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Abstract 

EPS is a material that is widely used in energy absorbing applications, especially in helmets, despite its 

non-renewable origin. Cork and its derivatives however, are proposed as a substitute for polystyrene foam 

(EPS) due to their renewable origin and their easy recyclability. In spite of the low-environmental 

footprint of cork and its derivatives, there is insufficient data on their mechanical behaviour. 

Consequently, under dynamic and quasi-static loads, four different-density EPS, a natural cork material 

and five different cork products with different grain sizes and heat treatments have been tested. They have 

been compared in terms of their stress-strain and specific stress-strain curve, their volumetric capability to 

absorb energy, their specific energy, average decelerations and peak deceleration. 

Finally, EPS foams cannot recover their initial shape upon deformation due to their low resilience 

capability. This is especially important in applications such as helmets which are bound to be subjected to 

multiple impacts. However, cork and its products could have this capability for resilience and would 

therefore be more suitable for certain applications. 

Keywords: cork; impact; helmet; agglomerate; polystyrene foam.  
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1. Introduction 

Cork is a natural material that is extracted from the bark of the cork oak tree and therefore has 

zero- carbon footprint; in addition, once a cork product has reached the end of its lifetime, it can 

be crushed and recycled to manufacture new products or, if disposed of, it can be easily 

degraded, generating zero impact on the environment. Additionally, cork has very low 

permeability to gases and liquids, has good insulating properties, high durability, high energy 

absorption capability and high viscoelastic return (Pereira 2007). This last aforementioned 

property means that, under compression, cork shows elastic behaviour and thus recovers its 

initial shape and properties after being crushed. 

Despite its properties, traditionally cork has almost exclusively been used to make wine 

stoppers. However, at present this may no longer be the case, and there is an increasing 

tendency to use it as the core of some composite sandwiches that require high strength-to-

weight ratio (Sanchez-Saez 2011), as well as to enhance other materials such as polyurethane 

(Gama 2019), polyethylene (de Vascongelos 2019) or polyfurfuryl (Menager 2019), in order to 

create materials with a lower carbon-footprint; to reduce the density of other materials such as 

concrete (Parra 2019); or in energy absorption applications such as helmets. 

As previously mentioned, thanks to its energy absorption capabilities, cork is a candidate to 

become a substitute for non-renewable materials, such as expanded polystyrene foams (EPS) in 

some applications requiring energy absorption. This is mainly the case of helmets for different 

types of applications: motorcycling, cycling, snow sports, horse riding, etc. In addition, cork has 

high viscoelastic return as opposed to EPS and, consequently, could be a better-suited material 

for helmets undergoing multiple impacts thanks to its return to initial shape and properties after 

impact. 

With regard to the use of cork in helmets, there are studies that analyse the possibility of 

substituting EPS with cork, such as the study of Coelho (2012) which by means of numerical 

tools, analyses the behaviour of a head impact against a block of cork and EPS with a density of 

50 kg/m3 where it was concluded that a combination of both materials could be useful for 

helmet liners. Likewise, Sousa (2012) compared the mechanical properties of EPS with a 

density of 30 and 50 kg/m3 with different cork agglomerates (0.2mm, 0.25 mm and 0.3 mm) and 

concluded that while cork could be used for liners in helmets, EPS had better capability to 

reduce injuries. Nevertheless, when compared with EPS, the article pointed out that since cork 

conglomerate can recover its initial shape, it can be more suitable in the event of multiple 

impacts thanks to cork´s high viscoelastic return properties. This is one of the main conclusions 

drawn by Willehelm (2017). 

Other articles, such as Tay (2014) that compare different natural materials to improve safety in 

vehicles under oblique impacts include conglomerate cork; the aforementioned study pointed in 

the same direction and noted the inferior behaviour of the cork under study. Finally, the studies 

of Fernandes (2019) which explored the use of two different agglomerated (199 and 216 kg/m3) 

and one expanded cork (159 kg/m3) showed cork´s poor adequacy as a substitute for the EPS 

(90 kg/m3), with huge modifications in the geometry of the helmet including some holes being 

required in order to finally obtain a helmet with similar mechanical behaviour to that of EPS, all 

at the expense of higher weight. 

It must be highlighted, though, that some of these studies exclusively focus their analysis on a 

limited number of types of conglomerate cork despite the diversity of existing products and by-

products of cork, each with different mechanical properties resulting from different 

manufacturing processes. The most common products are natural cork sheets, white cork 
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agglomerate, black cork agglomerate (also called expanded cork) and rubber cork, which will be 

the focus of this study. 

With regard to the mechanical characterization of cork, apart from the data provided by 

manufacturers- usually providing a short range of mechanical properties (density, Young 

modulus, etc.), there are some articles focused on the mechanical properties of cork – most of 

them exclusively related to the specific application of wine stoppers. This is the case of the 

study of Crousvisier-Urion (2018) which concludes that the use of small particles of cork 

reduces stiffness; or the case of Sanchez-Gomez (2018) who analyse the mechanical properties 

of a wine stopper (some natural, others co-extruded with synthetic materials and others with 

different micro-agglomerates). Other authors analyse the influence of hydration of cork in their 

mechanical properties (Lagorde-Tachon 2017) and conclude that Young´s modulus has a 

constant value from 0% to 50% of humidity, with a significant drop from that point onwards. 

Anjos (2014) study the influence of density on the compression behaviour of cork and conclude 

that density is directly associated with the Young´s modulus and stress in the plateau zone. 

Pinto-Silva (2005) made a review of the properties, capabilities and applications of cork, 

showing the influence of grain size in Young´s modulus for three different agglomerates; 

additionally, the reviewer collected some mechanical properties from other authors which show 

compression modulus for natural cork as well as boiled cork and others undergoing different 

heat treatments. Another interesting result of this study points out that cork and its agglomerates 

have better specific properties (specific compression strength and specific modulus) than 

flexible polymer foams such as EPS. Finally, other authors (Fernandes 2015) compared some 

conglomerated cork (216 and 199 kg/m3) and expanded ones (159 Kg/m3) with EPS (90 

kg/m3) and expanded polypropylene (EPP) (60 and 90 kg/m3), by means of numerical and 

experimental tools, reaching the same conclusions, while others (Jardin 2014) obtained the 

behaviour of some cork conglomerates (216, 199, 178 and 157 kg/m3) and expanded ones (122, 

159 and 182 kg/m3) 

Another application of cork is its use as a core in tome sandwich panels. The results obtained by 

some authors (Moreira 2019) show that the performance of cork agglomerates depends on 

density, cohesion procedure of granulates and cork granule size. Therefore, these variables can 

be adjusted to obtain the desired mechanical properties, as pointed out by some other authors 

(Santos 2017), too.  

With regard to EPS, this material is traditionally used for a huge variety of applications such as 

helmets or protectors for some goods. This material is generated during a foaming process in 

which some closed air cells are generated inside the material; these cells can be manipulated to 

obtain different densities (from 10 to 150 kg/m3); with the most common densities between 60 

to 120 kg/m3 in the case of helmets. 

There are some studies about the mechanical behaviour of EPS under compressive forces. It is 

clear that there is a direct relation between density and its mechanical properties under quasi-

static and dynamic loads (Ouellet 2006, Chen 2015, Krindaevaad 2014). In all cases, the stress-

strain curve of EPS has three different zones - a linear elasticity zone; a plateau zone; and a 

densification zone. In the initial one-the linear elastic zone-, the material could recover its initial 

shape and shows a linear behaviour; however, it is a small zone which can absorb very little 

energy. Immediately after that the plateau zone is found. This is a large zone in which the level 

of stress is more or less constant; this means that in this zone the material can absorb a great 

deal of energy with the same stiffness. This is the most important zone for helmets as a huge 

amount of energy needs to be absorbed while they must deform progressively in order to avoid 

high decelerations in the head. Finally, in the densification zone the stress increases sharply and, 
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as a result, should a helmet reach this zone, the head is subjected to significant deceleration, 

with ensuing neural injuries. 

When analysing the state of the art of the test of helmets conducted by means of different 

certification standards (ISO 17025 / SNELL, ECE.22.05, DOT), one of the main biomechanical 

indexes used in order to analyse the brain injury damages is the Head Injury Criterion (HIC) 

(Versace 2019), which uses the data gathered through an accelerometer in the centre of the head 

of a dummy. The HIC is determined with this equation: 

 𝐻𝐼𝐶 = 𝑚𝑎𝑥 [
1

𝑡2−𝑡1
∫ 𝑎(𝑡)𝑑𝑡
𝑡2
𝑡1

]
2.5

∙ (𝑡2 − 𝑡1)   (eq. 1) 

This criterion not only analyses the main deceleration peaks, as it includes the study of average 

decelerations during different periods of time to determine the most critical ones. These aspects 

are in regard with the movement of the brain inside the skull, which acts like a mass-spring-

mass model. 

In this article, the main objective is the comparative study of cork products and different 

densities EPS under compression efforts to analyse the possibility of the former materials to 

substitute petrol-based latter ones in certain applications in which the capability to absorb 

energy is essential. 

The main hypothesis of this study is that both types of materials, EPS and cork agglomerates 

have internal cell structures with air inside and, consequently, both will have similar mechanical 

behaviour; this behaviour has been previously mentioned and it is defined for the polymeric 

foams by the Gibson’s model (Gibson 1997). 

The Gibson’s model distinguishes three different, well-defined zones in the stress-strain curves 

of polymeric foam materials (Fig. 1): the initial elastic zone, the plateau zone and a 

densification zone. The elastic zone characterizes by the capability of the material to recover its 

initial dimensions and the shape of the curve is a linear elastic one defined by the Young’s 

modulus; in this zone the walls of the internal structure of the foam deforms elastically and can 

recover its initial shape; during the compression process, the internal pressure of air trapped 

inside the cells increases and after a certain point the cell walls cannot support the pressure and 

collapse; then the plateau zone appears; this zone is defined by a constant stress or a curve with 

a very low increasing slope that is defined with the plateau’s modulus. In this zone the material 

cannot recover its initial shape and progressively collapse; thus similar levels of stress appear 

what imply constant stiffness and decelerations. Therefore, this zone is significantly more 

suitable for energy absorption than the elastic zone and, furthermore, the deformation range of 

this zone is significantly higher, which implies a greater energy absorption and deformation 

capacity. Finally, when all the cells collapse and all the air trapped inside disappears, the 

behaviour of the material is similar to the non-foamed original, characterized by an exponential 

slope in the stress-strain curve defined by the volume modulus of the original material. It should 

be noted that this implies an exponential increase in the stiffness of the material and, 

consequently, higher decelerations. That is the main reason why the densification zone should 

be not reached in impacts. 

