

1 **VEGETARIANISM AND VEGANISM VERSUS MENTAL HEALTH AND COGNITIVE**
2 **OUTCOMES. A SYSTEMATIC REVIEW AND META-ANALYSIS**

4 *Isabel Iguacel^{1,2,3,4+*}, Inge Huybrechts^{5,6}, Luis A. Moreno^{1,2,3,4}, Nathalie Michels⁵*

6 ¹GENUD (Growth, Exercise, NUtrition and Development) Research Group, Faculty of Health Sciences;

7 University of Zaragoza, Edificio del SAI, C/Pedro Cerbuna s/n, 50009, Zaragoza, Spain

8 ²Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain

9 ³Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain

10 ⁴Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBn),

11 Zaragoza, Spain

12 ⁵Department of Public Health, Ghent University, Ghent, Belgium

13 ⁶International Agency for Research on Cancer, World Health Organization, 150 Cours Albert Thomas,

14 69372, Lyon Cedex 08, France.

15

16 ⁺Isabel Iguacel takes responsibility for all aspects of the reliability and freedom from bias of the data
17 presented and their discussed interpretation.

18 *** Corresponding author:** I. Iguacel, phone +34 876 55 37 53 email iguacel@unizar.es

19

20

21

22

23

24

25

26

27

28

29 **Abstract**

30 **Context:** Vegetarian and vegan diet become more popular. Although these diets are known to
31 ameliorate health, certain deficiencies might put these people at higher risk. Cognitive and mental health
32 are related diseases with high economic burden.

33 **Objective:** A meta-analysis on the relation of vegan or vegetarian diets with cognitive and mental
34 health.

35 **Data Sources:** PubMed, Scopus, Science Direct and Proquest databases were examined from the
36 beginning to July 2018.

37 **Study Selection:** Only original observational or interventional human studies on pure vegan/vegetarian
38 diets (excluding case-reports, studies without omnivorous control group, multi-lifestyle interventions
39 and eating disorders) were selected by two independent reviewers.

40 **Data Extraction:** Raw mean and standard deviation was taken for continuous outcomes while number
41 of events for categorical outcomes.

42 **Results:** From 1,249 hits, 13 articles were included on total 17,809 individuals. Most studies were
43 cross-sectional, two prospective and three interventional. Six studies included vegetarians, two vegans
44 and five both. Study quality was rather medium. No significant association was found for the continuous
45 depression score (n=9), stress (n=5), well-being (n=4) or cognitive impairment (n=3).
46 Vegans/vegetarians were at increased depression risk (odds ratio= 2.142[1.105, 4.148], n=2) and had
47 lower anxiety scores (mean difference=-0.847[-1.677, -0.018], n=7). Heterogeneity was large, thus
48 subgroup analyses showed a lot of contrasting significances with higher mental risks mainly in those
49 under 26y and in higher quality studies but no difference whether vegans versus vegetarians were
50 included.

51 **Conclusions:** More studies (especially on cognitive health) with overall better quality (e.g. adjusting
52 for confounders) are needed to make clear positive/negative associations.

53

54 **Keywords:** vegetarian diet, vegan, depression, anxiety, stress, memory, well-being, mental health,
55 cognition, dementia.

56 **Systematic Review Registration:** PROSPERO registration no. CRD42018097204

57 **Introduction**

58 Cognitive and mental disorders are critical public health issues.^{1,2} Among cognitive disorders, dementia
59 is a worldwide problem with a current prevalence of 47.5 million people and the number will double
60 every 20 years.³ Among mental disorders, depression affects more than 300 million people and it is also
61 linked with cognitive dysfunction and a higher risk for anxiety, stress and many other mental health
62 issues. A poor mental health not only negatively affects a person's emotional and physical health but
63 also productivity with more absenteeism, unemployment, and lower income. Mental health disorders
64 accounted for a total economic burden of more than \$1 trillion per year and dementia for \$818 billion
65 every year.²

66 Diet has been hypothesized to have an important role not only on physical health but also in cognitive
67 and mental health issues.⁴ For example, following a Mediterranean diet can reduce and even prevent
68 cardiovascular disease, breast cancer, depression or cognitive decline.^{5, 6} Vegetarian and vegan diets
69 have also been widely associated with physical health outcomes, including a lower incidence and/or
70 mortality from ischemic heart disease and incidence from total cancer⁷ due to its high content of fiber,
71 folic acid, vitamins C and E, potassium, magnesium, and many phytochemicals and a more unsaturated
72 fat content.⁸ Nevertheless, vegetarian and mainly vegan diets, might be deficient in vitamins B12,
73 creatine and omega-3 fatty acids,⁹⁻¹¹ which have been found to be associated with neurodegenerative
74 disease, cognitive impairment and poor mental health.¹²⁻¹⁴ Also, the bioavailability of iron and zinc in
75 vegetarian diets is poor because of their higher content of absorption inhibitors such as phytate and
76 polyphenols and the absence of flesh foods.¹⁵ Such deficiencies might lead to a lower mental health in
77 vegetarians and vegans.¹⁶

78 Results in literature have been found to be controversial,¹⁷⁻²⁹ with some investigations showing positive
79 associations of vegetarian and vegan diets with different mental health and cognitive outcomes^{17, 19-21}
80 and other studies showing an inverse association.^{18, 25, 29, 30} Equivocal results in studies can be partially
81 due to different definitions used to describe vegetarian and vegan diets (with some of the studies
82 including the consumption of fish or chicken also as vegetarian); the special characteristics of the groups
83 studied with a healthier lifestyle (i.e. Seventh Day Adventist)³¹ or the variation in the years adopting a
84 vegetarian or vegan diet.

85 Although the number of vegetarians and vegans worldwide is still low (except for India where around
86 one-third of the population is vegetarian),³² most recent surveys have shown an increasing number of
87 vegetarians and vegans mostly in high income countries. In fact, the percentage of vegetarians or vegans
88 represents more than 10% of the total population in countries such as Australia, New Zealand, Israel or
89 Sweden.³³ Taking into account the rise of people adhering to these dietary practices and the
90 controversial literature on mental and cognitive outcomes, we aim to conduct a systematic review and
91 meta-analysis investigating the associations of vegetarianism or veganism with mental and cognitive
92 outcomes.

93

94 **Methods**

95 **Search strategy**

96 The present systematic review and meta-analysis was registered in the PROSPERO database (ID:
97 CRD42018097204) and followed the systematic review methodology proposed in the “Preferred
98 Reporting Items for Systematic reviews and Meta-analyses” (PRISMA) statement (Table S1 in the
99 Supporting Information online).^{34, 35} A specific question was constructed according to the PICOS
100 (Participants, Interventions, Control, Outcomes, Study Design) principle (Table 1).³⁶

101 A systematic search of the literature was carried out using PubMed, Scopus, Science Direct and
102 Proquest databases (from database inception to July 2018). When possible, the search included
103 Thesaurus (MESH terms in Pubmed). Firstly, the diet terms were combined as follows, "vegetarian"
104 OR "Vegan" OR "Vegetarians" OR "Diet, Vegetarian" OR "Diet, Vegan". Secondly, the mental and
105 cognitive outcome terms were combined as follows, "Cognition" OR "Cognitive" OR "Depression" OR
106 "Executive Function" OR "Anxiety" OR "Memory" OR "Mental health" OR "Psychological stress" OR
107 "Emotion". Finally, both the diet and the mental and cognitive outcome terms were combined with
108 "AND". In Scopus and Science Direct and Proquest these terms had to appear in the title, abstract or
109 keywords. The filters “humans”, “articles” and “in English, Spanish, French, Italian and Portuguese”
110 were applied when possible. Two reviewers independently (I.I and N.M) examined each database to
111 obtain publications. Agreement between reviewers was found in 90% of the publications while

112 remaining inter-reviewer discrepancies were resolved by consensus. Relevant articles were obtained in
113 full and assessed against the inclusion and exclusion criteria described below.

