCP framework, using one year of on-site measurements and long-term
reanalysis. Finally, the simulated and site-adapted data are rearranged to preserve wind



Appl. Sci. 2025, 15, 13147

40f21

persistence and to ensure a consistent intra-annual wind pattern; to this end, the Hungarian
algorithm is applied [41].

2. Case and Data Definition

To develop the Wind Reference Year (WRY) methodology and to verify results, both
reanalysis and on-site measurements were considered (Table 1). The datasets used in this
work are as follows:

* ERAS5 reanalysis data. Fifteen years (2006-2020) from three grid nodes near the
study site were used. Hourly series were retrieved via the ECMWF Climate Data
Store API [16]. These data provide the long-term reference to learn the climatological
behaviour and to feed the WRY modelling.

*  Operational data (on-site measurements). Wind-speed measurements from a wind
farm in Spain spanning fifteen years (2006-2020) at a 10 min sampling interval. These
data serve two purposes: (i) long-term validation of the WRY-based energy estimates
against the multi-year record and (ii) training MCP regression models with a one-year
concurrent subset to transpose reanalysis-based simulations to site conditions (emulat-
ing a typical project scenario with limited campaign data). The representative power
curve derived from the site’s turbine (pitch-regulated turbine, 1 MW rated power) is
used to convert wind speed to energy for comparison.

Table 1. Datasets used in this study.

Dataset Years Resolution Nodes/Site Role Notes
. . Long-term reference;  Retrieved via
ERAS5 reanalysis 20062020 Hourly 3 nodes (near site) WRY modelling ECMWE CDS APL
MCP training Representative
Operational (site) 2006-2020 10 min Wind farm (Spain) (1 yr) and long- power curve: pitch-
term validation regulated, 1 MW.

3. Methodology
3.1. Flowchart of the WRY Generation Process

This work proposes the use of the Gaussian Mixture Copula Model (GMCM) to
construct a Wind Reference Year (WRY) from long-term reanalysis and a short on-site
campaign. Reanalysis series are first adjusted to hub height using a power-law profile
(nodes at 10 m to 55 m) with shear coefficient « = 0.14 [42]. Once the WRY is obtained,
wind speed is mapped to power using the representative power curve derived from the
site’s turbine (pitch-regulated, 1 MW), and the resulting Annual Energy Production (AEP)
is compared against the average AEP from 15 years of operational data.

3.1.1. Proposed Method (GMCM)

The GMCM-based workflow (Figure 1) learns the long-term joint behaviour of the
reanalysis variables and generates synthetic months that reproduce those patterns. The
copula component captures the joint dependence of the variables across the three ERA5
nodes, so sampling from the Gaussian Mixture Copula Model (GMCM) yields hourly series
whose key statistics and inter-variable relationships match the training period [32]. The
stages are as follows:

(i) Long-term learning. GMCMs [32] are trained on 15 years of ERA5 data from the
three nearest grid nodes to the site, capturing their combined information. Data
are split by calendar month, and 12 monthly models are obtained, with each model
fitted to the corresponding 15-month subset (e.g., 15 Januaries, 15 Februaries, etc.).



Appl. Sci. 2025, 15, 13147

50f21

Method GMCM

ERAS Reanalysis

Data
{3 Nodes)

Reanalysis Data
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This design preserves seasonality while learning long-term behaviour and the depen-
dence structure.

(i) Monthly simulation and concatenation. For each month, the trained GMCM gener-
ates a synthetic hourly series whose distribution reflects the 15-year training months.
The 12 synthetic months are concatenated to form an 8760 h WRY at the reanalysis-
node level.

(iii) Site adaptation (MCP). The synthetic WRY is adapted to site conditions using
regression-based MCP with one year of concurrent measurements and reanalysis.
The following models are evaluated: Generalised Additive Model (GAM), Gradient
Boosting Regressor (GBR), Random Forest (RF), Linear Regression (LR), and Huber
Regression (HR).

(iv) Temporal reordering. Because GMCM outputs preserve distributional properties
but not temporal order, the simulated and site-adapted series are rearranged to
preserve wind persistence and ensure a consistent wind pattern. For this purpose, the
Hungarian algorithm is applied [41].

(v) Energy assessment. The site-adapted WRY is converted to power using the represen-
tative power curve and yielding the AEP estimate, which is then compared with the
15-year operational benchmark.

| GMCM Model Simulated

8760 Hourly data

‘ * (1 per month) 12 simulations

Filter
MCP:

Reanalysis Data
{1Year)
Regression
Models | —————». '* .- e asdi;’:epted = S ¥ AEP Calculation
(GAM, ' \
y Measured Data
Filtes (1Year) RF,GBM,LR,HR)

Hungarian Algorithm f "% AEP Deviation

(data reassignment)
Reference Power Curve

ed Data
{15 Years)

~F » AEP Calculation

Figure 1. Diagram of the proposed GMCM-based WRY calculation process.