The end of the elastic zone is determined using the Young’s elastic modulus which is the slope 

of the curve in the elastic zone. When the curve differs more than a 0.2% from an elastic one, 

then the plateau zone has been reached. In the same way, the densification point is the 

intersection point between the line defined by the slope of the plateau zone and a tangent curve 

in the densification zone that is obtained using the bulk modulus of non-foaming material in the 

case of the EPS (Fig. 1). 
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In the case of cork products, their internal structure is an open cell one that has also air inside 

but that not trapped. As a result, the stress-strain curve is expected to be similar and follow the 

Gibson’s model as well. However, the open cell structure will also suppose that the cell will not 

collapse and, as a result, the material could recover partially its initial shape if the plateau zone 

or also if the densification zone is reached. Additionally, some differences could appear in the 

stress-strain curve especially in the plateau zone so it is expected a higher slope in this zone.  

The main parameters of the stress-strain curves are as follows: 

 Maximum tensile strength in the elastic zone (σc,e) 

 Maximum tensile strength at the densification point (σc,d) 

 Maximum elastic elongation (εc,p) 

 Elongation at the densification point (εc,d) 

 Elastic Young’s modulus (Ec) 

 Plateau Young’s modulus (Ep) 

The total energy absorbed per unit of volume by the material can be obtained from this 

equation: 

 𝑊 = ∫ 𝜎
𝜀𝑖
𝑜

𝑑𝜀       (eq. 2) 

This total energy absorption can be decompound in the following two components: 

 Elastic energy absorption   𝑊𝑒 = ∫ 𝜎
𝜀𝑐,𝑝
𝑜

𝑑𝜀  (eq. 3) 

 Energy absorbed in the plateau zone 𝑊𝑝 = ∫ 𝜎
𝜀𝑐,𝑑
𝜀𝑐,𝑝

𝑑𝜀  (eq. 4) 

In relationship with the specific parameters, that are useful to compare materials in terms of 

properties with the same weight instead of in terms of properties with the same volume, they are 

obtained by dividing them by the density (ρ) of the material. 

It must be highlighted also that, one of the main contributions of this paper, that goes beyond 

the state of the art, is that it analyses not only one or two types of isolated cork agglomerates, 

but main different types of existing cork products including natural cork and black agglomerates 

and it also compares them with main EPS materials. Consequently, it would be possible to 

obtain a more precise idea of the mechanical properties of different types of cork agglomerates 

and about their capability to substitute EPS.  

Additionally, the paper delves into the capability of these materials to recover its initial shape 

and absorb a second impact. It must be highlighted here that some studies (Silva 2011) indicate 

the resilience capability of cork that can absorb multiple impacts and loads, and the least for the 

EPS (Yanzhou 2015) but there are not in-depth comparative studies about this topic. Hence, the 

article will be also focused in the comparative study of the resilience of both types of materials. 

2. Materials and methods 

The materials to be studied are the EPS used for the liners of the helmets and different types of 

cork. In the case of the EPS, EPS with densities of 60, 75, 80, 100 and 120 kg/m3 with different 

grain sizes will be studied.  

As for the study of cork, the natural material (NC), a cork agglomerate (AC), three different 

white cork agglomerates (WC) (usually called too agglomerated cork) and a black cork 

agglomerate (BC) (usually called too expanded cork) (Table 1) with different grain sizes will be 

used (Fig. 2). 
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Natural cork sheets are obtained from the bark of the cork oak by means of axes. With a cutting 

machine, the external layer is removed and flat regular sheets are obtained. The dimensions of 

these sheets depend on the cutting process and the tree itself; commercially, the common sheet 

thickness ranges between 3 and 15 mm, and the length and width between 100 and 600 mm. 

Cork agglomerates are obtained after a more complex process. Natural cork and/or recycled 

cork agglomerates, are chopped into granules using mechanical processes and are subsequently 

sifted to obtain granules of different sizes. Afterwards, using heat, pressure and/or adhesives the 

granules join together to obtain regular sheets and bricks. Depending on the sizes of the 

granules and the joining processes, the obtained material has different mechanical properties. 

One of the main advantages of the agglomerates is that there are fewer shape and dimension 

limitations. 

White cork agglomerates are manufactured using pressure, heat and adhesives; although 

biodegradable water based glues are sometimes used, the most common adhesives are resins 

such as polyester, epoxy, phenolic and vinyl resins. As a result, the final material obtained loses 

part of its renewable aspect. Depending mainly on the size range of the granules and, to a lesser 

extent, on the resin used, mechanical properties change.  

Black cork agglomerates are manufactured by means of pressure combined with high 

temperature water steam; the granules expand (hence the name “expanded cork”) and suberin -a 

natural resin-, is exuded, joining the granules.  

Natural cork presented in 600x100x10 sheets; four different white agglomerate corks with 

different adhesives and densities presented in 915x610x10 sheets; and one black agglomerate 

cork presented in 1000x500x20 sheets have been studied. These materials have different 

densities and different grain sizes (Fig. 2).  

These materials have been studied under a quasi-static compression test using an 8032 

INSTRON universal test machine with a 0.2 mm/s velocity until reaching a maximum of 90% 

strain with an acquisition rate of 0.2 s. The testing machine has been equipped with a 2501 -162 

INSTRON compression platens and a INSTRON 2530-50 static load cell (maximum force: 50 

kN) and it has been used the INSTRON own digital acquisition system (DAQ).  

Cylindrical specimens of φ50 mm and a height of 40 mm have been tested and they have been 

placed in the centre of the platens using a pattern drawn on lower platen. The forces and 

displacements used to determine the stress-strain curve and the absorbed energy-strain curve 

have been obtained using the. By making use of these results alongside density, the specific 

stress-strain curve and the specific absorbed energy-strain curve have been obtained. 

In order to perform the dynamic test, a 28 mm cube has been tested for the EPS to absorb 75 J.  

As for the corks tested, a 28 mm cube and a 40 mm cube specimen were used to absorb the 

same energy and therefore, reach a lower volumetric energy level. It has been used a 75 J free 

weight impact drop tower with a maximum height of 1.5 m and a free weight of 5 kg. This 

testing apparatus include plain impact platens of φ60 mm and a vertical 482A21 PCB 

accelerometer that uses a Quantum XMX840B DAQ; the test has been performed with an 

acquisition rate of 0.06 ms and it has been used also a position pattern drawn on lower platen. 

Consequently, the impact velocity of the free weight is 5.44 m/s and the initial strain rate for the 

40 mm specimen is 136 s-1 and for the 20 mm one it is 194 s-1; additionally, it has been applied a 

channel frequency class (CFD) filter with a frequency of 600 Hz. This method is similar to the 

one used by Di Landro (2002) with the EPS.  

Likewise, the resilience of both materials for the quasi-static test has been studied. In the case of 

the quasi-static test, all the specimens have been tested to reach three different levels of strain: 
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90%, 75% and 50%; this will suppose the study of the resilience capability of the materials in 

three different scenarios: with a high densification, with a low densification and in the plateau 

zone near the densification point. These test have been performed for two consecutive load 

cycles to analyse the deformation and the capability to recover the initial shape after the first 

cycle and additionally the capability to absorb energy in the second cycle. Additionally, it has 

been performed a second load cycle to depict the new stress-strain curve and compare the 

behaviour before and after the first load cycle. 

Additionally, in the case of the dynamic test, the final strain and the permanent deformation has 

been measured to analyse the capability to recover the initial shape after an impact. It must be 

pointed that, in dynamic test, the levels of energy are equal for all the specimens (75J) so the 

level of strain depends on the material and their stress-strain curve. 

For all cases, dynamic and static, the permanent deformation of all materials after the tests has 

been measured in three different places with a calliper and the average of the measurements has 

been used to define the permanent deformation. To analyse the maximum deformation for the 

static test, the INSTRON device's own measuring equipment has been used but, in the case of 

the dynamic test, a double integration of the deceleration has been used to obtain the maximum 

displacement / deformation. 

Finally, it must be pointed that all the specimens have been machined using a Roland MDX 20 

CNC milling machine. 

3. Results and discussion 

3.1 Results under quasi-static compressive stress 

3.1.1 EPS 

EPS shows the typical shape of the stress-strain curve that follows the Gibson’s model (Fig. 3) 

with three differentiated zones: the elastic zone, the collapse plateau and the densification zone. 

These results are similar to previous ones obtained by other authors (Krundaevaad 2016, Chen 

2015). It can be highlighted here that, an increase in density implies higher stress in the collapse 

plateau zone but a lower densification strain. This might mean that the helmet could absorb less 

energy before reaching the densification zone. Additionally, higher density implies higher 

Young´s modulus in the elastic zone and a higher slope in the plateau zone. It is also possible to 

determine the transition between different zones (Fig. 3) that can be defined with approximate 

to lines. 

Analysing the curve specific stress vs strain (Fig. 4) it can be pointed out that the difference 

between curves is lower than in the previous case. This curve is important if there is not any 

limit in the geometry of a helmet and it can be used to compare two specimens with the same 

weight. It can be pointed out here that higher density implies higher specific stress and higher 

specific Young´s modulus; however, there are fewer differences than in the previous figure. 

This means that, with a thicker liner of lower density foam, it is possible to obtain a helmet with 

the same weight but with fewer differences in stiffness. 

Analysing the curve of the absorbed energy vs strain (Fig. 5), it is possible observe that EPS 

with the highest density can absorb more energy before the densification point and this energy 

increase with the density. Hence, with the same volume, those materials with higher density will 

absorb more energy before densification. 

Analysing the curve of the specific absorbed energy vs strain (Fig. 6), it is possible see that EPS 

120 has the lower value before the densification point. For the other EPS, they have a similar 

limit but with higher strain. This entails that, with the same weight, the EPS with lower density 
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will have a better behaviour as, on the one hand, it can absorb the same amount of energy before 

reaching the densification point and, on the another hand, it will have lower stiffness, and thus 

the deceleration of the head will decrease. At this point it must be highlighted that the thickness 

of the liner of the helmet cannot increase indefinitely since there are maximum dimensions of 

the helmet to take into consideration. Table 2 shows the main mechanical properties of the 

different EPS. 