114

115 **Inclusion criteria**

116 The inclusion criteria were as follows: 1) original studies; 2) studies performed in humans; 3) studies
117 written in English, Spanish, French, Italian or Portuguese; 4) studies including vegetarian (lacto-ovo-
118 vegetarian; ovo-vegetarian or lacto-vegetarian) or vegan diets as exposures; 5) studies including raw
119 data on mental or cognitive outcomes (i.e. mean and standard deviation for continuous variables and
120 cases and events for categorical outcomes). In the present study, vegetarians and particularly lacto-ovo-
121 vegetarians were defined as those who excluded meat, fish and seafood but not milk and dairy products
122 from their diet; vegans were defined as those who excluded any kind of animal product.

123

124 **Exclusion criteria**

125 The exclusion criteria were as follows: 1) articles that did not provide original data (e.g. systematic
126 reviews, meta-analysis, literature reviews); 2) case reports; 3) articles that did not present data regarding
127 the control group (omnivores), and 4) studies in which several interventions were carried out (i.e.
128 vegetarian or vegan diet combined with an increase in physical activity levels) making it impossible to
129 separate the individual effect of diet and 5) studies with eating disorders as an outcome due to causality.

130

131 **Data extraction**

132 After reviewing all the relevant literature, depression, anxiety, stress, mental-health/well-being and
133 mood disturbances for mental health and dementia/memory impairment for cognitive measurements
134 were identified as outcomes for the present meta-analysis. For each study that included a mental health
135 or cognitive outcome, relevant data was extracted (see Table 2)¹⁷ including number of participants, sex,
136 mean age, type of diet (e.g. vegetarian, vegan or omnivores diet), instruments used to assess the
137 outcomes, study design and quality assessment. Instruments to assess the outcomes were self-reported
138 or diagnosed by a specialist, with different tools to evaluate **depression**: Depression Anxiety Stress
139 Scales, DASS-Depression (DASS-D), Center for Epidemiologic Studies Depression (CESD), Hamilton

140 Rating Scale for Depression (HRSD) and Edinburgh Post Natal Depression Scales (EPDS); **anxiety**:
141 DASS-Anxiety (DASS-A), State-Trait Anxiety Inventory (STAI); **stress**: DASS-Stress (DASS-S) or
142 36-Item Short Form Health Survey (SF-36), used to assess depression, anxiety and mental health; **mood**
143 **disturbances**: Profile of Mood States (PMHS); **mental health**: Positive Mental Health Scale (PMHS)
144 and **dementia/memory impairment**: Mini-Mental Status Examinations (MMSE). Other information
145 extracted was whether the papers included any confounders or used raw data; possible differences
146 between groups in relevant confounders (i.e. vegan and vegetarians were usually more physically active,
147 had a lower Body Mass Index (BMI) and a higher education and were less likely to be married than
148 omnivores); the period of time for which the vegetarian or vegan diet had been followed; country or
149 countries in which the study took place and predominant ethnicity if reported.

150 Mean and standard deviation (SD) was taken for continuous outcomes while number of events in each
151 group (i.e. number of depressions diagnosed in vegetarian and vegan vs. omnivores) for categorical
152 outcomes. Only raw data (unadjusted) was used to perform the meta-analyses as only two papers in the
153 present meta-analysis included adjusted data.^{23, 29} Reporting unadjusted estimates also reduces the bias
154 of selective reporting of adjusted estimates in primary studies and the risk of over-adjustment with
155 multiple confounders. When a study offered information about matched and non-matched data the
156 matched data was taken for our analysis.

157

158 **Quality assessment**

159 Depending of the study design, the “Quality Assessment Tool for Observational Cohort and Cross-
160 Sectional Studies”³⁷ or the “Quality Assessment Tool of Controlled Intervention Studies”³⁸ provided by
161 the National Heart, Lung, and Blood Institute was used to assess the quality of the included studies.
162 Two reviewers (I.I and N.M) independently assessed and thereafter discussed the quality of the studies.
163 Agreement between reviewers was found in 90% of the publications and inter-reviewer discrepancies
164 were resolved by consensus.

165 **Search summary**

166 A total of 1,249 articles were extracted from Pubmed, Scopus, Proquest and Science Direct. After
167 eliminating all the duplicates, 911 manuscripts were evaluated. Thereafter, 857 records were excluded

168 by title and abstract reading and 54 full-text articles were assessed for eligibility (see Figure 1): 13
169 articles were discarded because they did not include a pure vegetarian or vegan diet (i.e. flexitarians or
170 self-reported vegetarians reporting to eat fish)^{13, 30, 39-49}; 11 studies had a different objective than the one
171 of our meta-analysis⁵⁰⁻⁶⁰; 6 did not include a control group (omnivorous group) to compare the mental
172 or cognitive outcome⁶¹⁻⁶⁶; 4 had eating disorders as a mental health outcome⁶⁷⁻⁷⁰; 3 were conducted in
173 unhealthy subjects (i.e. papers in which participants reported to have eating disorders before starting
174 the diet)⁷¹⁻⁷³, 1 did not provide raw data to extract^{60, 74}; 2 were not pure diet interventions in which we
175 could separate individual dietary effects^{75, 76}; 1 was not an original article.⁷⁷ The main author was
176 contacted in case the manuscript did not provide raw or adjusted data and to clarify blurred definitions
177 of diets. Also, the main author was contacted in case mixed diets had been reported in the same group
178 to ask for the separated data if available (i.e. vegetarian, vegan and pescatarian were reported in the
179 same group), which was possible for one study that was included.²⁹

180

181 **Statistical analyses**

182 All analyses were performed using Open Meta [Analyst] software. For continuous outcomes,
183 information on sample size, mean and standard deviation (SD) was taken and for categorical outcomes
184 number of events in each group mean and SD were extracted for meta-analysis. When the SD was not
185 reported in the study, the authors were first contacted and if no response¹⁹, the following formula were
186 applied: Standard Error=SD/√n; SD=interquartile range/1.35. When the mean was not reported in the
187 studies, the median was used.²⁰ The mean difference (MD) and the relative risks (RRs) or odds ratio
188 (OR) with a 95% CI were calculated for continuous and categorical data respectively. DerSimonian and
189 Laird estimators using random effects models were applied for continuous and categorical data. Effect
190 sizes were calculated for each outcome. When possible, subgroup analyses were conducted.
191 Sources of heterogeneity were investigated by subgroup analyses comparing results based on age (<=25
192 years old, 26-45 years old or >45, or NR -not reported-); sex (women, men, mainly women, men and
193 women); the period of time for which the vegetarian or vegan diet had been followed (short term period:
194 <1 year, long term: ≥1 year or NR); diet (vegetarians or vegans), instrument used to assess the mental
195 or cognitive outcome and quality assessment when information was available (<50 score versus ≥50

196 score). The heterogeneity of the studies was tested using the I^2 statistic.⁷⁸ This statistic describes the
197 variance between studies as a proportion of the total variance. A value <25% indicated low
198 heterogeneity, from 25 to 50% moderate, from 50 to 75 high heterogeneity, and >75% very high
199 heterogeneity. The associated p-value of the heterogeneity of the studies was also calculated, with a
200 non-significant result indicating absence of heterogeneity.

