000166110 001__ 166110
000166110 005__ 20260120151004.0
000166110 0247_ $$2doi$$a10.3390/en17010252
000166110 0248_ $$2sideral$$a147527
000166110 037__ $$aART-2024-147527
000166110 041__ $$aeng
000166110 100__ $$aZeng, Weilin
000166110 245__ $$aA Generalised Series Model for the LES of Premixed and Non-Premixed Turbulent Combustion
000166110 260__ $$c2024
000166110 5060_ $$aAccess copy available to the general public$$fUnrestricted
000166110 5203_ $$aIn this study, the generality and prediction accuracy of a generalised series model for the large eddy simulation of premixed and non-premixed turbulent combustion is explored. The model is based on the Taylor series expansion of the chemical source term in scalar space and implemented into OpenFOAM. The mathematical model does not depend on combustion regimes and has the correct limiting behaviour. The numerical error sources are also outlined and analysed. The model is first applied to a piloted methane/air non-premixed jet flame (Sandia Flame D). The statistical (time-averaged and RMS) results agree well with the experimental measurements, particularly with regard to the mixture fraction, velocity, temperature, and concentrations of major species CH4, CO2, H2O, and O2. However, the concentrations of the intermediates CO and H2 are over-predicted, due to the limitations of the reduced reaction mechanism employed. Then, a Bunsen-piloted flame is simulated. Most of the statistical properties of both the reactive species and progress variables are well reproduced. The only major discrepancy evident is in the temperature, which is probably attributed to the experimental uncertainties of temperature fields in the pilot stream. These findings demonstrate the model’s generality for both a premixed and non-premixed combustion simulation, as well as the accuracy of prediction of reactive species distribution.
000166110 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000166110 590__ $$a3.2$$b2024
000166110 591__ $$aENERGY & FUELS$$b112 / 182 = 0.615$$c2024$$dQ3$$eT2
000166110 592__ $$a0.713$$b2024
000166110 593__ $$aEngineering (miscellaneous)$$c2024$$dQ1
000166110 593__ $$aElectrical and Electronic Engineering$$c2024$$dQ2
000166110 593__ $$aEnergy (miscellaneous)$$c2024$$dQ2
000166110 593__ $$aRenewable Energy, Sustainability and the Environment$$c2024$$dQ2
000166110 593__ $$aFuel Technology$$c2024$$dQ2
000166110 593__ $$aControl and Optimization$$c2024$$dQ2
000166110 593__ $$aEnergy Engineering and Power Technology$$c2024$$dQ2
000166110 594__ $$a7.3$$b2024
000166110 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000166110 700__ $$aWang, Xujiang
000166110 700__ $$aLuo, Kai Hong
000166110 700__ $$aVogiatzaki, Konstantina
000166110 700__ $$0(orcid)0000-0001-8342-6573$$aNavarro-Martinez, Salvador$$uUniversidad de Zaragoza
000166110 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000166110 773__ $$g17, 1 (2024), 252 [17 pp.]$$pENERGIES$$tEnergies$$x1996-1073
000166110 8564_ $$s5284642$$uhttps://zaguan.unizar.es/record/166110/files/texto_completo.pdf$$yVersión publicada
000166110 8564_ $$s2680453$$uhttps://zaguan.unizar.es/record/166110/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000166110 909CO $$ooai:zaguan.unizar.es:166110$$particulos$$pdriver
000166110 951__ $$a2026-01-20-14:17:50
000166110 980__ $$aARTICLE