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Abstract. Intense firing activities at Spanish Army Training Centers create a significant wildfire risk, requiring the
implementation of a specific Plan Against Forest Fires (PAFF) and an Operational Action Protocol (OAP), both of
which rely on accurate fuel type maps. This study evaluates the usefulness of the backscattering coefficient provided
by PAZ, the X-band SAR Spanish Ministry of Defense’s first Earth observation satellite, for fuel type mapping to
support wildfire management in the "San Gregorio" Training Center (Zaragoza, Spain). The methodology involved
three phases: (i) processing satellite images from the first PAZ Announcement of Opportunity (AO-001); (ii)
delineating field plots for correlation with satellite imagery; and (iii) classifying fuel types using multinomial logistic
regression. Results indicate that PAZ images are effective for discriminating among the main fuel types (grassland,
shrubland, and woodland), achieving an overall accuracy of 82.1%. However, they are not suitable for the detailed
mapping of the Prometheus fuel categories, with an overall accuracy of 42.9%, primarily due to the limited penetration

capabilities of the X-band.

Keywords: Wildfire, backscattering coefficient; dominant vegetation cover; Prometheus fuel types; multinomial
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1 Introduction

Wildfires are considered as one of the most significant disturbance factors in the natural
ecosystems of Mediterranean regions'. Wildfire is a landscape-shaping force in the Mediterranean
basin, with which societies have learned to coexist using it as a traditional management tool’.
However, in recent decades, wildfire recurrence, magnitude and severity have increased®*. One of
the main causes is the heightened combustibility of vegetation masses (quantity, surface area,
volume, spatial continuity and the accumulation of dead matter), as a consequence of changes in
rural depopulation, agricultural structure and land use. Added to this is the great socio-
environmental challenge posed by climate change, with extreme weather conditions and prolonged
periods of drought>~. The 2022 summer serves as a notable example of high wildfire occurrence
and intensity in Spain, France and Portugal’®. Specifically, the area burned in Spain in 2022 tripled
compared to the average calculated in recent decades'®. This alarming trend was also exacerbated
in 2025 when the total burned area had already surpassed 338,000 ha, according to the European
Forest Fire Information System (EFFIS) dataset!!.

This reality did not go unnoticed in the Spanish National Security Strategy 2021, currently in
effect, which considers wildfires as one of the main risks and threats in Spain, both in terms of
“Emergencies and disasters”, as well as the “Effects of climate change and degradation of the
natural environment™!2,

Wildfire risk assessment, which is key for prevention and pre-extinguishment planning,
integrates ignition estimation (fuel moisture, both human and natural causal factors), spread
conditions (wind, fuel properties and topography) and vulnerability assessment (socio-economic
and ecological)'*"!7. Specifically, the spatial assessment of wildfire risk and wildfire intensity in
wildland-urban interfaces requires mapping of forest fuels key parameters'®. Forest fuel is the only
wildfire-related landscape component that can be modified through management. Therefore, it is
essential to know the fuel distribution, both for wildfire risk assessment and for the design of
wildfire prevention strategies'®!?.

Among human causal factors, the activities conducted at the Spanish Army's Training Centers

(TC) and Maneuver and Shooting Fields (MSF) represent a significant wildfire risk. These

facilities are used for essential instruction, training, and evaluation exercises with live fire to ensure
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mission readiness?’. Consequently, the intense firing activity turns projectile drop zones into potent
ignition sources, threatening the natural environment, military infrastructure, and personnel safety.
This inherent risk has led to the mandatory implementation of a Plan Against Forest Fires (PAFF)
and an Operational Action Protocol (OAP) in all TC and MSF, as stipulated by Directive 03/19 of
the Chief of Staff of the Spanish Army?!.

Remote sensing plays a major role in forest fuel characterization over landscapes offering
numerous benefits over field-based approaches, particularly in its ability to make cost-efficient
and objective and up-to-date observations over large and inaccessible areas. As a result, remote
sensing of forest fuel is an established field of research, although the collection and interpretation
of remotely sensed data requires clear objectives with regard to its intended use and spatial and
temporal applicability!. An extensive review of the scientific literature by Ref. 19 pointed out
different applications of remote sensing to forest fuel attributes, with works related to fuel type
mapping being ranked second with 37% of the articles reviewed. The origin of these articles was
mostly from North America and, overall, Europe, because wildfire behavior models developed for
these environments usually employ a fuel type classification approach (e.g. Ref. 22727),

A fuel type (FT) is an identifiable association of elements characterized by their shape, size,
arrangement, and continuity that will exhibit characteristic wildfire behavior under defined
combustion conditions?. Different classifications of fuel types based on Rothermel's fire
propagation equations® can be found in the scientific literature. In the framework of the European
Prometheus project®®, an attempt was made to adapt them to the particular characteristics of
Mediterranean vegetation, defining seven types that take into account the height, coverage and
vertical continuity of the propagating elements. Specifically, the Prometheus classification
includes: agricultural and herbaceous vegetation (FT1); three shrubland types defined by
increasing height: low-lying shrubs (FT2), medium- to large-sized shrubs (FT3), and tall shrubs
(FT4); and three forest types differentiated by their understory structure: forests with no significant
understory (FT5); forests with an understory where the gap to the main canopy is > 0.5 m (FT6);
and forests where this gap is < 0.5 m (FT7).