3.1.2 Cork products 

Analysing the results of the cork (Fig. 3), these materials have a similar stress-strain shape to 

that of EPS´s, with an initial zone with a constant slope (similar to the elastic one), a plateau 

zone with a lower slope than the initial one (but higher than the slope of the EPS in this zone), 

and an exponential zone similar to the densification zone. For this material, it is difficult to 

determine the densification point because the transition between the plateau and the 

densification zone is not abrupt enough, and, furthermore, cork products do not have a bulk 

modulus that could be used. Similarly, the transition between the elastic and the plateau zone is 

also difficult to determine.  

It can also be pointed out that natural cork, with a density of 260 kg/m3, has the highest stress 

value and similar shape behaviour to 120 kg/m3 EPS; the most similar behaviour to EPS can be 

observed due to the internal structure of natural cork. Regarding the other cork products, it can 

be observed that, despite its lower density, cork agglomerate (AC) has the second highest stress 

values between the corks and, in the case of white agglomerate cork stress values increase with 

density. Finally, black cork has the lowest stress values. Likewise, it must also be pointed out 

that higher stress values imply a lower strain limit before the exponential zone. Analysing the 

results of the white cork agglomerates, it can be observed that lower density implies lower stress 

levels but also lower strain for the densification point and lower slopes for the elastic and the 

plateau zone. 

When comparing EPS and cork materials (Fig. 3), it can be observed that, in both cases, 

densification appears in the strain zone when reaching 0.4 to 0.6. However, there are significant 

differences in the shapes of curves of both materials: the slope in the elastic zone is lower for 

the cork agglomerates but in the plateau zone is higher. 

Comparing EPS and cork values, 275 kg/m3 white corks and 170 agglomerate cork are similar 

to 75 kg/m3 and 80 kg/m3 EPS. In the case of the 222 kg/m3 white cork, its behaviour is similar 

to 60 kg/m3 EPS, with black cork having lower stress limits.  

Analysing the curve specific stress vs strain (Fig. 4) it can be pointed out, in the case of white 

cork and black cork, that their curves are similar but with a lower density, the strain before the 

exponential zone being higher; thus with the same weight, cork products with lower density 

have better behaviour. In the case of the natural cork, the specific stress values before 

densification are the highest, followed by agglomerate cork; however, agglomerate cork has a 

lower strain limit before densification than natural cork and the other materials. When 

comparing this results with the EPS, all cork specimens have lower specific stress levels due to 

the lower densities of the EPS. 

With regards to energy (Fig 5), natural cork displays the best behaviour, with a similar 

behaviour to EPS 120. Agglomerate cork comes second in behavioural properties followed by 

white corks, depending on their density. Finally, black cork is the material that can absorb the 

least energy. When comparing these results with EPS, these materials have similar energy 

levels, with white corks and 170 agglomerate cork being similar to the 75 kg/m3 EPS and 80 

kg/m3 EPS. In the case of 222 kg/m3 white cork, its behaviour is similar to 60 kg/m3 EPS, with 

black cork having the lowest stress limits.  
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In terms of specific energy (Fig. 6), natural cork and agglomerate cork display similar behaviour 

and, for lower strain levels (before the exponential zone), 1 Kg of natural cork can absorb more 

energy than agglomerate cork.  

In the case of white agglomerate corks, it must be brought to light that all of them have the same 

behaviour. Thus, 1 kg of these materials can absorb the same amount of energy.  

In the case of black agglomerate, it has similar behaviour to white agglomerates until it reaches 

a strain of approximately 50%. After that point it displays better behaviour. Consequently, the 

material with the third highest specific energy absorption capability is black agglomerate due to 

its lower density.  

However, compared with the EPS, cork products can absorb less energy per unit of mass due to 

their higher density. 

3.2 Results under dynamic compressive stress 

3.2.1 EPS 

Analysing the results of the EPS using the drop tower to absorb energy of 75 J (Fig. 7 and Fig. 

8), it can be observed that the deceleration curve shows a similar shape to that of the stress-

strain curve. At the beginning there is a zone with increasing deceleration in regards with the 

elastic zone; there is also a zone with constant deceleration related to the plateau zone; and 

finally there is a high peak in deceleration associated with the densification zone. It must be 

highlighted that the elastic deceleration slope is directly associated with the density of EPS; the 

constant deceleration plateau shows the same relationship. Finally, due to the higher capacity of 

denser EPS to absorb energy before the densification zone, the peak in deceleration is lower for 

denser EPS. Likewise, the peak in deceleration appears later, especially for EPS 120. As a 

result, the maximum peak in deceleration is lower for denser EPS. In addition, the average 

deceleration value (Table 3) is lower too. These results are similar to those by other authors 

(Krindaevaad 2016). 

3.2.2 Cork products 

Analysing the results of the cork and its products using the drop tower to absorb energy of 75 J 

(Fig. 7), it can also be observed that the deceleration curve has a similar shape to the stress-

strain curve. At the beginning there is a zone with increasing deceleration associated with the 

elastic zone; there is a zone with gradually increasing deceleration (but lower than in the 

previous case) that is related to the plateau zone; and finally there is a high peak in deceleration 

with regard to the densification zone.  

Consequently, when compared, both EPS and corks have similar deceleration curves, with their 

stress-strain quasi-static curves being closely related. It must be highlighted here that, as with 

EPS, the elastic deceleration slope is directly related to the stiffness of the material, with the 

same phenomenon occurring in the plateau zone. Finally, those materials having higher 

deceleration values in these zones can absorb much more energy and, as a result, the highest 

peak in deceleration that appears during densification takes place at a later stage, as well as 

being lower. It can also be observed that natural cork has a significantly lower peak whereas 

black cork has the highest.  

These results are condensed in Table 3, where average deceleration is also displayed. This table 

shows that natural cork presents the lowest peak regarding deceleration and average 

deceleration; whereas black cork presents the highest values; the other materials share similar 

values. Consequently, natural cork is the material with the best behaviour while the rest have 

similar ones, with the exception of black cork, whose behaviour is notably the worst. 
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Comparing results for cork products and EPS, it can be observed that, due mainly to the 

differences in the shape of the stress-strain curve for each type of material, cork products exhibit 

lower maximum decelerations but higher initial deceleration at the initial stages of the impact. 

However, the average deceleration is similar for both types of materials so it is necessary to 

include an additional criterion to compare these materials. 

Another experimental test carried out involved a drop tower test to absorb 75 J but with a 40 

mm side box instead of 28 mm, in order to compare materials that must absorb a lower 

volumetric energy (1/3) as is shown in Fig. 8. This test is representative of a low velocity 

impact, whereas the previous test represented a high velocity impact.  

The results show that materials have an initial zone with a gradual increase in deceleration 

associated with the elastic zone of the stress-strain curve, as in the previous test. Before that, the 

curve slope changes depending on the shape of the plateau zone of the stress-strain curve until 

the material can absorb all the energy. Consequently, the shape changes and the material can 

either reach the densification zone (agglomerate cork and black cork) or not. In the latter case, 

the shape of the curve displays a greater disparity to the stress-strain curve. It must be 

highlighted at this point that materials (with the exception of black cork, which reaches a higher 

stress in the densification zone), have similar decelerations (Table 3). 

The material with the lowest deceleration is middle size grain white cork. When comparing 

average deceleration, these materials are similar. Consequently, in this case white middle grain 

cork is the most adequate material; the other types of cork have similar adequacy, with the 

exception of black cork, whose adequacy is the worst by far. 

3.2.3 HIC study 

Although the HIC criterion is not specifically designed to compare the decelerations in the drop 

tower test, in this article, the criterion has been used to compare materials due to the previous 

mentioned limitations. 

It has been assumed here that the material displaying better properties will have lower 

deceleration peak values and lower average deceleration. In regard to this last point, it must be 

highlighted that this average deceleration must be analysed in different periods of time along the 

time domain in order to obtain the worst average deceleration, which will entail the greatest 

brain damage.  

The deceleration of the drop tower test is assumed to be similar to the one found in the 

accelerometer in the head of a dummy with a helmet, since there are certain similarities between 

the deceleration curves from drop tower test, and the test carried out by other authors (Gimbel 

2008) to test helmets with different EPS.  

Table 4 shows the HIC obtained. It can be seen that, for higher impact velocities, EPS with 

higher density also implies lower HIC levels, as the material does not reach the densification 

zone and results in too stiff a behaviour. Likewise, natural cork has notably lower HIC values 

than other materials. On the other hand, black cork displays the most inadequate behaviour, with 

a significantly high HIC level.  

When comparing EPS with cork materials, it must be highlighted that cork products have lower 

HIC levels than the EPS and, consequently, helmets made of cork will be better suited than 

those made of EPS. This is mainly due to the fact that cork materials have a different stress-

strain shape, with lower initial elastic slope and a constant increase in the slope from a low to a 

high strain in the plateau zone, which involves increasing deceleration matching the one found 

in the deceleration curve (Fig. 7).   
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On the other hand, EPS has a higher slope in the elastic zone, implying higher initial 

deceleration and a subsequent constant medium stress level in the plateau zone implying a 

constant higher average deceleration (Fig. 7). As a result, average deceleration values will be 

lower for cork and cork products. 

In the case of low impact velocity (40 mm size specimens) (Fig. 8), natural cork does not have 

the lowest HIC, given the fact that, in this case, average deceleration reaches higher values, as 

some other materials do not reach the densification zone. Consequently, agglomerate cork and 

middle size white cork display the best behaviour. 

3.3 Study of the resilience of the materials 

Another aspect to study is the capacity of materials to absorb multiple impacts at the same point, 

which is especially important for a helmet in the event of an accident. Fig. 9, Fig. 10 and Fig. 11 

show the stress-strain curve for two consecutive load cycles of some of the materials for three 

different maximum strains.  