201 To investigate publication bias, we conducted funnel plots using RevMan (version 5.2). Additionally,
202 publication bias was assessed by Egger's linear regression test following the indications provided by
203 Peters et al.⁷⁹ Therefore, funnel plots and tests were carried out when the meta-analysis had above ten
204 studies because a small number of studies lowers test power to a point where it is too low to distinguish
205 chance from real asymmetry.⁸⁰

206

207 **Results**

208

209 **Description of the included studies**

210 After applying the exclusion criteria, a total of 13 articles¹⁷⁻²⁹ was included in this review: 11 covered
211 outcomes of depression (9 as continuous and 2 as categorical); 8 outcomes of anxiety (7 as continuous
212 and 1 as categorical); 5 on stress; 4 included mental health/well-being outcomes (continuous), 3
213 outcomes of memory impairment/Alzheimer (categorical); 2 outcomes of mood disturbances
214 (continuous), 1 outcomes of neuropsychiatric problems (categorical), 1 outcomes of personality change
215 (Figure 1)¹⁷⁻²⁹.

216 The present meta-analysis encloses 17,809 individuals. The mean age of the participants varied from
217 18 to 80 years old and most of the studies equally distributed the sample between omnivores and
218 vegetarians/vegans. Most of the studies considered both women and men (although with a higher
219 participation of women than men) or only women. Of all eligible studies, 46% (6/13) included
220 vegetarians, 15% (2/13) were conducted in vegans and 38% (5/13) included both vegetarians and
221 vegans. Most studies (62%, 8/13) were conducted in the United States, 1 in Australia, 1 in Pakistan, 1
222 in Finland, 1 in Puerto Rico, 1 included both countries Germany and China. The study design was
223 mostly cross-sectional (62%, 8/13), 2 were prospective, 2 were randomized clinical trials and 2 were

224 non-randomized trials (Table 2). Most of the studies in the present meta-analysis were of medium
225 quality with points varying between 28 and 64 on a scale of 100 (Table S2 and S3).

226

227 **Mental health differences between vegetarians/vegans and omnivores**

228 Figure 2 to 7¹⁷⁻²⁹ show the individual study results and plot the global effect of vegetarianism/veganism
229 on mental health and cognitive outcomes as well as several subgroup analyses. Several specific sub-
230 group analyses were not performed due to a lack of studies (subgroups with only 1 or 2 studies in one
231 of the groups).

232

233 **Depression (continuous)**

234 As shown in Figure 2a, no statistically significant differences were found between vegetarian or vegan
235 diets and omnivores regarding the incidence of depression (MD = -0.532; 95% CI: -2.047, 0.984).

236 Heterogeneity among studies for depression was very high ($I^2 = 92.53$; $p = 0.040$).

237 Results of the subgroup analysis showed a statistically significant higher depression level in
238 vegetarians/vegans under 26 years old (MD= 1.737; 95% CI: 0.757, 2.717; Figure 2b), in female
239 vegetarians/vegans (MD= 2.910; 95% CI: 0.876, 4.944; Figure 2c) or studies with higher quality (MD=
240 1.418; 95% CI: 0.473, 2.363; Figure 2g). Subgroup analyses on period following the diet (Figure 2d),
241 vegan vs vegetarian (Figure 2e), or used instrument (Figure 2f) did not show significant differences in
242 comparison with the control group. Heterogeneity was more pronounced in those over 25 years old (I^2
243 = 93.22; $p < 0.001$), in studies that included mainly women ($I^2 = 94.29$; $p < 0.001$), short-term studies (I^2
244 = 97.87; $p < 0.001$), studies including vegans ($I^2 = 95.10$; $p < 0.001$), when using instruments different from
245 DASS or CESD ($I^2 = 98.12$; $p < 0.001$) and lower quality studies ($I^2 = 93.62$; $p < 0.001$).

246

247 **Depression (categorical)**

248 As shown in Figure 3a, vegetarians and vegans had a higher risk of depression when using a categorical
249 variable (OR = 2.142; 95% CI: 1.105, 4.148) but heterogeneity among studies was high ($I^2 = 65.4$; $p =$
250 0.089).

251

252 **Anxiety (continuous)**

253 Vegetarian and vegan diets were associated with lower levels of anxiety (MD = -0.847; 95% CI: -1.677, -0.018) but heterogeneity among studies was very high ($I^2 = 92.08$; $p = 0.001$) (Figure 4a).
254 Results of the subgroup analysis confirmed these lower anxiety levels in vegetarians/vegans 26-45 years old (MD= -3.144; 95% CI: -4.728, -1.561; Figure 4b), in studies including predominantly women (MD= -0.744; 95% CI: -1.461, -0.026; Figure 4c), when not using DASS-A as instrument (MD= -5.940; 95% CI: -7.704, -4.175; Figure 4f) or in lower quality studies (MD= -3.144; 95% CI: -4.728, -1.561; Figure 4g). In contrast, higher levels of anxiety were detected in vegetarian/vegans younger than 26 years (MD= 0.901; 95% CI: 0.143, 1.658; Figure 4b) and higher quality studies (MD= 0.909; 95% CI: 0.158, 1.660; Figure 4g). Subgroup analyses on period of following the diet or vegan versus vegetarian did not show any significant differences with the control group (Figure 4d, Figure 4e). Heterogeneity was more pronounced in those under 26 years old ($I^2 = 92.27$; $p < 0.001$), in studies that included women and men ($I^2 = 93.86$; $p < 0.001$), in studies that did not report the period following the diet ($I^2 = 94.94$; $p < 0.001$), studies including vegetarians ($I^2 = 93.35$; $p < 0.001$), when using DASS as an assessment instrument ($I^2 = 98.12$; $p < 0.001$) and higher quality studies ($I^2 = 89.79$; $p < 0.001$).

267

268 **Stress (continuous)**

269 Vegetarian and vegan diets did not show any statistically significant associations with stress (MD = -0.422; 95% CI: -1.823, 0.979). Heterogeneity among studies for stress was very high ($I^2 = 82.71$; $p = 0.001$) (Figure 5a).

272 Results of the subgroup analysis showed lower stress levels in vegetarians/vegans 26 to 45 years old in comparison with omnivores (MD= -2.178; 95% CI: -3.538, -0.818), and in low quality studies (MD= -2.178; 95% CI: -3.538, -0.818; Figure 5f). In contrast, higher stress levels were found in younger vegetarians/vegans compared to omnivores (MD=1.033; 95% CI: 0.478, 1.587; Figure 5b) and in higher quality studies (MD= 1.005; 95% CI: 0.452, 1.559; Figure 5f). The results did not differ by sex (Figure 5c), the period following the diet (Figure 5d) or by vegan versus vegetarian (Figure 5e). Subgroup analyses by instrument were not conducted because all studies used DASS-S.

279 Heterogeneity was more pronounced in adults from 26 to 45 years old ($I^2 = 49.24$; $p = 0.139$), in studies
280 that included mainly women ($I^2 = 83.14$; $p < 0.001$), in studies that did not report the period following the
281 diet ($I^2 = 89.31$; $p < 0.001$), studies including vegetarians ($I^2 = 78.17$; $p = 0.001$) and low quality studies
282 ($I^2 = 49.24$; $p = 0.139$).