3.1.2. Baselines for Comparison

To contextualise performance, two widely used alternatives are implemented under
the same pre-/post-processing (power-law adjustment and power-curve mapping):

(i) Heuristic month selection: Following the guidelines of ISO 15927-4 [30], for each
calendar month, the most representative month in the historical data is selected,
and the 12 months are concatenated into a WRY. To reduce subjectivity, similarity is
quantified by the Euclidean distance in the space defined by the monthly mean wind
speed and Weibull shape/scale. The assembled WRY is then adapted to the site via
MCP, using the one-year concurrent measurements, and its AEP is compared to the
AEP derived from the multi-year operational data.

(ii) Windographer workflow. Windographer is a commercial tool that provides a work-
flow for constructing a WRY. First, the MCP module adapts the 15-year reanalysis
record to the site using one year of measured wind speed. The Representative Year
Window tool (Markov-chain-based) is then applied to generate the WRY. The resulting
AEP is compared with that derived from the multi-year operational data.
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Finally, results are reported as AEP deviations relative to the 15-year average from
operational data, enabling a direct comparison between the proposed GMCM pipeline and
the two baselines.

3.2. Modelling WRY

A key design choice in the proposed approach is to jointly model the three ERA5 nodes
nearest to the site. Treating these nodes as a multivariate system allows for the model to
learn not only each node’s marginal behaviour but also the cross-node structure that reflects
local and regional dynamics (e.g., prevailing synoptic regimes). Copula-based modelling is
well suited to this purpose because it explicitly captures dependence among variables [43];
in our case, the Gaussian Mixture Copula Model (GMCM) provides a flexible representation
whose samples preserve the inter-node relationships observed in the training data [32].

Recent sensitivity analyses on copula selection for spatial wind-speed dependence [44]
show that the choice of copula family can materially affect multi-site statistical properties.
This supports the use of flexible models, such as GMCMs, to capture the dependence
structure among neighbouring ERA5 nodes. Recent advances in GMCM inference based on
automatic differentiation have improved parameter identifiability and numerical stability,
which is particularly relevant when synthetic series must remain reproducible over long
training windows [45].

Concretely, hourly wind speeds at 10 m from the three nodes over 2006-2020 are
partitioned by calendar month, and twelve monthly GMCMs are fitted (one per month)
to the corresponding 15-month subsets. Each monthly GMCM then generates a synthetic
set of three parallel hourly series (one per node) that reflects the joint distribution of
that month. Concatenating the twelve synthetic months yields an 8760 h node-level
WRY (three series in parallel). This multivariate WRY is the input to the subsequent site-
adaptation step described in Section 3.3, where it is transposed to the specific location via
MCP-based regression.

3.3. Adapt to Site

Once the GMCM-derived WRY has been obtained, the synthetic series from the three
nearest ERA5 nodes are jointly transposed to the site with a multivariate MCP model
that uses the node wind speeds as predictors to derive the site-specific wind-speed series.
Several multivariate regression models are used to adjust the results according to site
conditions. Beyond classical MCP formulations, several recent studies have proposed more
flexible or data-driven variants. Radial-basis-function regressions have been applied to
reconstruct long-term wind-speed series with enhanced adaptability to nonlinear relation-
ships [46]. Neural-network-based MCP models combined with frozen-flow assumptions
have also been developed to incorporate spatiotemporal structure within the adaptation
process [47]. These approaches illustrate the breadth of contemporary MCP methodologies;
however, for the purposes of the present study, we adopt a transparent and reproducible
formulation consistent with industry practice.

To train these models, a common time period of actual measurements and reanal-
ysis data is taken into account. For model definition, hyperparameters are tuned via a
grid-search optimisation procedure [48], testing multiple combinations and retaining the
configuration that delivers the best estimates.

In this case, the three wind-speed values from the three reanalysis nodes adjusted to
hub height are used as regressor variables, and the response variable is the site wind speed
(also at hub height). Applying the trained models to the pre-adaptation WRY yields the
site-adapted wind-speed time series derived from the WRY.

The regression models considered in this study are as follows:
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*  Generalised Additive Models with integrated smoothness estimation (GAM). A
generalised linear model in which the linear predictor depends on several smooth
functions of the predictor variables [49,50].

e  Gradient Boosting Regressor (GBR). A tree-based ensemble in which individual
decision trees are trained sequentially so that each tree attempts to improve upon the
errors of the previous ones [51].

* Random Forest (RF). An ensemble of decision trees that partitions the feature space
with binary rules (yes/no) and aggregates the individual trees’ predictions to obtain
the final response [52].

*  Multivariate Linear Regression (MLR). A linear regression model in which the
response variable is estimated from multiple predictor variables [49].

*  Huber Regression (HR). A robust linear model for data contaminated by outliers;
instead of minimising the sum of squared errors, it minimises a hybrid loss combining
squared and absolute errors, thereby reducing sensitivity to outliers [53].

