

Natural cork and its agglomerates as substitutes for high-density expanded-polystyrene foams in sandwich cores

Journal:	<i>Holzforschung - International Journal of the Biology, Chemistry, Physics and Technology of Wood</i>
Manuscript ID	HOLZ.2021.0004.R2
Manuscript Type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Miralbes, Ramon; University of Zaragoza, Ranz, David; University of Zaragoza Gomez, Jose Antonio; University of Zaragoza Zouzias, Dimitris; Katholieke Universiteit Leuven,
Section/Category:	Technology
Keywords:	cork, sandwich-structured composite, tensile, natural core, shear, traction

SCHOLARONE™
Manuscripts

1
2
Reviewer: 1
3

4
5 A thorough revision of the manuscript was requested by reviewers.
6

7 However the manuscript is still confusing regarding Materials and methods which
8 includes a lot of discussions with regard to different ways of testing. This should
9 preferably be discussed and commented in the section results and discussion.
10

11 - It has been modified
12

13 The presentation of the experimental procedure is also a combination of trivial
14 parameters and more specialized. It would be good to make this presentation more
15 addressing the lesser used constant not presenting school-book constants. A good way
16 could be to have figures similar to figure 2 for the other testing cases as Supplementary
17 figures.
18

19 - It has been provided.
20

21 Material presented as "additional" Should be given as Supplementary figures.
22

23 - It has been modified
24

25 Figures 3, 4, 6, 7 are still not readable the text on axis most be made larger and readable.
26

27 - Text has been made lager and readable and it has been improved the general quality of
28 the images.
29

30 An English revision must be performed. Especially the added material is not provided in
31 acceptable English.
32

33 - It has been checked and, afterwards performed using the Elsevier Language Service. It
34 has been attached the certificate.
35

36 The manuscript still at some positions referral's to figures numbered according to the
37 old submission and no longer existing.
38

39 - It has been checked and modified
40

41 The extensive tables are not very much commented on. It could serve the reader more if
42 key-parameters were presented as figures and the tables were supplied as supplementary
43 material.
44

45 - Tables 2 to 4 has been provided has supplementary material. It has been added some
46 figures with the most important information of the table
47

1 1 **Natural cork and its agglomerates as substitutes for high-density**
2 2 **expanded-polystyrene foams in sandwich cores**

3 3 R. Miralbes^a*, D. Ranz^a, J.A. Gomez^a, D. Zouzias^b

4 4 *^aDepartment of Design and Manufacturing, University of Zaragoza, Zaragoza, Spain*

5 5 *^bDepartment of Design and Manufacturing of the Catholic University of Leuven,*
6 6 *Leuven, Belgium.*

7

For Review Only

1
2
3 1 **Natural cork and its agglomerates as substitutes for high-density**
4 2 **expanded-polystyrene foams in sandwich cores**

5
6
7
8 3 Natural cork and its agglomerates are renewable materials that could be effective
9 4 substitutes for non-renewable foams, such as expanded polystyrene (EPS), in the
10 5 cores of sandwich materials. Although many existing studies have analysed the
11 6 behaviour of different cork agglomerates under tensile, compression, or shear
12 7 loads, no studies to date have simultaneously analysed the behaviour of multiple
13 8 cork materials under all these loads. Therefore, in this study, the behaviour of
14 9 natural cork and five cork agglomerates were analysed under tensile,
15 10 compression, and shear loads, and the mechanical and specific properties and the
16 11 shape of the stress-strain curves were compared with those obtained for five EPS
17 12 counterparts to analyse the relationship between the mechanical behaviour of the
18 13 core and the main failure modes of the sandwich. Although EPS exhibited higher
19 14 specific properties, natural cork exhibited higher mechanical properties under all
20 15 the loads. The agglomerates all exhibited lower mechanical properties except for
21 16 shear strain. Additionally, because no specific standards were available for
22 17 testing cork products, slightly modified standards for testing other materials were
23 18 adopted.

24
25 19 Keywords: cork, sandwich-structured composite, tensile, natural core, shear, traction,
26
27 20 compression

28
29 21 **1. Introduction**

30
31 22 Producing more environmentally friendly products is essential for reducing carbon
32
33 23 footprints. Therefore, it is imperative to substitute non-renewable petroleum-based
34
35 24 materials with renewable ones. In addition, sandwich-structured composites composed
36
37 25 of a low-density thick core and two stiff and rigid face plates must be bio-degradable
38
39 26 and recyclable after their useful life. Recently, Bach et al. (2017) have addressed these
40
41 27 issues and developed a completely bio-degradable and renewable sandwich-structured
42
43 28 composite using hardwood face skins, a natural glue, and a mushroom foam core, which
44
45 29 provided higher impact and bending properties. Sadeghian et al. (2018) compared the

1 use of natural and synthetic materials (flax and glass fibres, respectively) for the face
2 plates and honeycomb-structured white cork agglomerate (density unspecified) for the
3 core and found that although the natural materials were comparable to the synthetic
4 ones, the mechanical properties (especially the through-thickness and core-shear
5 strengths) had to be improved.

6 Notably, balsa wood is a renewable material, which has been extensively used in
7 sandwich-structured composites. Owing to the high mechanical strength, stiffness, and
8 low weight of balsa wood, such materials provide outstanding specific mechanical
9 properties. Therefore, balsa wood core, obtained from Core Lite Composites, was used
10 in the study, and its properties are listed in the tables for comparison with those of
11 expanded polystyrene foam (EPS) and cork products.

12 Additionally, Le Duigou et al. (2011) compared sandwiched bio-materials (made of
13 poly-L-lactic acid/flax mat bio-composite laminate for face plates and balsa cores) with
14 reference materials (glass-mat-reinforced polyester composite for face plates and balsa
15 cores) and found that, despite the environmental attractiveness of bio-composites and
16 sandwiched bio-materials, they are heavier, thereby penalising them in applications
17 where lightweight materials are essential.

18 Zaini et al. (2020) reviewed the application of natural fibre composites to core
19 structures and their broader application potential including the substitution of cork
20 agglomerates for some foams. The authors focused on the substitution of EPS cores
21 with cork and its agglomerates owing to their similar densities. Cork and its
22 agglomerates are renewable materials obtained from *Quercus suber*, an oak tree mainly
23 found on the Iberian Peninsula. Harvesting cork is environmentally friendly because the
24 bark is stripped, leaving the tree alive for future use. Because cork is only harvested

1 1 every nine years, the bark can grow until reaching an acceptable thickness.

2 2 Silva et al. (2005) and Díaz-Parralejo et al. (2014) conducted an exhaustive analysis of
3 3 the internal structure and properties of cork and determined the most important factors
4 4 were the low density, near-impermeability to liquids and gases, high friction coefficient,
5 5 thermal isolation properties, near-zero Poisson coefficient, flexibility, compressibility,
6 6 mechanical strength, inertness and chemical resistance, resistance to biological
7 7 corrosion, flame retardance, ease of machining, acoustic and anti-vibration properties,
8 8 high elasticity, and the ability to recover its initial form after high-compression
9 9 deformation. However, despite these excellent properties, the traditional applications of
10 10 cork are mainly wine stoppers, pin boards, floorings, and roughing. Recently, however,
11 11 new applications for cork have included thermal isolators in buildings, aggregates to
12 12 lighten concrete colour, seals, helmet liners, etc.

13 13 Cork and its agglomerates could be applied to the core of sandwich materials, which has
14 14 been extensively studied in recent years. Reis and Silva (2009) studied the mechanical
15 15 properties of 3 cork-agglomerate cores applied to carbon/epoxy faces under 3-point
16 16 bending and shear tests and compared them with the corresponding mechanical
17 17 properties of Euro-Composite® aerospace (ECA)-grade honeycomb and ROHACELL®
18 18 cores. The authors found that for the cork-sandwich core, the shear properties and
19 19 maximum load measured under the 3-point bending test were much lower.

20 20 Najafi et al. (2020) analysed the use of cork agglomerates in maritime applications
21 21 wherein moisture damage, which causes mechanical degradation, was identified as one
22 22 of the main drawbacks and found that cork cores provided excellent resistance against
23 23 environmental moisture.

24 24 Sadeghian et al. (2018) compared polypropylene honeycomb and cork cores under

1 flexure loads and found that cork had a 44% lower shear modulus and a 22% lower
2 shear strength than honeycomb.

3 Other researchers have developed eco-friendly composites using cork cores and wooden
4 panels. For example, Lakreb et al. (2015) studied cork agglomerate cores with different
5 thicknesses and wooden panels for the skins and inside the core. The sandwich-
6 structured composites were analysed under perpendicular tensile and compression, pure
7 compression, pure compression with buckling, shear, and 3- and 4-point bending tests.
8 The main findings were that under perpendicular tensile loads, failure occurred inside
9 the cork core. In the 3- and 4-point bending tests, the failure was caused by core-shear
10 failure. In the shear test, the core interior failed when the load exceeded the ultimate
11 shear strength of the cork core. In the transversal compression test, failure was the result
12 of a combination of bending and blistering. Failure occurred by blistering with the
13 appearance of cracks or shear.