283

284 **Mental health/well-being (continuous)**

285 As shown in Figure 6a, being a vegetarian or vegan was not statistically significantly associated with
286 levels of well-being ($MD = -1.319$; 95% CI: $-2.834, 0.197$) and heterogeneity among studies was high
287 ($I^2 = 73.62$; $p = 0.004$).

288 Based on subgroup analyses, lower mental health/well-being levels were found in vegetarians/vegans
289 under 26 years old ($MD = -1.967$; 95% CI: $-2.924, -1.011$; Figure 6b), when the studies included both
290 men and women ($MD = -1.480$; 95% CI: $-2.134, -0.826$; Figure 6c), when the years of diet adherence
291 was not specified ($MD = 1.967$; 95% CI: $-2.924, -1.011$; Figure 6d) and in higher quality studies ($MD =$
292 1.967 ; 95% CI: $-2.924, -1.011$; Figure 6d).

293 Heterogeneity was more pronounced in those participants under 26 years old ($I^2 = 55.22$; $p = 0.107$), in
294 studies that included mainly women ($I^2 = 83.14$; $p < 0.001$), in studies that did not report the period
295 following the diet ($I^2 = 55.22$; $p = 0.107$), studies including vegans ($I^2 = 81.44$; $p = 0.005$) and in low
296 quality studies ($I^2 = 84.93$; $p = 0.001$).

297

298 **Other mental health outcomes**

299 A meta-analysis was not conducted on other mental health outcomes due to the insufficient quantity of
300 studies ($n=1$ or 2). However, Beezhold et al. concluded that vegetarians reported significantly less
301 negative emotion than omnivores.^{19, 20} On the contrary, Kapoor et al. reported higher neuropsychiatric
302 problems (psychosis and personality change) in young vegetarians compared to omnivores and Baines
303 found that vegetarians had significantly higher panic attacks or palpitations, deliberate self-harm and
304 other psychosomatic problems.²⁵

305

306 **Memory impairment/dementia**

307 Vegetarian and vegan diets did not show any statistically significant associations with memory
308 impairment when compared to omnivores (OR = 0.825; 95% CI: 0.242, 2.809) and heterogeneity among
309 studies was very high ($I^2 = 63.13$; $p = 0.066$) (Figure 7a).

310

311 **Publication Bias**

312 No indication for publication bias was found for studies including depression (Egger $P=0.230$) and
313 anxiety (Egger $P=0.324$). Also, visual inspection of the funnel plot did not suggest publication bias for
314 neither depression nor anxiety as the studies were distributed symmetrically (i.e. inverted funnel shape)
315 around the summary effect size (Supplementary Figure 1 and 2).

316

317 **Discussion**

318 **Overall findings**

319 To date no previous systematic review or meta-analysis has been conducted on the associations between
320 vegetarianism or veganism and mental and cognitive outcomes. We could not find a significant effect
321 of being vegetarian/vegan for the continuous depression score (n=9), stress (n=5), well-being (n=4) or
322 cognitive impairment (n=3) but vegans/vegetarians were at increased depression risk (OR = 2.142; 95%
323 CI: 1.105, 4.148, n=2) and showed higher levels of anxiety in this younger age while older adults had
324 lower anxiety scores (MD = -0.847; 95% CI: -1.677, -0.018, n=7). Heterogeneity was large, thus
325 subgroup analyses showed a lot of contrasting significances. For all tested outcomes, higher mental
326 risks were found in those under 26y and in higher-quality studies. Concerning the instruments used,
327 often no differences existed and only lower anxiety levels were found when not using the specific
328 DASS-A. Inconsistent sex-patterns appeared: more depression symptoms were seen only in female
329 vegetarians/vegans, while lower anxiety symptoms were shown only in studies including predominantly
330 women above the age of 26. Lower wellbeing was only seen in studies including both men and women.
331 Finally, no differences were detected depending on whether vegans versus vegetarians were included
332 or on the amount of years diet adherence.

333 Vegetarian and vegan diets have been found to be a protecting factor for many chronic diseases such as
334 heart disease, hypertension, type 2 diabetes, obesity, and some cancers such as colorectal and prostate⁸¹.

335 This might be because of the healthier diet intake with higher fiber, polyunsaturated fats, vitamin C,
336 bioactive molecules and a lower intake of saturated fats. All these nutrients act directly or indirectly
337 (via other diseases) to an anti-inflammatory status.⁸² Moreover, vegetarians and vegans seem to have a
338 healthier lifestyle: higher levels of physical activity and lower levels of sedentarism, alcohol and
339 tobacco consumption.⁸³ Nevertheless, our meta-analyses indicated the potential of negative mental
340 health outcomes in a vegetarian/vegan diet. Despite of benefits, several investigations have indeed
341 identified nutrient deficiencies among vegetarians and vegans^{18, 84, 85} that are related to poorer mental
342 health outcomes.^{18, 22, 25, 26}

343 Subgroup analyses showed clear age-dependent patterns with negative effects at a young age while
344 opposite effects in those older than 25. This might reflect that young people are more vulnerable to
345 deficiencies since their brain and personality are still in development.⁸⁶ While women are often more
346 sensitive to mental problems, no such consistent sex-patterns appeared in our study. Similarly, vegan
347 subjects often have more difficulties in preventing nutrient deficiencies but no higher risk for vegans
348 versus vegetarians was detected in subgroup analyses. Since information on the duration of diet
349 adherence was often lacking or imprecise, the lack of subgroup differences depending on diet adherence
350 duration is not surprising.

351

352 **Possible mechanisms involved in these associations between vegetarian/vegan diets and mental**
353 **health outcomes**

354 Large heterogeneity was found in the link of vegetarianism and veganism with mental health outcomes:
355 several non-significant findings, lower risk for anxiety but higher risk for depression and age dependent.
356 In general, higher quality studies and studies in populations <25y suggested a higher risk of all types of
357 mental problems in vegetarians and vegans compared to omnivores.

358 A first possible explanation for these associations is a reverse causal relationship between vegetarianism
359 or veganism and mental health outcomes: individuals who have psychosocial disorders are more eager
360 to follow a vegetarian or vegan diet in order to improve their mental health. Based on age of diet
361 adoption in a German study, the adoption of vegetarian diets was after the onset of mental disorders
362 thus confirming the possibility of reverse causation.⁴² Still, one intervention study found an

363 improvement in depression, anxiety and mood after following a vegan diet,^{17, 20} while another found
364 only improvements in stress but no significant changes in depression, anxiety or mood.¹⁹ These
365 interventions, however, have been conducted for only a short period (less than 4 months) and effects
366 during a longer period have not yet been investigated. As mental health problems often develop at young
367 age, our subgroup analysis showing higher risk in those younger than 25 might reflect this reverse
368 causation, apart from the fact that young people are more vulnerable to deficiencies. Other possible
369 explanations yielded in the literature are the nutrient deficiencies that are common in vegan diets (such
370 as some amino acids, long chain omega 3 fatty acids, vitamin B6 and B12, zinc and creatine and even
371 too low cholesterol) that could accelerate or worsen pre-existing mental conditions.⁸ All these
372 deficiencies have been found to be linked with a higher risk of mental health problems^{87, 88}. Several
373 amino-acids like methionine, tryptophan, lysine, arginine, beta-alanine and tryptophan can have a
374 protective effect on depression and on anxiety^{89, 90} as derived neurotransmitters like dopamine and
375 serotonin are important neurotransmitters in mood regulation.⁹¹ Still the story is more nuanced since
376 the levels of methionine, tryptophan and tyrosine were highest in fish-eaters and vegetarians, followed
377 by meat-eaters, but lowest in vegans.⁹² Thus the amino-acid deficiencies would mainly be an
378 explanation for health effects in vegans only.