As the final step of the procedure, the data obtained from the previous steps are fitted
to a wind time-series pattern. As mentioned, the outputs of the GMCM are simulations
that preserve the characteristics of the original distribution but are unordered.

Therefore, a reordering procedure is necessary. For this purpose, the Hungarian algo-
rithm is applied [41]: the copula-generated distribution is reordered to match a reference
pattern constructed from real measurements (the one-year on-site wind-speed record used
as the response variable in the preceding regression models). As a result, the random sam-
ples are aligned with a realistic wind pattern while preserving the original distributional
nature and enforcing persistence (see Figure 2).

Q [ ] — Random Samples 0 [ | — Random Samples Re-assigned
— Actual data — Actual data
g . g .
z (RN w b L 2 | i [ L
£ IM‘ LN o A gl : | ‘ |
o | il ‘* | 4 \I\‘\“, b ! "- | h ‘ \‘l ’\ \“ o |
“‘\"‘.'il \J]M 1“\ ” il IW‘“ | 1] H"“ W ! VU il A
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Time step (1 hour) Time step (1 hour)
(a) Random samples vs. actual wind pattern (b) Re-assigned data vs. actual wind pattern

Figure 2. Data reordering from GMCM simulation adapted to the site (sample of one month).

Several alternative techniques exist to introduce temporal structure into synthetic time
series, including dependent-bootstrap schemes and rank-based sequence-assembly meth-
ods. Block-bootstrap variants reconstruct persistence by resampling contiguous multi-hour
segments from historical data [35,36], while the Schaake Shuffle family [38-40] imposes
the rank ordering of observed sequences on independently generated samples. These
methods are effective but either replicate historical blocks or impose dependence indirectly
through rank structure, which may distort the synthetic marginal distribution produced
by the GMCM-MCP steps. In contrast, the Hungarian algorithm provides a determinis-
tic and globally optimal assignment between simulated values and a reference pattern,
thereby enforcing persistence without modifying the multivariate structure generated by
the copula model. This assignment-based formulation follows the rationale demonstrated
by Naimo [41] and is well suited for WRY construction, where both distributional fidelity
and realistic intra-annual sequencing are required.
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3.4. Metrics

The indicators used for validation and method comparison are as follows:

Monthly wind-speed averages. Used to compare, month by month, the historical
wind resource against the corresponding months of the Wind Reference Year (WRY).
Weibull distribution parameters. The wind speed U is modelled with a two-parameter
Weibull—shape k > 0 and scale ¢ > 0—with PDF:

- (2)" e (2)

Parameters can be estimated [54] from the sample mean wind speed Vo4 and standard
deviation o, as

, U>0. (1)

—1.086
Oy
k~ . 2
( Vmed ) ( )
= Ymed 3)
1
r(l + E)

where I'(+) denotes the gamma function. The pair (k, ¢) is used as a comparison metric
across the studied cases.

Spearman’s coefficient. Spearman’s rank correlation assesses the degree of association
between two variables [55]. This check is used to ensure that the GMCM preserves the
relationships among variables (the three reanalysis nodes) when generating synthetic
data, compared with real data.

Annual Energy Production (AEP). The annual production estimated from measured
wind speed and from the WRY produced by the proposed method, using a represen-
tative power curve derived from the site’s turbine for the calculations; this enables
energy-based comparisons between the proposed method and real data [56].

3.5. Implementation Environment

To enhance transparency and reproducibility, this subsection summarises the compu-

tational environment, software stack, and implementation structure used throughout the
development of the proposed Wind Reference Year (WRY) methodology. Although the
internal scripts cannot be publicly released due to confidentiality restrictions, all modelling

elements follow standard, openly documented formulations, allowing for the workflow to
be reproduced with publicly available tools.

3.5.1. Software Environment

All computations were performed in R version 4.4.0 using open-source packages

available on CRAN. The key libraries employed (and main functions) were as follows:

gmem (fit.full.GMCM) for the implementation of Gaussian Mixture Copula Models
(GMCMs), used to learn the multivariate distribution across ERA5 nodes and to
simulate monthly synthetic series.

tidyverse, data.table, lubridate, plyr for data preprocessing, time-series manipulation,
and reshaping.

fitdistrplus and hydroGOF for distribution fitting and goodness-of-fit metrics (e.g.,
RMSE and MAE), together with base R utilities for numerical operations and dis-
tance calculations.

clue (solve_LSAP) for solving the Linear Sum Assignment Problem (Hungarian algo-
rithm), used to reorder the synthetic series by matching each simulated hourly value
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to the closest element of the observed one-year pattern while minimising the global
assignment cost.
MCP regression libraries and training functions:

-  Dbase R (1m) for Multivariate Linear Regression (MLR);

- MASS (rlm) for robust Huber regression;

- mgcv (gam) for Generalised Additive Models (GAMs);

- randomForest (randomForest) for Random Forest regression;
-  gbm (gbm) for Gradient Boosting Machines (GBMs).

All steps in the workflow rely exclusively on publicly available R functions, ensuring

that the methodology can be replicated using these standard libraries.

