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1 Introduction 30 

Wildfires are considered as one of the most significant disturbance factors in the natural 31 

ecosystems of Mediterranean regions1. Wildfire is a landscape-shaping force in the Mediterranean 32 

basin, with which societies have learned to coexist using it as a traditional management tool2. 33 

However, in recent decades, wildfire recurrence, magnitude and severity have increased3,4. One of 34 

the main causes is the heightened combustibility of vegetation masses (quantity, surface area, 35 

volume, spatial continuity and the accumulation of dead matter), as a consequence of changes in 36 

rural depopulation, agricultural structure and land use. Added to this is the great socio-37 

environmental challenge posed by climate change, with extreme weather conditions and prolonged 38 

periods of drought5–7. The 2022 summer serves as a notable example of high wildfire occurrence 39 

and intensity in Spain, France and Portugal7–9. Specifically, the area burned in Spain in 2022 tripled 40 

compared to the average calculated in recent decades10. This alarming trend was also exacerbated 41 

in 2025 when the total burned area had already surpassed 338,000 ha, according to the European 42 

Forest Fire Information System (EFFIS) dataset11. 43 

This reality did not go unnoticed in the Spanish National Security Strategy 2021, currently in 44 

effect, which considers wildfires as one of the main risks and threats in Spain, both in terms of 45 

“Emergencies and disasters”, as well as the “Effects of climate change and degradation of the 46 

natural environment”12. 47 

Wildfire risk assessment, which is key for prevention and pre-extinguishment planning, 48 

integrates ignition estimation (fuel moisture, both human and natural causal factors), spread 49 

conditions (wind, fuel properties and topography) and vulnerability assessment (socio-economic 50 

and ecological)13–17. Specifically, the spatial assessment of wildfire risk and wildfire intensity in 51 

wildland-urban interfaces requires mapping of forest fuels key parameters18. Forest fuel is the only 52 

wildfire-related landscape component that can be modified through management. Therefore, it is 53 

essential to know the fuel distribution, both for wildfire risk assessment and for the design of 54 

wildfire prevention strategies18,19. 55 

Among human causal factors, the activities conducted at the Spanish Army's Training Centers 56 

(TC) and Maneuver and Shooting Fields (MSF) represent a significant wildfire risk. These 57 

facilities are used for essential instruction, training, and evaluation exercises with live fire to ensure 58 
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mission readiness20. Consequently, the intense firing activity turns projectile drop zones into potent 59 

ignition sources, threatening the natural environment, military infrastructure, and personnel safety. 60 

This inherent risk has led to the mandatory implementation of a Plan Against Forest Fires (PAFF) 61 

and an Operational Action Protocol (OAP) in all TC and MSF, as stipulated by Directive 03/19 of 62 

the Chief of Staff of the Spanish Army21. 63 

Remote sensing plays a major role in forest fuel characterization over landscapes offering 64 

numerous benefits over field-based approaches, particularly in its ability to make cost-efficient 65 

and objective and up-to-date observations over large and inaccessible areas. As a result, remote 66 

sensing of forest fuel is an established field of research, although the collection and interpretation 67 

of remotely sensed data requires clear objectives with regard to its intended use and spatial and 68 

temporal applicability19. An extensive review of the scientific literature by Ref. 19 pointed out 69 

different applications of remote sensing to forest fuel attributes, with works related to fuel type 70 

mapping being ranked second with 37% of the articles reviewed. The origin of these articles was 71 

mostly from North America and, overall, Europe, because wildfire behavior models developed for 72 

these environments usually employ a fuel type classification approach (e.g. Ref. 22–27).  73 

A fuel type (FT) is an identifiable association of elements characterized by their shape, size, 74 

arrangement, and continuity that will exhibit characteristic wildfire behavior under defined 75 

combustion conditions28. Different classifications of fuel types based on Rothermel's fire 76 

propagation equations29 can be found in the scientific literature. In the framework of the European 77 

Prometheus project30, an attempt was made to adapt them to the particular characteristics of 78 

Mediterranean vegetation, defining seven types that take into account the height, coverage and 79 

vertical continuity of the propagating elements. Specifically, the Prometheus classification 80 

includes: agricultural and herbaceous vegetation (FT1); three shrubland types defined by 81 

increasing height: low-lying shrubs (FT2), medium- to large-sized shrubs (FT3), and tall shrubs 82 