As noted by Ref. 18, Prometheus is a fuel type classification system in Mediterranean
countries, being frequently used in remote sensing literature (e.g. Ref. 272172%). However, for more

operational purposes, such as providing an initial approximation to support regional firefighting
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strategies, a simplified classification is also considered. This approach categorizes fuel types based
on dominant vegetation, resulting in three main classes: grasslands, shrublands, and forests*®-’.

Optical passive remote sensing sensors (multispectral and hyperspectral) have been the most
widely used for fuel type mapping. The accuracy of the fuel type maps obtained varies depending
on the sensor, the statistical methods used and the characteristics of the study area, but the main
problem detected lies in the inability of these sensors to estimate the height of the vegetation and
to penetrate the forest canopy, thus unveiling the characteristics of the vegetation remaining under
the forest canopy!®!%-3,

In contrast, LIDAR (Light Detection and Ranging) and SAR (Synthetic Aperture Radar) active
remote sensing sensors are shown to be suitable for forest structure characterization, by passing
the aforementioned restrictions of optical passive sensors**#!. Focusing on LiDAR, this type of
data is proven to be extremely useful in estimating vegetation height and subcanopy attributes'”
and for forest fuel characterization and mapping'®*>. Although there are some examples using
airborne LiDAR technology alone for fuel type mapping (e.g. Ref. 27%4) most successful
approaches are those that combine the use of this data with passive sensor imagery (e.g. Ref.
5.24.26.273445-49) " with experiences using spaceborne LiDAR remaining scarce (e.g. Ref. 3%31),
However, as pointed out by Ref. 18,19, the main limitation for the use of airborne LiDAR data for
mapping fuel types is its cost and its limited temporal and spatial coverage. Recently, a LIDAR-
sensing unmanned aerial vehicle (UAV-LiDAR) has been evaluated to classify and map fuel types
based on the Prometheus classification in Mediterranean environments with good results. Thus,
although limited to local scales, UAV-LIDAR systems emerges as an ideal tool to spatialize the
results to larger areas using sensors covering wider spatial scales™.

Spaceborne SAR sensors, such as the one onboard the PAZ satellite, overcome these
limitations by providing images of large territories at frequent intervals in all weather conditions,
day and night*>*!. The PAZ mission is a Spanish governmental radar mission and the first satellite
of the Spanish National Earth Observation Program (PNOTS), which is operated directly by the
Spanish Ministry of Defense through the INTA (National Institute for Aerospace Technology). Its
objective is to cover the operational needs of security and defense and to provide services to

civilian users in fields such as intelligence, treaty verification, catastrophe management, and

wildfires, thereby supporting the Spanish National Security Strategy 2021, as mentioned above.
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In spite of having proven that SAR images are useful for the estimation of forest parameters
essential for fuel model mapping, such as biomass, tree height, tree volume, and canopy closure,
the use of these active sensors for this issue is scarce'8. Although research about forest parameters
with SAR images has been developed mainly using C- and L-band due to the low penetration
power of the X-band in the plant canopy”*-**, different studies have shown the sensitivity of the
backscatter of this band for the characterization of vegetation cover and land cover mapping (e.g.
Ref. 3*81) Focusing on fuel types according to the dominant vegetation, X-band backscattering
has proven adequate for mapping grasslands®’, discriminating shrublands®’ and identifying
forests®!.

In this context, this study aims to assess the utility of X-band backscatter from the PAZ satellite
for operational fuel mapping to support the PAFF and OAP at the TC “San Gregorio”. To achieve
this, we pursued two specific objectives:

1. Primary, operational objective: to develop and validate a baseline map of fuel types based
on dominant vegetation cover (grasslands, shrublands, and forests), addressing an immediate
operational need.

2. Secondary, exploratory objective: to evaluate the sensitivity and limitations of X-band
backscatter for discriminating the more complex Prometheus fuel models, and to assess its
potential to complement other remote sensing data (e.g., Sentinel-1/2 or Landsat) in future multi-
sensor approaches.

For this, we make use, on the one hand, of the images provided by the first Announcement of
Opportunity for Scientific Exploitation of the PAZ mission (AO-001) and, on the other hand, of
the 10-meter resolution fuel model map of the study area obtained using airborne LiDAR and

45-47

multispectral imagery by the authors in and specific field work.

2  Materials and Methods

2.1 Study area

The study area corresponds to the TC “San Gregorio” (41°50° N, 0°57° W) (Fig. 1), which occupies
an area of 33,839 ha in the central sector of the Ebro Depression, in the northeast of Spain (province

of Zaragoza).
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Fig. 1 Study area and localization of the field plots.

The climate of the region is Mediterranean with continental features and a semi-arid
environment, characterized by irregular annual precipitation, with an average annual rainfall of
350 mm. The winters are cold, while summers are hot and dry. The area presents a hilly
topography, with altitudes ranging from about 400 m to 750 m a.s.l. and has nutrient-poor
gypsiferous soils.