379 Another possible explanation could be that vegetarians or vegans belong to a minority group (at least
380 until recently since the prevalence is skyrocketing the last years) and being a minority can induce
381 feelings of lower well-being.²²

382

383 **Possible mechanism of the results found in cognitive outcomes**

384 We did not find a statistically significant result between following a vegetarian/vegan diet and cognitive
385 outcomes in the two existing studies, while Giem et al. found a trend toward delayed onset of dementia
386 in vegetarians,²³ Kapoor et al. found higher neuropsychiatric and neurological problems such as
387 memory impairment, personality change, and psychosis in vegetarians. Studies that were not included
388 (because of vegetarian definition problems) were also conflicting: Xu et al. found a higher risk of
389 memory impairment and dementia in vegetarians,⁴⁸ while in another study vegetarians responded better
390 than meat-eaters in memory tasks but for other cognitive domains no differences were observed,¹⁴ and

391 macrobiotic (similar to vegan diets but fish eaten occasionally) adolescents performed worse on most
392 cognitive tests than omnivores.¹³

393 The apparently contradictory results might be explained by differences in vitamin B12 values.
394 Vegetarians had lower vitamin B12 (and 50% had a deficiency) compared to omnivores in Kapoor's
395 study where higher cognitive risks for vegetarians were found. In the macrobiotic study, vitamin B12
396 levels were indeed associated with lower performance for certain cognitive tests and not all macrobiotic
397 subjects had deficiency. The other studies did not report serum vitamin B12 profiles.^{23,48} A second
398 possible mechanism cited in the literature is the role that phytoestrogens play in cognitive function.
399 Phytoestrogens are the most bioactive components of soy (a product mainly eaten by vegetarians and
400 vegans) that seem to have a neuroprotective effect.⁹³ Creatine is another nutrient that plays a critical
401 role in brain development and function. Some papers have hypothesized that it aids cognition by
402 improving energy supply and neuroprotection. Creatine is a peptide found mostly in meat, fish and other
403 animal products, and the levels of muscle creatine are known to be lower in vegetarians. After
404 supplementation of creatine, the memory of vegetarians was better than that of meat-eaters. However,
405 at baseline, memory did not differ depending on dietary style, so any hypothesised creatine
406 deficiency in vegetarians did not influence memory, rather it was found that vegetarians were
407 more sensitive to supplementation with creatine.⁵¹

408

409 **Strengths and weaknesses of this meta-analysis**

410 To the best of the authors' knowledge, this is the first meta-analysis to examine the association between
411 vegetarianism/veganism and mental health and cognitive outcomes. An advantage is that these
412 outcomes were interpreted quite broadly while both categorical as well as continuous variables were
413 considered. This study also included many subgroup analyses (by diet, age, sex, instrument, period
414 following the diet and quality assessment score) to detect heterogeneity that might reflect more
415 vulnerable subgroups and methodological issues. This allowed us to estimate the total effect size of the
416 vegan and vegetarian diets on mental health and cognitive outcomes with a larger sample size despite
417 the large heterogeneity in the included studies.

418 A first limitation is that there are no studies including children and most of the studies included a higher
419 percentage of women than men. Secondly, there were only a few interventional studies and some of
420 them with a low-quality score had a short intervention period (i.e. 2 weeks) hindering the detection of
421 long-term consequences on cognition or mental health. Although many studies have described
422 important differences in lifestyle among vegetarians and vegans compared to omnivores (lower BMI,
423 higher levels of physical activity and lower levels of sedentarism, alcohol and tobacco consumption),
424 only two studies took into account key potential confounders.^{23, 29} Consequently, the meta-analysis was
425 conducted on raw data only. Nevertheless, adjustment for confounders did not drastically change results
426 in these two studies. Moreover, many relevant articles were finally discarded since they wrongly used
427 the term vegan or vegetarian (i.e. they ate fish or poultry) or they self-reported to be vegetarians or
428 vegans but in the food frequency questionnaire meat and fish were occasionally eaten.^{30, 40, 42, 48} The
429 large variety in used instruments/approaches to define vegetarian/vegan limits comparability and power
430 to find significant relationships. Although it might be interesting to test the situation in pesco-
431 vegetarians (to see whether outcomes might be due to fish omission), only 3 studies identified pesco-
432 vegetarians and this was always a minority group mixed with those having a pure vegetarian diet.
433 Another group that was discarded in our systematic review was eating disorders as mental health
434 outcome. Although vegetarians and vegans were more likely to suffer from eating disorders compared
435 to omnivores in some studies^{39, 68}, we discarded these due to the fact that vegetarian/vegan diets can be
436 a camouflage of an existing eating disorder.⁹⁴ Finally, subgroup analyses were based on a small quantity
437 of studies and might thus be biased or lack power.

438

439 **Implications for public health**

440 The necessary protein, fat, carbohydrate, vitamin and mineral intake within vegetarian and vegan diets
441 for optimal health is still under investigation. Vegetarians and particularly vegans may require
442 supplementation as the nutrients may not be adequately available from plant sources. Some supplements
443 (such as vitamin B12, zinc or creatine) to improve short term memory and intelligence/reasoning may
444 help in very restricted diets. Otherwise, a well-chosen plant-based diet provides all the necessary
445 protein, fats, carbohydrates, vitamins and minerals for optimal health. Apart from the strict omission of

446 animal-based protein, dietary patterns can also be considered on a continuous scale where the amount
447 of animal-based protein is just limited.⁹⁵ The terms semi-vegetarians, flexitarians, and plant-based diets
448 reflect the decrease of animal-based proteins⁹⁶, which might perhaps bring the advantages without the
449 difficulties of preventing deficiencies in a vegetarian diet. A 6-19% reduction in the risk of all-cause
450 mortality and cardiovascular disease mortality was found by replacing 3% of energy from animal
451 protein with plant protein.⁹⁷

452

453 **Implications for further research**

454 Drawing conclusions is difficult when there is a lack of studies, when different instruments/definitions
455 are used or when study quality is low. A major flaw in current literature on this topic is the adjustment
456 for confounders. Future studies should adjust for sociodemographics, physical activity, alcohol and
457 tobacco consumption, weight status and medical history. To draw causal conclusions, well-designed
458 intervention studies are needed as we could only find 3 interventions where often participants differed
459 at baseline, there was low intervention adherence and only short-term interventions. In finding causal
460 pathways, studies should measure nutrient status as deficiencies are frequent in vegetarian/vegan diets.
461 Moreover, different gradients of plant-based diet should be examined e.g. the role of fish (with omega-
462 3 fats), milk, eggs and quality of plant-based foods (omission of meat or any other animal-product does
463 not guarantee high-nutritious choices). Herein, the duration of diet adherence is seldom examined.

464

465 **Conclusion**

466 Based on our meta-analysis, following a vegan or vegetarian diet was associated with a higher
467 depression risk and in those under 26y with higher anxiety scores but no differences for the other
468 outcomes were found. Subgroup analyses showed a lot of contrasting significances with higher mental
469 risks mainly in those under 26y and in higher quality studies. Large heterogeneity impeded us to draw
470 definitive conclusions. More studies in mental health and especially on cognitive outcomes with overall
471 better quality are needed to derive clear positive/negative associations.