(FT4); and three forest types differentiated by their understory structure: forests with no significant 83 

understory (FT5); forests with an understory where the gap to the main canopy is > 0.5 m (FT6); 84 

and forests where this gap is < 0.5 m (FT7).   85 

As noted by Ref. 18, Prometheus is a fuel type classification system in Mediterranean 86 

countries, being frequently used in remote sensing literature (e.g. Ref. 27,31–35). However, for more 87 

operational purposes, such as providing an initial approximation to support regional firefighting 88 
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strategies, a simplified classification is also considered. This approach categorizes fuel types based 89 

on dominant vegetation, resulting in three main classes: grasslands, shrublands, and forests36,37. 90 

Optical passive remote sensing sensors (multispectral and hyperspectral) have been the most 91 

widely used for fuel type mapping. The accuracy of the fuel type maps obtained varies depending 92 

on the sensor, the statistical methods used and the characteristics of the study area, but the main 93 

problem detected lies in the inability of these sensors to estimate the height of the vegetation and 94 

to penetrate the forest canopy, thus unveiling the characteristics of the vegetation remaining under 95 

the forest canopy18,19,38.  96 

In contrast, LiDAR (Light Detection and Ranging) and SAR (Synthetic Aperture Radar) active 97 

remote sensing sensors are shown to be suitable for forest structure characterization, by passing 98 

the aforementioned restrictions of optical passive sensors39–41. Focusing on LiDAR, this type of 99 

data is proven to be extremely useful in estimating vegetation height and subcanopy attributes19 100 

and for forest fuel characterization and mapping18,42. Although there are some examples using 101 

airborne LiDAR technology alone for fuel type mapping (e.g. Ref. 27,43,44), most successful 102 

approaches are those that combine the use of this data with passive sensor imagery (e.g. Ref. 103 
5,24,26,27,34,45–49), with experiences using spaceborne LiDAR remaining scarce (e.g. Ref. 50,51). 104 

However, as pointed out by Ref. 18,19, the main limitation for the use of airborne LiDAR data for 105 

mapping fuel types is its cost and its limited temporal and spatial coverage. Recently, a LiDAR-106 

sensing unmanned aerial vehicle (UAV-LiDAR) has been evaluated to classify and map fuel types 107 

based on the Prometheus classification in Mediterranean environments with good results. Thus, 108 

although limited to local scales, UAV-LiDAR systems emerges as an ideal tool to spatialize the 109 

results to larger areas using sensors covering wider spatial scales52.  110 

Spaceborne SAR sensors, such as the one onboard the PAZ satellite, overcome these 111 

limitations by providing images of large territories at frequent intervals in all weather conditions, 112 

day and night39,41. The PAZ mission is a Spanish governmental radar mission and the first satellite 113 

of the Spanish National Earth Observation Program (PNOTS), which is operated directly by the 114 

Spanish Ministry of Defense through the INTA (National Institute for Aerospace Technology). Its 115 

objective is to cover the operational needs of security and defense and to provide services to 116 

civilian users in fields such as intelligence, treaty verification, catastrophe management, and 117 

wildfires, thereby supporting the Spanish National Security Strategy 2021, as mentioned above. 118 
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In spite of having proven that SAR images are useful for the estimation of forest parameters 119 

essential for fuel model mapping, such as biomass, tree height, tree volume, and canopy closure, 120 

the use of these active sensors for this issue is scarce18. Although research about forest parameters 121 

with SAR images has been developed mainly using C- and L-band due to the low penetration 122 

power of the X-band in the plant canopy53,54, different studies have shown the sensitivity of the 123 

backscatter of this band for the characterization of vegetation cover and land cover mapping (e.g. 124 

Ref. 54–61). Focusing on fuel types according to the dominant vegetation, X-band backscattering 125 

has proven adequate for mapping grasslands60, discriminating shrublands57 and identifying 126 

forests61.  127 

In this context, this study aims to assess the utility of X-band backscatter from the PAZ satellite 128 

for operational fuel mapping to support the PAFF and OAP at the TC “San Gregorio”. To achieve 129 

this, we pursued two specific objectives: 130 

1. Primary, operational objective: to develop and validate a baseline map of fuel types based 131 

on dominant vegetation cover (grasslands, shrublands, and forests), addressing an immediate 132 

operational need. 133 

2. Secondary, exploratory objective: to evaluate the sensitivity and limitations of X-band 134 

backscatter for discriminating the more complex Prometheus fuel models, and to assess its 135 

potential to complement other remote sensing data (e.g., Sentinel-1/2 or Landsat) in future multi-136 

sensor approaches.  137 

For this, we make use, on the one hand, of the images provided by the first Announcement of 138 