The vegetation species are adapted to the adverse climatic and edaphic conditions of the area.
Thus, the land is dominated by grass pastures and evergreen shrubs of Quercus coccifera L.,
Juniperus oxycedrus L., Rosmarinus officinalis L. and Thymus vulgaris L. Mono-specific stands
of Pinus halepensis Mill., mainly concentrated in the north extreme and in discontinuous stands
of varying sizes along the east-southeast boundary, occupies approximately 8,200 ha and
constitutes the dominant tree strata. Most of these pine stands are semi-natural, although some of

those located in the east-southeast part were planted forty years ago.

2.2 PAZ images and processing

The images captured over the study area were provided by the INTA in the context of the First
Announcement of Opportunity for Scientific Exploitation of the PAZ mission®?, through the AO-
001-040 project. The PAZ satellite is equipped with an X-band Synthetic Aperture Radar (SAR)

instrument operating at a center frequency of 9.65 GHz (3 cm wavelength). As part of the same



167
168
169
170
171
172
173
174
175
176
177
178

179

180
181
182
183
184
185
186
187
188
189
190
191
192

constellation as TerraSAR-X and TanDEM-X, it shares similar platform and instrument
characteristics, ensuring high-quality data®’.

PAZ ofters four Level 1B product processing variants, which maintain full compatibility with
TerraSAR-X products®. The images used in this study were acquired in ScanSAR (SC) mode and
processed as Multi Look Ground Range Detected (MGD) products. ScanSAR 1is designed for wide
area surveillance, providing a large scene size of 100 x 150 km with a typical azimuth resolution
of 18.5 m, operating with a single polarization (HH, HV, or VV) over a range of incidence angles
from 20° to 45°. The MGD processing level provides magnitude-detected data projected to ground
range using the WGS84 ellipsoid, which effectively reduces speckle noise and is well-suited for
thematic classification®. The sensor features a high absolute radiometric accuracy of 0.57 dB,
ensuring the quality and reliability of the backscatter measurements used in our analysis. Table 1

shows the polarization and acquisition dates of the six images used in this work.

Table 1 Acquisition dates and polarization of the PAZ images.

Acquisition date Polarization
2020/07/06 HH
2020/07/17 HV
2020/07/28 \AY%
2020/08/08 HH
2020/08/19 HV
2020/08/30 \YAY

Given the varied topography of the study area, a critical step was to correct for terrain-induced
radiometric distortions. Therefore, we applied a processing chain to normalize the backscatter
coefficient to the area illuminated by the sensor, obtaining Gamma Naught (y0), as recommended
by Ref. . All processing was performed using the ESA SNAP software package
(https://earth.esa.int/eogateway/tools/snap). The workflow began with the radiometric calibration
of the raw data to obtain the radar brightness coefficient, Beta Naught (B0). This was followed by
a spatial multilooking step, using a 3x3 window (range x azimuth), to reduce speckle and generate
an approximately square pixel with a spatial resolution of 24.75 m. Next, to correct for radiometric
distortions caused by the terrain, Radiometric Terrain Flattening method was applied using the
Flattening Gamma method® and the SRTM 1 Arc-Second Digital Elevation Model (DEM).
Afterward, the images were geocoded using Geometric Terrain Correction with the Range-

Doppler method, employing the same DEM to ensure geometric accuracy. Finally, a Lee speckle
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filter with a 3x3 kernel was applied to the terrain-corrected y0 image to further reduce residual
speckle noise, and the backscatter coefficient was then converted from linear scale to logarithmic
scale and expressed in decibels (dB).

According to Ref. %, averaging multiple co-registered SAR images is an effective method for
speckle reduction, provided the scene remains stable across acquisitions. We validated this
assumption of scene stability for our study period (August-September 2020) based on two key
observations: (i) field work conducted concurrently with the image acquisitions revealed no
significant phenological changes or disturbances in the study area and, consequently, no change
between fuel types, and (ii) the temporal correlation between the individual images for each
polarization was consistently high (r > 0.8). Given this demonstrated stability, an average image
for each polarization was generated by combining the two acquisitions, enabling multitemporal
multilooking and reduce residual speckle noise. Consequently, the three resulting average images

were used for the subsequent statistical analysis.

2.3 Field data

The objective of this phase was to establish a ground-truth dataset to train and validate the two
classification schemes defined in this study: (i) the baseline map of dominant vegetation cover and
(i1) the Prometheus fuel types. To ensure that the collected data would be reliable for both analyses,
the field sampling strategy was designed based on the Prometheus classification, given its more
detailed and restrictive nature.

Field data acquisition was divided into two sub-phases: (i) the location and delimitation of 50
m radius plots based on a previous 10 m resolution Prometheus classification fuel type map of the
study area obtained by the authors using airborne LiDAR and multispectral data (see Ref. 45-47);
and (i1) field work conducted between August and September 2020 (concurrent with SAR image
acquisition) to verify in situ the correspondence of each plot with the fuel model pre-assigned in
the first sub-phase (Figure 2). To ensure plot suitability for digital classification models, the
following requirements were followed: (i) a sufficient number of all Prometheus fuel type
categories; (i1) homogeneity of fuel type within the 50 m radius plot; (iii) representativeness of
slopes and topographic orientations in the study area; and (iv) accessibility to verify in situ whether

the fuel type assigned by the reference cartography in Ref. 45-47 was correct. A Leica VIVA®
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GS15 CS10 GNSS real-time kinematic Global Positioning System instrument was used to locate
the centroids of the plots.