3.5.2. Hardware Configuration and Computational Cost

The entire workflow was executed on a standard workstation equipped with

Intel Core i5-1335U (13th Gen);
16 GB RAM;
64-bit Windows operating system.

The computational requirements are modest. On this hardware, typical runtimes are

as follows:

GMCM training for each month (15-year reanalysis window, three ERA5 nodes): approx-
imately 3-8 min, depending on the convergence tolerance and the number of restarts.
Generation of the 12 simulated monthly series from the trained GMCMs: less than
1 min in total.

Training of each MCP regression model on one year of hourly data (three reanalysis
nodes as predictors):

- Multivariate linear and Huber regression: a few seconds;
-  GAM: about 5-30 s;
- Random Forest and GBM: about 0.5-2 min.

When the tree-based models are trained on the full 15-year dataset for the gap-filling
experiments and/or during hyperparameter optimisation, the computational time
increases to approximately 10-30 min, with the exact duration depending on whether
hyperparameter tuning is performed and on the size of the search grid.

Hungarian algorithm reordering of the 8760-h series: a few seconds (well below
one minute).

No specialised hardware, GPU acceleration, or high-performance computing resources

were required.

3.5.3. Implementation Structure

The operational implementation mirrors the methodological stages introduced in

Section 3, translating them into a reproducible computational workflow. The procedure

consists of five steps:

1.

GMCM training. Each calendar month is modelled independently by fitting a Gaus-
sian Mixture Copula Model to the corresponding 15-year ERA5 subset.

Synthetic month generation. The fitted monthly GMCMs are sampled to produce
twelve synthetic hourly series, which are concatenated into an 8760-h multivariate
WRY at the reanalysis-node level.

MCP site adaptation. The synthetic WRY is transposed to the site using the regression-
based MCP models described in Section 3.3, trained on one year of concurrent
site measurements.
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4. Temporal reordering. Persistence and intra-annual structure are imposed through
a Hungarian algorithm assignment, which reorders the simulated series by min-
imising the distance to the empirical one-year wind pattern without altering the
distributional properties.

5. Energy assessment. The site-adjusted WRY is converted to power via the representative
turbine power curve, enabling AEP comparison with the 15-year operational record.

This structured pipeline ensures that the methodological components are executed in a
transparent and reproducible manner consistent with the conceptual framework presented
in Section 3.

3.5.4. BenchmarkTools

For comparison purposes, the commercial software Windographer (version 4.0) was
used to generate an alternative reference-year dataset following the standard workflow
implemented in the tool. This version information has been added for completeness and
reproducibility of the comparative analysis.

3.5.5. Reproducibility Considerations

Although the internal scripts integrate project-specific tools and therefore cannot be
made public, every modelling component—GMCM inference, MCP regression, and the
Hungarian assignment method—is based on standard formulations fully described in the
literature and supported by widely available R packages. Together with the methodological
detail provided in Section 3, this ensures that the complete workflow can be reproduced by
any reader using only open-source software.

4. Results and Discussion

This section presents the results. First, the GMCM trained on 15 years of ERA5
reanalysis is checked to reproduce long-term statistics when compressed into a one-year
WRY before site adaptation (Section 4.1). Second, after MCP-based site adaptation and
temporal reordering via the Hungarian algorithm, energy representativeness is evaluated
by comparing the WRY-derived AEP with the 15-year operational data and by inspecting
monthly wind-speed and energy aggregates (Section 4.2). For context, two baselines under
identical pre-/post-processing are included: (i) heuristic month selection (ISO 15927-4 style;
Euclidean distance on monthly mean and Weibull parameters) and (ii) the Windographer
workflow (MCP plus the Representative Year Window). The subsections report pre-adaptation
consistency, site-adjusted performance, and head-to-head comparisons with the baselines.

4.1. WRY Before Site Adjustment

The capability of the GMCM to reproduce the characteristics of the historical reanalysis
record must be confirmed. Consequently, the aggregation of historical reanalysis data is
compared with the synthetic series generated by the GMCM and considered as the WRY
before adjusting to the site. The Spearman correlation, distribution density functions, and
monthly wind speeds are reported for each case.

First, the monthly wind speeds (monthly averages of the historical data and the
monthly wind speeds of the WRY before site adjustment) for the three reanalysis nodes
considered in the GMCM are compared. Table 2 compares the monthly average wind
speeds obtained from historical data at the three nodes with the GMCM simulations prior
to site adaptation. Actual values from each node and their simulations show close similarity;
the largest error among all cases is around 5%. This reinforces the proposed method’s
capability to capture the nature of the sample.
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Table 2. Monthly wind speeds: historical data from nodes vs. WRY before adjusting to site based on
the GMCM method.