It can be observed that the EPS presents different for a maximum strain of a 90%; for lower 

maximum deformations (50% and 75%) the material presents a high permanent deformation 

(Table 5); by contrast, in the case of the highest deformation that imply a high densification, the 

material undergoes a rebound effect and exhibits a lower permanent deformation. This 

phenomenon has been noticed for all the EPS foams ant it could be due to the fact that, after the 

densification point, the material acts as a spring and some of the energy absorbed produce a 

higher recovery of the internal structure. It must be also highlighted that, whilst EPS foams in 

this particular case has low permanent deformation, their internal structure is totally damaged 

and, consequently, its capability to absorb energy in successive load cycles is negligible (Table 

6). At this point, it must be clarified that, though EPS can absorb around a 25% of the initial 

energy in the second cycle, the energy corresponds to the densification zone (see Fig. 9 for the 

EPS). 

In relationship with the cork products, Fig. 9, Fig. 10 and Fig. 11 show that, for any the 

maximum strain, the materials suffer low permanent deformations (between a 10 and a 30%); 

additionally, these figures show that, the higher maximum strain, the higher permanent 

deformation undergoes after the first load cycle. Furthermore, higher maximum strains imply 

also lower stress-strain curve in the second load cycle and, hence, a lower capability to absorb 

energy (Table 6).  

Comparing the results of the absorbed energy for EPS and cork agglomerates for a 75% of 

maximum deformation (Fig. 10) and for a 50% (Fig. 11) and the absorbed energy (Table 6), it 

can be observed that, though EPS has a low capability to absorb energy and it also suffer a high 

permanent deformation, conversely, cork and cork agglomerates have higher capability to 

absorb energy and they also suffer less permanent deformation. This phenomenon is due to the 

fact that the internal structure of cork products suffers less damages than those of the EPS. 

Additionally, lower maximum deformation implies for cork products lower internal damages 

and higher capability to recover its initial shape and to absorb more energy in subsequent 

impacts. In the case of the EPS, the crushing of the closed internal cells during the plateau zone 

imply permanent damage and, as a result, EPS undergoes high permanent deformation so it can 

absorb little energy in successive impacts. In the case of the cork agglomerates, due to their 

internal open cell structure, these structures do not collapse in the same way than those of the 

EPS and, when the load disappear, they can recover part of internal structure and part of the 

previously expelled air. Therefore, the resilience this latter material is higher. 
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It must be also noticed that BCA presents the highest resilience and, behind it, the WCA302. It 

can also be noticed for the WCA that, the higher the density is, the higher the resilience is but 

also the permanent deformation. 

Analysing also the results of the drop tower test (Table 7), it can be observed that, for the EPS, 

aforementioned phenomenon appears also for high maximum deformation appears. As a result, 

EPS bounces and can recover part of its initial shape. In the same way, it can also be observed 

that cork and cork agglomerates suffer very low permanent deformation and also that lower 

maximum deformation implies lower permanent one. Finally, it should be noticed that the 

results of the dynamic and the static test in terms of resilience show significant differences; this 

could be due to the influence of the strain rate that has not been considered in this study. Some 

authors (Kake 2019) have noticed for EPS that higher strain rate imply higher stress levels for 

stress-strain curve, but also that the densification point appears with lower strains. 

 

4. Conclusions 

The main conclusion to be drawn is that cork and cork products can be a suitable renewable-

origin substitute for EPS, in applications in which it is necessary to absorb energy and reduce 

the velocity of an element impacting with low deceleration peaks. Additionally, whilst the 

average deceleration is similar, the maximum deceleration that appears is significantly lower 

than for the EPS due to the differences in shape of their stress-strain curve, especially in the 

elastic and plateau zones. In addition, the use of the HIC criterion to compare decelerations 

reflects that cork products have lower values. Whilst this criterion was formulated to analyse the 

head injuries, it is also an indicator to compare materials for comparing materials and what it is 

more important, it uses both maximum deceleration and average decelerations. 

It must also be highlighted that the resilience capability of cork and cork products must be taken 

into consideration in those applications where more than one impact may occur in the same 

area. In this sense, cork products are much more suitable than EPS foams due to the differences 

in the internal structure of both materials. While cork products have an open cell structure that 

can recover part of their initial strength and re-introduce inside part of the air expelled during 

the impact, the closed-cell structure of the EPS collapse after the impact so they lost most of 

their strength, cannot recover its shape and also, the expelled air will not be reintroduced. 

However, more in-depth analyses of this capability should be carried out to compare their 

behaviour after 2, 3 or more impacts and also, the influence of the strain rate should be taken 

into consideration. 

Comparing the quasi-static results, it can be pointed out that EPS foams and cork and some sub-

products have similar stress-strain curves and can absorb a similar amount of energy before the 

point of densification. However, it must also be pointed out that cork and cork products have 

higher density and, as a result, the specific stress-strain curve and the specific energy that they 

can absorb is notably lower. As a result, cork and cork products will be more suitable in those 

applications in which weight is not critical and in applications in which volume is the main 

design factor. On the other hand, EPS will be significantly better in those applications where 

weight is the main design factor. 

Finally, in the case of helmets, it must be pointed out that the results obtained are not 

conclusive. The use of cork and cork products implies lower peak deceleration, lower HIC and 
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lower average deceleration than if EPS is used for the drop tower test. However, some test with 

full helmet prototypes are essential to assess the superior behaviour of the cork agglomerates; 

this is especially important because these materials have higher density and, as a result, the 

weight of the helmet will increase and could generate higher momentum in the condyle and in 

the neck; likewise, a heavier helmet implies more rotational accelerations.  
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Figure Captions 

Fig. 1 Gibson’s model for polymeric foams. 

Fig. 2 Studied cork and cork agglomerates. 

Fig. 3 Stress-strain curve for all the studied materials. 

Fig. 4 Specific stress-strain curve for all the studied materials. 

Fig. 5 Absorbed energy for all the studied materials. 

Fig. 6 Specific absorbed energy for all the studied materials. 

Fig. 7 Deceleration (m/s^2) - time curve for all the studied materials for the 75 J dynamic test. 

Specimen: 28mm box 

Fig. 8 Deceleration (m/s2) - time curve for corks and cork products for the 75 J dynamic test. 

Specimen: 40mm box 

Fig. 9 Stress-strain curve for some of the studied materials under two consecutive load cases 

with a maximum strain of a 90% 

Fig. 10 Stress-strain curve for some of the studied materials under two consecutive load cases 

with a maximum strain of a 75% 

Fig. 11 Stress-strain curve for some of the studied materials under two consecutive load cases 

with a maximum strain of a 50% 
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Designation Type Density (kg/m3) Grain size (mm) Adhesive 

EPS60 Expanded Polystyrene 64.8 2.5  

EPS80 Expanded Polystyrene 80.7 2.15  

EPS100 Expanded Polystyrene 100.9 1.95  

EPS120 Expanded Polystyrene 123.0 1.55  

WA302 White agglomerate 302 2-5 Epoxy 

WA279 White agglomerate 279 0.5-2 Epoxy 

WA222 White agglomerate 222 1-3 Epoxy 

AC170 Cork agglomerate 170 2-7 Biocol 

BA104 Black agglomerate 104 4-15 None 

NC260 Natural cork 260 None None 

 

Table 1: Studied materials, their density and their grain size. 

Table 1: Studied materials, their density and their grain size. Click here to access/download;Table;table_1.docx
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 EPS60 EPS 80 EPS 100 EPS 120 

ρ (kg/m3) 6.48E+01 8.07E+01 1.01E+02 1.23E+02 

σc,e (MPa) 5.51E-01 8.20E-01 1.44E+00 1.64E+00 

Specific σc,e (MPa) 8.50E-03 1.02E-02 1.43E-02 1.33E-02 

Ec (MPa) 7.65E+00 1.24E+00 3.83E+00 3.56E+00 

𝑊𝑒 (J/mm3) 1.98E-02 2.71E-01 2.71E-01 3.77E-01 

Specific 𝑊𝑒 (J/g) 3.06E+02 3.36E+03 2.69E+03 3.06E+03 

εc,d 6.12E-01 5.84E-01 5.03E-01 4.20E-01 

𝑊𝑝 (J/mm3) 4.50E-01 5.97E-03 7.56E-03 8.08E-03 

Specific 𝑊𝑝 (J/g) 6.94E+03 7.39E+01 7.49E+01 6.57E+01 

 

Table 2: Main mechanical properties of different EPS 

Table 2: Main mechanical properties of different EPS Click here to access/download;Table;table_2.docx
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EPS 
(28 

mm) 

Max.  
Dec. 
peak 

(m/s2) 

Av.  
Decel. 
(m/s2) 

Cork 
(28 

mm) 

Max.  
Dec. 
peak 

(m/s2) 

Av.  
Decel. 
(m/s2) 

Cork 
(40mm) 

Max.  
Dec. 
peak 

(m/s2) 

Av.  
Decel. 
(m/s2) 

EPS 60 2078,9 416,8 WA 222 1513.9 422.2 WA 222 884.6 380.5 

EPS 80 2037,6 420,2 WA 275 1366.8 408.2 WA 275 705.5 349.5 

EPS 100 1508,8 392,1 WA 302 1455.6 422.8 WA 302 821.4 368.2 

EPS 120 1006,6 372,1 NC 260 1049.9 386.7 NC 260 810.6 335.1 

   AC 170 1475.6 389.7 AC 170 854.7 341.8 

   BA 104 2451.0 414.8 BA 104 1161.0 355.6 

 

Table 3: Maximum Peak deceleration and average deceleration for EPS and cork and cork 

agglomerates 

Table 3: Maximum Peak deceleration and average deceleration
for EPS and cork and cork agglomerates
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EPS 
(28 mm) 

HIC Cork 
(28 mm) 

HIC Cork 
(40mm) 

HIC 

EPS 60 660 WA 222 453 WA 222 245 

EPS 80 641 WA 275 368 WA 275 171 

EPS 100 633 WA 302 434 WA 302 222 

EPS 120 355 NC 260 225 NC 260 245 

  AC 170 385 AC 170 168 

  BA 104 989 BA 104 279 

 

Table 4: HIC for EPS and cork and cork products. 
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Static 

Static 90% Static 75% Static 50% 

Max 
strain 

Perm. 
Strain 

Recovery 
(%) 

Max 
strain 

Perm. 
Strain 

Recovery 
(%) 

Max 
strain 

Perm. 
Strain 

Recovery 
(%) 

