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A B S T R A C T

The rise in zoonotic diseases is accelerating, with climate change expected to further intensify this trend. Invasive 
Alien Species (IAS) play an important role in the emergence and spread of zoonotic diseases by introducing both 
existing and novel pathogens to the regions they invade. Despite this, research on the role of IAS in spreading 
zoonotic diseases remains limited. Our study investigated the zoonotic risks posed by eight invasive mammal 
species prioritized for management in Europe. On average, each species was found to transmit 16 pathogens 
capable of causing severe diseases in humans, including Echinococcosis, Leptospirosis, Lyme neuroborreliosis, 
and Encephalitis.

We identified central and western Europe as significant disease hotspots. Climate change is facilitating the 
expansion of IAS into new areas, as warmer temperatures make previously inhospitable regions suitable. Future 
projections indicate a northeastward shift in their suitability by 2050. These changes vary by species, with the 
Siberian chipmunk losing up to 45 % of its suitability, while the gray squirrel could see a 26 % increase under a 
high-emissions scenario.

Finally, we found that 71 % of the human population lives in areas highly suitable for IAS establishment. Our 
findings underscore the health risks associated with IAS and highlight the need for further research into their role 
in disease dynamics. Addressing this issue is essential for developing effective public health strategies and 
mitigating future zoonotic disease outbreaks.

1. Introduction

Zoonotic diseases from wildlife represent over 40 % of emerging 
infectious disease (EID) events globally since 1940, posing significant 
threats to human health [25]. While current responses focus on outbreak 
containment, early detection of new pathogens remains challenging [1]. 
Invasive Alien Species (IAS) are increasingly recognized as contributors 
to zoonotic disease emergence due to their role as pathogen reservoirs, 
rapid expansion in human-modified environments, and disruption of 
native ecosystems [35,44].

IAS often carry pathogens novel to the invaded ecosystem and pro
liferate due to the absence of natural predators [14]. IAS are introduced 
and proliferate in human-modified environments where animal-human 
contact is frequent [28]. This increases the risk of zoonotic trans
mission, as demonstrated by the Nipah virus outbreak in Malaysia, 
where deforestation followed by intensive pig farming created ecolog
ical conditions that enabled the virus to spill over from fruit bats to pigs 
and subsequently to humans [30].

IAS contribute to zoonotic disease emergence globally. For example, 
in Cuba, the giant African snail (Achatina fulica) has raised the risk of 
eosinophilic meningitis in humans by hosting Angiostrongylus cantonensis 
[29].

Mammals, due to their phylogenetic proximity to humans, are 
especially likely to transmit zoonoses [44].

Rising temperatures associated with climate change have been 
shown to facilitate both the spread of IAS and infectious diseases, 
especially those transmitted by vectors such as mosquitoes 
[10,15,31,34]. However, climate change involves not only higher tem
peratures but also prolonged warm periods, altered precipitation pat
terns, and increased climatic variability, all of which can further 
influence the distribution of IAS and the emergence of zoonotic diseases. 
Despite this, the combined impacts of climate change on both IAS and 
zoonotic disease emergence remain underexplored.

This study investigates how invasive mammals in Europe contribute 
to zoonotic disease emergence. Europe provides a well-documented 
context, given its long history of mammal introductions, established 
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regulatory frameworks (e.g., EU Regulation No. 1143/2014), and high 
human population density [9,40].

To achieve this, the following specific objectives are proposed: (i) 
identify invasive mammals capable of transmitting zoonotic diseases in 
Europe; (ii) determine the pathogens they carry that are significant for 
human health; (iii) spatially identify the areas at greatest risk of invasion 
and thus of EIDs transmission, called “disease hotspots”, and calculate 
the exposure of the human population; and (iv) project changes in 
invasive mammal distribution and human population exposure under 
2050 climate change scenarios.

Though focused on Europe, the approach provides a framework that 
can be applied to other regions to assess zoonotic risks associated with 
IAS.

2. Methods

This study followed a structured approach to assess the zoonotic risk 
associated with invasive mammals in Europe (see Suppl. Fig. 1): (1) 
identifying invasive mammals of concern; (2) characterizing the zoo
notic pathogens they carry; (3) modeling their current and future dis
tribution, mapping potential disease hotspots and estimating human 
exposure.