14 Although many previous studies have investigated sandwich-structured composites by
15 focusing on the core and skin, few have detailed the mechanical behaviour of cork
16 materials and among them, most have mainly focused on compression loads. For
17 example, Jardin et al. (2015) studied 5 agglomerate corks and 4 expanded agglomerate
18 corks exhibiting different grain sizes and densities and prepared using different binders
19 as substitutes for EPS in helmet liners. The materials were tested under quasi-static
20 compression loads. The authors concluded that the heterogeneous behaviour of the
21 materials depended on the manufacturing process, glue used, and grain size.
22 Consequently, the mechanical behaviour of the materials could be tailored by varying
23 the parameters. Similarly, Fernandes et al. (2015) compared different cork agglomerates
24 and expanded corks with different EPSSs and expanded polypropylene (EPP) foams
25 under quasi-static compression and dynamic loads from a drop tower. The authors

1 found that the synthetic materials exhibited higher plateau stresses and Young's moduli,
2 allowing the materials to absorb more energy. However, the natural materials exhibited
3 higher endurance under multiple impacts.

4 Laura and Rossit (2001) found that the main failure modes of sandwich structures were
5 face-sheet failure, dimpling, and wrinkling; core-shear failure, buckling, and crushing;
6 global buckling; and skin separation. Triantafillou and Gibson (1987) found that of
7 these failure modes, face-sheet wrinkling, core-shear failure and buckling, core
8 crushing, and skin separation were highly affected by the core mechanical properties.

9 Wadsworth et al. (2009) found that face-sheet wrinkling was a complex local failure
10 mode in which—depending on the compression, traction, and shear properties of the
11 core and skin—short-wavelength buckling appeared on the face sheet. Other teams
12 found that core-shear failure (Carlsson et al., 1991) and core-shear buckling (Ko and
13 Jackson, 1993) depended on the shear mechanical properties of the core. Douville and
14 Le Grogne (2013) found that in global buckling, the compression properties of the core
15 had negligibly affected mechanical failure. Castanié et al. (2008) found that core
16 crushing mainly depended on the compression properties of the core. Finally, skin
17 separation and wrinkling depended on the mechanical properties of the glue, skin, and
18 core and on the type of load supporting the sandwich-structured composite.

19 Despite the abundance of information available about the mechanical behaviour of cork
20 core sandwiches under diverse loads and cork materials under compression loads, there
21 is no information available regarding the behaviour of natural cork and its agglomerates
22 under different loads. Additionally, little information is available about the mechanical
23 properties of natural corks. Therefore, this study focused on these aspects by testing
24 different cork agglomerates and natural cork sheets under pure compression, traction,
25 and shear loads.

1
2 1 **2. Materials**
3
4
5

6 2 Six types of cork and cork agglomerates and high-density (60, 70, 80, and 100 kg/m³)
7
8 3 EPS (denoted by 'EPS' and the corresponding density) foams and their properties are
9
10 4 listed in Table 1. These materials were studied for their potential application to
11
12 5 mechanically high-demanding sandwich cores. EPS 70 was obtained in a 500 × 400 ×
13
14 6 28-mm sheet; the others, in 100 × 100 × 28-mm sheets.
15
16
17

18 7 Three white cork (WC) agglomerates (usually called 'agglomerated cork'), natural cork
19
20 8 (NC) material, black agglomerate (BA) cork (usually called 'expanded cork'), and
21
22 9 brown agglomerate cork (AC) (Table 1) showing different grain sizes were used (Figure
23
24 10 1).
25
26
27

28 11 NC sheets are obtained from the bark of a cork-oak tree by means of axes and specially
29
30 12 designed cutting machines used to remove only the external bark layer and produce
31
32 13 regular, uniform, flat sheets, which dimensions vary depending on how the sheets are
33
34 14 cut and the tree itself. The most common NC sheets are commercially available in
35
36 15 lengths and widths [both] and thicknesses in ranges 100–600 and 3–15 mm,
37
38 16 respectively.
39
40
41

42 17 Cork agglomerates are obtained after a more complex process in which recycled cork
43
44 18 agglomerates and/or NC are mechanically chopped and sifted to obtain granules of
45
46 19 different sizes, which are subsequently formed into bricks and/or regular sheets under
47
48 20 heat and pressure and/or by mixing the granules with binders. The main advantages of
49
50 21 agglomerates are that they have fewer dimensions and shape limitations. Therefore,
51
52 22 agglomerated materials exhibit different mechanical properties depending on the binder
53
54 23 used and the granule size.
55
56
57
58
59
60

1 WC agglomerates are manufactured using polyurethane (PU) binders and are heated
2 between 110 and 150 °C. Although bio-degradable water-based glues are sometimes
3 used, the most common binders are non-bio-degradable resins such as phenolic and
4 vinyl resins, polyester, and epoxy. Hence, the resultant agglomerates are no longer
5 completely renewable. As with regular agglomerates, the mechanical properties of WC
6 agglomerates change depending on the granule size and, to a lesser extent, the resin
7 used.

8 BAs are manufactured in high-temperature (300–370 °C) water steam under pressure
9 (40 kPa) in an autoclave. The granules expand (hence the name ‘expanded cork’) and
10 bind together owing to naturally exuded suberin resin.

11 In this study, the NC, 3 WC agglomerates prepared with different binders and densities,
12 and 1 BA and 1 AC were obtained in 600 × 100 × 10-, 915 × 610 × 10-, and 1000 × 500
13 × 20-mm sheets, respectively.

14 Despite cork being a natural material, some cork agglomerates use non-renewable
15 binders such as PU to join the grains. Although cork naturally generates its own binder,
16 the naturally exuded suberin exhibits poor mechanical properties that negatively affect
17 the behaviour of the whole material. Similarly, balsa wood is sealed using epoxy or
18 polyester, both of which are petroleum-based binders.

19 **3. Methods**

20 The materials were studied under quasi-static traction and shear testing using an 8032
21 INSTRON® universal test machine operated at 5 mm/min for the tensile and
22 compression tests and 0.50 mm/min for the shear test. At least 5 specimens of each
23 material were tested, and the average test results were used for the analysis. All the

1 specimens were machined using a Roland MDX 20 CNC mill. Five specimens of each
2 material were tested, and stress–strain and absorbed energy–strain curves were plotted
3 for the average results. The maximum standard deviation for the main parameters was <
4 6.3% of the average values.

5 *3.1. Compression test*

6 The ASTM D1621 standard was followed to test the specimens. However, owing to the
7 limitations of the original cork sheets, a 50 × 50-mm rectangular prism specimen was
8 tested at the maximum thickness. This method is like that used in other EPS and cork-
9 compression studies (Supplementary Figure 1).

10 The forces and displacements used to determine the stress–strain and absorbed energy–
11 strain curves were obtained using the INSTRON® universal test machine. By comparing
12 the results to the sample density, the specific stress–strain and absorbed energy–strain
13 curves were obtained.

14 The EPS, cork, and cork agglomerates all generated similar stress–strain curves under
15 the compression loads defined by the Ashby model developed by Gibson and Ashby
16 (1997). Doroudiani and Kortschot (2003) indicated that the EPS stress–strain curve
17 exhibited three well-defined density-dependent linear zones indicating linear elastic
18 behaviour by the slope of the elastic Young's modulus of the material. Later, in the
19 'plateau zone', the cells began to collapse at an approximately constant rate. In this
20 zone, the stress levels increase slowly, which defines the plateau of the Young's
21 modulus. Finally, the densification zone appears where the opposing walls in the cells
22 meet, causing the stress to increase steeply (Figure 2). The transition between the elastic
23 and plateau zones was identified using Young's elastic modulus, which is the slope of
24 the curve in the elastic zone. When the curve differs by more than 0.2%, a plateau zone

1 is reached. By the same method, the densification point was identified by the
2 intersection point between the line defined by the slope of the plateau zone and a
3 tangent curve in the densification zone, as obtained using either the bulk modulus of
4 non-foaming EPS or the shape of the densification zone for cork agglomerates.

5 Fernandes et al. (2015) observed that although cork and its agglomerates exhibited
6 similar stress-strain curves, the transition point between the elastic and plateau zones
7 was not clearly defined. Furthermore, cork and its agglomerates usually present gentler
8 and steeper slopes in the elastic and plateau zones, respectively, and elastically recover
9 in the plateau zone and even in the densification zone, as demonstrated by Sanchez-
10 Saez et al. (2015).