EPS 60 0.9 0.326 63.78 0.75 0.641 14.53 0.5 0.421 15.80 

EPS 80 0.9 0.337 62.56 0.75 0.653 12.93 0.5 0.432 13.60 

EPS 100 0.9 0.354 60.67 0.75 0.661 11.87 0.5 0.44 12.00 

EPS 120 0.9 0.387 57.00 0.75 0.668 10.93 0.5 0.447 10.60 

WA 302 0.9 0.382 57.56 0.75 0.152 79.73 0.5 0.065 87.00 

WA 275 0.9 0.377 58.11 0.75 0.184 75.47 0.5 0.084 83.20 

WA 222 0.9 0.363 59.67 0.75 0.203 72.93 0.5 0.114 77.20 

AC 170 0.9 0.342 62.00 0.75 0.211 71.87 0.5 0.0625 87.50 

BA 104 0.9 0.357 60.33 0.75 0.123 83.60 0.5 0.0219 95.62 

NC 260 0.9 0.255 71.67 0.75 0.208 72.27 0.5 0.12 76.00 

 

Table 5 Maximum reached strain and permanent strain for EPS. cork and cork products. 
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90% 
W 1º cyc. 
(J/mm3) 

W 2º cyc. 
(J/mm3) 

W red. 
(%) 

75% 
W 1º cyc. 
(J/mm3) 

W 2º cyc. 
(J/mm3) 

W red. 
(%) 

EPS 60 0.00127 0.00033 25.98 EPS 60 0.00067 0.000027 4.03 

EPS 80 0.00149 0.00038 25.50 EPS 80 0.00086 0.000031 3.60 

EPS 100 0.00187 0.00046 24.60 EPS 100 0.00103 0.000037 3.59 

EPS 120 0.00205 0.00055 26.83 EPS 120 0.00125 0.000044 3.52 

WA 302 0.00825 0.00228 27.64 WA 302 0.00244 0.000934 38.28 

WA 275 0.00665 0.00145 21.80 WA 275 0.002034 0.0007787 38.28 

WA 222 0.00422 0.000695 16.47 WA 222 0.001769 0.000644 36.40 

AC 170 0.00176 0.000652 37.05 AC 170 0.00102 0.000335 32.84 

BA 104 0.000763 0.000278 36.44 BA 104 0.00035 0.000141 40.29 

NC 260 0.00289 0.00065 22.49 NC 260 0.00162 0.00052 32.10 

50% 
W 1º cyc. 
(J/mm3) 

W 2º cyc. 
(J/mm3) 

W red. 
(%) 

EPS 60 0.000376 0.00003 7.98 

EPS 80 0.000462 0.000036 7.79 

EPS 100 0.000534 0.000041 7.68 

EPS 120 0.000594 0.000047 7.91 

WA 302 0.000595 0.000404 67.90 

WA 275 0.000606 0.000368 60.73 

WA 222 0.000616 0.000328 53.25 

AC 170 0.000365 0.000123 33.70 

BA 104 0.000119 0.000071 59.66 

NC 260 0.000695 0.000312 44.89 

 

 

Table 6 Energy absorbed under quasi static test for the first and the second load cycle for 

different maximum strains 
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Dynamic (28 mm) Dynamic (40 mm) 

Max 
strain 

Perm. 
Strain 

Recovery 
(%) 

Max 
strain 

Perm. 
Strain 

Recovery 
(%) 

EPS 60 0.81 0.579 28.57    

EPS 80 0.85 0.561 34.03    

EPS 100 0.87 0.554 36.37    

EPS 120 0.86 0.546 36.46    

WA 302 0.90 0.089 90.08 0.72 0.013 98.26 

WA 275 0.87 0.054 93.84 0.71 0.019 97.29 

WA 222 0.93 0.143 84.64 0.70 0.023 96.79 

AC 170 0.93 0.161 82.72 0.72 0.075 89.58 

BA 104 0.95 0.111 88.35 0.90 0.043 95.28 

NC 260 0.58 0.071 87.68 0.55 0.015 97.27 

 

Table 5 Maximum reached strain and permanent strain for EPS. cork and cork products. 
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Abstract 

EPS is a material that is widely used in energy absorbing applications, especially in helmets, despite its 

non-renewable origin. Cork and its derivatives however, are proposed as a substitute for polystyrene foam 

(EPS) due to their renewable origin and their easy recyclability. In spite of the low-environmental 

footprint of cork and its derivatives, there is insufficient data on their mechanical behaviour. 

Consequently, under dynamic and quasi-static loads, four different-density EPS, a natural cork material 

and five different cork products with different grain sizes and heat treatments have been tested. They have 

been compared in terms of their stress-strain and specific stress-strain curve, their volumetric capability to 

absorb energy, their specific energy, average decelerations and peak deceleration. 

Finally, EPS foams cannot recover their initial shape upon deformation due to their low resilience 

capability. This is especially important in applications such as helmets which are bound to be subjected to 

multiple impacts. However, cork and its products could have this capability for resilience and would 

therefore be more suitable for certain applications. 
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1. Introduction 

Cork is a natural material that is extracted from the bark of the cork oak tree and therefore has 

zero- carbon footprint; in addition, once a cork product has reached the end of its lifetime, it can 

be crushed and recycled to manufacture new products or, if disposed of, it can be easily 

degraded, generating zero impact on the environment. Additionally, cork has very low 

permeability to gases and liquids, has good insulating properties, high durability, high energy 

absorption capability and high viscoelastic return (Pereira 2007). This last aforementioned 

property means that, under compression, cork shows elastic behaviour and thus recovers its 

initial shape and properties after being crushed. 

Despite its properties, traditionally cork has almost exclusively been used to make wine 

stoppers. However, at present this may no longer be the case, and there is an increasing 

tendency to use it as the core of some composite sandwiches that require high strength-to-

weight ratio (Sanchez-Saez 2011), as well as to enhance other materials such as polyurethane 

(Gama 2019), polyethylene (de Vascongelos 2019) or polyfurfuryl (Menager 2019), in order to 

create materials with a lower carbon-footprint; to reduce the density of other materials such as 

concrete (Parra 2019); or in energy absorption applications such as helmets. 

As previously mentioned, thanks to its energy absorption capabilities, cork is a candidate to 

become a substitute for non-renewable materials, such as expanded polystyrene foams (EPS) in 

some applications requiring energy absorption. This is mainly the case of helmets for different 

types of applications: motorcycling, cycling, snow sports, horse riding, etc. In addition, cork has 

high viscoelastic return as opposed to EPS and, consequently, could be a better-suited material 

for helmets undergoing multiple impacts thanks to its return to initial shape and properties after 

impact. 

With regard to the use of cork in helmets, there are studies that analyse the possibility of 

substituting EPS with cork, such as the study of Coelho (2012) which by means of numerical 

tools, analyses the behaviour of a head impact against a block of cork and EPS with a density of 

50 kg/m3 where it was concluded that a combination of both materials could be useful for 

helmet liners. Likewise, Sousa (2012) compared the mechanical properties of EPS with a 

density of 30 and 50 kg/m3 with different cork agglomerates (0.2mm, 0.25 mm and 0.3 mm) and 

concluded that while cork could be used for liners in helmets, EPS had better capability to 

reduce injuries. Nevertheless, when compared with EPS, the article pointed out that since cork 

conglomerate can recover its initial shape, it can be more suitable in the event of multiple 

impacts thanks to cork´s high viscoelastic return properties. This is one of the main conclusions 

drawn by Willehelm (2017). 

Other articles, such as Tay (2014) that compare different natural materials to improve safety in 

vehicles under oblique impacts include conglomerate cork; the aforementioned study pointed in 

the same direction and noted the inferior behaviour of the cork under study. Finally, the studies 

of Fernandes (2019) which explored the use of two different agglomerated (199 and 216 kg/m3) 

and one expanded cork (159 kg/m3) showed cork´s poor adequacy as a substitute for the EPS 

(90 kg/m3), with huge modifications in the geometry of the helmet including some holes being 

required in order to finally obtain a helmet with similar mechanical behaviour to that of EPS, all 

at the expense of higher weight. 

It must be highlighted, though, that some of these studies exclusively focus their analysis on a 

limited number of types of conglomerate cork despite the diversity of existing products and by-

products of cork, each with different mechanical properties resulting from different 

manufacturing processes. The most common products are natural cork sheets, white cork 



agglomerate, black cork agglomerate (also called expanded cork) and rubber cork, which will be 

the focus of this study. 

With regard to the mechanical characterization of cork, apart from the data provided by 

manufacturers- usually providing a short range of mechanical properties (density, Young 

modulus, etc.), there are some articles focused on the mechanical properties of cork – most of 

them exclusively related to the specific application of wine stoppers. This is the case of the 

study of Crousvisier-Urion (2018) which concludes that the use of small particles of cork 

reduces stiffness; or the case of Sanchez-Gomez (2018) who analyse the mechanical properties 

of a wine stopper (some natural, others co-extruded with synthetic materials and others with 

different micro-agglomerates). Other authors analyse the influence of hydration of cork in their 

mechanical properties (Lagorde-Tachon 2017) and conclude that Young´s modulus has a 

constant value from 0% to 50% of humidity, with a significant drop from that point onwards. 

Anjos (2014) study the influence of density on the compression behaviour of cork and conclude 

that density is directly associated with the Young´s modulus and stress in the plateau zone. 

Pinto-Silva (2005) made a review of the properties, capabilities and applications of cork, 

showing the influence of grain size in Young´s modulus for three different agglomerates; 

additionally, the reviewer collected some mechanical properties from other authors which show 

compression modulus for natural cork as well as boiled cork and others undergoing different 

heat treatments. Another interesting result of this study points out that cork and its agglomerates 

have better specific properties (specific compression strength and specific modulus) than 

flexible polymer foams such as EPS. Finally, other authors (Fernandes 2015) compared some 

conglomerated cork (216 and 199 kg/m3) and expanded ones (159 Kg/m3) with EPS (90 

kg/m3) and expanded polypropylene (EPP) (60 and 90 kg/m3), by means of numerical and 

experimental tools, reaching the same conclusions, while others (Jardin 2014) obtained the 

behaviour of some cork conglomerates (216, 199, 178 and 157 kg/m3) and expanded ones (122, 

159 and 182 kg/m3) 

Another application of cork is its use as a core in tome sandwich panels. The results obtained by 

some authors (Moreira 2019) show that the performance of cork agglomerates depends on 

density, cohesion procedure of granulates and cork granule size. Therefore, these variables can 

be adjusted to obtain the desired mechanical properties, as pointed out by some other authors 

(Santos 2017), too.  