2.1. Step 1: Identify invasive mammals of concern in Europe

From the 11 invasive mammals listed in the EU Union List, eight 
were selected based on evidence of their potential as zoonotic pathogen 
reservoirs, as reviewed in Roy et al. [35]. For each mammal, we 
collected information about habitat, origin, introduction pathway, and 
first records in Europe.

2.2. Step 2. Characterize the main pathogens carried by invasive 
mammals

Zoonotic pathogens associated with the eight selected invasive 
mammals were identified using literature from Roy et al. [35], EU risk 
assessments, and a targeted search of primary studies on Google Scholar 
(March 2023) using each species’ scientific name with the term “zoo
notic”, screening 10 articles per species.

During this literature review, we established specific criteria for in
clusion and exclusion of the articles initially retrieved, ensuring that 
they were in line with the scope of our study (modified from [35]; 
Table 1).

These criteria were applied to both our own search results and the 
articles included in Roy et al. [35]. A total of 84 articles met the inclu
sion criteria. The selection process and the number of articles retained 
per species are illustrated in Supplementary Fig. 2, and the full list of 
included articles is provided in Supplementary Table 1.

Priority was given to pathogens shared among multiple mammals, 
while broadly distributed ones like rabies were excluded. Data were 
collected on pathogen prevalence, severity, and incidence.

2.2.1. Prevalence data
Pathogen prevalence was gathered from the selected studies 

(Table S1). Due to limited European data, we also included prevalence 
estimates from other regions, following the precautionary principle.

When multiple prevalence values for a specific pathogen were 
available in a single article, we prioritized the most recent and those 
with a sample size greater than one. If diverse prevalence values were 
still present, an average prevalence was calculated.

Prevalence values were recorded as percentages (cases per 100 in
dividuals). Reliability of prevalence sources was classified as: 

• High: sample size >20 individuals,
• Medium: 10–19 individuals,
• Low: < 10 individuals.

Pathogens with only low-reliability prevalence data were excluded 
from further analysis.

2.2.2. Severity data
Pathogen severity was classified using Biosafety Level (BSL) stan

dards [12,47], that designates the level of containment required for 
handling microorganisms and biological materials in a laboratory. 

• BSL-1: non-pathogenic or minimal risk.
• BSL-2: treatable human pathogens, low transmission risk.
• BSL-3: serious diseases, treatable, high spread risk.
• BSL-4: serious, untreatable, and highly transmissible diseases.

When pathogens from the same genus or family had varying BSLs, 
the highest BSL was used. We focused only on pathogens rated BSL-3 or 
BSL-4.

2.2.3. Incidence in Europe
We obtained incidence data (i.e., the number of reported human 

cases) for each pathogen in Europe from 1950 to 2023, using the TESSy 
database managed by the European Centre for Disease Prevention and 
Control (ECDC) (https://www.ecdc.europa.eu/en).

2.3. Step 3: Spatial analysis of the zoonotic risk

Species Distribution Models (SDMs) were used to predict the po
tential current and future geographic distribution of the selected inva
sive mammals across Europe (Fig. S1). SDMs relate species occurrence 
with environmental conditions, estimating the probability of establish
ment [20,21].

2.3.1. Species occurrence data
We imported global occurrence records from the Global Biodiversity 

Information Facility database (GBIF, https://www.gbif.org) into R and 
cleaned them using the ‘scrubr’ R package v 0.3.2. [13]. We included 
additional occurrences from the European Alien Species Information 
Network (EASIN; https://easin.jrc.ec.europa.eu/easin), and from liter
ature sources [5,17]. To reduce spatial sampling bias, occurrences were 
spatially thinned to one point per 10 × 10 km grid cell [37].

2.3.2. Predictors used
We incorporated ten environmental predictors previously identified 

as effective for modeling the distribution of the target invasive mammals 
[18,32], while ensuring low multicollinearity by excluding variables 
with high correlation (Pearson’s r > 0.7) or high Variance Inflation 
Factor (VIF > 5). The final set of predictors (Table S2) included: 

Table 1 
Inclusion and exclusion criteria used to select studies for the review.