Reanalysis Nodes vs. WRY Before Adjusting to Site

Month Vnl Vnl Vnl Err Vn2 Vn2 Vn2 Err Vn3 Vn3 Vn3 Err
Hist.[m/s] WRY [m/s] [%] Hist.[m/s] WRY [m/s] [%] Hist.[m/s] WRY [m/s] [%]
1 4.30 4.48 —4.00 418 4.35 —-3.92 4.49 4.69 —4.12
2 4.89 4.96 —1.34 4.68 4.75 —1.41 5.16 5.23 —1.18
3 5.05 5.26 —3.94 4.75 494 —3.85 5.36 5.56 —3.59
4 4.60 4.62 —0.40 4.23 4.29 —-1.33 492 4.89 0.61
5 495 494 0.25 443 4.47 —0.88 5.36 5.28 1.50
6 4.60 4.61 —0.31 4.11 4.11 0.13 493 4.96 —0.65
7 4.88 4.96 —1.68 4.33 4.43 —2.14 5.19 5.26 —1.30
8 4.68 4.63 1.11 421 4.19 0.42 497 492 0.99
9 4.20 4.16 0.99 3.87 3.87 —0.01 4.44 4.33 2.59
10 4.16 4.17 —0.01 3.89 3.88 0.10 4.44 4.46 —0.39
11 4.37 4.39 —0.32 422 4.20 0.27 4.60 4.60 —0.08
12 4.00 421 —5.05 3.95 4.14 —4.62 4.16 437 —4.69
Subsequently, in Figure 3d, the Spearman correlations between the three reanalysis
nodes are reported. Furthermore, the Weibull distribution is fitted to historical data from
the reanalysis nodes and to the WRY (before site adjustment) in Figure 3a—c.
Weibull Distribution Reanalysis Node 1 Weibull Distribution Reanalysis Node 2
g /\ —— Historical: k= 1.72, c= 5.12 /\ —— Historical: k= 1.89, c= 4.79
WRY: k= 1.70, c= 5.19 ‘@ WRY: k= 1.88, c= 4.86
0 5 10 15 20 25 0 5 10 15 20 25
Wind Speed [m/s] ‘Wind Speed [m/s]
(a) Weibull Node 1 (b) Weibull Node 2
Weibull Distribution Reanalysis Node 3
—— Historical: k= 1.66, c= 5.42
~ WRY: k= 1.63, c= 5.46 . . .
= Reanalysis nodes Historical WRY
. / | Node 1 vs. 2 0.95 0.96
L Node 1 vs. 3 0.97 0.97
i \ Node 2 vs. 3 0.87 0.88
0 5 10 15 20 25
Wind Speed [m/s]
(c) Weibull Node 3 (d) Spearman correlation between nodes

Figure 3. Weibull distributions from historical reanalysis data compared with WRY data.
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It is confirmed that the relationship among the variables considered (the wind speeds
at the three nodes) is preserved: the Spearman coefficients are practically identical in both
cases (Vn1-Vn2 = 0.95 vs. 0.96; Vn1-Vn3 = 0.97 vs. 0.97; Vn2-Vn3 = 0.87 vs. 0.88). Thus,
the robust performance of the GMCM in generating synthetic data from the sample is
again reinforced.

In the comparison of Weibull distributions, the plots (Figure 3a—c) show that, for each
node, the Weibull fit (Equation (1)) to the historical data is very similar to the fit to the
simulated data, as are the estimated shape and scale parameters (see Equations (2) and (3)).
Therefore, it can be concluded that the GMCM can simulate a distribution similar to that of
the original historical reanalysis data.

4.2. WRY Adjusted to the Site

This section analyses the results obtained after adapting the simulated WRY to site
conditions. The proposed GMCM method is compared against two baselines—a heuristic
month-selection method from the literature and the Windographer commercial workflow.
Metrics reported for each approach include Annual Energy Production (AEP), Weibull
parameters, and monthly mean wind speeds.

The AEP calculations are shown for the different MCP configurations (see Tables 3-5).
In addition, Figures 4-6 compare the WRY-derived AEP with the annual AEP computed
from the 15-year operational record. In each figure, the black line represents the annual
AEP over the 15 available years, the blue line the AEP estimated from the corresponding
WRY, and the red markers the percentage deviation of each year’s AEP from the WRY AEP.
For context, the annual mean wind speeds (grey) are shown together with their 15-year
average (dark grey).

For the Weibull comparison, fitted parameters and the associated Weibull distributions
are plotted in Figure 7a—c. Monthly aggregates of mean wind speed and energy (the latter
derived from the reference power curve) are provided in Tables 6 and 7 and visualised in
Figures 8 and 9.

Table 3. Annual energy production and mean wind speed: GMCM method. Real measurements vs.
WRY results.

GMCM Method

Measured AEP WRY-Calculated . rc o
MCP Model [MWh] AEP [MWh] Diff [%]
GAM 1954 1933 —1.12%
Random Forest (RF) 1954 1974 0.98%
Gradient Boosting (GBR) 1954 1947 —0.36%
Multivariate Linear o
Regression (MLR) 1954 2142 9.58%
Huber Regression (HR) 1954 2146 9.78%

Table 4. Annual energy production and mean wind speed: Heuristic Euclidean-distance method.
Real measurements vs. WRY results.