11 Owing to the shape of the stress-strain curves, the following main parameters (Figure 2)
12 were obtained:

- 13 • $\sigma_{c,e}$: maximum tensile strength in elastic zone
- 14 • $\sigma_{cs,e}$: maximum specific tensile strength in elastic zone
- 15 • $\sigma_{c,d}$: maximum tensile strength at densification point
- 16 • $\sigma_{cs,d}$: maximum specific tensile strength at densification point
- 17 • $\varepsilon_{c,p}$: maximum elastic elongation
- 18 • $\varepsilon_{c,d}$: elongation at densification point
- 19 • E_c : elastic Young's modulus (slope of curve in elastic zone)
- 20 • E_p : plateau Young's modulus (slope of curve in plateau zone)

1
2 1 The total energy absorbed per unit volume of the material can be obtained from the
3
4 2 following equation:
5
6

7
8 3
$$W = \int_0^{\varepsilon_i} \sigma d\varepsilon. \quad (1)$$

9
10

11
12 4 The total energy absorption can be decoupled into the following components:
13
14

15 5 Elastic energy absorption
$$W_e = \int_0^{\varepsilon_{c,p}} \sigma d\varepsilon. \quad (2)$$

16
17

18 6 Energy absorbed in the plateau zone
$$W_p = \int_{\varepsilon_{c,p}}^{\varepsilon_{c,d}} \sigma d\varepsilon. \quad (3)$$

19
20
21

22
23 7 The specific parameters are obtained by dividing the components by the material
24 8 density (ρ) and are useful for comparing the mass properties of material samples instead
25 9 of the volumetric properties. The parameters are as follows:
26
27
28
29

30
31 10 • E_{cs} : specific elastic Young's modulus
32
33
34 11 • E_{ps} : specific plateau Young's modulus
35
36
37 12 • W_{es} : specific elastic absorbed energy
38
39
40 13 • W_{ps} : specific energy absorbed in plateau zone
41
42
43
44

45 14 *3.2. Tensile Test*
46
47

48 15 The materials were tested using the ASTM D-638 standard for testing Type III
49
50 16 specimens fabricated using a specific geometry to reduce the influence of grain size on
51
52 17 the results (Supplementary Figure 2).
53
54

55
56 18 Owing to the shapes of the stress-strain curves, the following main parameters were
57
58 19 obtained (Supplementary Figure 3).
59
60

1
2 1 • $\sigma_{t,\max}$: tensile strength at break point (stress at failure point)
3
4 2 • $\varepsilon_{t,\max}$: elongation at break point (failure point)
5
6 3 • E_t : yield strength under tensile load (slope of stress-strain curve)
7
8 4 By the same method used in the compression test, the specific properties are obtained
9
10 5 by dividing the parameters by the material density (ρ) as follows:
11
12
13
14

15
16 6 • $\sigma_{ts,\max}$: specific tensile strength at break point
17
18 7 • E_{ts} : specific elastic modulus under traction load
19
20
21
22

23
24 8 Chen et al. (2015) tested low-density EPS under traction and compression loads and
25
26 9 found that the specimens exhibited linear elasticity with brittle failure. They used
27
28 10 ASTM D-638-based specimen geometry to reduce the influence of discontinuities
29
30 11 between the grains. Furthermore, Crouvisier-Urion et al. (2018) determined the main
31
32 12 influence of the binders on the mechanical properties of cork agglomerate specimens
33
34 13 prepared using ASTM D-638-based geometry and found that the materials exhibited
35
36 14 linear elasticity with brittle failure.
37
38
39

40
41 15 3.3. *Shear test*
42
43

44
45 16 Because the specimens in the current study were tested following the ASTM 273
46
47 17 standard, we machined a $50 \times 120 \times 10$ -mm sheet firmly supported by two steel plates
48
49 18 bonded using a structural epoxy adhesive. The plates were attached to two hinges that
50
51 19 were geometrically designed and placed to ensure that the force line of action passed
52
53 20 through the diagonally opposite corners of the composite. Under these experimental
54
55 21 conditions, a test is invalid if there are adhesion or core-to-plate adhesive failures.
56
57
58 22 Because the quantities of the EPS 60, 80, and 100 foams and their sheets were limited, it
59
60

1
2
3 1 was only possible to test the EPS 70 foams (Supplementary Figure 4).
4
5
6
7 2 The main properties obtained using the shear test are as follows (Supplementary Figure
8 3 5):
9
10
11
12 4 • Shear stress (τ) versus engineering shear strain (γ) response
13
14
15 5 • Specific shear stress (τ_s) versus engineering shear strain (γ) response
16
17
18 6 • τ_u : Ultimate shear strength at point of maximum stress
19
20
21 7 • τ_{us} : Ultimate specific shear strength
22
23
24
25 8 • γ_u : Engineering shear strain at break point of maximum stress
26
27
28
29 9 • G : Shear chord modulus of elasticity (slope of stress-strain curve)
30
31
32 10 • G_s : Specific shear chord modulus of elasticity
33
34
35
36 11 Andersson et al. (2009) followed the ISO 1922 standard to test polyurethane rigid
37
38 12 (PUR) foam under various shear loads and indicated that the mechanical properties
39
40 13 were similar to those measured following the ASTM 273 standard. In addition, Canakci
41
42 14 et al. (2016) and Canada (2018) both used a direct shear test to characterise low-density
43
44 15 EPS and determined how the material density influenced the material rigidity.
45
46
47 16 Furthermore, Ling et al. (2018a; 2018b) tested the static and dynamic behaviours of
48
49 17 EPS under combined shear and compression loads.
50
51
52
53 18 Although some studies have been conducted on EPS and cork under shear loads to
54
55 19 analyse the behaviour of sandwich panels fabricated with skins, no such tests have been
56
57 20 conducted on skinless panels using only the core.
58
59
60

1
2 1 **4. Results and discussion**
3
4 2 *4.1. Compression test results*
5
6 3 Although no specific standard is available for testing EPS foams or cork agglomerates,
7
8 4 the ISO 844, ASTM D1621, and ASTM 3574 standards could be applied because EPS
9
10 5 is a rigid cellular plastic, and cork agglomerates exhibit similar properties. According to
11
12 6 the ASTM 3574, ASTM D1621, and ISO 844 standards, the preferred specimens are 50
13
14 7 $\times 50 \times 25$ -mm prisms; the minimum specimen dimensions are $25.4 \times 25.4 \times 25.4$ mm;
15
16 8 and although the minimum thickness is 50 mm, the preferred specimens are $50 \times 100 \times$
17
18 9 100-mm prisms; respectively. For analysing sandwich cores, the ASTM C365 standard
19
20 10 requires a circular or square cross-section specimen where the minimum cross-section
21
22 11 depends on the material. Owing to the limited thickness of some of the materials, the
23
24 12 test specimens were adapted to a prismatic shape exhibiting a box cross-section of $50 \times$
25
26 13 50-mm at the maximum thickness. Because all the other aspects of the standards are
27
28 14 similar, the ASTM D1621 standard was used but instead with the maximum thickness
29
30 15 of the original sheet plates.

31
32 16 The stress-strain curves obtained for all the compressed materials presented the typical
33
34 17 behaviour of a foam exhibiting elastic, plateau, and densification zones according to the
35
36 18 model developed by Gibson and Ashby (1997) and as indicated by Silva et al. (2005).
37
38 19 The NC exhibited gentler and steeper slopes in the elastic and plateau zones,
39
40 20 respectively. Lakreb et al. (2015) and Silva et al. (2005) both obtained similar stress-
41
42 21 strain curves from similar parameters.

43
44 22 Figure 3 and **Supplementary Table 1** show that the NC exhibited the highest stiffness of
45
46 23 all the cork products and that although the stress-strain curve exhibited a shape similar
47
48 24 to that obtained for the EPS, it exhibited a linearly increasing plateau zone instead of a

1 flat one and an exponentially increasing densification zone. All the other corks and
2 agglomerates exhibited similar stress-strain curves. The materials exhibited a shallower
3 elastic zone and a gentler transition to the plateau zone. Because the stress-strain curves
4 obtained for the EPS foams exhibited a flat plateau zone (which implies both constant
5 energy-absorption capability [Figure 4] and stiffness), the cork agglomerates clearly
6 exhibited both increased energy-absorption capability (Figure 4) and stiffness.

7 However, the EPS 100 exhibited a higher elastic modulus but a lower strength in the
8 elastic zone and at the densification point. The shape of the EPS stress-strain curves
9 implies that the EPS foams all exhibited higher strengths in the elastic zone but similar
10 ones at the densification point; however, the cork products densified earlier.

11 Compared to the other materials, although the balsa wood presented a similar elastic
12 modulus, it did not follow the Ashby-Gibson model and instead exhibited an elastic
13 behaviour with a much higher strength in the elastic zone, which makes balsa wood
14 especially effective at supporting compression forces. Consequently, under
15 compression, cork products cannot be substituted for balsa wood.