Inclusion 
Criteria

• Contains primary data on populations of IAS causing (or having 
potential to cause) zoonotic disease. 
• Contains primary data on the role of IAS (or potential role) as a 
vector or reservoir species for a zoonotic disease. 
• Reviews the role of IAS in zoonotic disease transmission and 
spread in the wild. 
• Contains primary laboratory data of IAS which are vectors or 
reservoirs for a zoonotic pathogen.

Exclusion 
criteria

• Contains only ecological, taxonomic, genetic or physiological 
data on the IAS with no data on a zoonotic disease. 
• Contains data on bites by an IAS as a health problem rather than 
infectious zoonotic disease. 
• Reviews that do not explicitly link IAS and zoonotic diseases (e. 
g., of invasion and biosecurity policy, zoonotic diseases and 
ecosystems, zoonotic diseases and biogeography, wildlife trade) 
• Paper not in the English language or lacking an abstract.
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• Seven bioclimatic variables (from CHELSA, Climatologies at High 
resolution for the Earth’s Land Surface Areas, version 2.1; [27])

• Accessibility, as a proxy for propagule pressure to reflect the strong 
human influence in the transportation and establishment of IAS 
[17,19,45].

• Elevation, reflecting topographic and climate gradients [2].

All variables were aggregated to a 5 arc-minute resolution (~10 × 10 
km) using the terra R package [22], aligning with the resolution of 
species occurrence data.

2.3.3. Model calibration
Models were calibrated incorporating data from both native and 

invasive ranges to encompass all potential environmental conditions for 
survival. Calibration was performed in R software version 4.2.2 using 
the BIOMOD2 v4.2–3 package [41], employing an ensemble modeling 
approach combining four algorithms: Generalized Linear Models (GLM), 
Generalized Additive Models (GAM), Random Forest (RF), and Boosted 
Regression Trees (GBM).

As these algorithms require both presence and absence data [3], we 
generated 10,000 pseudo-absences per species with a 0.5 prevalence to 
balance training datasets [7]. Each model was trained on 70 % of the 
data and tested on the remaining 30 %, repeated three times to address 
uncertainty in partitioning [41], resulting in 12 model replicas per 
species (4 algorithms × 3 partitions). This procedure relied on random 
cross-validation, a commonly used approach in SDMs, in which training 
and testing subsets are created through random partitioning of the 
occurrence data.

Model performance was evaluated using the True Skill Statistic 
(TSS), with higher values indicating higher predictive capability. Only 
replicas with TSS ≥ 0.7 were retained for ensemble modeling to ensure 
that only the best-performing models were considered for the final 
ensemble [41].

Ensemble models were obtained by combining all model replicas 
retained after quality filtering (TSS ≥ 0.7). The ensemble prediction was 
generated using BIOMOD2’s weighted-mean approach, in which each 
individual model contributes proportionally to its predictive capacity 
(TSS). This procedure increases model robustness by integrating the 
strengths of multiple algorithms while reducing individual model 
uncertainty.

2.3.4. Projections
Ensemble models were projected onto Europe creating continuous 

suitability maps (0–1000 scale), which were then binarized using the 
maxTSS threshold [7].

Future projections for 2050 were generated by applying the cali
brated ensemble models to the CHELSA climate layers for 2050 under 
three scenarios (ssp126, ssp370 and ssp585; [26]; https://chelsa-clim 
ate.org/; Table S3). In BIOMOD2, projections are produced by trans
ferring the species–environment relationships established during model 
calibration onto the future climate predictors, while keeping all model 
parameters constant.

Elevation and accessibility were assumed constant across future 
scenarios, given the absence of projected data, based on the assumption 
that these factors will remain similar to their current state [17].

2.3.5. Species range change (SRC)
We assessed range shifts under climate change by comparing current 

and future binary maps. Areas were categorized as: 

• Loss: currently suitable, projected to become unsuitable.
• Gain: currently unsuitable, projected to become suitable.

SRC maps were produced using QGIS v3.30.3 (https://www.qgis. 
org/).