Heuristic Method (Euclidean Distances)

Measured AEP WRY-Calculated T
MCP Model [MWh] AEP [MWh] el

GBR 1954 1731 —11.45%
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Table 5. Annual energy production and mean wind speed: Windographer method. Real measure-

ments vs. WRY results.

Windographer Method
Measured AEP WRY Calculated e o
MCP Model [MWh] AEP [MWh] e
LLS 1954 1988 1.74%
MTS 1954 1901 —2.71%
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Figure 4. GMCM method: Actual yearly AEP (black) vs. WRY-calculated AEP (blue). Red markers

show the percentage deviation. Annual mean wind speeds (grey) and their 15-year average (dark

grey) are shown for context.
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show the percentage deviation. Annual mean wind speeds (grey) and their 15-year average (dark

grey) are shown for context.
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For the AEP comparison, the average annual energy from the 15-year measured dataset
is taken as the benchmark and compared with the AEP obtained from each WRY. Because
different regression models are used to adapt wind speed to the site, the resulting AEP
varies by method and by model.
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Figure 6. Windographer method: Actual yearly AEP (black) vs. WRY-calculated AEP (blue). Red
markers show the percentage deviation. Annual mean wind speeds (grey) and their 15-year average
(dark grey) are shown for context.

For the proposed GMCM-based method, the AEP differences range from —0.36% to
+9.78% across the regression models tested. The best results are obtained with Random
Forest (RF) and Gradient Boosting Regressor (GBR), yielding AEP errors of +0.98% and
—0.36%, respectively, whereas Multivariate Linear Regression (MLR) and Huber Regression
(HR) show the largest positive biases. For the year-by-year comparison, we focus on the
best case (GBR). As shown in Figure 4, deviations with respect to the WRY AEP range from
0.5% to 26%; overall, this method most closely aligns with the 15-year average behaviour.
The largest discrepancies correspond to years with unusually low or high wind resources
(notably 2020 in this dataset). Despite year-to-year variability, the WRY estimate remains
consistent with the long-term mean.

Regarding the heuristic baseline where a single Gradient-Boosting-based MCP model
is applied, the AEP difference is substantial (—11.45%). This outcome is consistent with
expectations: although a month is selected from the historical record to resemble long-term
behaviour, its characteristics are not identical to the long-term climatology, so deviations
are anticipated. Figure 5 shows that the WRY AEP obtained with this method differs from
the annual AEP values derived from the 15-year record by between 3% and 22%, depending
on the year.

For the Windographer baseline, the AEP differences are +1.74% when using the Linear
Least Squares (LLS) option and —2.71% with the Matrix Time Series (MTS) option provided
in Windographer’s MCP module. For the year-by-year comparison, we focus on the best
case (LLS). As shown in Figure 6, the deviations with respect to the WRY AEP range from
0.1% to 29%; in general, the WRY estimate follows the multi-year average behaviour. The
largest discrepancies occur in years with unusually low or high wind resources relative to
the rest of the period.
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In terms of AEP estimation, the best overall performance is achieved by the GMCM
method combined with the GBR regression model for site adaptation.

In the comparison of Weibull distributions fitted to the real (measured) data and to the
simulated WRY, similar conclusions are obtained. For the Heuristic method, the Weibull fit
for the WRY differs slightly from the fit to the measured data (Figure 7b). This is expected
because the selected month from the historical record has characteristics that are close to,
but not identical with, the long-term climatology.

Weibull Distribution (GMCM Method)

o~ —— Measured: k= 1.48, c= 6.28
s I GAM: k= 1.58, c= 6.49
RF: k= 1.67, c= 6.58
r GBM: k= 1.65, c= 6.56
© MLR: =1.6l, c= 6.6l
[= T 1. c= 6.58
> o
‘@
c
o L
o
<t
D_ L
o
o
D_ L
o
0 5 10 15 20 25
Wind Speed [m/s]
(a) GMCM method
Weibull Distribution (Heuristic Method) Weibull Distribution (Windographer Method)
o~ —— Measured: k= 1.48, c= 6.28 o —— Measured: k= 1.48, c= 6.28
S Heuristic: k= 1.87, c= 6.30 S LLS: k= 1.68, c= 6.59
MTS: k= 1.54, c= 6.33
&8 g
z e z o
3 3
o o
| I
g g | | T
o L L L L o L L L L L L
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Wind Speed [m/s] ‘Wind Speed [m/s]
(b) Heuristic method (c) Windographer method

Figure 7. Weibull distributions adapted to the site for the three methodologies.

By contrast, the fits for the GMCM and Windographer methods are much closer to the
measured distribution (Figure 7a,c). Both methods deliver an accurate representation of the
site’s wind-speed distribution, with the MTS option in Windographer performing slightly
better than the GBR-based case in GMCM. These outcomes emphasise the importance of
the MCP method and, additionally, highlight the impact of reanalysis-data quality on the
final result.