16 Additionally, the corks and their agglomerates densified with fewer deformations.

17 Among the cork agglomerates, the AC properties were like the WC 300 ones. In
18 addition, the properties of all the WCs except for WC 275 improved with increasing
19 density. The WC 275 exhibited the highest strength at the densification point, while the
20 BA exhibited the lowest strength and stiffness. Furthermore, higher WC density clearly
21 was associated with higher the strength and stiffness. It should be noted that although
22 AC exhibited low density, it exhibited high strength and stiffness. Finally, the expanded
23 BA exhibited the lowest strength and stiffness. Another important result shown in
24 Figure 4 is that the lower density implies that both the EPS and cork agglomerates

1 1 densified later.

2 2 (Figure 3 [right]) compares the specific mechanical properties. Clearly, the EPS
3 3 exhibited higher specific strength and stiffness, which were directly dependent on the
4 4 low density, in the densification and plateau zones.

5 5 Compared with cork and its agglomerates, the NC and AC exhibited mid-range specific
6 6 strengths and stiffnesses. The other materials exhibited similar specific mechanical
7 7 properties; therefore, the lower-density materials clearly densified later mainly because
8 8 more air was trapped inside them. Consequently, higher deformations were necessary to
9 9 expel the trapped air.

10 10 Although the NC absorbed more energy (Figures 4 and 5) than the other materials, the
11 11 specific energy of all the EPS foams was higher. Because of the shape of the stress–
12 12 strain curves obtained for the cork agglomerates, although initially the agglomerates
13 13 could absorb less energy, they absorbed more energy with increasing deformation and
14 14 ultimately exhibited a higher energy-absorption capability than some of the EPS foams.
15 15 Furthermore, all the higher-density WCs except for WC 275 clearly exhibited higher
16 16 energy-absorption capability. The WC 275, on the other hand, exhibited low strain and
17 17 a slightly higher energy-absorption capability. Finally, the BA exhibited the lowest
18 18 energy absorption capability.

19 19 The cork products exhibited lower energy-absorption capabilities per unit weight, while
20 20 the NC exhibited the highest quasi-linear energy-absorption capability among the cork
21 21 products. The AC exhibited the second-highest energy-absorption capability per unit
22 22 weight. Furthermore the WC and BA clearly exhibited similar energy-absorption
23 23 capabilities per unit weight.

1
2 1 *4.2. Tensile test results*
3
4
5

6 2 Despite the specific standards for analysing sandwich cores under tensile loads,
7
8 3 standards such as ASTM C297 cannot be used to characterise EPS or cork materials.
9
10 4 Additionally, no specific standard is available for testing EPS foams, cork and its
11
12 5 agglomerates, or rigid cellular plastics under tensile loads. However, because all these
13
14 6 materials exhibit similar behaviours, Doroudiani (2003) tested them according to the
15
16 7 ASRM D-638 standard. Although the ASTM D3574-17 and ASTM D1623 -17
17
18 8 standards could also be used to test such materials, the ASTM D1623 -17 standard
19
20 9 requires the use of cylindrical specimens, which could not be prepared using cork
21
22 10 sheets. Therefore, the ASTM D1623 -17 standard was not used in this study. The main
23
24 11 differences between the other standards are the test-specimen thickness (which is
25
26 12 variable for the first standard and fixed to 12.5 for the second one), the main geometric
27
28 13 dimensions of the specimen, and the methods used to prepare the specimens. In this
29
30 14 study, owing to the limited thickness of the NC and some cork-agglomerate sheets, the
31
32 15 ASTM D-638 standard for Type-III specimens was used. Additionally, some materials
33
34 16 are comprised of large grains (i.e., EPS 100 and BA 100 grains are between 2 and 3 mm
35
36 17 and 4 and 10 mm, respectively).

43
44 18 Consequently, the small thicknesses and widths of the narrow specimen portions imply
45
46 19 that the grain size could distort the results. In addition, some EPS sheets are limited by
47
48 20 their geometry. Hence, all the specimens were machined and tested based on their
49
50 21 maximum thickness to reduce the influence of the grain size, and a modified type-III-
51
52 22 specimen-based geometry was proposed (Supplementary Figure 2), which enabled all
53
54 23 the materials to be used and exhibited a width of at least three times larger than the
55
56 24 largest grains in BA 100 and six-or-more times larger than the largest grains in the other
57
58 25 materials. Additionally, an extensometer was used to determine the distance between

1
2
3 1 the two specific points used to measure the strain.
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

2 Although the materials could be tested following the standard ISO 1926: Rigid cellular
3 plastics—Determination of tensile properties, which uses a similar bone-like geometry
4 but with a thickness of 4 mm, the grains in the materials are still larger than that.

5 Therefore, the ISO 1926 standard was not used.

6 The stress-strain curves obtained for all the materials exhibited linear elasticity and
7 brittle failure (Figure 6 [left]), as previously described by both Lakreb et al. (2015) and
8 Silva et al. (2005), who found brittle failure similar to that depicted in Figure 7. The
9 mechanical properties and stress-strain curves (Supplementary Table 2 and Figure 6
10 [left]) also showed similarities to those in these studies. From the results shown in
11 Figure 6 [left], Figure 8 [left], and Supplementary Table 2, the NC exhibited the highest
12 tensile strength, approximately twice that of the second-strongest EPS foam at the break
13 point, despite showing similar yield strengths. Additionally, the NC reached a higher
14 deformation than the EPS. Among the specific mechanical properties (Figure 6 [right]
15 and Figure 8 [right]), the EPS exhibited the highest specific and yield strengths owing to
16 the high density of the NC and the low density of the EPS.

17 Although all the WC specimens exhibited lower rigidities and reached higher
18 deformations than the EPS specimens, the former could only support lower loads.
19 However, there was no clear relationship between the density and mechanical properties
20 of these materials.

21 These results were attributed to the internal structure of the binder joining together the
22 agglomerate grains. The NC structure consists of joined cellules. Consequently, this
23 natural structure exhibits higher strength, especially under tensile loads, than that of a
24 structure consisting of chopped granules joined together using binders. Similarly,, the

1 1 EPS foam structure is not joined. Among the binders used to prepare the agglomerates
2 2 in this study, the epoxy binders exhibited higher strength than the natural suberin;
3 3 therefore, WC and BA exhibited reduced strength under tensile loads. Additionally,
4 4 these materials exhibited the largest grains, which generated gaps in the transverse area
5 5 of the specimens, thereby further weakening the strength.

6 6 Among the specific mechanical properties, all the EPS and NC specimens exhibited
7 7 similarly high maximum specific and yield strengths compared to the very low-strength
8 8 agglomerates.

23 9 *4.3. Shear test results*

27 10 Depending on the range of applications, materials can be tested using various shear tests
28 11 including direct shear tests for geotechnical applications; Iosipescu tests (defined in the
29 12 ASTM-D 7078 and ASTM-D 5379 standards) for composites and determining the
30 13 influence of fibre orientation on shear strength; and 2-and 3-point bending tests (ASTM
31 14 C393) for composites and their skins. This study used the ASTM 273 standard, which
32 15 measures the shear properties of sandwich cores to determine the shear strength parallel
33 16 to the plane of sandwich-structured composites.

44 17 Although the shear properties of cores could be tested following other standards such as
45 18 the ISO 1922 standard (which requires a $250 \times 50 \times 25$ -mm specimen), they were not
46 19 used in this study because the thickness of some of the materials was limited (Figure 4
47 20 of the Supplementary material).

54 21 The analysis results shown in Figure 9 [left] and Figure 10 [left] and **Supplementary**
55 22 **Table 3** clearly show that, except for the BA, all the other materials exhibited higher
56 23 strengths than the EPS. In addition, most of them could support larger deformation

1 before reaching the break point and as a result, exhibited a lower shear modulus. The
2 NC was the strongest material, and the AC was the second strongest. The WC did not
3 exhibit any clear relationship between density and the mechanical properties, and the
4 BA was the weakest material. These findings are consistent with the stress-strain curves
5 and mechanical properties previously reported by Lakreb et al. (2015), Reis and Silva
6 (2009), and Sadeghian et al. (2018).

7 The specific mechanical properties are shown in Figure 9 [right] and Figure 10 [right].
8 Because the EPS exhibited the lowest density, this material exhibited the highest
9 specific shear strength followed by the NC. Because the BA exhibited the second-
10 lowest density, it exhibited mid-range specific shear strength. Some of the WCs
11 exhibited the lowest specific strength owing to their mid-range mechanical properties
12 and high densities.

13 As shown in Figure 11, all the specimens exhibited similar internal core failures, which
14 is representative of such materials (Lakreb et al., 2015; Reis and Silva, 2009; Sadeghian
15 et al., 2018). The failure initially appeared in the diagonal area of the specimen in
16 different zones and progressed until reaching catastrophic failure. Initially, the material
17 exhibited a predominantly elastic regime; however, after a relatively low strain, some
18 zones inside the diagonal began to fail. In the second stage, some additional failures
19 appeared in the same diagonal at the specimen edges. Subsequently, existing cracks
20 propagated and more cracks nucleated and propagated along the specimen and
21 converged to a few main cracks prior to total failure.