A final set of 113 plots was established (Figure 1; Table 2), which constitutes the ground truth
for this study. On the one hand, these plots were grouped according to the Dominant Vegetation
Cover (DVC) classification, resulting in four main categories: Bare soil (11 plots), DVCI
Grasslands (11 plots), DVC2 Shrublands (46 plots), and DVC3 Forest (45 plots). The number of
plots for bare soil and grasslands categories were considered appropriate for the analysis, as these
cover types are expected to have a simpler and more easily characterizable radiometric responses
compared to the more structurally complex shrubland and forest classes. On the other hand, the

plots were grouped following the Prometheus model, noting that Fuel Type 6 (FT6) was excluded

from the dataset due to its limited representation in the study area.

Table 2 Fuel types description according to Prometheus classification (FT) and dominant vegetation cover (DVC)

baseline map.

. N°of  Dominant vegetation cover (DVC) N° of
Prometheus fuel type (FT) description plots description plots
Bare soil 11 Bare soil 11
FT1. Agricultural and herbaceous vegetation. Grass > 1 DVCI. Grasslands. Fine or light fuels, 1
60% diameter <5 mm. Grass > 60%.
FT2. Grasslands, low-lying shrubs (0.30-0.60 m) with
30-40% of herbs. Shrub cover > 60%; Tree cover < 24
50%. .
FT3. Medium- to large-sized shrubs (0.60-2.0 m), as D,VC2‘ Shrublands. Medium fuelsl,l
well as young trees (> 4 m). Shrub cover > 60%; Tree 14  diameter bstween 5and 75 ml})l' Shrub 46
cover < 50%. cover > 60%; Tree cover < 50%.
FT4. Tall shrubs (2.0-4.0 m) and young trees (> 4 m). ]
Shrub cover > 60%; Tree cover < 50%.
FTS5. Forest areas (> 4 m) with no understory. Tree 24
cover > 50%; Shrub cover < 30%.
FT6. Forest areas (> 4 m) where the mean height
difference between the tree canopy and surface fuel )
layer is > 0.5 m. Tree cover > 50%; Shrub cover > DVC3. Forest. coarse or heavy fuels, 45
30%. diameter >75 mm. Tree cover > 50%.
FT7. Forest areas (> 4 m) where the mean height
difference between the tree canopy and surface fuel 19
layer is < 0.5 m. Tree cover > 50%; Shrub cover >
30%.
Total n° of plots 113 113
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Fig. 2 Field work conducted to verify in situ the correspondence of each plot with the fuel model pre-assigned in the

first sub-phase.

2.4 Fuel type classification and model validation

To perform fuel type digital classification and obtain a cartography of the study area, the
radiometric value corresponding to the central pixel of each plot was extracted from the average
images calculated for each polarization.

Prior to the implementation of the digital classification, an exploratory statistical analysis was
conducted to investigate the relationships between the PAZ backscatter data and the fuel type
categories. This preliminary analysis was essential to assess the potential separability of the classes
within both the dominant vegetation cover and the Prometheus classification schemes. The
analysis was structured in two main parts.

First, to quantify the strength and direction of the monotonic relationship between the
backscatter values and the ordinal fuel type categories, the non-parametric Spearman's rank
correlation coefficient (p) was calculated. This test was selected due to its robustness and because
it does not assume a linear relationship between the variables, which is often the case with complex

10
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interactions between SAR signals and vegetation structure’®®’. Second, to determine whether
statistically significant differences existed between the median backscatter values of the fuel
categories in each of the two classification schemes, the Kruskal-Wallis non-parametric test was
applied. This test was chosen as it does not assume a normal distribution of the data, a common
characteristic of SAR imagery*>%’. A significant result from the Kruskal-Wallis test (p < 0.05)
indicates that at least one fuel category differs from the others. To identify which specific pairs of
categories were significantly different from each other, a Dunn's post-hoc test with a Bonferroni
correction was subsequently performed. This detailed pairwise analysis is crucial for
understanding which fuel types are likely to be confused during the classification and for
evaluating the intrinsic sensitivity of the X-band backscatter to the subtle structural differences
defined by the Prometheus models. All exploratory statistical analyses were conducted in the R
programming environment. Spearman's rank correlation and the Kruskal-Wallis test were
calculated using functions from the base 'stats' package. The Dunn's post-hoc test for pairwise
comparisons was performed using the Dunn Test function from the 'FSA' package®®.