Once the best-performing case within each method has been identified, the anal-
ysis centers on the proposed GMCM method (with GBR-based MCP) and, for context,
two baselines: the heuristic month-selection approach (Euclidean distance) and the Win-
dographer workflow (LLS-based MCP). A monthly analysis of wind speed and energy is
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presented. Comparative tables report monthly mean wind speed and monthly energy pro-
duction, and in all cases, the WRY-derived monthly series are contrasted with the 15-year
measured aggregates.

Tables 6 and 7 summarize the monthly averages of wind speed and the corresponding
monthly energy (computed with the site’s reference power curve) for the best-case configu-
ration of the proposed GMCM method and for the two baselines—the heuristic approach
and Windographer (best-case MCP option). For each month of a typical year, the tables
report the deviation of the WRY-derived values from the 15-year measured aggregates.

Table 6. Monthly wind speed: Measured compared to WRY and differences by method (GMCM,
Heuristic, and Windographer).

GMCM Heuristic Windographer
g’z g:; Wind 5“1; ‘e‘l‘;‘ Wind S“}i L’;‘(‘i. Wind
Month Measured Speed. Diff [%] Measured Speed. Diff [%] Measured Speed. Diff [%]
WRY [m/s] WRY [m/s] WRY [m/s]
[m/s] [m/s] [m/s]
1 5.32 5.75 —7.54 5.32 478 11.27 5.32 8.79 —39.52
2 6.16 6.29 -1.99 6.16 5.86 5.05 6.16 5.02 22.72
3 6.22 6.60 —-5.77 6.22 5.77 7.69 6.22 7.20 —13.65
4 5.67 5.84 —3.07 5.67 6.00 —5.62 5.67 4.73 19.66
5 6.04 6.29 —4.08 6.04 6.39 —5.51 6.04 7.37 —18.05
6 5.75 5.78 —0.55 5.75 5.57 3.19 5.75 543 5.96
7 6.16 6.17 —0.10 6.16 6.35 —297 6.16 5.35 15.22
8 5.97 5.85 2.05 5.97 5.78 342 5.97 5.15 16.02
9 524 5.15 1.61 524 5.10 2.74 5.24 6.59 —20.51
10 5.28 5.31 —0.57 5.28 5.18 2.04 5.28 4.49 17.55
11 5.48 5.56 —1.47 5.48 5.01 9.34 548 4.50 21.66
12 4.88 5.37 -9.10 4.88 4.95 —1.28 4.88 5.65 —13.58
Table 7. Monthly energy production: Measured compared to WRY and differences by method
(GMCM, Heuristic, and Windographer).
GMCM Heuristic Windographer
Energy Energy Energy Energy Energy Energy
Production.  Production. . Production.  Production. . Production.  Production. .
o Measured WRY Diff [%] Measured WRY Diff [%] Measured WRY Diff [%]
[MWnh] [MWh] [MWh] [MWh] [MWh] [MWh]
1 156.70 157.19 —0.31 156.70 99.92 56.82 156.70 331.70 —52.76
2 174.91 181.27 —3.51 174.91 149.90 16.68 17491 103.82 68.47
3 196.14 202.97 —3.36 196.14 149.98 30.78 196.14 247.08 —20.62
4 158.77 163.39 —2.83 158.77 171.23 —7.28 158.77 99.90 58.93
5 179.09 183.66 —2.49 179.09 193.32 —7.36 179.09 256.96 —30.30
6 158.18 158.41 —0.14 158.18 132.80 19.11 158.18 139.45 13.43
7 184.72 181.17 1.96 184.72 198.08 —6.75 184.72 130.88 41.13
8 174.48 165.79 524 174.48 157.69 10.65 174.48 119.53 45.98
9 133.97 127.66 4.94 133.97 117.42 14.09 133.97 202.10 —-33.71
10 145.38 136.77 6.30 145.38 134.66 7.96 145.38 93.64 55.25
11 154.42 147.99 4.34 154.42 110.52 39.72 154.42 97.71 58.04
12 137.70 141.11 —2.42 137.70 115.05 19.68 137.70 165.72 —-16.91

The final outcome of the process is an hourly wind-speed time series that exhibits the hall-
marks of a realistic wind pattern—persistence together with seasonal and diurnal variability.
Moreover, the series can be regarded as representative of the site’s long-term behaviour.
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Figure 8. Monthly wind speed: Mast measurements compared to the estimated from the WRY for
three methods (GMCM, Heuristic, and Windographer).
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Figure 9. Monthly energy production: Estimated from mast measurements compared to the estimated
from the WRY for three methods (GMCM, Heuristic, and Windographer).