22 **5. Conclusions**

23 This article describes the mechanical characterisation of different cork agglomerates
24 and NC under simple loads required for selecting the correct material for specific

1 applications. These data could be useful for not only designing cores in sandwich-
2 structured composites but also other applications such as the use of cork in helmet liners
3 or sports equipment.

4 The main study findings were as follows:

5 Cork and its agglomerates exhibited considerably reduced mechanical properties
6 compared with balsa wood under all loads.

7 The stress-strain curves obtained for the compressed NC and cork agglomerates
8 exhibited a shallow elastic zone and an increasing plateau zone instead of a flat one.
9 Consequently, the materials exhibited constantly increasing rather than constant energy
10 absorption except for the NC, which stress-strain curve exhibited a shape typical of the
11 stress-strain curve obtained for the EPS foam. Additionally, the NC exhibited the
12 highest mechanical properties, and the other agglomerates exhibited high mechanical
13 properties under high strain. As a result, these materials supported higher compression
14 loads before reaching global buckling or core-crushing failure. However, the EPS foam
15 exhibited higher specific mechanical properties. In addition, all the agglomerates
16 exhibited similar specific stress-strain curves and mechanical properties.

17 From the tensile properties, although the cork agglomerates reached higher
18 deformations, they exhibited lower strengths. Furthermore, the tensile properties were
19 notably lower for both the BA and AC because of the specific binder and grain size,
20 which reduced the effective area under traction loads. The NC exhibited the highest
21 strength and low stiffness. However, the EPS exhibited a higher specific strength.

22 Under shear loads, the NC exhibited the highest shear strength and the other cork
23 agglomerates exhibited higher shear strength than the EPS 70; therefore, they could

1 support higher loads. Consequently, core-shear failure and buckling occurred under
2 higher loads. Nevertheless, the EPS 70 exhibited the highest specific shear strength.

3 The NC exhibited considerably higher mechanical and specific properties than the other
4 cork products under all loads and exhibited higher strength and stiffness than the EPS
5 and similar specific properties. Therefore, NC is a perfect substitute for these materials.

6 However, because NC is natural, its dimensions are somewhat limited. To solve this
7 problem, multiple sheets of NC could be stacked, glued, and machined to obtain the
8 desired thickness and dimensions.

9 Finally, owing to the absence of specific standards for testing cork products, the ASTM
10 D1621, ASTM D-638, and ASTM 273 standards were adopted for the compression,
11 tensile, and shear tests, respectively.

12 **Author contribution:** All the authors have accepted responsibility for the entire content
13 of this submitted manuscript and approved submission.

14 **Research funding:** This work was supported by the “Ibercaja Foundation” young
15 Research Grant. IberDoD HBCU/MI Basic Research Grant (grant number JIUZ-2018-
16 TEC-09), the University of Zaragoza (Spain) and the research group ID-ERGO.

17 **Conflict of interest statement:** The authors declare no conflicts of interest

18 **References**

19 American Society for Testing and Materials 2020, *Standard Test Method for Shear*
20 *Properties of Sandwich Core Material*, ASTM C273 / C273M - 20:2020,
21 American Society for Testing and Materials, West Conshohocken.
22 American Society for Testing and Materials 2016, *Standard Test Method for Flatwise*
23 *Tensile Strength of Sandwich Constructions*, ASTM C297 / C297M – 16:2016,
24 American Society for Testing and Materials, West Conshohocken
25 American Society for Testing and Materials 2020, *Standard Test Method for Core*
26 *Shear Properties of Sandwich Constructions by Beam Flexurethod*, ASTM C393
27 / C393M - 20:2020, American Society for Testing and Materials, West
28 Conshohocken.

American Society for Testing and Materials 2014, *Standard Test Method for Tensile Properties of Plastics*, ASTM D638 - 14:2014, American Society for Testing and Materials, West Conshohocken.

American Society for Testing and Materials 2016, *Standard Test Method for Compressive Properties of Rigid Cellular Plastics*, ASTM D1621 – 16:2016, American Society for Testing and Materials, West Conshohocken.

American Society for Testing and Materials 2017, *Standard Test Method for Tensile and Tensile Adhesion Properties of Rigid Cellular Plastics*, ASTM D1623 - 17:2017, American Society for Testing and Materials, West Conshohocken.

American Society for Testing and Materials 2017, *Standard Test Methods for Flexible Cellular Materials—Slab, Bonded, and Molded Urethane Foams*, ASTM D3574 – 17:2017, American Society for Testing and Materials, West Conshohocken.

American Society for Testing and Materials 2019, *Standard Test Method for Shear Properties of Composite Materials by the V-Notched Beam Method* ASTM D5379 / D5379M - 19e1:2019, American Society for Testing and Materials, West Conshohocken

American Society for Testing and Materials 2020, *Standard Test Method for Shear Properties of Composite Materials by V-Notched Rail Shear Method*, ASTM D7078 / D7078M - 20e1:2020, American Society for Testing and Materials, West Conshohocken.

Andersson, A., Lundmark, S., Magnusson, A., Maurer, F.H.J., 2009. Shear behavior of flexible polyurethane foams under uniaxial compression. *J. Appl. Polym. Sci.* 111, 2290–2298. <https://doi.org/10.1002/app.29244>

Bach, M.R., Chalivendra, V.B., Alves, C., Depina, E., 2017. Mechanical characterization of natural biodegradable sandwich materials. *Jnl of Sandwich Structures & Materials* 19, 482–496. <https://doi.org/10.1177/1099636215622143>

Canakci, H., Alak, D., Celik, F., 2016. Evaluation of Shear Strength Properties of Modified Expanded Polystyrene Aggregate. *Procedia Engineering* 161, 606–610. <https://doi.org/10.1016/j.proeng.2016.08.708>

Carlsson, L.A., Sendlein, L.S., Merry, S.L., 1991. Characterization of Face Sheet/Core Shear Fracture of Composite Sandwich Beams. *Journal of Composite Materials* 25, 101–116. <https://doi.org/10.1177/002199839102500105>

Castanié, B., Aminanda, Y., Bouvet, C., Barrau, J.-J., 2008. Core crush criterion to determine the strength of sandwich composite structures subjected to compression after impact. *Composite Structures* 86, 243–250. <https://doi.org/10.1016/j.compstruct.2008.03.032>

Chen, W., Hao, H., Hughes, D., Shi, Y., Cui, J., Li, Z.-X., 2015. Static and dynamic mechanical properties of expanded polystyrene. *Materials & Design* 69, 170–180. <https://doi.org/10.1016/j.matdes.2014.12.024>

Crouvisier-Urion, K., Bellat, J.-P., Gougeon, R.D., Karbowiak, T., 2018. Mechanical properties of agglomerated cork stoppers for sparkling wines: Influence of adhesive and cork particle size. *Composite Structures* 203, 789–796. <https://doi.org/10.1016/j.compstruct.2018.06.116>

Díaz-Parralejo, A., Cuerda-Correa, E.M., Macías-García, A., Sánchez-González, J., Díaz-Díez, M.Á., 2014. The Excellent Mechanical Properties of Cork: A Novel Approach through the Analysis of Contact Stress. *ISRN Materials Science* 2014, 1–6. <https://doi.org/10.1155/2014/898439>

Doroudiani, S., Kortschot, M.T., 2003. Polystyrene foams. III. Structure-tensile properties relationships. *J. Appl. Polym. Sci.* 90, 1427–1434. <https://doi.org/10.1002/app.12806>

1 Douville, M.-A., Le Grogne, P., 2013. Exact analytical solutions for the local and
2 global buckling of sandwich beam-columns under various loadings.
3 International Journal of Solids and Structures 50, 2597–2609.
4 <https://doi.org/10.1016/j.ijsolstr.2013.04.013>

5 Fernandes, F.A.O., Jardin, R.T., Pereira, A.B., Alves de Sousa, R.J., 2015. Comparing
6 the mechanical performance of synthetic and natural cellular materials.
7 Materials & Design 82, 335–341. <https://doi.org/10.1016/j.matdes.2015.06.004>

8 Gibson, L.J., Ashby, M.F., 1997. Cellular Solids: Structure and Properties, 2nd ed.
9 Cambridge University Press. <https://doi.org/10.1017/CBO9781139878326>

10 Jardin, R.T., Fernandes, F.A.O., Pereira, A.B., Alves de Sousa, R.J., 2015. Static and
11 dynamic mechanical response of different cork agglomerates. Materials &
12 Design 68, 121–126. <https://doi.org/10.1016/j.matdes.2014.12.016>

13 Ko, W.L., Jackson, R.H., 1993. Compressive and shear buckling analysis of metal
14 matrix composite sandwich panels under different thermal environments.
15 Composite Structures 25, 227–239. [https://doi.org/10.1016/0263-8223\(93\)90169-Q](https://doi.org/10.1016/0263-8223(93)90169-Q)