Following the exploratory analysis, the digital classification of fuel types was performed using
multinomial logistic regression. This statistical method was chosen to model the probability of a
given pixel belonging to one of the defined fuel type categories based on its PAZ backscatter
values as explanatory variables®. This approach was selected over non-parametric machine
learning algorithms, such as Random Forest (RF) and Support Vector Machine (SVM), due to its
robustness with small to medium-sized datasets. While powerful, algorithms like RF and SVM are
highly flexible and data-driven, which increases the risk of overfitting when trained on a limited
number of samples’’, as was the case in this study (113 plots). Overfitting occurs when a model
learns the training data, including its statistical noise, so perfectly that it fails to generalize to new,
unseen data. In contrast, multinomial logistic regression is a parametric model that is less prone to
this issue. Its underlying assumptions provide a form of regularization, leading to simpler, more
generalized models that are more reliable when data is scarce’!. The multinomial logistic
regression model was implemented in the R programming environment. The model was fitted
using the “multinom” function from the “nnet” package’?, while model validation and the
calculation of performance metrics, such as the confusion matrix, were conducted using the

“Caret” package’. To build and evaluate the model, the field plots were partitioned using a

11
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stratified random split, allocating 75% of the data for training (n=85) and reserving the remaining

25% for independent validation (n=28).
3 Results
3.1. Spearman correlation

Table 3 presents the Spearman correlation analysis between the averaged PAZ backscatter values
and the fuel type categories for both the Dominant Vegetation Cover (DVC) and the Prometheus
(FT) classification schemes. The results for both schemes indicate that the HV polarization exhibits
the strongest relationship with the fuel types, showing a moderate and positive correlation for both
the DVC classification (p = 0.496) and the more detailed FT classification (p = 0.513). In contrast,
the co-polarized bands (HH and VV) showed very weak correlations for both classification
systems (p < 0.13). It is important to note that all reported correlations in the analysis were
statistically significant (p < 0.05). This finding is consistent with the scientific literature, which
widely recognizes that cross-polarization (HV) is more sensitive to volume scattering from

vegetation canopies than co-polarized bands**’.

Table 3 Spearman's rank correlation coefficient between PAZ averaged images and fuel type categories. All the
relationships were statistically significant (p < 0.05).

PAZ averaged images Spearman correlation Spearman correlation
DVC fuel types Prometheus fuel types

HH 0,100 0.123

HV 0.496 0.513

A% 0.060 0.083

3.2 Analysis of Fuel Type Separability

The Kruskal-Wallis test indicated that for both the Dominant Vegetation Cover (DVC) and the
Prometheus (FT) classification schemes, the backscatter values of all three PAZ polarizations (HH,
HV, and VV) showed statistically significant differences among the fuel type categories (p < 0.05)
(Table 4). This confirms that the X-band signal is sensitive to the structural differences between
the defined fuel types. To identify which specific classes could be distinguished, a Dunn's post-
hoc test was subsequently applied.

For the broader DVC classification, the Dunn's test revealed a high degree of separability

among the categories. Table 5 presents pairwise comparisons between the categories that were

12
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statistically significant (p < 0.05). The HV polarization was the most versatile, successfully
distinguishing four of the six possible pairs. It was able to separate Grasslands (DVC1) from both
Shrublands (DVC2) and Forests (DVC3), and also distinguished both Shrublands and Forests from
Bare soil. The co-polarized bands also provided critical information. Both HH and VV
polarizations effectively separated Grasslands (DVCI1) from Bare soil. Crucially, the VV
polarization was the only one capable of significantly distinguishing between Shrublands (DVC2)
and Forests (DVC3), a key separation for fuel type mapping. In summary, by combining the
information from all three polarizations, all pairs of DVC categories were found to be statistically
separable, indicating a strong potential for successful classification at this broader thematic level.

The analysis of the more detailed Prometheus types provided deeper insights into the specific
capabilities and limitations of the X-band backscatter. The results from the Dunn's test showed
that the HV polarization was again the most effective, identifying seven statistically significant
pairs of fuel models (p < 0.05) (Table 5). Notable separations were achieved between fuel types
with large differences in vegetation structure and biomass. For instance, forest with no understory
(FT5) was significantly different from all three shrubland categories (FT2, FT3, and FT4),
indicating that the sensor can clearly distinguish between a closed-canopy forest and open
shrublands. Similarly, forest with high vertical continuity (FT7) was separable from the lower-
stature shrub classes (FT2 and FT3). This suggests that volume scattering captured by the HV
channel is highly sensitive to the presence of a dense forest canopy and understory. Conversely,
the analysis also highlighted significant confusion between structurally similar classes. A critical
challenge was the lack of separability within the shrubland continuum; no significant differences
were found between low-lying shrubs (FT2), medium-sized shrubs (FT3), and tall shrubs (FT4).
This indicates that while the X-band can differentiate shrublands from forests, it struggles to
resolve finer-scale differences in shrub height and density. Similarly, the two main forest types,
FTS5 (no understory) and FT7 (with understory), could not be statistically separated from each
other, suggesting that the X-band signal has difficulty penetrating the main forest canopy to
characterize the understory structure—a known limitation of this wavelength. Finally, the
herbaceous category (FT1) could not be reliably distinguished from bare soil or the low-shrub class

(FT2).