472

473 **Acknowledgments**

474 *Author contributions.* I.I. and N.M searched for studies and agreed on inclusion and exclusion. I.I.
475 extracted data and performed the meta-analysis. I.I drafted the manuscript.
476 All authors revised and provided intellectual input into the final manuscript.
477 *Funding.* N.M performed this systematic review while having a project financially supported by Alpro
478 Foundation, the organisation was not involved in conception, design, performance and approval of the
479 work.
480 *Declaration of interest.* The authors have no relevant interests to declare.
481

482 **References**

483 1 Medalia A, Erlich M. Why Cognitive Health Matters. *Am J Public Health*. 2017; 107:
484 45-47.

485 2 Wimo A, Guerchet M, Ali GC, Wu YT, Prina AM, Winblad B, et al. The worldwide
486 costs of dementia 2015 and comparisons with 2010. *Alzheimers Dement* 2017; 1-7.

487 3 Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence
488 of dementia: a systematic review and metaanalysis. *Alzheimers Dement*. 2013; 9: 63-75.e2.

489 4 Parletta N, Milte CM, Meyer BJ. Nutritional modulation of cognitive function and
490 mental health. *J Nutr Biochem*. 2013; 24: 725-43.

491 5 Widmer RJ, Flammer AJ, Lerman LO, Lerman A. "The Mediterranean Diet, its
492 Components, and Cardiovascular Disease". *Am J Med*. 2015; 128: 229-38.

493 6 Petersson SD, Philippou E. Mediterranean Diet, Cognitive Function, and Dementia: A
494 Systematic Review of the Evidence123. *Adv Nutr* 2016; 889-904.

495 7 Dinu M, Abbate R, Gensini GF, Casini A, Sofi F. Vegetarian, vegan diets and
496 multiple health outcomes: A systematic review with meta-analysis of observational studies.
497 *Crit Rev Food Sci Nutr*. 2017; 57: 3640-49.

498 8 Craig WJ. Health effects of vegan diets. *Am J Clin Nutr*. 2009; 89: 1627s-33s.

499 9 Gilsing AM, Crowe FL, Lloyd-Wright Z, Sanders TA, Appleby PN, Allen NE, et al.
500 Serum concentrations of vitamin B12 and folate in British male omnivores, vegetarians and
501 vegans: results from a cross-sectional analysis of the EPIC-Oxford cohort study. *Eur J Clin
502 Nutr*. 2010; 64: 933-9.

503 10 Kornsteiner M, Singer I, Elmadfa I. Very low n-3 long-chain polyunsaturated fatty
504 acid status in Austrian vegetarians and vegans. *Ann Nutr Metab*. 2008; 52: 37-47.

505 11 Delanghe J, De Slypere JP, De Buyzere M, Robbrecht J, Wieme R, Vermeulen A.
506 Normal reference values for creatine, creatinine, and carnitine are lower in vegetarians. *Clin
507 Chem*. 1989; 35: 1802-3.

508 12 Moore E, Mander A, Ames D, Carne R, Sanders K, Watters D. Cognitive impairment
509 and vitamin B12: a review. *Int Psychogeriatr*. 2012; 24: 541-56.

510 13 Louwman MW, van Dusseldorp M, van de Vijver FJ, Thomas CM, Schneede J,
511 Ueland PM, et al. Signs of impaired cognitive function in adolescents with marginal
512 cobalamin status. *Am J Clin Nutr*. 2000; 72: 762-9.

513 14 Avgerinos KI, Spyrou N, Bougioukas KI, Kapogiannis D. Effects of creatine
514 supplementation on cognitive function of healthy individuals: A systematic review of
515 randomized controlled trials. *Exp Gerontol*. 2018; 108: 166-73.

516 15 Gibson RS, Heath AL, Szymlek-Gay EA. Is iron and zinc nutrition a concern for
517 vegetarian infants and young children in industrialized countries? *Am J Clin Nutr*. 2014; 100
518 Suppl 1: 459s-68s.

519 16 Li Z, Li B, Song X, Zhang D. Dietary zinc and iron intake and risk of depression: A
520 meta-analysis. *Psychiatry Res*. 2017; 251: 41-47.

521 17 Agarwal U, Mishra S, Xu J, Levin S, Gonzales J, Barnard ND. A multicenter
522 randomized controlled trial of a nutrition intervention program in a multiethnic adult
523 population in the corporate setting reduces depression and anxiety and improves quality of
524 life: the GEICO study. *Am J Health Promot*. 2015; 29: 245-54.

525 18 Baines S, Powers J, Brown WJ. How does the health and well-being of young
526 Australian vegetarian and semi-vegetarian women compare with non-vegetarians? *Public
527 Health Nutr*. 2007; 10: 436-42.

528 19 Beezhold BL, Johnston CS, Daigle DR. Vegetarian diets are associated with healthy
529 mood states: a cross-sectional study in seventh day adventist adults. *Nutr J*. 2010; 9: 26.

530 20 Beezhold BL, Johnston CS. Restriction of meat, fish, and poultry in omnivores
531 improves mood: a pilot randomized controlled trial. *Nutr J*. 2012; 11: 9.

532 21 Beezhold B, Radnitz C, Rinne A, DiMatteo J. Vegans report less stress and anxiety
533 than omnivores. *Nutr Neurosci*. 2015; 18: 289-96.

534 22 Forestell CA, Nezlek JB. Vegetarianism, depression, and the five factor model of
535 personality. *Ecol Food Nutr*. 2018; 57: 246-59.

536 23 Giem P, Beeson WL, Fraser GE. The incidence of dementia and intake of animal
537 products: preliminary findings from the Adventist Health Study. *Neuroepidemiology*. 1993;
538 12: 28-36.

539 24 Katcher HI, Ferdowsian HR, Hoover VJ, Cohen JL, Barnard ND. A worksite vegan
540 nutrition program is well-accepted and improves health-related quality of life and work
541 productivity. *Ann Nutr Metab*. 2010; 56: 245-52.

542 25 Kapoor A, Baig M, Tunio SA, Memon AS, Karmani H. Neuropsychiatric and
543 neurological problems among Vitamin B12 deficient young vegetarians. *Neurosciences*
544 (Riyadh). 2017; 22: 228-32.

545 26 Lindeman M. The state of mind of vegetarians: Psychological well-being or distress?
546 *Ecology and Food Nutrition*. 2010; 41: 75-86.

547 27 Rodriguez Jimenez J, Rodriguez JR, Gonzalez MJ. [Indicators of anxiety and
548 depression in subjects with different kinds of diet: vegetarians and omnivores]. *Bol Asoc
549 Med P R*. 1998; 90: 58-68.

550 28 Timko CA, Hormes JM, Chubski J. Will the real vegetarian please stand up? An
551 investigation of dietary restraint and eating disorder symptoms in vegetarians versus non-
552 vegetarians. *Appetite*. 2012; 58: 982-90.

553 29 Velten J, Bieda A, Scholten S, Wannemuller A, Margraf J. Lifestyle choices and
554 mental health: a longitudinal survey with German and Chinese students. *BMC Public Health*.
555 2018; 18: 632.

556 30 Hibbeln JR, Northstone K, Evans J, Golding J. Vegetarian diets and depressive
557 symptoms among men. *J Affect Disord*. 2018; 225: 13-17.

558 31 Fonnebo V. The healthy Seventh-Day Adventist lifestyle: what is the Norwegian
559 experience? *Am J Clin Nutr*. 1994; 59: 1124s-29s.