2.3.6. Disease hotspot maps
Disease hotspot maps were generated by aggregating continuous 

suitability maps of all invasive mammals capable of transmitting a given 
pathogen. For each pathogen, we summed the suitability values of all 
relevant host species, weighting each species’ contribution by the 
prevalence of that pathogen (see Step 2.1). This results in a series of 
continuous maps of relative transmission risk, where higher values 
represent areas with an elevated potential risk of zoonotic disease 
transmission to humans. Where possible, georeferenced pathogen data 
from GBIF were overlaid for reference. However, data limitations 
restricted direct SDM calibration for pathogens. This limitation reflects a 
broader issue in zoonotic research: GBIF and similar repositories often 
contain detailed data on hosts and vectors but rarely on pathogens 
themselves [6].

2.3.7. Estimating human exposure
Human exposure to zoonotic risk was estimated by overlaying 

invasive mammal distribution maps with population data. Current 
population data were derived from the Gridded Population of the World 
v4 dataset [11], while future population projections were obtained from 
the 1-km downscaled population grids for the Shared Socioeconomic 
Pathways (SSPs) [24]. Exposure was calculated as the percentage of 
people living in areas suitable for each mammal under current and 
future scenarios.

Our analysis aimed to identify broad areas of elevated risk for 
human-wildlife interactions and potential disease transmission. It is 
important to note that living in the same 10 × 10 km grid cell as a 
particular invasive mammal does not necessarily lead to a zoonotic 
event, which is why we refer to this situation simply as exposure.

3. Results

3.1. Invasive mammals of concern in Europe

We identified eight invasive alien mammal species with zoonotic 
potential (Table 2). Most originated from Asia and America and were 
introduced in the 19th–20th centuries. Introduction pathways included 
deliberate releases into nature (for biological control or hunting), un
aided natural dispersal, and escapes from confinement (from fur farms, 
botanical gardens, zoos, aquaria, and the pet/aquarium/terrarium 
trade). Most species subsequently spread widely across Europe. Infor
mation on introduction history is taken from the EU risk assessments, 
and some species had multiple introduction pathways (see Table 2 for 
details).

3.2. Main pathogens carried by invasive mammals

A total of 97 pathogens were identified across the chosen mammals 
(average: 16 per species). N. procyonoides hosted the most (32), and 
T. sibiricus the fewest (3) (Table 2; Table S1). Six pathogens were 
selected for further analysis due to their prevalence and severity: Bor
relia burgdorferi s.l., Echinococcus multilocularis, Leptospira spp., Franci
sella tularensis, Tick-borne encephalitis virus, and Hantavirus (Table 3). 
These range in impact from mild symptoms to severe neurological 
damage.

3.3. Spatial analysis of zoonotic risk in Europe

3.3.1. Calibration of species distribution models
From over 1 million global occurrence points, 35,531 were retained 

after the cleaning protocol (Table 4; Table S4).
Distribution models showed high accuracy (TSS 0.71–0.91; 

Table S5), with additional evaluation metrics in Table S6.
Key habitat suitability predictors included annual mean temperature 

(bio1), temperature seasonality (bio4), and human accessibility. Vari
able importance is detailed in Tables S7–S15 and Figs. S3–S4.
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Current suitability maps (binary: Fig. 1; continuous: Fig. S5) high
light Western and Central Europe, particularly around the British 
Channel region (including northern France, southern England, Belgium 
and nearby coastal regions), as hotspots for the invasive mammals.

3.3.2. Range change under climate change
Species range changes (SRCs) were consistent across the three future 

scenarios; results for the high emissions scenario are shown (Fig. 2; 
others in Figs. S6–S7).

Under climate change, habitat suitability shifts northward. Most 
mammals experience a net range loss (e.g., T. sibiricus, − 45 %, Fig. 2A), 
except for S. carolinensis (+26 %, Fig. 2B) and H. javanicus (+16 %, 
Fig. 2H), which gain range.

3.3.3. Disease hotspot maps
Disease hotspot maps (Fig. 3) reveal regions at elevated zoonotic 

risk. Central Europe (including Germany, Poland, the Czech Republic, 
Hungary, Austria, and Slovakia) shows multiple hotspots, especially for 
Echinococcosis, Leptospirosis, Tularemia, and Hantavirus. Germany 
presents a heightened risk for the spread of all diseases except Lyme 
neuroborreliosis. In Southern Europe, Leptospirosis is most prevalent, 
with Italy particularly affected.