In the proposed GMCM workflow, the simulated values are temporally reordered us-
ing the Hungarian algorithm to enforce persistence and realistic sequencing (see Section 3.3).
The resulting 8760 h WRY is therefore suitable for direct use in standard industry tools
for energy assessment. For the proposed GMCM method, wind-speed deviations are
~0.1-9%, and production deviations are ~0.1-6.3% (absolute percentage). For the heuristic
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baseline, wind-speed deviations are approximately 1.3-11.2%, while production deviations
are ~7-56% (absolute percentage). For the Windographer baseline, wind-speed deviations
are ~6—40%, with production deviations of ~13-69% (absolute percentage). These devi-
ations should also be interpreted in the context of typical uncertainty levels associated
with long-term resource assessment. Recent studies report that wind-resource uncertainty
alone can introduce AEP variations of ~0.4-3.7% in operational offshore projects [4], indi-
cating that the deviations obtained with the proposed WRY fall well within the expected
range for real-world applications. These results confirm that, for both wind speed and
energy, the proposed method attains the lowest monthly deviations, as also illustrated in
Figures 8 and 9, where the WRY monthly wind speeds and the WRY monthly productions
are compared against the 15-year measured aggregates.

5. Conclusions

This work demonstrates a method to estimate a Wind Reference Year (WRY) from
fifteen years of reanalysis data combined with a one-year on-site measurement campaign.
Results are compared against two practical alternatives: a heuristic month-selection ap-
proach based on practitioner expertise and the commercial Windographer workflow.

From the obtained results, we infer that the proposed method—based on Gaussian
Mixture Copula Models (GMCMs)—captures long-term wind behaviour and can generate
synthetic series suitable for WRY estimation. Moreover, applying the Hungarian algorithm
to temporally reassign the simulated values ensures that the final series respects wind
persistence and exhibits a realistic seasonal and diurnal pattern.

Site adaptation remains a challenging step. Several regression models were evaluated
(GAM, RF, GBR, MLR, and HR). In this case study, the Gradient Boosting Regressor (GBR)
provided the best performance, with an AEP deviation of approximately 0.3% relative to
the multi-year measurements. The quality of the long-term reference and the strength of
correlation between measured and reanalysis data are critical to achieving robust outcomes.
Although the energy results are satisfactory, there is still room for improvement in the
transposition from reanalysis to site conditions.

As with any typical-year construction, the proposed WRY is not intended to reproduce
event-scale dynamics, such as gusts or abrupt regime transitions, since these behaviours
are inherently smoothed when condensing multi-year data into a representative year. The
method may also face limitations at sites where reanalysis nodes exhibit weak correlation
with local measurements or in environments affected by strong non-stationarity, where long-
term representativeness becomes more difficult to achieve. These aspects define natural
boundaries of applicability and point to opportunities for methodological refinement.

Future work will consider higher-quality long-term references from meteorological
reanalyses (e.g., the global meteorological reanalysis model Vortex) and additional site-
adaptation strategies. In parallel, to support hybrid plant design, the WRY dataset should
be extended to incorporate other renewable resources (e.g., solar) while preserving their
joint dependence structure within a common, multi-source reference year. This will enable
consistent, multi-vector resource assessments that remain faithful to the temporal co-
variability required by modern hybrid systems.

Author Contributions: Conceptualisation, R.L., J.J.M., and S.A.; methodology, R.L.,]J.J.M., and S.A;
software, R.L. and S.A.; validation, R.L., J.J.M., and S.A_; formal analysis, R.L., J.J.M., and S.A,;
investigation, R.L., ].J.M., and S.A.; resources, R.L.; data curation, R.L. and S.A.; writing—original
draft preparation, R.L. and S.A.; writing—review and editing, R.L.,].J.M., and S.A; visualisation, R.L.,
JJM., and S.A; supervision, ].].M.; project administration, R.L. All authors have read and agreed to
the published version of the manuscript.



Appl. Sci. 2025, 15, 13147 19 of 21

Funding: This research was funded by the European Union’s Horizon Europe research and innovation
programme, grant agreement No. 101136904, project HarvRESt—Harnessing the vast potential of
RES for sustainable farming.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: The data presented in this study are confidential and cannot be shared.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

AEP Annual Energy Production
API Application Programming Interface
CDS (ECMWEF) Climate Data Store

ECMWEF  European Centre for Medium-Range Weather Forecasts
ERA5 Fifth-generation ECMWEF atmospheric reanalysis

GAM Generalised Additive Model

GBR Gradient Boosting Regressor

GMCM  Gaussian Mixture Copula Model

HOMER Hybrid Optimisation of Multiple Energy Resources

HR Huber Regression

IEC International Electrotechnical Commission

ISO International Organization for Standardization
JRC Joint Research Centre (European Commission)
LLS Linear Least Squares

LR Linear Regression

MLR Multivariate Linear Regression

MCP Measure—-Correlate—Predict

MTS Matrix Time Series (Windographer MCP option)

NREL National Renewable Energy Laboratory
PVGIS Photovoltaic Geographical Information System

RF Random Forest
™Y Typical Meteorological Year
WASsP Wind Atlas Analysis and Application Program
WRY Wind Reference Year
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