560 32 Leitzmann C. Vegetarian nutrition: past, present, future. *Am J Clin Nutr*. 2014; 100
561 Suppl 1: 496s-502s.

562 33 Edelstein S. Food science: An ecological approach. Burlington, MA. 2018.

563 34 Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The
564 PRISMA statement for reporting systematic reviews and meta-analyses of studies that
565 evaluate healthcare interventions: explanation and elaboration. *Bmj*. 2009; 339: b2700.

566 35 Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, et al. The
567 PRISMA extension statement for reporting of systematic reviews incorporating network
568 meta-analyses of health care interventions: checklist and explanations. *Ann Intern Med*.
569 2015; 162: 777-84.

570 36 Boudin F, Nie JY, Bartlett JC, Grad R, Pluye P, Dawes M. Combining classifiers for
571 robust PICO element detection. *BMC Med Inform Decis Mak*. 2010; 10: 29.

572 37 NIH NH, Lung, and Blood Institute. Quality Assessment Tool for Observational
573 Cohort and Cross-Sectional Studies - NHLBI, NIH. 2017.

574 38 National, Heart L, and Blood Institute. Quality
575 Assessment Tool of Controlled Intervention Studies. 2018.

576 39 Bas M, Karabudak E, Kiziltan G. Vegetarianism and eating disorders: association
577 between eating attitudes and other psychological factors among Turkish adolescents.
578 *Appetite*. 2005; 44: 309-15.

579 40 Burkert NT, Muckenhuber J, Grossschadl F, Rasky E, Freidl W. Nutrition and health -
580 the association between eating behavior and various health parameters: a matched sample
581 study. *PLoS One*. 2014; 9: e88278.

582 41 Hosseinzadeh M, Vafa M, Esmaillzadeh A, Feizi A, Majdzadeh R, Afshar H, et al.
583 Empirically derived dietary patterns in relation to psychological disorders. *Public Health*
584 *Nutr*. 2016; 19: 204-17.

585 42 Michalak J, Zhang XC, Jacobi F. Vegetarian diet and mental disorders: results from a
586 representative community survey. *Int J Behav Nutr Phys Act*. 2012; 9: 67.

587 43 Thygesen LC, Gimsing LN, Bautz A, Hvidt NC, Johansen C. Chronic
588 Neurodegenerative Illnesses and Epilepsy in Danish Adventists and Baptists: A Nationwide
589 Cohort Study. *J Alzheimers Dis*. 2017; 56: 1429-35.

590 44 Nutrition and mental development of 4-5-year-old children on macrobiotic diets -
591 Herens - 1992 - *Journal of Human Nutrition and Dietetics* - Wiley Online Library. 2018.

592 45 Northstone K, Joinson C, Emmett P. Dietary patterns and depressive symptoms in a
593 UK cohort of men and women: a longitudinal study. *Public Health Nutr*. 2018; 21: 831-37.

594 46 Salehi-Abargouei A, Esmaillzadeh A, Azadbakht L, Keshteli AH, Afshar H, Feizi A,
595 et al. Do patterns of nutrient intake predict self-reported anxiety, depression and
596 psychological distress in adults? SEPAHAN study. *Clin Nutr*. 2018.

597 47 Sanchez-Villegas A, Henriquez-Sanchez P, Ruiz-Canela M, Lahortiga F, Molero P,
598 Toledo E, et al. A longitudinal analysis of diet quality scores and the risk of incident
599 depression in the SUN Project. *BMC Med*. 2015; 13: 197.

600 48 Xu X, Xiao S, Rahardjo TB, Hogervorst E. Tofu intake is associated with poor
601 cognitive performance among community-dwelling elderly in China. *J Alzheimers Dis*. 2015;
602 43: 669-75.

603 49 Burkert NT, Freidl W, Grossschadel F, Muckenhuber J, Stronegger WJ, Rasky E.
604 Nutrition and health: different forms of diet and their relationship with various health
605 parameters among Austrian adults. *Wien Klin Wochenschr*. 2014; 126: 113-8.

606 50 Larsen PS, Nybo Andersen AM, Uldall P, Bech BH, Olsen J, Hansen AV, et al.
607 Maternal vegetarianism and neurodevelopment of children enrolled in The Danish National
608 Birth Cohort. *Acta Paediatr*. 2014; 103: e507-9.

609 51 Benton D, Donohoe R. The influence of creatine supplementation on the cognitive
610 functioning of vegetarians and omnivores. *Br J Nutr*. 2011; 105: 1100-5.

611 52 Cook R, Benton D. The relationship between diet and mental health. *Personality and*
612 *Individual Differences*. 1993; 14: 397-403.

613 53 Crichton GE, Bryan J, Hodgson JM, Murphy KJ. Mediterranean diet adherence and
614 self-reported psychological functioning in an Australian sample. *Appetite*. 2013; 70: 53-9.

615 54 Leung B, Lauche R, Leach M, Zhang Y, Cramer H, Sibbritt D. Special diets in
616 modern America: Analysis of the 2012 National Health Interview Survey data. *Nutr Health*.
617 2018; 24: 11-18.

618 55 McLean JA, Barr SI. Cognitive dietary restraint is associated with eating behaviors,
619 lifestyle practices, personality characteristics and menstrual irregularity in college women.
620 *Appetite*. 2003; 40: 185-92.

621 56 von Gunten A, Mosimann UP, Antonietti JP. A longitudinal study on delirium in
622 nursing homes. *Am J Geriatr Psychiatry*. 2013; 21: 963-72.

623 57 Wills WJ. Food and Eating Practices During the Transition from Secondary School to
624 New Social Contexts. *Journal of Youth Studies*. 2005; 8: 97-110.

625 58 Yazigi Solis M, de Salles Painelli V, Giannini Artioli G, Roschel H, Concepcion
626 Otaduy M, Gualano B. Brain creatine depletion in vegetarians? A cross-sectional ¹H-
627 magnetic resonance spectroscopy ((¹H-MRS) study. *Br J Nutr*. 2014; 111: 1272-4.

628 59 Yackobovitch-Gavan M, Golan M, Valevski A, Kreitler S, Bachar E, Lieblich A, et al.
629 An integrative quantitative model of factors influencing the course of anorexia nervosa over
630 time. *Int J Eat Disord.* 2009; 42: 306-17.

631 60 Craig BA, Morton DP, Morey PJ, Kent LM, Gane AB, Butler TL, et al. The
632 association between self-rated health and social environments, health behaviors and health
633 outcomes: a structural equation analysis. *BMC Public Health.* 2018; 18: 440.

634 61 Bardone-Cone AM, Fitzsimmons-Craft EE, Harney MB, Maldonado CR, Lawson
635 MA, Smith R, et al. The inter-relationships between vegetarianism and eating disorders
636 among females. *J Acad Nutr Diet.* 2012; 112: 1247-52.

637 62 Bobic J, Cvijetic S, Baric IC, Satalic Z. Personality traits, motivation and bone health
638 in vegetarians. *Coll Antropol.* 2012; 36: 795-800.

639 63 Cooper CK, Wise TN, Mann L. Psychological and cognitive characteristics of
640 vegetarians. *Psychosomatics.* 1985; 26: 526-27.

641 64 Dwyer JT, Miller LG, Arduino NL, Andrew EM, Dietz WH, Jr., Reed JC, et al.
642 Mental age and I.Q. of predominantly vegetarian children. *J Am Diet Assoc.* 1980; 76: 142-7.