3.3.4. Human exposure to zoonotic risks
Human exposure was estimated as the percentage of the European 

population residing in areas suitable for each invasive mammal under 
current and future scenarios (Table 5).

The Javan mongoose and gray squirrel showed the largest projected 
increases, while the coypu already had the highest exposure (99 %) with 
minimal change expected. Exposure to the other five species is expected 
to decline by 5–63 %.

Table 2 
Invasive mammals regulated in Europe and selected for this study, including information on their origin, pathway of introduction and first report in Europe. Also 
included, the number of published articles about zoonotic risks associated with each species that were found and the total number of pathogens they host. More details 
in Table S1.

Scientific name 
(common name)

Order Origin Pathway First introduction in 
Europe

Num. articles on disease 
transmission

Num. of 
pathogens

Herpestes javanicus (The 
Javan mongoose) Carnivora Asia Release in nature: biological control 1910 (Croatia) 5 5

Myocastor coypus 
(Coypu) Rodentia South America

Escape from confinement: fur farms. 
Release in nature. 
Unaided: natural dispersal

1882 (France) 11 15

Nasua nasua 
(Ring-tailed coati)

Carnivora South America Escape from confinement: botanical garden/ 
zoo/aquaria

2003 (United 
Kingdom)

10 10

Nyctereutes procyonoides 
(Raccoon dog) Carnivora Asia

Release in nature: hunting 
Unaided

1926 (Russian 
Federation) 18 32

Ondatra zibethicus 
(Muskrat)

Rodentia North America
Escape from confinement: fur farms 
Unaided

1905 (Czechia) 12 23

Procyon lotor 
(Raccoon) Carnivora

North and 
Central America

Escape from confinement: botanical garden/ 
zoo/aquaria. Release in nature: hunting 
Unaided

1927 (Germany) 20 21

Sciurus carolinensis 
(Gray squirrel) Rodentia North America

Escape from confinement: botanical garden/ 
zoo/aquaria Release in nature.

1876 (United 
Kingdom) 7 16

Tamias sibiricus 
(Siberian chipmunk)

Rodentia Asia
Escape from confinement: pet/aquarium/ 
terrarium 
Release in nature.

1957 (Austria) 3 1

Table 3 
Diseases caused by pathogens carried by the eight focus invasive mammals. We chose pathogens with Biosecurity level (BSL) of 3 and 4, indicating that they cause 
severe diseases with a high risk of spread, with or without available treatment, respectively. Incidence in Europe reflects the total number of disease cases in humans 
recorded between 1950 and 2023. Prevalence, expressed as percentage of individuals carrying the pathogen, corresponds to the maximum of the range of prevalences 
reported in literature (Table S1).

Disease Pathogen causing the disease Severity (BSL level) Incidence in Europe (num. cases) Reservoir Invasive Species Prevalence

Echinococcosis Echinococcus multilocularis 3 1122
Myocastor coypus 0.4 %
Nyctereutes procyonoides 12 %
Ondatra zibethicus 11 %

Leptospirosis Leptospira 3 1544
Herpestes javanicus 8 %
Myocastor coypus 38 %
Procyon lotor 30 %

Tularemia Francisella tularensis 4 853
Nyctereutes procyonoides 13 %
Ondatra zibethicus 33 %
Procyon lotor 0.5 %

Tick-Borne Encephalitis Tick-Borne Encephalitis virus 3 1098 Sciurus carolinensis 3 %
Hantavirus infection Hantavirus 3 719 Ondatra zibethicus 8 %

Lyme neuroborreliosis Borrelia burgdorferi Sensu Lato 3 317
Sciurus carolinensis 12 %
Tamias sibiricus 35 %

Table 4 
Total number of occurrence records used for calibration for each mammal spe
cies under study after the cleaning protocol.

Species Global Occurrence records used for calibration

Herpestes javanicus 310
Myocastor coypus 5277
Nasua nasua 618
Nyctereutes procyonoides 2563
Ondatra zibethicus 8732
Procyon lotor 10,788
Sciurus carolinensis 6263
Tamias sibiricus 980

P. Monguilod and B. Gallardo                                                                                                                                                                                                               One Health 22 (2026) 101307 

4 



4. Discussion

Despite growing recognition of the role of Invasive Alien Species 
(IAS) in disease transmission, their impacts on human health remain 
underexplored. In this study, we address this gap by providing the first 
spatially explicit assessment of zoonotic risks associated with invasive 
mammals in Europe. Aligning with a One Health–One Biosecurity 
framework [23], our results support the idea that preventing and man
aging biological invasions can help reduce public health risks while also 
protecting biodiversity and ecosystem functioning.