13



338 Table 4 Results from Kruskal-Wallis test for DVC and Prometheus FT. All variables were statistically significant
339 (p-value < 0.05)

Chi-square coefficient Chi-square coefficient

PAZ averaged images

DVC fuel types Prometheus fuel types
HH 36.053 45.545
HV 39.090 44.022
VvV 27.521 37.429
340
341 Table 5 Results from Dunn's test to distinguish categories DVC and Prometheus fuel types. All pairwise
342 comparisons between the categories were statistically significant (p < 0.05)
DVC fuel types Prometheus fuel types
PAZ averaged . PAZ averaged .
. Comparison . Comparison
images images
Bare soil - FT1
Bare soil - FT2
Bare soil - DVCI Bare soil - FT3
Bare soil - DVC2 FT2 - F13
HH . HH Bare soil - FT4
Bare soil - DVC3 Bare soil - FT5
DVC2 -DVC(C3 FT3 - FT5
Bare soil - FT7
FT3 -FT7
Bare soil - FT2
Bare soil - FT3
Bare soil - DVC1 FT1 - FT3
Bare soil - DVC2 FT2 - FT3
HV DVCI1 -DVC2 HV Bare soil - FT4
Bare soil - DVC3 Bare soil - FT5
DVCI1 -DVC3 FT1 - FT5
Bare soil - FT7
FT1-FT7
Bare soil - FT1
Bare soil - DVC1 Bare so%l -FT2
Bare soil - DVC2 Bare 8011 -FT3
\AY . \AY Bare soil - FT4
Bare soil - DVC3
DVC2-DVC3 FI2-ris
FT3 - FT5
Bare soil - FT7
343
344  3.3. Fuel type classification
345 The multinomial logistic regression model, utilizing the three PAZ polarization backscatter

346  values (HH, HV, and VV) as predictors, was trained and validated to classify the Dominant

347  Vegetation Cover (DVC) categories. The model demonstrated strong predictive performance on
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the independent test dataset, achieving an Overall Accuracy of 82.1% and a Cohen’s Kappa
coefficient of 0.72.

A detailed analysis of the model's performance is provided by the confusion matrix (Table 6).
The model performed exceptionally well in identifying Bare soil, classifying all test plots for this
category correctly (100% Producer's and User's Accuracy). The classification of the forest (DVC3)
category was also highly proficient, achieving a producer's accuracy of 90.9%. The primary source
of classification error was the significant confusion involving the grasslands (DVC1) and
shrublands (DVC2) categories. A notable challenge for the model was the identification of
grasslands, with two of the three test plots being misclassified as shrublands. This resulted in a low
producer's accuracy of 33.3% for the grasslands class. Consequently, although the shrublands class
was well-identified (81.8% producer's accuracy), it incorrectly absorbed plots from both
grasslands and, to a lesser extent, forest, which lowered its user's accuracy to 75%. This pattern
suggests that, although statistically separable, the spectral signature of grasslands in the X-band is
frequently confused with that of low-shrub formations, posing a challenge for the classification
model.

Table 6 Confusion matrix and per-class accuracy metrics from the multinomial logistic regression model for the
Dominant Vegetation Cover (DVC) classification. The results were obtained on the independent test dataset (n=28).

Bare soil Grassland Shrubland Forest User’s Producer’s
(DVC1) (DVC2)  (DVC3) Accuracy  Accuracy
Bare soil 100.00 0.00 0.00 0.00 100.00 100.00
Grassland
(DVC1) 0.00 100.00 0.00 0.00 100.00 33.33
Shrubland
(DVC2) 0.00 16.67 75.00 8.33 75.00 81.82
Forest
(DVC3) 0.00 0.00 16.67 83.33 83.33 90.91

When applied to the more detailed Prometheus fuel type classification, the multinomial logistic
regression model showed a considerable decrease in performance. The model achieved an overall
accuracy 0f42.9% on the independent test dataset, with a Cohen’s Kappa coefficient of 0.31. These
metrics indicate that while the model performs better than random chance, it faces significant
challenges in distinguishing between these finer-scale fuel categories.

The confusion matrix (Table 7) provides a detailed view of the model's performance and

highlights the specific areas of confusion, which align with the findings from the exploratory
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separability analysis. The model was successful at identifying broad structural groups. For
instance, bare soil and herbaceous vegetation (FT1) were identified with moderate success. The
classification of forest areas (FT5) also showed some proficiency, achieving the highest producer's
accuracy (66.7%) among the vegetated classes. However, the model exhibited significant
confusion between structurally similar fuel types, with three primary patterns of error being
observed. First, there was considerable confusion within the shrubland continuum, where the
model struggled to differentiate between the various shrub classes. Medium- to large-sized shrubs
(FT3) and tall shrubs (FT4) were not correctly identified at all (0% producer's accuracy), being
frequently misclassified as other shrub types or even forest. A similar pattern occurred within the
forest types, as the model had great difficulty separating forest with no understory (FT5) from
forest with high vertical continuity (FT7), with significant misclassifications occurring between
these two categories. Finally, the model often confused herbaceous vegetation (FT1) with low-
lying shrubs (FT2) and even bare soil, indicating that the X-band signal struggles to resolve the
subtle differences between these sparse fuel types. In summary, these results suggest that while
the PAZ X-band data can effectively separate broad categories like forests from shrublands, its
sensitivity is limited for finer-scale classification within these groups.