643 65 Link LB, Hussaini NS, Jacobson JS. Change in quality of life and immune markers
644 after a stay at a raw vegan institute: a pilot study. *Complement Ther Med.* 2008; 16: 124-30.

645 66 Behari M, Srivastava AK, Das RR, Pandey RM. Risk factors of Parkinson's disease in
646 Indian patients. *J Neurol Sci.* 2001; 190: 49-55.

647 67 Zuromski KL, Witte TK, Smith AR, Goodwin N, Bodell LP, Bartlett M, et al.
648 Increased prevalence of vegetarianism among women with eating pathology. *Eat Behav.*
649 2015; 19: 24-7.

650 68 Klopp SA, Heiss CJ, Smith HS. Self-reported vegetarianism may be a marker for
651 college women at risk for disordered eating. *J Am Diet Assoc.* 2003; 103: 745-7.

652 69 Robinson-O'Brien R, Perry CL, Wall MM, Story M, Neumark-Sztainer D. Adolescent
653 and young adult vegetarianism: better dietary intake and weight outcomes but increased risk
654 of disordered eating behaviors. *J Am Diet Assoc.* 2009; 109: 648-55.

655 70 Neumark-Sztainer D, Story M, Resnick MD, Blum RW. Adolescent vegetarians. A
656 behavioral profile of a school-based population in Minnesota. *Arch Pediatr Adolesc Med.*
657 1997; 151: 833-8.

658 71 Kahleova H, Hrachovinova T, Hill M, Pelikanova T. Vegetarian diet in type 2
659 diabetes--improvement in quality of life, mood and eating behaviour. *Diabet Med.* 2013; 30:
660 127-9.

661 72 Bakan R, Birmingham CL, Aeberhardt L, Goldner EM. Dietary zinc intake of
662 vegetarian and nonvegetarian patients with anorexia nervosa. *Int J Eat Disord.* 1993; 13: 229-
663 33.

664 73 Stokes N, Gordon CM, DiVasta A. Vegetarian Diets and Mental Health in
665 Adolescents with Anorexia Nervosa. *Journal of Adolescent Health.* 2011; 48.

666 74 Worsley A, Skrzypiec G. Teenage vegetarianism: Beauty or the beast? *Nutrition*
667 *Research.* 1997; 17: 391-404.

668 75 Chan AS, Sze SL, Woo J, Yu RH. A Chinese Chan-based lifestyle intervention
669 improves memory of older adults. *Front Aging Neurosci.* 2014; 6: 50.

670 76 Yu R, Woo J, Chan AS, Sze SL. A Chinese Chan-based mind-body intervention
671 improves psychological well-being and physical health of community-dwelling elderly: a
672 pilot study. *Clin Interv Aging.* 2014; 9: 727-36.

673 77 Wolpert T. Nutritional psychology: Is diet the key to psychological health? *Vegetarian*
674 *Times (USA).* 1982.

675 78 Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The
676 Cochrane Collaboration's tool for assessing risk of bias in randomised trials. *Bmj.* 2011; 343:
677 d5928.

678 79 Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L. Comparison of two methods
679 to detect publication bias in meta-analysis. *JAMA*. 2006; 295: 676-80.

680 80 Sterne JA, Sutton AJ, Ioannidis JP, Terrin N, Jones DR, Lau J, et al.
681 Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of
682 randomised controlled trials. *BMJ*. 2011; 343: d4002.

683 81 Melina V, Craig W, Levin S. Position of the Academy of Nutrition and Dietetics:
684 Vegetarian Diets. *J Acad Nutr Diet*. 2016; 116: 1970-80.

685 82 Ambroszkiewicz J, Chełchowska M, Rowicka G, Klemarczyk W, Strucińska M,
686 Gajewska J. Anti-Inflammatory and Pro-Inflammatory Adipokine Profiles in Children on
687 Vegetarian and Omnivorous Diets. *Nutrients*. 2018.

688 83 Alewaeters K, Clarys P, Hebbelinck M, Deriemaeker P, Clarys JP. Cross-sectional
689 analysis of BMI and some lifestyle variables in Flemish vegetarians compared with non-
690 vegetarians. *Ergonomics*. 2005; 48: 1433-44.

691 84 Iguacel I, Miguel-Berges ML, Gomez-Bruton A, Moreno LA, Julian C. Veganism,
692 vegetarianism, bone mineral density, and fracture risk: a systematic review and meta-
693 analysis. *Nutr Rev*. 2019; 77: 1-18.

694 85 Davey GK, Spencer EA, Appleby PN, Allen NE, Knox KH, Key TJ. EPIC-Oxford:
695 lifestyle characteristics and nutrient intakes in a cohort of 33 883 meat-eaters and 31 546 non
696 meat-eaters in the UK. *Public Health Nutr*. 2003; 6: 259-69.

697 86 Arain M, Haque M, Johal L, Mathur P, Nel W, Rais A, et al. Maturation of the
698 adolescent brain. *Neuropsychiatr Dis Treat* 2013; 449-61.

699 87 Rao TS, Asha MR, Ramesh BN, Rao KS. Understanding nutrition, depression and
700 mental illnesses. *Indian J Psychiatry*. 2008; 50: 77-82.

701 88 Hvas AM, Juul S, Bech P, Nexo E. Vitamin B6 level is associated with symptoms of
702 depression. *Psychother Psychosom*. 2004; 73: 340-3.

703 89 De Berardis D, Orsolini L, Serroni N, Girinelli G, Iasevoli F, Tomasetti C, et al. A
704 comprehensive review on the efficacy of S-Adenosyl-L-methionine in Major Depressive
705 Disorder. *CNS Neurol Disord Drug Targets*. 2016; 15: 35-44.

706 90 Aucoin M, LaChance L, Cooley K, Kidd S. Diet and Psychosis: A Scoping Review.
707 *Neuropsychobiology*. 2018: 1-23.

708 91 Fernstrom JD. Dietary amino acids and brain function. *J Am Diet Assoc*. 1994; 94:
709 71-7.

710 92 Schmidt JA, Rinaldi S, Scalbert A, Ferrari P, Achaintre D, Gunter MJ, et al. Plasma
711 concentrations and intakes of amino acids in male meat-eaters, fish-eaters, vegetarians and
712 vegans: a cross-sectional analysis in the EPIC-Oxford cohort. *Eur J Clin Nutr*. 2016; 70: 306-
713 12.

714 93 Soni M, Rahardjo TB, Soekardi R, Sulistyowati Y, Lestariningsih, Yesufu-Udechuku
715 A, et al. Phytoestrogens and cognitive function: a review. *Maturitas*. 2014; 77: 209-20.

716 94 Perry CL, McGuire MT, Neumark-Sztainer D, Story M. Characteristics of vegetarian
717 adolescents in a multiethnic urban population. *J Adolesc Health*. 2001; 29: 406-16.

718 95 Satija A, Hu FB. Plant-based diets and cardiovascular health. *Trends Cardiovasc Med*.
719 2018; 28: 437-41.

720 96 Corrin T, Papadopoulos A. Understanding the attitudes and perceptions of vegetarian
721 and plant-based diets to shape future health promotion programs. *Appetite*. 2017; 109: 40-47.

722 97 Song M, Fung TT, Hu FB, Willett WC, Longo V, Chan AT, et al. Animal and plant
723 protein intake and all-cause and cause-specific mortality: results from two prospective US
724 cohort studies. *JAMA Intern Med*. 2016; 176: 1453-63.

725