We focused on eight invasive mammals from the EU Union List, all 
known or suspected reservoirs of zoonotic pathogens [35]. These species 
were introduced to Europe over the past 150 years, mostly through 
intentional releases followed by escape from confinement, a common 
introduction pathway for large mammals [39,42]. They have since 
spread widely across the continent.

Our literature review showed that the selected invasive mammals are 
associated with a diverse range of pathogens, supporting the idea that 
invasive hosts can play a role in introducing and increasing pathogens in 
areas they invade. It also highlights the importance of considering IAS 
when assessing zoonotic risks. In addition, many pathogens are shared 
among multiple hosts, increasing the risk of zoonotic spillover.

The public health impact of IAS is not merely a function of the 
number of pathogens they host, but also the severity of those pathogens. 
This is important for prioritizing surveillance and management, because 
IAS associated with fewer pathogens may still represent a dispropor
tionate threat if they host high-risk pathogens. For example, T. sibiricus, 
though linked to only three pathogens, carries Borrelia burgdorferi sensu 
lato (BSL-3). In contrast, N. procyonoides hosts 32 pathogens, most of 
lower severity (BSL-1 or BSL-2), showing that a higher pathogen count 
does not automatically imply a high public health risk. While Echino
coccosis (1122 cases) and Leptospirosis (1544 cases) have the highest 

Fig. 1. Binary maps displaying the current predicted suitability for eight invasive mammals regulated in Europe. A. Tamias sibiricus, B. Sciurus carolinensis, C. Procyon 
lotor, D. Ondatra zibethicus, E. Nyctereutes procyonoides, F. Nasua nasua, G. Myocastor coypus, H. Herpestes javanicus. Blue (0) indicates areas with low suitability for the 
invasive mammals, where they are unlikely to establish. Red (1) indicates areas very suitable, that is, similar to those inhabited by the invasive mammals, where the 
species are likely to survive if introduced. Real species occurrences, used to calibrate the models, are represented as black dots. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)
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incidence in Europe, Lyme neuroborreliosis is particularly concerning 
despite having fewer reported cases (317), due to its high prevalence in 
specific invasive hosts like T. sibiricus (35 %). This shows the importance 
of considering both incidence and host-specific prevalence when prior
itizing surveillance.

To evaluate current and future risks, and assuming IAS can expand 
into all climatically suitable areas, we modeled the potential distribution 
of the selected invasive mammals under current and 2050 climate sce
narios. Unlike previous SDMs studies primarily focused on biodiversity 
[17,18], this is the first to apply them specifically to human health im
pacts, providing a spatial tool for anticipating where invasive hosts may 
increase opportunities for zoonotic transmission.

Our results show that the current distribution of invasive mammals is 
primarily determined by accessibility to urban centers together with 
temperature variables, especially annual mean temperature (bio1) and 
temperature seasonality (bio4), in line with previous findings [32].

Climate change is expected to shift the mammals’ ranges northward, 
making Southern Europe less suitable for their establishment and Cen
tral and Northern Europe more favorable, due to milder winters and 

increased precipitation [8,17,32,39]. From a public health perspective, 
this suggests that areas currently considered at moderate risk may 
become increasingly relevant for surveillance as invasive mammals 
expand due to climate change.

Species responses to climate change were highly variable, with 
T. sibiricus projected to lose up to 45 % of its suitable area and 
S. carolinensis to gain up to 26 % under the high-emission scenario. These 
findings are consistent with global projections [9], and suggest that 
future zoonotic risk will not increase uniformly across invasive mam
mals and reinforce the need to interpret risk through species-specific 
ecology rather than broad generalisations.