With regard to EPS, this material is traditionally used for a huge variety of applications such as 

helmets or protectors for some goods. This material is generated during a foaming process in 

which some closed air cells are generated inside the material; these cells can be manipulated to 

obtain different densities (from 10 to 150 kg/m3); with the most common densities between 60 

to 120 kg/m3 in the case of helmets. 

There are some studies about the mechanical behaviour of EPS under compressive forces. It is 

clear that there is a direct relation between density and its mechanical properties under quasi-

static and dynamic loads (Ouellet 2006, Chen 2015, Krindaevaad 2014). In all cases, the stress-

strain curve of EPS has three different zones - a linear elasticity zone; a plateau zone; and a 

densification zone. In the initial one-the linear elastic zone-, the material could recover its initial 

shape and shows a linear behaviour; however, it is a small zone which can absorb very little 

energy. Immediately after that the plateau zone is found. This is a large zone in which the level 

of stress is more or less constant; this means that in this zone the material can absorb a great 

deal of energy with the same stiffness. This is the most important zone for helmets as a huge 

amount of energy needs to be absorbed while they must deform progressively in order to avoid 

high decelerations in the head. Finally, in the densification zone the stress increases sharply and, 



as a result, should a helmet reach this zone, the head is subjected to significant deceleration, 

with ensuing neural injuries. 

When analysing the state of the art of the test of helmets conducted by means of different 

certification standards (ISO 17025 / SNELL, ECE.22.05, DOT), one of the main biomechanical 

indexes used in order to analyse the brain injury damages is the Head Injury Criterion (HIC) 

(Versace 2019), which uses the data gathered through an accelerometer in the centre of the head 

of a dummy. The HIC is determined with this equation: 

 𝐻𝐼𝐶 = 𝑚𝑎𝑥 [
1

𝑡2−𝑡1
∫ 𝑎(𝑡)𝑑𝑡
𝑡2
𝑡1

]
2.5

∙ (𝑡2 − 𝑡1)   (eq. 1) 

This criterion not only analyses the main deceleration peaks, as it includes the study of average 

decelerations during different periods of time to determine the most critical ones. These aspects 

are in regard with the movement of the brain inside the skull, which acts like a mass-spring-

mass model. 

In this article, the main objective is the comparative study of cork products and different 

densities EPS under compression efforts to analyse the possibility of the former materials to 

substitute petrol-based latter ones in certain applications in which the capability to absorb 

energy is essential. 

The main hypothesis of this study is that both types of materials, EPS and cork agglomerates 

have internal cell structures with air inside and, consequently, both will have similar mechanical 

behaviour; this behaviour has been previously mentioned and it is defined for the polymeric 

foams by the Gibson’s model (Gibson 1997). 

The Gibson’s model distinguishes three different, well-defined zones in the stress-strain curves 

of polymeric foam materials (Fig. 1): the initial elastic zone, the plateau zone and a 

densification zone. The elastic zone characterizes by the capability of the material to recover its 

initial dimensions and the shape of the curve is a linear elastic one defined by the Young’s 

modulus; in this zone the walls of the internal structure of the foam deforms elastically and can 

recover its initial shape; during the compression process, the internal pressure of air trapped 

inside the cells increases and after a certain point the cell walls cannot support the pressure and 

collapse; then the plateau zone appears; this zone is defined by a constant stress or a curve with 

a very low increasing slope that is defined with the plateau’s modulus. In this zone the material 

cannot recover its initial shape and progressively collapse; thus similar levels of stress appear 

what imply constant stiffness and decelerations. Therefore, this zone is significantly more 

suitable for energy absorption than the elastic zone and, furthermore, the deformation range of 

this zone is significantly higher, which implies a greater energy absorption and deformation 

capacity. Finally, when all the cells collapse and all the air trapped inside disappears, the 

behaviour of the material is similar to the non-foamed original, characterized by an exponential 

slope in the stress-strain curve defined by the volume modulus of the original material. It should 

be noted that this implies an exponential increase in the stiffness of the material and, 

consequently, higher decelerations. That is the main reason why the densification zone should 

be not reached in impacts. 

The end of the elastic zone is determined using the Young’s elastic modulus which is the slope 

of the curve in the elastic zone. When the curve differs more than a 0.2% from an elastic one, 

then the plateau zone has been reached. In the same way, the densification point is the 

intersection point between the line defined by the slope of the plateau zone and a tangent curve 

in the densification zone that is obtained using the bulk modulus of non-foaming material in the 

case of the EPS (Fig. 1). 



In the case of cork products, their internal structure is an open cell one that has also air inside 

but that not trapped. As a result, the stress-strain curve is expected to be similar and follow the 

Gibson’s model as well. However, the open cell structure will also suppose that the cell will not 

collapse and, as a result, the material could recover partially its initial shape if the plateau zone 

or also if the densification zone is reached. Additionally, some differences could appear in the 

stress-strain curve especially in the plateau zone so it is expected a higher slope in this zone.  

The main parameters of the stress-strain curves are as follows: 

 Maximum tensile strength in the elastic zone (σc,e) 

 Maximum tensile strength at the densification point (σc,d) 

 Maximum elastic elongation (εc,p) 

 Elongation at the densification point (εc,d) 

 Elastic Young’s modulus (Ec) 

 Plateau Young’s modulus (Ep) 

The total energy absorbed per unit of volume by the material can be obtained from this 

equation: 

 𝑊 = ∫ 𝜎
𝜀𝑖
𝑜

𝑑𝜀       (eq. 2) 

This total energy absorption can be decompound in the following two components: 

 Elastic energy absorption   𝑊𝑒 = ∫ 𝜎
𝜀𝑐,𝑝
𝑜

𝑑𝜀  (eq. 3) 

 Energy absorbed in the plateau zone 𝑊𝑝 = ∫ 𝜎
𝜀𝑐,𝑑
𝜀𝑐,𝑝

𝑑𝜀  (eq. 4) 

In relationship with the specific parameters, that are useful to compare materials in terms of 

properties with the same weight instead of in terms of properties with the same volume, they are 

obtained by dividing them by the density (ρ) of the material. 

It must be highlighted also that, one of the main contributions of this paper, that goes beyond 

the state of the art, is that it analyses not only one or two types of isolated cork agglomerates, 

but main different types of existing cork products including natural cork and black agglomerates 

and it also compares them with main EPS materials. Consequently, it would be possible to 

obtain a more precise idea of the mechanical properties of different types of cork agglomerates 

and about their capability to substitute EPS.  

Additionally, the paper delves into the capability of these materials to recover its initial shape 

and absorb a second impact. It must be highlighted here that some studies (Silva 2011) indicate 

the resilience capability of cork that can absorb multiple impacts and loads, and the least for the 

EPS (Yanzhou 2015) but there are not in-depth comparative studies about this topic. Hence, the 

article will be also focused in the comparative study of the resilience of both types of materials. 

2. Materials and methods 

The materials to be studied are the EPS used for the liners of the helmets and different types of 

cork. In the case of the EPS, EPS with densities of 60, 75, 80, 100 and 120 kg/m3 with different 

grain sizes will be studied.  

As for the study of cork, the natural material (NC), a cork agglomerate (AC), three different 

white cork agglomerates (WC) (usually called too agglomerated cork) and a black cork 

agglomerate (BC) (usually called too expanded cork) (Table 1) with different grain sizes will be 

used (Fig. 2). 



Natural cork sheets are obtained from the bark of the cork oak by means of axes. With a cutting 

machine, the external layer is removed and flat regular sheets are obtained. The dimensions of 

these sheets depend on the cutting process and the tree itself; commercially, the common sheet 

thickness ranges between 3 and 15 mm, and the length and width between 100 and 600 mm. 

Cork agglomerates are obtained after a more complex process. Natural cork and/or recycled 

cork agglomerates, are chopped into granules using mechanical processes and are subsequently 

sifted to obtain granules of different sizes. Afterwards, using heat, pressure and/or adhesives the 

granules join together to obtain regular sheets and bricks. Depending on the sizes of the 

granules and the joining processes, the obtained material has different mechanical properties. 

One of the main advantages of the agglomerates is that there are fewer shape and dimension 

limitations. 

White cork agglomerates are manufactured using pressure, heat and adhesives; although 

biodegradable water based glues are sometimes used, the most common adhesives are resins 

such as polyester, epoxy, phenolic and vinyl resins. As a result, the final material obtained loses 

part of its renewable aspect. Depending mainly on the size range of the granules and, to a lesser 

extent, on the resin used, mechanical properties change.  

Black cork agglomerates are manufactured by means of pressure combined with high 

temperature water steam; the granules expand (hence the name “expanded cork”) and suberin -a 

natural resin-, is exuded, joining the granules.  

Natural cork presented in 600x100x10 sheets; four different white agglomerate corks with 

different adhesives and densities presented in 915x610x10 sheets; and one black agglomerate 

cork presented in 1000x500x20 sheets have been studied. These materials have different 

densities and different grain sizes (Fig. 2).  

These materials have been studied under a quasi-static compression test using an 8032 

INSTRON universal test machine with a 0.2 mm/s velocity until reaching a maximum of 90% 

strain with an acquisition rate of 0.2 s. The testing machine has been equipped with a 2501 -162 

INSTRON compression platens and a INSTRON 2530-50 static load cell (maximum force: 50 

kN) and it has been used the INSTRON own digital acquisition system (DAQ).  

Cylindrical specimens of φ50 mm and a height of 40 mm have been tested and they have been 

placed in the centre of the platens using a pattern drawn on lower platen. The forces and 

displacements used to determine the stress-strain curve and the absorbed energy-strain curve 

have been obtained using the. By making use of these results alongside density, the specific 

stress-strain curve and the specific absorbed energy-strain curve have been obtained. 

In order to perform the dynamic test, a 28 mm cube has been tested for the EPS to absorb 75 J.  