Table 7 Confusion matrix and per-class accuracy metrics from the multinomial logistic regression model for the
Prometheus classification. The results were obtained on the independent test dataset (n=28).

lzzirle FT1 FT2  FT3 FT4  FT5 FT7 A[chSE:aiy Pj{gg&‘:::;
ngle 100.00  0.00 0.00 0.00 0.00 0.00  0.00  100.00 66.67
FTI 3333 3333 000 3333 000 000 000  33.33 33.33
FT2 000 2500 3750 1250 1250 1250  0.00  37.50 50.00
FT3 000 000 7500 000 000 000 2500  0.00 0.00
FT4 ; ; ; ; ; ; ; ; 0.00
FT5 000  0.00 000 000 1429 57.14 2857  57.14 66.67
FT7 000 000 000 2500 000 2500 50.00  50.00 40.00

Based on these findings, a clear difference in performance emerged between the two
classification schemes. The model based on the Dominant Vegetation Cover (DVC) categories
achieved an overall accuracy of 82.1% and demonstrated a robust capability to distinguish between
the broad fuel classes. In contrast, the model trained on the more detailed Prometheus fuel types,

while informative, yielded a modest accuracy (42.9%) and showed significant confusion between
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structurally similar categories. Given this performance gap, it was concluded that the Prometheus-

level model did not possess the necessary reliability for producing an accurate thematic map.

Therefore, the final fuel type map of the study area was generated using exclusively the logistic

regression model fitted with the Dominant Vegetation Cover (DVC) categories (Figure 3).
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Fig. 3 Map of the dominant vegetation cover (DVC) fuel types in the TC “San Gregorio”.

4. Discussion

Fuel type maps provide essential information for forest managers to support prevention, wildfire
management and wildfire risk modeling!®!*33. This cartography is particularly relevant in forested
areas affected by wildfires’* and where there is a potential risk of wildfires due to the activities

conducted in the area”. The TC and MSF utilized by the Spanish Army satisfy the aforementioned
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dual criterion as they are employed for the purpose of live ammunition firing practice and are
situated predominantly in the Mediterranean region, distinguished by elevated aridity and
combustibility. Our study illustrates the utility of the X-band PAZ satellite for characterizing
vegetation structure in Mediterranean environments. As the first satellite of the Spanish National
Earth Observation Program (PNOTS), the PAZ mission is an operational asset of the Spanish
Ministry of Defense, designed primarily to cover security and defense needs. However, its
capabilities also extend to critical civilian applications, including catastrophe and wildfire
management. This dual-use nature makes it a uniquely suitable instrument for this study,
demonstrating how a strategic defense asset can be leveraged to support the specific regulations
developed by the Spanish Army to prevent and combat wildfires on lands under its jurisdiction.

The exploratory statistical analysis confirmed the sensitivity of the PAZ X-band backscatter to
the structural attributes of forest fuel types. Spearman’s correlation analysis showed that the HV
cross-polarization exhibited the strongest relationships with both classification schemes (p = 0.5).
This result is consistent with the well-documented sensitivity of cross-polarization to volume
scattering from vegetation canopies, in contrast to the stronger surface contributions in co-
polarized channels®*%"7%77 Its effectiveness stems from its sensitivity to various vegetation
parameters including biomass (e.g. Ref. 34787) yegetation water content (e.g. Ref. *8!) and
structural properties (e.g. Ref. 8278, Likewise, the Dunn’s post-hoc test revealed that at the broader
Dominant Vegetation Cover (DVC) level, all fuel categories were statistically separable, providing
a strong a priori justification for classification. Conversely, the more detailed Prometheus scheme
exposed the intrinsic limitations of X-band SAR for resolving subtle structural differences,
particularly within the shrubland continuum and between forest types with or without understory,
foreshadowing the challenges later observed in classification accuracy.

These pre-classification insights were directly reflected in the performance of the multinomial
logistic regression model. For the DVC classification, the model achieved a high overall accuracy
of 82.1% (Kappa = 0.72), indicating robust discrimination between bare soil, grasslands,
shrublands, and forests. This result is particularly noteworthy as it was achieved using only a single
SAR-based approach, which is independent of cloud cover and illumination conditions,
highlighting its suitability for operational mapping. The main source of error was the
misclassification of grasslands as shrublands. This confusion likely reflects a known limitation of

X-band backscatter: its restricted dynamic range when characterizing vegetation. Previous studies
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have shown that the sensor signal tends to saturate over dense grasslands and shrublands, reducing
its ability to capture structural differences at high biomass levels®’*>. The sensor is also relatively
insensitive to subtle variations in low-biomass formations. As a result, sparse grasslands and low-
lying shrubs produce similarly weak backscatter responses, making them difficult to distinguish
and leading to systematic misclassification between these two categories. Furthermore, from a
statistical standpoint, the distinction between the grassland and shrubland categories may have
been poorly characterized in our work due to the imbalanced number of plots in each class (11 and
46, respectively). To better resolve this confusion, it would be necessary to increase the sample
size for the grassland category in future fieldwork.