16 Lakreb, N., Bezzazi, B., Pereira, H., 2015. Mechanical behavior of multilayered
17 sandwich panels of wood veneer and a core of cork agglomerates. Materials &
18 Design (1980-2015) 65, 627–636. <https://doi.org/10.1016/j.matdes.2014.09.059>

19 Laura, P.A.A., Rossit, C.A., 2001. The Behavior of Sandwich Structures of Isotropic
20 and Composite Materials. Ocean Engineering 28, 1437–1438.
21 [https://doi.org/10.1016/S0029-8018\(01\)00013-0](https://doi.org/10.1016/S0029-8018(01)00013-0)

22 Le Duigou, A., Deux, J.-M., Davies, P., Baley, C., 2011. PLLA/Flax Mat/Balsa Bio-
23 Sandwich Manufacture and Mechanical Properties. Appl Compos Mater 18,
24 421–438. <https://doi.org/10.1007/s10443-010-9173-8>

25 Ling, C., Ivens, J., Cardiff, P., Gilchrist, M.D., 2018a. Deformation response of EPS
26 foam under combined compression-shear loading. Part I: Experimental design
27 and quasi-static tests. International Journal of Mechanical Sciences 144, 480–
28 489. <https://doi.org/10.1016/j.ijmecsci.2018.06.014>

29 Ling, C., Ivens, J., Cardiff, P., Gilchrist, M.D., 2018b. Deformation response of EPS
30 foam under combined compression-shear loading. Part II: High strain rate
31 dynamic tests. International Journal of Mechanical Sciences 145, 9–23.
32 <https://doi.org/10.1016/j.ijmecsci.2018.06.015>

33 Najafi, M., Darvizeh, A., Ansari, R., 2020. Characterization of moisture effects on
34 novel agglomerated cork core sandwich composites with fiber metal laminate
35 facesheets. Jnl of Sandwich Structures & Materials 22, 1709–1742.
36 <https://doi.org/10.1177/1099636218789613>

37 Reis, L., Silva, A., 2009. Mechanical Behavior of Sandwich Structures using Natural
38 Cork Agglomerates as Core Materials. Jnl of Sandwich Structures & Materials
39 11, 487–500. <https://doi.org/10.1177/1099636209104523>

40 Sadeghian, P., Hristozov, D., Wroblewski, L., 2018. Experimental and analytical
41 behavior of sandwich composite beams: Comparison of natural and synthetic
42 materials. Jnl of Sandwich Structures & Materials 20, 287–307.
43 <https://doi.org/10.1177/1099636216649891>

44 Sanchez-Saez, S., Barbero, E., Garcia-Castillo, S.K., Ivañez, I., Cirne, J., 2015.
45 Experimental response of agglomerated cork under multi-impact loads.
46 Materials Letters 160, 327–330. <https://doi.org/10.1016/j.matlet.2015.08.012>

47 Silva, S.P., Sabino, M.A., Fernandes, E.M., Correlo, V.M., Boesel, L.F., Reis, R.L.,
48 2005. Cork: properties, capabilities and applications. International Materials
49 Reviews 50, 345–365. <https://doi.org/10.1179/174328005X41168>

50

1 Triantafillou, T.C., Gibson, L.J., 1987. Failure mode maps for foam core sandwich
2 beams. Materials Science and Engineering 95, 37–53.
3 [https://doi.org/10.1016/0025-5416\(87\)90496-4](https://doi.org/10.1016/0025-5416(87)90496-4)

4 Wadsworth, D.J., Horrigan, D.P.W., Moltschanivskyj, G., Collins, I., 2009. Facesheet
5 Wrinkling of Damaged Honeycomb Sandwich Structures. Jnl of Sandwich
6 Structures & Materials 11, 105–131. <https://doi.org/10.1177/1099636209103555>

7 Zaini, E., Azaman, M., Jamali, M., Ismail, K., 2020. Synthesis and characterization of
8 natural fiber reinforced polymer composites as core for honeycomb core
9 structure: A review. Jnl of Sandwich Structures & Materials 22, 525–550.
10 <https://doi.org/10.1177/1099636218758589>

11

12

1 **Table 1.** Studied materials, their density and their grain size.
2
3
4

5 **Figure 1.** Cork and cork agglomerates studied.
6
7

8 **Figure 2.** Typical stress-strain curve for the EPS under compression efforts.
9
10

11 **Figure 3.** Left: stress-strain curve for EPS and cork and cork products under
12 compression efforts; right: specific stress-strain curve for EPS and cork and cork
13 products under compression efforts.
14
15

16 **Figure 4.** Left: energy-strain curve for EPS and cork and cork products under
17 compression efforts; right: specific energy-strain curve for EPS and cork and cork
18 products under compression efforts.
19
20

21 **Figure 5.** Left: absorbed energy per unit of volume until densification point; right:
22 absorbed energy per unit of weight until densification point.
23
24

25 **Figure 6.** Left: stress-strain curve for EPS and cork and cork products under tensile
26 efforts; right: specific stress-strain curve for EPS and cork and cork products under
27 tensile loads.
28
29

30 **Figure 7.** Brittle failure of the WC275.
31
32

33 **Figure 8.** Left: tensile strength at break point under tensile effort; right: specific tensile
34 strength at break point under tensile effort.
35
36

37 **Figure 9.** Left: shear stress-strain curve for EPS and cork and cork products under shear
38 loads; right: specific shear stress-strain curve for EPS and cork and cork products under
39 shear loads.
40
41

42 **Figure 10.** Left: ultimate shear strength at point of maximum stress; right: ultimate
43 specific shear strength at point of maximum stress.
44
45

46 **Figure 11.** Evolution of the failure in the shear test: (a): initial point, (b) elastic domain,
47 (c) beginning of failure inside the cork agglomerate, (d) beginning of failure in the
48
49

1 edges of the cork agglomerate, (e-h) several crack propagating and initiating, (i) final
2 failure.

3

4 **Supplementary Figure 1.** Left: Geometry of the compression specimens (dimensions in
5 mm). Right: compression test of the EPS 100

6 **Supplementary Figure 2.** Left: Geometry of the traction specimens (dimensions in
7 mm). Center: traction test of the EPS 80. Right: traction test of the WA275

8 **Supplementary Figure 3.** Typical stress-strain curve for brittle materials (like EPS)
9 under traction efforts.

10 **Supplementary Figure 4.** Left: Geometry of the traction specimens (dimensions in
11 mm). Right: shear test of the WA275

12 **Supplementary Figure 5.** Typical stress-strain curve for like EPS under shear efforts.

13

14 **Supplementary Table 1.** Mechanical properties of the studied materials under
15 compression efforts

16 **Supplementary Table 2.** Main mechanical properties of EPS, cork and cork products
17 under tensile loads

18 **Supplementary Table 3.** Main mechanical properties of EPS, cork and cork products
19 under ASTM 273 shear loads

Figure 1. Cork and cork agglomerates studied.

233x145mm (120 x 120 DPI)

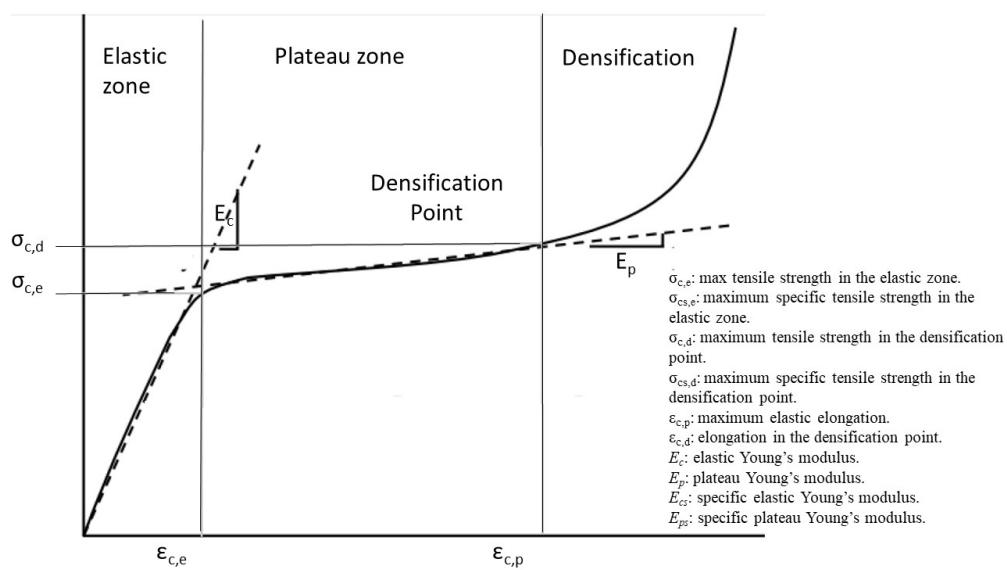


Figure 2. Typical stress-strain curve for the EPS

338x190mm (96 x 96 DPI)