As for the corks tested, a 28 mm cube and a 40 mm cube specimen were used to absorb the 

same energy and therefore, reach a lower volumetric energy level. It has been used a 75 J free 

weight impact drop tower with a maximum height of 1.5 m and a free weight of 5 kg. This 

testing apparatus include plain impact platens of φ60 mm and a vertical 482A21 PCB 

accelerometer that uses a Quantum XMX840B DAQ; the test has been performed with an 

acquisition rate of 0.06 ms and it has been used also a position pattern drawn on lower platen. 

Consequently, the impact velocity of the free weight is 5.44 m/s and the initial strain rate for the 

40 mm specimen is 136 s-1 and for the 20 mm one it is 194 s-1; additionally, it has been applied a 

channel frequency class (CFD) filter with a frequency of 600 Hz. This method is similar to the 

one used by Di Landro (2002) with the EPS.  

Likewise, the resilience of both materials for the quasi-static test has been studied. In the case of 

the quasi-static test, all the specimens have been tested to reach three different levels of strain: 



90%, 75% and 50%; this will suppose the study of the resilience capability of the materials in 

three different scenarios: with a high densification, with a low densification and in the plateau 

zone near the densification point. These test have been performed for two consecutive load 

cycles to analyse the deformation and the capability to recover the initial shape after the first 

cycle and additionally the capability to absorb energy in the second cycle. Additionally, it has 

been performed a second load cycle to depict the new stress-strain curve and compare the 

behaviour before and after the first load cycle. 

Additionally, in the case of the dynamic test, the final strain and the permanent deformation has 

been measured to analyse the capability to recover the initial shape after an impact. It must be 

pointed that, in dynamic test, the levels of energy are equal for all the specimens (75J) so the 

level of strain depends on the material and their stress-strain curve. 

For all cases, dynamic and static, the permanent deformation of all materials after the tests has 

been measured in three different places with a calliper and the average of the measurements has 

been used to define the permanent deformation. To analyse the maximum deformation for the 

static test, the INSTRON device's own measuring equipment has been used but, in the case of 

the dynamic test, a double integration of the deceleration has been used to obtain the maximum 

displacement / deformation. 

Finally, it must be pointed that all the specimens have been machined using a Roland MDX 20 

CNC milling machine. 

3. Results and discussion 

3.1 Results under quasi-static compressive stress 

3.1.1 EPS 

EPS shows the typical shape of the stress-strain curve that follows the Gibson’s model (Fig. 3) 

with three differentiated zones: the elastic zone, the collapse plateau and the densification zone. 

These results are similar to previous ones obtained by other authors (Krundaevaad 2016, Chen 

2015). It can be highlighted here that, an increase in density implies higher stress in the collapse 

plateau zone but a lower densification strain. This might mean that the helmet could absorb less 

energy before reaching the densification zone. Additionally, higher density implies higher 

Young´s modulus in the elastic zone and a higher slope in the plateau zone. It is also possible to 

determine the transition between different zones (Fig. 3) that can be defined with approximate 

to lines. 

Analysing the curve specific stress vs strain (Fig. 4) it can be pointed out that the difference 

between curves is lower than in the previous case. This curve is important if there is not any 

limit in the geometry of a helmet and it can be used to compare two specimens with the same 

weight. It can be pointed out here that higher density implies higher specific stress and higher 

specific Young´s modulus; however, there are fewer differences than in the previous figure. 

This means that, with a thicker liner of lower density foam, it is possible to obtain a helmet with 

the same weight but with fewer differences in stiffness. 

Analysing the curve of the absorbed energy vs strain (Fig. 5), it is possible observe that EPS 

with the highest density can absorb more energy before the densification point and this energy 

increase with the density. Hence, with the same volume, those materials with higher density will 

absorb more energy before densification. 

Analysing the curve of the specific absorbed energy vs strain (Fig. 6), it is possible see that EPS 

120 has the lower value before the densification point. For the other EPS, they have a similar 

limit but with higher strain. This entails that, with the same weight, the EPS with lower density 



will have a better behaviour as, on the one hand, it can absorb the same amount of energy before 

reaching the densification point and, on the another hand, it will have lower stiffness, and thus 

the deceleration of the head will decrease. At this point it must be highlighted that the thickness 

of the liner of the helmet cannot increase indefinitely since there are maximum dimensions of 

the helmet to take into consideration. Table 2 shows the main mechanical properties of the 

different EPS. 

3.1.2 Cork products 

Analysing the results of the cork (Fig. 3), these materials have a similar stress-strain shape to 

that of EPS´s, with an initial zone with a constant slope (similar to the elastic one), a plateau 

zone with a lower slope than the initial one (but higher than the slope of the EPS in this zone), 

and an exponential zone similar to the densification zone. For this material, it is difficult to 

determine the densification point because the transition between the plateau and the 

densification zone is not abrupt enough, and, furthermore, cork products do not have a bulk 

modulus that could be used. Similarly, the transition between the elastic and the plateau zone is 

also difficult to determine.  

It can also be pointed out that natural cork, with a density of 260 kg/m3, has the highest stress 

value and similar shape behaviour to 120 kg/m3 EPS; the most similar behaviour to EPS can be 

observed due to the internal structure of natural cork. Regarding the other cork products, it can 

be observed that, despite its lower density, cork agglomerate (AC) has the second highest stress 

values between the corks and, in the case of white agglomerate cork stress values increase with 

density. Finally, black cork has the lowest stress values. Likewise, it must also be pointed out 

that higher stress values imply a lower strain limit before the exponential zone. Analysing the 

results of the white cork agglomerates, it can be observed that lower density implies lower stress 

levels but also lower strain for the densification point and lower slopes for the elastic and the 

plateau zone. 

When comparing EPS and cork materials (Fig. 3), it can be observed that, in both cases, 

densification appears in the strain zone when reaching 0.4 to 0.6. However, there are significant 

differences in the shapes of curves of both materials: the slope in the elastic zone is lower for 

the cork agglomerates but in the plateau zone is higher. 

Comparing EPS and cork values, 275 kg/m3 white corks and 170 agglomerate cork are similar 

to 75 kg/m3 and 80 kg/m3 EPS. In the case of the 222 kg/m3 white cork, its behaviour is similar 

to 60 kg/m3 EPS, with black cork having lower stress limits.  

Analysing the curve specific stress vs strain (Fig. 4) it can be pointed out, in the case of white 

cork and black cork, that their curves are similar but with a lower density, the strain before the 

exponential zone being higher; thus with the same weight, cork products with lower density 

have better behaviour. In the case of the natural cork, the specific stress values before 

densification are the highest, followed by agglomerate cork; however, agglomerate cork has a 

lower strain limit before densification than natural cork and the other materials. When 

comparing this results with the EPS, all cork specimens have lower specific stress levels due to 

the lower densities of the EPS. 

With regards to energy (Fig 5), natural cork displays the best behaviour, with a similar 

behaviour to EPS 120. Agglomerate cork comes second in behavioural properties followed by 

white corks, depending on their density. Finally, black cork is the material that can absorb the 

least energy. When comparing these results with EPS, these materials have similar energy 

levels, with white corks and 170 agglomerate cork being similar to the 75 kg/m3 EPS and 80 

kg/m3 EPS. In the case of 222 kg/m3 white cork, its behaviour is similar to 60 kg/m3 EPS, with 

black cork having the lowest stress limits.  



In terms of specific energy (Fig. 6), natural cork and agglomerate cork display similar behaviour 

and, for lower strain levels (before the exponential zone), 1 Kg of natural cork can absorb more 

energy than agglomerate cork.  

In the case of white agglomerate corks, it must be brought to light that all of them have the same 

behaviour. Thus, 1 kg of these materials can absorb the same amount of energy.  

In the case of black agglomerate, it has similar behaviour to white agglomerates until it reaches 

a strain of approximately 50%. After that point it displays better behaviour. Consequently, the 

material with the third highest specific energy absorption capability is black agglomerate due to 

its lower density.  

However, compared with the EPS, cork products can absorb less energy per unit of mass due to 

their higher density. 

3.2 Results under dynamic compressive stress 

3.2.1 EPS 

Analysing the results of the EPS using the drop tower to absorb energy of 75 J (Fig. 7 and Fig. 

8), it can be observed that the deceleration curve shows a similar shape to that of the stress-

strain curve. At the beginning there is a zone with increasing deceleration in regards with the 

elastic zone; there is also a zone with constant deceleration related to the plateau zone; and 

finally there is a high peak in deceleration associated with the densification zone. It must be 

highlighted that the elastic deceleration slope is directly associated with the density of EPS; the 

constant deceleration plateau shows the same relationship. Finally, due to the higher capacity of 

denser EPS to absorb energy before the densification zone, the peak in deceleration is lower for 

denser EPS. Likewise, the peak in deceleration appears later, especially for EPS 120. As a 

result, the maximum peak in deceleration is lower for denser EPS. In addition, the average 

deceleration value (Table 3) is lower too. These results are similar to those by other authors 

(Krindaevaad 2016). 

3.2.2 Cork products 

Analysing the results of the cork and its products using the drop tower to absorb energy of 75 J 

(Fig. 7), it can also be observed that the deceleration curve has a similar shape to the stress-

strain curve. At the beginning there is a zone with increasing deceleration associated with the 

elastic zone; there is a zone with gradually increasing deceleration (but lower than in the 

previous case) that is related to the plateau zone; and finally there is a high peak in deceleration 

with regard to the densification zone.  

Consequently, when compared, both EPS and corks have similar deceleration curves, with their 

stress-strain quasi-static curves being closely related. It must be highlighted here that, as with 

EPS, the elastic deceleration slope is directly related to the stiffness of the material, with the 

same phenomenon occurring in the plateau zone. Finally, those materials having higher 

deceleration values in these zones can absorb much more energy and, as a result, the highest 

peak in deceleration that appears during densification takes place at a later stage, as well as 

being lower. It can also be observed that natural cork has a significantly lower peak whereas 

black cork has the highest.  

These results are condensed in Table 3, where average deceleration is also displayed. This table 

shows that natural cork presents the lowest peak regarding deceleration and average 

deceleration; whereas black cork presents the highest values; the other materials share similar 

values. Consequently, natural cork is the material with the best behaviour while the rest have 

similar ones, with the exception of black cork, whose behaviour is notably the worst. 



Comparing results for cork products and EPS, it can be observed that, due mainly to the 

differences in the shape of the stress-strain curve for each type of material, cork products exhibit 

lower maximum decelerations but higher initial deceleration at the initial stages of the impact. 