Limitations of X-band SAR for resolving subtle structural differences—particularly within the
shrubland continuum and between forest types with or without an understory—have been
highlighted in several studies. For example, in forested environments, the shallow penetration
depth of X-band hampers the detection of sub-canopy layers, making it difficult to distinguish
forests with and without understory®®. More recent analyses confirm this limitation: TanDEM-X
data show restricted sensitivity to sub-canopy topography due to the limited penetration of X-band
through dense canopies®’, and X-band inversion algorithms demonstrate reduced accuracy in
stratified stands where understory is present®®. Together, these findings corroborate that while X-
band SAR is highly effective for broad vegetation mapping, it lacks the structural sensitivity
required for finer differentiation within shrublands and between forest structural types.

By comparison, our work has achieved similar accuracies for Prometheus in Mediterranean
regions in approaches that have been used a single data sensor (e.g. Ref. ?7), but lower than
approaches that relied on multi-sensor fusion approaches—integrating LiDAR to capture vertical
structure and multispectral and/or SAR data to characterize vegetation composition and vigor (e.g.
Ref. >%). Focusing on our own previous experiences in the study area, the confusion matrix hit
rates represent about 59% of those obtained with SPOT-5 and low-density Airborne Laser Scanner
(ALS) data**7, 47% of those achieved with the Discrete Anisotropic Radiative Transfer (DART)
model used to replicate low-density small-footprint LIDAR measurements® and 51% of those
obtained when combining Landsat and GEDI data’!. It should be noted, however, that datasets of
this last study are not continuous, but discretized in circular diameter traces.

Finally, the use of multinomial logistic regression instead of more complex machine learning

algorithms such as Support Vector Machines (SVM) or Random Forest (RF) was a deliberate
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methodological choice. While non-parametric methods have been reported to achieve high
accuracies in some fuel mapping studies, they are highly data-demanding and prone to overfitting
with small to medium-sized samples’®. For example, Arellano-Pérez et al.”® observed that the RF
algorithm overestimated data from small sample plots (123 field plots) when modelling surface
and canopy fuel characteristics with Sentinel-2A data and Hu et al.’! observed this phenomenon
when predicting forest stand volume with Sentinel-2A imagery and 459 field plots. Our previous
studies also showed that overfitting was produced in RF when predicting different forest attributes

1.°2 and Domingo et al.”®), although

when the field sample is not very large (192 plots Domingo et a
in Domingo et al.> SVM had good accuracy to classify Prometheus fuel types using 136 plots as

ground-truth.
5 Conclusions

This study aimed to assess the utility of X-band backscatter from the PAZ satellite for
operational fuel mapping to support the PAFF and OAP at the TC “San Gregorio”. This general
objective was motivated by the critical need to improve wildfire risk management in highly fire
prone areas, such as military training areas.

The two specific objectives were addressed with different levels of success. First, the study
sought to develop and validate a baseline map of fuel types based on dominant vegetation cover
(grasslands, shrublands, and forests), addressing an immediate operational need. This objective
was successfully achieved: all three SAR polarizations were sensitive to vegetation structure, with
HV cross-polarization performing best. Using a multinomial logistic regression model, a reliable
map of dominant vegetation cover was produced, achieving high overall accuracy (82.1%) and
effectively distinguishing between bare soil, grasslands, shrublands, and forests. Second, the study
aimed to conduct an exploratory analysis of X-band sensitivity for discriminating the more
complex Prometheus fuel types, assessing its potential to complement other remote sensing data.
The analysis revealed limitations: while broad structural differences were detectable, the
classification of detailed Prometheus fuel types reached only 42.9% accuracy. This highlights that
PAZ X-band imagery alone is insufficient for fine-scale fuel mapping but remains valuable for
strategic, broad-level applications.

Finally, the sensitivity of HV polarization suggests that future work could explore synergistic

use with other data sources, including longer-wavelength radar (C and L bands), LiDAR (UAYV,
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airborne, or satellite), and medium- to high-resolution optical imagery (e.g., Sentinel-2). Advanced
PoISAR and InSAR techniques applied to PAZ data could further enhance biomass and vegetation
structure characterization, improving fuel type classification in more detailed multi-sensor

approaches.
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Caption List

Fig. 1 Study area and localization of the field plots.

Fig. 2 Field work conducted to verify in situ the correspondence of each plot with the fuel model
pre-assigned in the first sub-phase.

Fig. 3 Map of the dominant vegetation cover (DVC) fuel types in the TC “San Gregorio™.

Table 1 Acquisition dates and polarization of the PAZ images.

Table 2 Fuel types description according to Prometheus classification (FT) and dominant
vegetation cover (DVC) baseline map.

Table 3 Spearman's rank correlation coefficient between PAZ averaged images and fuel type

categories. All the relationships were statistically significant (p < 0.05).
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Table 4 Results from Kruskal-Wallis test for DVC and Prometheus FT. All variables were
statistically significant (p-value < 0.05).

Table 5 Results from Dunn's test to distinguish categories DVC and Prometheus fuel types. All
pairwise comparisons between the categories were statistically significant (p < 0.05).

Table 6 Confusion matrix and per-class accuracy metrics from the multinomial logistic regression
model for the Dominant Vegetation Cover (DVC) classification. The results were obtained on the
independent test dataset (n=28).

Table 7 Confusion matrix and per-class accuracy metrics from the multinomial logistic regression

model for the Prometheus classification. The results were obtained on the independent test dataset

(n=28).
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