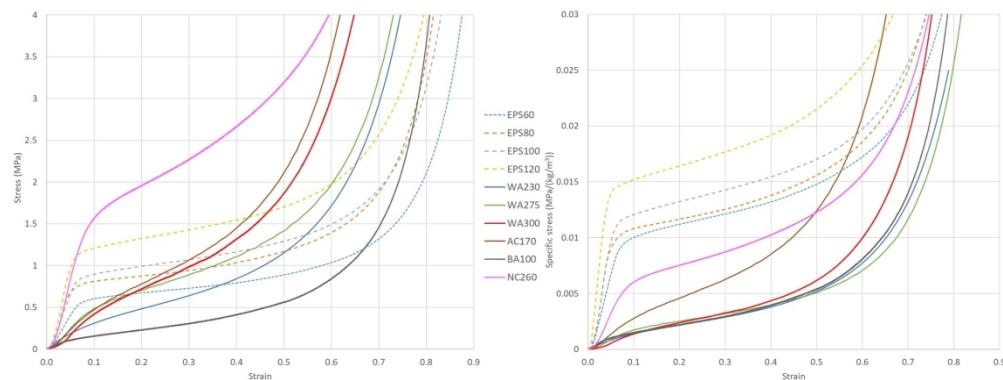


Figure 3. Left: stress-strain curve for EPS and cork and cork products under compression efforts; right: specific stress-strain curve for EPS and cork and cork products under compression efforts.

566x210mm (96 x 96 DPI)

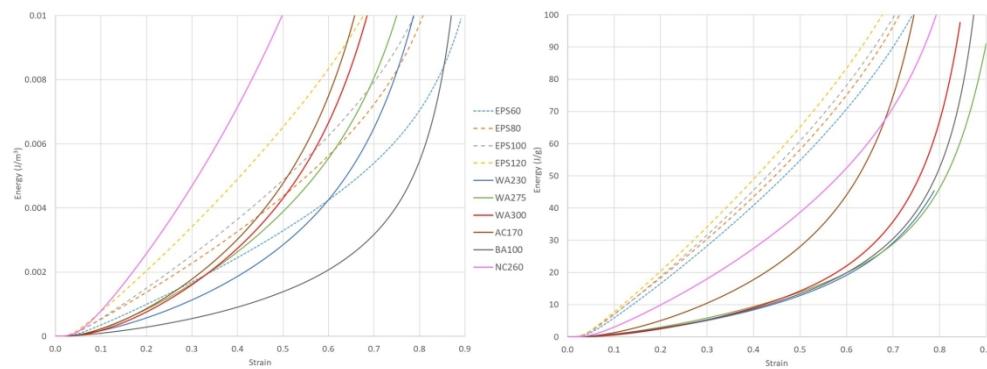


Figure 4. Left: energy-strain curve for EPS and cork and cork products under compression efforts; right: specific energy-strain curve for EPS and cork and cork products under compression efforts.

590x210mm (96 x 96 DPI)

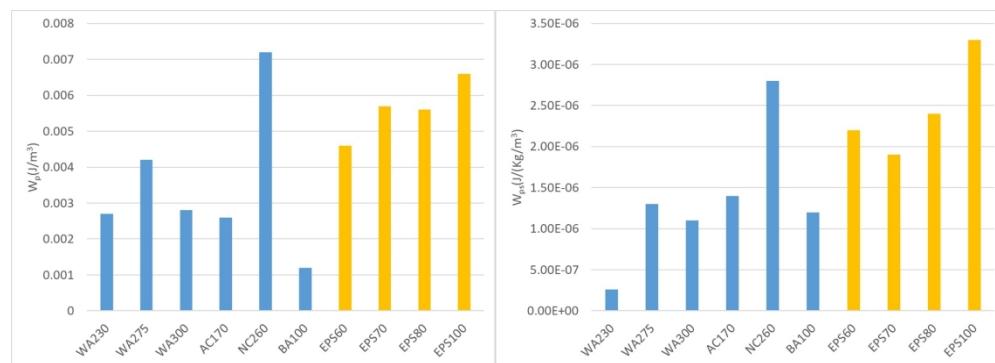


Figure 5. Left: absorbed energy per unit of volume until densification point; right: absorbed energy per unit of weight until densification point

590x210mm (96 x 96 DPI)

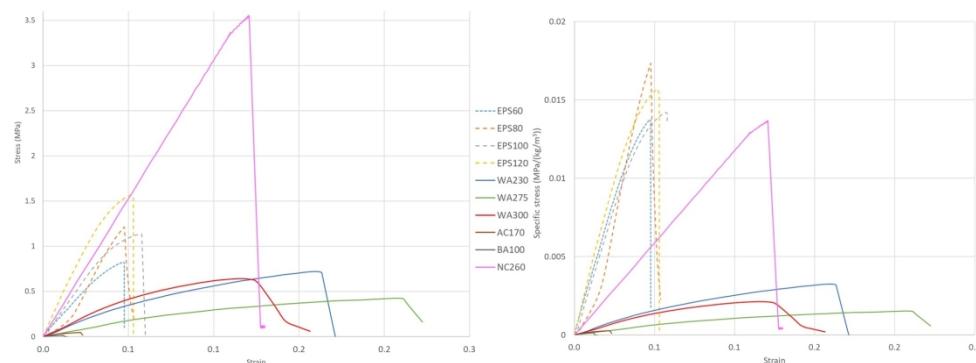


Figure 6. Left: stress-strain curve for EPS and cork and cork products under tensile efforts; right: specific stress-strain curve for EPS and cork and cork products under tensile loads.

590x210mm (96 x 96 DPI)

Figure 7. Brittle failure of the WC275.

113x155mm (120 x 120 DPI)

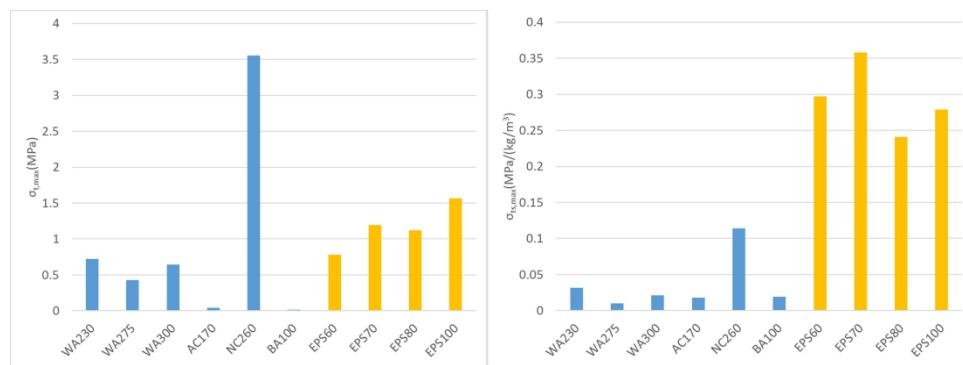


Figure 8. Left: tensile strength at break point under tensile effort; right: specific tensile strength at break point under tensile effort.

590x210mm (96 x 96 DPI)

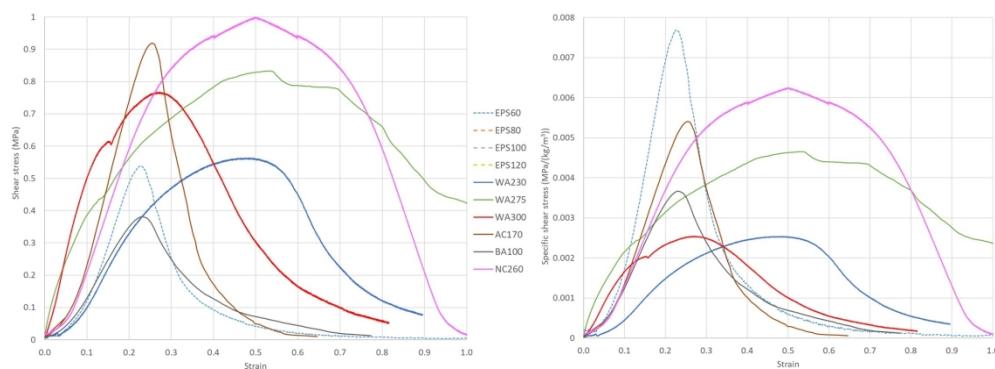


Figure 9. Left: shear stress-strain curve for EPS and cork and cork products under shear loads; right: specific shear stress-strain curve for EPS and cork and cork products under shear loads.