However, the average deceleration is similar for both types of materials so it is necessary to 

include an additional criterion to compare these materials. 

Another experimental test carried out involved a drop tower test to absorb 75 J but with a 40 

mm side box instead of 28 mm, in order to compare materials that must absorb a lower 

volumetric energy (1/3) as is shown in Fig. 8. This test is representative of a low velocity 

impact, whereas the previous test represented a high velocity impact.  

The results show that materials have an initial zone with a gradual increase in deceleration 

associated with the elastic zone of the stress-strain curve, as in the previous test. Before that, the 

curve slope changes depending on the shape of the plateau zone of the stress-strain curve until 

the material can absorb all the energy. Consequently, the shape changes and the material can 

either reach the densification zone (agglomerate cork and black cork) or not. In the latter case, 

the shape of the curve displays a greater disparity to the stress-strain curve. It must be 

highlighted at this point that materials (with the exception of black cork, which reaches a higher 

stress in the densification zone), have similar decelerations (Table 3). 

The material with the lowest deceleration is middle size grain white cork. When comparing 

average deceleration, these materials are similar. Consequently, in this case white middle grain 

cork is the most adequate material; the other types of cork have similar adequacy, with the 

exception of black cork, whose adequacy is the worst by far. 

3.2.3 HIC study 

Although the HIC criterion is not specifically designed to compare the decelerations in the drop 

tower test, in this article, the criterion has been used to compare materials due to the previous 

mentioned limitations. 

It has been assumed here that the material displaying better properties will have lower 

deceleration peak values and lower average deceleration. In regard to this last point, it must be 

highlighted that this average deceleration must be analysed in different periods of time along the 

time domain in order to obtain the worst average deceleration, which will entail the greatest 

brain damage.  

The deceleration of the drop tower test is assumed to be similar to the one found in the 

accelerometer in the head of a dummy with a helmet, since there are certain similarities between 

the deceleration curves from drop tower test, and the test carried out by other authors (Gimbel 

2008) to test helmets with different EPS.  

Table 4 shows the HIC obtained. It can be seen that, for higher impact velocities, EPS with 

higher density also implies lower HIC levels, as the material does not reach the densification 

zone and results in too stiff a behaviour. Likewise, natural cork has notably lower HIC values 

than other materials. On the other hand, black cork displays the most inadequate behaviour, with 

a significantly high HIC level.  

When comparing EPS with cork materials, it must be highlighted that cork products have lower 

HIC levels than the EPS and, consequently, helmets made of cork will be better suited than 

those made of EPS. This is mainly due to the fact that cork materials have a different stress-

strain shape, with lower initial elastic slope and a constant increase in the slope from a low to a 

high strain in the plateau zone, which involves increasing deceleration matching the one found 

in the deceleration curve (Fig. 7).   



On the other hand, EPS has a higher slope in the elastic zone, implying higher initial 

deceleration and a subsequent constant medium stress level in the plateau zone implying a 

constant higher average deceleration (Fig. 7). As a result, average deceleration values will be 

lower for cork and cork products. 

In the case of low impact velocity (40 mm size specimens) (Fig. 8), natural cork does not have 

the lowest HIC, given the fact that, in this case, average deceleration reaches higher values, as 

some other materials do not reach the densification zone. Consequently, agglomerate cork and 

middle size white cork display the best behaviour. 

3.3 Study of the resilience of the materials 

Another aspect to study is the capacity of materials to absorb multiple impacts at the same point, 

which is especially important for a helmet in the event of an accident. Fig. 9, Fig. 10 and Fig. 11 

show the stress-strain curve for two consecutive load cycles of some of the materials for three 

different maximum strains.  

It can be observed that the EPS presents different for a maximum strain of a 90%; for lower 

maximum deformations (50% and 75%) the material presents a high permanent deformation 

(Table 5); by contrast, in the case of the highest deformation that imply a high densification, the 

material undergoes a rebound effect and exhibits a lower permanent deformation. This 

phenomenon has been noticed for all the EPS foams ant it could be due to the fact that, after the 

densification point, the material acts as a spring and some of the energy absorbed produce a 

higher recovery of the internal structure. It must be also highlighted that, whilst EPS foams in 

this particular case has low permanent deformation, their internal structure is totally damaged 

and, consequently, its capability to absorb energy in successive load cycles is negligible (Table 

6). At this point, it must be clarified that, though EPS can absorb around a 25% of the initial 

energy in the second cycle, the energy corresponds to the densification zone (see Fig. 9 for the 

EPS). 

In relationship with the cork products, Fig. 9, Fig. 10 and Fig. 11 show that, for any the 

maximum strain, the materials suffer low permanent deformations (between a 10 and a 30%); 

additionally, these figures show that, the higher maximum strain, the higher permanent 

deformation undergoes after the first load cycle. Furthermore, higher maximum strains imply 

also lower stress-strain curve in the second load cycle and, hence, a lower capability to absorb 

energy (Table 6).  

Comparing the results of the absorbed energy for EPS and cork agglomerates for a 75% of 

maximum deformation (Fig. 10) and for a 50% (Fig. 11) and the absorbed energy (Table 6), it 

can be observed that, though EPS has a low capability to absorb energy and it also suffer a high 

permanent deformation, conversely, cork and cork agglomerates have higher capability to 

absorb energy and they also suffer less permanent deformation. This phenomenon is due to the 

fact that the internal structure of cork products suffers less damages than those of the EPS. 

Additionally, lower maximum deformation implies for cork products lower internal damages 

and higher capability to recover its initial shape and to absorb more energy in subsequent 

impacts. In the case of the EPS, the crushing of the closed internal cells during the plateau zone 

imply permanent damage and, as a result, EPS undergoes high permanent deformation so it can 

absorb little energy in successive impacts. In the case of the cork agglomerates, due to their 

internal open cell structure, these structures do not collapse in the same way than those of the 

EPS and, when the load disappear, they can recover part of internal structure and part of the 

previously expelled air. Therefore, the resilience this latter material is higher. 

 



 

 

It must be also noticed that BCA presents the highest resilience and, behind it, the WCA302. It 

can also be noticed for the WCA that, the higher the density is, the higher the resilience is but 

also the permanent deformation. 

Analysing also the results of the drop tower test (Table 7), it can be observed that, for the EPS, 

aforementioned phenomenon appears also for high maximum deformation appears. As a result, 

EPS bounces and can recover part of its initial shape. In the same way, it can also be observed 

that cork and cork agglomerates suffer very low permanent deformation and also that lower 

maximum deformation implies lower permanent one. Finally, it should be noticed that the 

results of the dynamic and the static test in terms of resilience show significant differences; this 

could be due to the influence of the strain rate that has not been considered in this study. Some 

authors (Kake 2019) have noticed for EPS that higher strain rate imply higher stress levels for 

stress-strain curve, but also that the densification point appears with lower strains. 

 

4. Conclusions 

The main conclusion to be drawn is that cork and cork products can be a suitable renewable-

origin substitute for EPS, in applications in which it is necessary to absorb energy and reduce 

the velocity of an element impacting with low deceleration peaks. Additionally, whilst the 

average deceleration is similar, the maximum deceleration that appears is significantly lower 

than for the EPS due to the differences in shape of their stress-strain curve, especially in the 

elastic and plateau zones. In addition, the use of the HIC criterion to compare decelerations 

reflects that cork products have lower values. Whilst this criterion was formulated to analyse the 

head injuries, it is also an indicator to compare materials for comparing materials and what it is 

more important, it uses both maximum deceleration and average decelerations. 

It must also be highlighted that the resilience capability of cork and cork products must be taken 

into consideration in those applications where more than one impact may occur in the same 

area. In this sense, cork products are much more suitable than EPS foams due to the differences 

in the internal structure of both materials. While cork products have an open cell structure that 

can recover part of their initial strength and re-introduce inside part of the air expelled during 

the impact, the closed-cell structure of the EPS collapse after the impact so they lost most of 

their strength, cannot recover its shape and also, the expelled air will not be reintroduced. 

However, more in-depth analyses of this capability should be carried out to compare their 

behaviour after 2, 3 or more impacts and also, the influence of the strain rate should be taken 

into consideration. 

Comparing the quasi-static results, it can be pointed out that EPS foams and cork and some sub-

products have similar stress-strain curves and can absorb a similar amount of energy before the 

point of densification. However, it must also be pointed out that cork and cork products have 

higher density and, as a result, the specific stress-strain curve and the specific energy that they 

can absorb is notably lower. As a result, cork and cork products will be more suitable in those 

applications in which weight is not critical and in applications in which volume is the main 

design factor. On the other hand, EPS will be significantly better in those applications where 

weight is the main design factor. 

Finally, in the case of helmets, it must be pointed out that the results obtained are not 

conclusive. The use of cork and cork products implies lower peak deceleration, lower HIC and 



lower average deceleration than if EPS is used for the drop tower test. However, some test with 

full helmet prototypes are essential to assess the superior behaviour of the cork agglomerates; 

this is especially important because these materials have higher density and, as a result, the 

weight of the helmet will increase and could generate higher momentum in the condyle and in 

the neck; likewise, a heavier helmet implies more rotational accelerations.  
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Figure Captions 

Fig. 1 Gibson’s model for polymeric foams. 

Fig. 2 Studied cork and cork agglomerates. 

Fig. 3 Stress-strain curve for all the studied materials. 

Fig. 4 Specific stress-strain curve for all the studied materials. 

Fig. 5 Absorbed energy for all the studied materials. 

Fig. 6 Specific absorbed energy for all the studied materials. 

Fig. 7 Deceleration (m/s^2) - time curve for all the studied materials for the 75 J dynamic test. 

Specimen: 28mm box 

Fig. 8 Deceleration (m/s2) - time curve for corks and cork products for the 75 J dynamic test. 

Specimen: 40mm box 

Fig. 9 Stress-strain curve for some of the studied materials under two consecutive load cases 

with a maximum strain of a 90% 

Fig. 10 Stress-strain curve for some of the studied materials under two consecutive load cases 

with a maximum strain of a 75% 

Fig. 11 Stress-strain curve for some of the studied materials under two consecutive load cases 

with a maximum strain of a 50% 

 

 

 

 