However, many established species such as P. lotor, M. coypus, and 
O. zibethicus have already realized much of their potential range due to 
early introductions and long residence times [46], and they are expected 
to persist in established regions due to high adaptability and repro
ductive rates [38]. Nonetheless, our projections indicate that expansion 
remains possible in currently unoccupied but climatically suitable areas, 
especially in Western and Southwestern Europe, meaning that man
agement and monitoring should not assume that these invasions are 

Fig. 2. Maps displaying changes in the future suitability for IAS in Europe under the High Emissions scenario compared to the current scenario. Species depicted: A. 
Tamias sibiricus, B. Sciurus carolinensis, C. Procyon lotor, D. Ondatra zibethicus, E. Nyctereutes procyonoides, F. Nasua nasua, G. Myocastor coypus, H. Herpestes javanicus. 
In the top right corner, we display species range change (SRC) as the percentage area gained or lost by 2050 relative to the current scenario.
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fully saturated.
Other species are in earlier stages of invasion. S. carolinensis and 

T. sibiricus are expected to expand, particularly in France and Germany. 
The Javan mongoose (H. javanicus), despite being introduced in the 
early 20th century, remains rare in Europe due to limited habitat suit
ability. The ring-tailed coati (N. nasua), more recently introduced in 
2003, currently has few records but may expand in regions surrounding 
the British Channel (including northern France, southern England, 
Belgium, and nearby coastal regions). It exemplifies the concept of in
vasion debt, where species remain at low population levels before 
potentially spreading rapidly [16,33], highlighting the importance of 
early detection and monitoring to prevent zoonotic risks.

A novel contribution of this study is the development of disease 
hotspot maps that identify where the potential for zoonotic transmission 
from invasive mammals is likely to be highest under current conditions. 
These hotspot areas align with major trade routes and areas of intense 
human activity (including the British Channel region, France, Germany, 
and the Benelux region), where invasive mammals can easily spread 
[17,19]. This spatial pattern helps identify priority regions for targeted 
surveillance at the interface between IAS management and public 
health.

Our analysis also explored the degree of potential human exposure to 
the selected invasive mammals, which ranged widely among species: 
from 23 % for H. javanicus to 99 % for M. coypus (Table 5). The high 
exposure associated with M. coypus (99 %) reflects its ecological versa
tility and ability to thrive across diverse climates and landscapes, 
making it a widespread and persistent invader in Europe [36]. Human 
exposure should be considered an important complementary criterion 
when prioritizing invasive mammals for surveillance and management. 
At the same time, these human exposure estimates should be interpreted 
as indicators of potential contact rather than confirmed interaction, as 
they are based on spatial overlap between habitat suitability and pop
ulation density.

5. Limitations

This study represents an initial step in understanding the role of 
invasive mammals in zoonotic disease transmission, but has several 
limitations. First, the eight species analyzed are management priorities 
under the EU Union List, but this does not necessarily mean they are the 
most important invasive mammals for zoonotic risk across Europe. 
Second, although the predictors used capture broad-scale suitability 
patterns, model performance could likely be improved by including 
additional variables related to propagule pressure, dispersal and estab
lishment, as well as finer habitat descriptors. However, such predictors 
are not generally available at the global extent and 10 × 10 km 

Fig. 3. Continuous maps displaying disease hotspots in Europe. Diseases depicted: A. Echinococcosis, B. Leptospirosis, C. Tularemia, D. Tick-Borne Encephalitis, E. 
Hantavirus infection, F. Lyme neuroborreliosis. Black dots represent georeferenced locations of the pathogens that cause the diseases.

Table 5 
Exposure of the European human population to invasive mammals. The current 
scenario represents the % of inhabitants in Europe that inhabit areas highly 
suitable for the establishment of invasive mammals, under the current climate 
conditions. Future scenarios represent the increase or decrease (in % relative to 
the current scenario) in the human population inhabiting areas suitable for the 
invaders.