590x210mm (96 x 96 DPI)

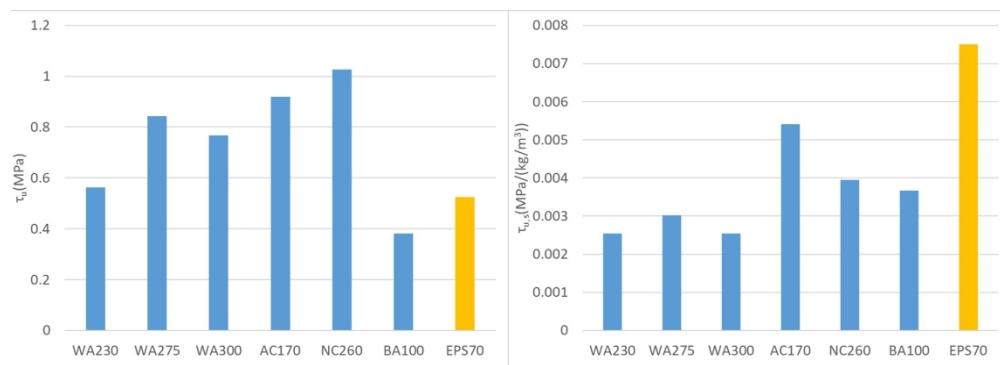


Figure 10. Left: ultimate shear strength at point of maximum stress; right: ultimate specific shear strength at point of maximum stress

590x210mm (96 x 96 DPI)

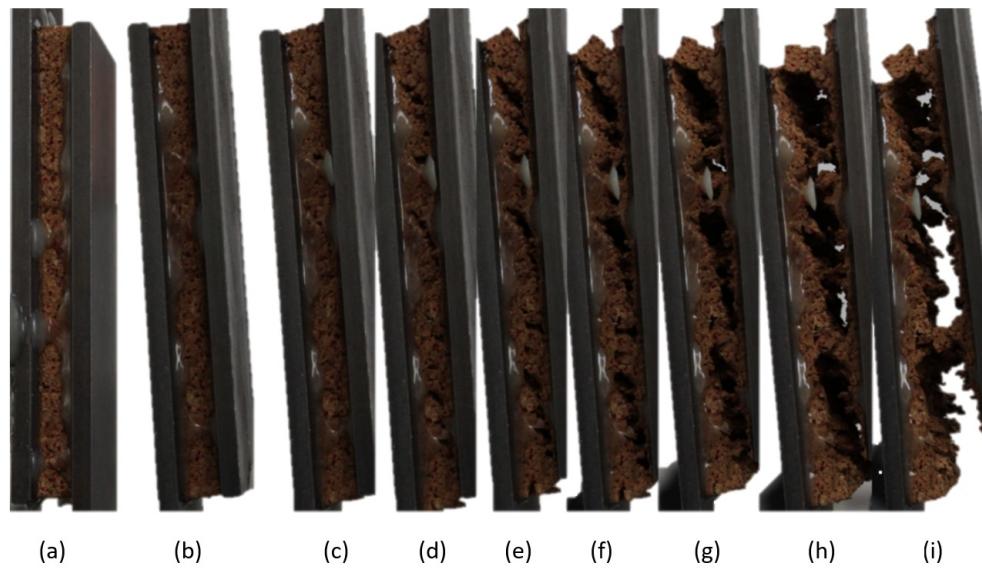


Figure 11. Evolution of the failure in the shear test: (a): initial point, (b) elastic domain, (c) beginning of failure inside the cork agglomerate, (d) beginning of failure in the edges of the cork agglomerate, (e-h) several crack propagating and initiating, (i) final failure.

274x157mm (120 x 120 DPI)

	Type	Designated density (kg/m ³)	Actual Density (kg/m ³)	Grain size (mm)	Thickness (mm)	Binder	Moisture content (%)
EPS60	Exp. Polystyrene	60	64.8	2.5	28	N/A	
EPS70	Exp. Polystyrene	70	71.1	2.3	28	N/A	
EPS80	Exp. Polystyrene	80	80.7	2.15	28	N/A	
EPS100	Exp. Polystyrene	100	100.9	1.95	28	N/A	
WA300	White agglom.	300	302	2-5	10	PU	5.8
WA275	White agglom.	275	279	0.5-2	10	PU	6.1
WA230	White agglom.	230	222	1-3	10	PU	6.4
AC170	Cork agglomerate	170	172	2-5	20	PU	6.7
BA100	Black agglomerate	100	104	4-10	20	Suberin	6.8
NC260	Natural cork	260	263	N/A	10	None	5.3
UL BC	Ultra lite balsa wood	100	N/A	N/A	N/A	N/A	7.0
WG BC	Wind grade balsa wood	132	N/A	N/A	N/A	N/A	6.7
SG BC	Standard grade balsa wood	152	N/A	N/A	N/A	N/A	6.2
FH BC	Heavy weight balsa wood	280	N/A	N/A	N/A	N/A	5.8


Table 1. Studied materials, their density, their grain size and moisture content.

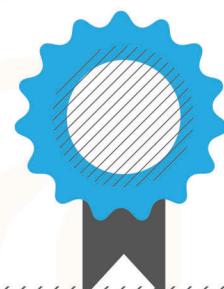
Mat.	E_c	E_p	$\sigma_{c.e}$	$\sigma_{c.d}$	$\varepsilon_{c.p}$	$\varepsilon_{c.d}$	E_{cs}	E_{ps}	$\sigma_{cs.d}$	$\sigma_{cs.e}$	W_e	W_p	W_{es}	W_{ps}
Units	MPa			%		(MPa/kg/m ³)			J/m ³		J/kg			
WA230	4.42	2.00	0.23	1.07	5.2	47.2	0.019	0.0087	0.0010	0.0047	5.98E-05	0.0027	2.6E-07	1.2E-05
WA275	3.93	2.40	0.53	1.44	13.5	51.4	0.014	0.0087	0.0019	0.0052	0.000358	0.0042	1.3E-06	1.5E-05
WA300	3.94	2.95	0.52	1.38	13.2	42.4	0.013	0.0098	0.0017	0.0046	0.000343	0.0028	1.1E-06	9.3E-06
AC170	4.17	3.54	0.43	1.42	10.3	38.3	0.025	0.0208	0.0025	0.0084	0.000221	0.0026	1.4E-06	1.6E-05
NC260	16.05	3.68	1.53	2.78	9.53	43.5	0.062	0.0142	0.0059	0.0107	0.000729	0.0072	2.8E-06	2.8E-05
BA100	7.92	0.98	0.19	0.63	2.4	47.2	0.079	0.0098	0.0019	0.0063	2.28E-05	0.0012	2.3E-07	1.2E-05
EPS60	9.81	1.20	0.51	1.22	5.2	64.6	0.163	0.0199	0.0085	0.0203	0.000133	0.0046	2.2E-06	7.7E-05
EPS70	19.19	1.18	0.71	1.37	3.7	59.7	0.274	0.0168	0.0101	0.0196	0.000131	0.0057	1.9E-06	8.1E-05
EPS80	15.73	1.20	0.78	1.41	4.96	57.6	0.197	0.0150	0.0098	0.0176	0.000193	0.0056	2.4E-06	0.00007
EPS100	21.00	1.24	1.18	1.76	5.62	52.3	0.210	0.0124	0.0118	0.0176	0.000332	0.0066	3.3E-06	6.6E-05
ULBC	7.5	N/A	2238	N/A	N/A	N/A	0.08	N/A	22.38	N/A	N/A	N/A	N/A	N/A
WG BC	12.5	N/A	3100	N/A	N/A	N/A	0.09	N/A	23.48	N/A	N/A	N/A	N/A	N/A
SG BC	14.4	N/A	3574	N/A	N/A	N/A	0.09	N/A	23.51	N/A	N/A	N/A	N/A	N/A
HW BC	21.6	N/A	5690	N/A	N/A	N/A	0.08	N/A	21.88	N/A	N/A	N/A	N/A	N/A

Table 2. Mechanical properties of the studied materials under compression efforts

Mat.	<i>G</i>	τ_u	<i>G_s</i>	τ_{us}	γ_u
Units	MPa		MPa/kg/m ³		%
WA230	1.65	0.563	0.00743	0.00254	0.251
WA275	1.53	0.843	0.00548	0.00302	0.569
WA300	3.46	0.767	0.01146	0.00254	0.559
AC170	3.94	0.919	0.02318	0.00541	0.262
NC260	3.137	1.026	0.01207	0.00395	0.487
BA100	1.86	0.381	0.01788	0.00366	0.239
ESP70	4.97	0.525	0.07100	0.00750	0.232
UL BC	110	1.88	N/A	1.1	0.0188
WG BC	162	2.36	N/A	1.22	0.0178
SG BC	186	2.72	N/A	1.22	0.0178
FH BC	364	5.57	N/A	1.3	0.0198

Table 4. Main mechanical properties of EPS, cork and cork products under ASTM 273 shear loads

ELSEVIER


Certificate of Elsevier Language Editing Services

The following article was edited by Elsevier Language Editing Services:

"Experimental study of natural cork and cork agglomerates
as a substitute for high-density eps foams in sandwich cores."

Authored by:
Ramon Miralbes Buil

Date: 22-Apr-2021
Serial number: LE-210469-DF0AD074D1CA
<https://mc.manuscriptcentral.com/holz>