Current 
scenario

Low emissions 
scenario

BAU 
scenario

High emissions 
scenario

Herpestes 
javanicus

22,50 +38 % +21 % +33 %

Sciurus 
carolinensis 82,43 +10 % +10 % +12 %

Myocastor 
coypus

99,43 0 % 0 % 0 %

Procyon lotor 81,80 +1 % -9 % − 7 %
Ondatra 

zibethicus
85,20 − 5 % − 6 % − 6 %

Nyctereutes 
procyonoides 87,49 − 7 % − 12 % − 13 %

Nasua nasua 28,80 +5 % − 14 % − 30 %
Tamias sibiricus 78,16 − 23 % − 63 % − 40 %
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resolution applied here. Third, species occurrence data may be affected 
by sampling bias, with a higher representation of accessible areas. In 
addition, model performance was assessed using random cross- 
validation, which is widely used but may underestimate prediction 
error compared with spatially structured approaches such as block cross- 
validation [4,43].

6. Conclusions

Invasive alien mammals pose risks not only to biodiversity and 
ecosystem functioning but also to human health, as many of these spe
cies act as reservoirs of zoonotic pathogens. From a One Health 
perspective, our study provides the first spatially explicit assessment of 
zoonotic risks associated with invasive mammals in Europe and offers a 
useful foundation for future work as data and modeling approaches 
continue to improve.

By combining species distribution models with pathogen prevalence 
data, we identified current disease hotspot areas where the potential for 
zoonotic transmission is highest, particularly across Western and Central 
Europe.

Overall, our findings show that managing invasive mammals can 
contribute to both ecosystem protection and public health. The frame
work presented here can help guide surveillance, prevention, and con
trol strategies aimed at mitigating the threats posed by emerging 
zoonotic diseases.
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[32] E. Polaina, T. Pärt, M.R. Recio, Identifying hotspots of invasive alien terrestrial 
vertebrates in Europe to assist transboundary prevention and control, Sci. Rep. 10 
(1) (2020) 11655. Available at: https://doi.org/10.1038/s41598-020-68387-3.

[33] M. Rouget, et al., Invasion debt – quantifying future biological invasions, Divers. 
Distrib. 22 (4) (2016) 445–456. Available at: https://doi.org/10.1111/DDI.12408.

[34] H.E. Roy, et al., Developing a framework of minimum standards for the risk 
assessment of alien species, J. Appl. Ecol. 55 (2) (2018) 526–538. Available at: 
https://doi.org/10.1111/1365-2664.13025.

[35] H.E. Roy, et al., The role of invasive alien species in the emergence and spread of 
zoonoses, Biol. Invasions 25 (4) (2023) 1249–1264. Available at: https://doi.org/ 
10.1007/S10530-022-02978-1/FIGURES/1.

[36] A. Schertler, et al., The potential current distribution of the coypu (Myocastor 
coypus) in Europe and climate change induced shifts in the near future, NeoBiota 
58 (2020) 129–160. Available at: https://doi.org/10.3897/neobiota.58.33118.

[37] N. Sillero, What does ecological modelling model? A proposed classification of 
ecological niche models based on their underlying methods, Ecol. Model. 222 (8) 
(2011) 1343–1346. Available at: https://doi.org/10.1016/J.ECOLMODEL.2011.0 
1.018.

[38] A.D. Simmons, C.D. Thomas, Changes in dispersal during species’ range 
expansions, Am. Nat. 164 (3) (2004) 378–395. Available at: https://doi.org/10. 
1086/423430/ASSET/IMAGES/LARGE/FG8.JPEG.

[39] L. Tedeschi, et al., Introduction, spread, and impacts of invasive alien mammal 
species in Europe, Mammal Rev. 52 (2) (2022) 252–266. Available at: https://doi. 
org/10.1111/MAM.12277.

[40] L. Tedeschi, et al., Invasive alien mammals of European Union concern, bioRxiv 
(2024), https://doi.org/10.1101/2021.04.21.440832.

[41] W. Thuiller, et al., BIOMOD – a platform for ensemble forecasting of species 
distributions, Ecography 32 (3) (2009) 369–373. Available at: https://doi.org/10. 
1111/J.1600-0587.2008.05742.X.

[42] K. Tsiamis, et al., Baseline Distribution of Species Listed in the 1st Update of 
Invasive Alien Species of Union Concern, Publications Office of the European 
Union, Ispra (Italy), 2019.

[43] R. Valavi, et al., blockCV: an R package for generating spatially or environmentally 
separated folds for k-fold cross-validation of species distribution models, Methods 
Ecol. Evol. 10 (2019) 225–232. Available at: https://doi.org/10.1111/2041-21 
0X.13107.
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