Opportunity for Scientific Exploitation of the PAZ mission (AO-001) and, on the other hand, of 139 

the 10-meter resolution fuel model map of the study area obtained using airborne LiDAR and 140 

multispectral imagery by the authors in45–47 and specific field work.   141 

 142 

2 Materials and Methods 143 

2.1 Study area 144 

The study area corresponds to the TC “San Gregorio” (41º50’ N, 0º57’ W) (Fig. 1), which occupies 145 

an area of 33,839 ha in the central sector of the Ebro Depression, in the northeast of Spain (province 146 

of Zaragoza).  147 
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 148 
Fig. 1 Study area and localization of the field plots. 149 

The climate of the region is Mediterranean with continental features and a semi-arid 150 

environment, characterized by irregular annual precipitation, with an average annual rainfall of 151 

350 mm. The winters are cold, while summers are hot and dry. The area presents a hilly 152 

topography, with altitudes ranging from about 400 m to 750 m a.s.l. and has nutrient-poor 153 

gypsiferous soils. 154 

The vegetation species are adapted to the adverse climatic and edaphic conditions of the area. 155 

Thus, the land is dominated by grass pastures and evergreen shrubs of Quercus coccifera L., 156 

Juniperus oxycedrus L., Rosmarinus officinalis L. and Thymus vulgaris L. Mono-specific stands 157 

of Pinus halepensis Mill., mainly concentrated in the north extreme and in discontinuous stands 158 

of varying sizes along the east-southeast boundary, occupies approximately 8,200 ha and 159 

constitutes the dominant tree strata. Most of these pine stands are semi-natural, although some of 160 

those located in the east-southeast part were planted forty years ago. 161 

2.2  PAZ images and processing 162 

The images captured over the study area were provided by the INTA  in the context of the First 163 

Announcement of Opportunity for Scientific Exploitation of the PAZ mission62, through the AO-164 

001-040 project. The PAZ satellite is equipped with an X-band Synthetic Aperture Radar (SAR) 165 

instrument operating at a center frequency of 9.65 GHz (3 cm wavelength). As part of the same 166 
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constellation as TerraSAR-X and TanDEM-X, it shares similar platform and instrument 167 

characteristics, ensuring high-quality data63. 168 

PAZ offers four Level 1B product processing variants, which maintain full compatibility with 169 

TerraSAR-X products63. The images used in this study were acquired in ScanSAR (SC) mode and 170 

processed as Multi Look Ground Range Detected (MGD) products. ScanSAR is designed for wide 171 

area surveillance, providing a large scene size of 100 x 150 km with a typical azimuth resolution 172 

of 18.5 m, operating with a single polarization (HH, HV, or VV) over a range of incidence angles 173 

from 20° to 45°. The MGD processing level provides magnitude-detected data projected to ground 174 

range using the WGS84 ellipsoid, which effectively reduces speckle noise and is well-suited for 175 

thematic classification64. The sensor features a high absolute radiometric accuracy of 0.57 dB, 176 

ensuring the quality and reliability of the backscatter measurements used in our analysis. Table 1 177 

shows the polarization and acquisition dates of the six images used in this work. 178 

Table 1 Acquisition dates and polarization of the PAZ images.  179 
Acquisition date Polarization 

2020/07/06 HH 
2020/07/17 HV 
2020/07/28 VV 
2020/08/08 HH 
2020/08/19 HV 
2020/08/30 VV 

 180 

Given the varied topography of the study area, a critical step was to correct for terrain-induced 181 

radiometric distortions. Therefore, we applied a processing chain to normalize the backscatter 182 

coefficient to the area illuminated by the sensor, obtaining Gamma Naught (γ0), as recommended 183 

by Ref. 65. All processing was performed using the ESA SNAP software package 184 

(https://earth.esa.int/eogateway/tools/snap). The workflow began with the radiometric calibration 185 

of the raw data to obtain the radar brightness coefficient, Beta Naught (β0). This was followed by 186 

a spatial multilooking step, using a 3×3 window (range × azimuth), to reduce speckle and generate 187 

an approximately square pixel with a spatial resolution of 24.75 m. Next, to correct for radiometric 188 

distortions caused by the terrain, Radiometric Terrain Flattening method was applied using the 189 

Flattening Gamma method65 and the SRTM 1 Arc-Second Digital Elevation Model (DEM). 190 

Afterward, the images were geocoded using Geometric Terrain Correction with the Range-191 

Doppler method, employing the same DEM to ensure geometric accuracy. Finally, a Lee speckle 192 
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filter with a 3×3 kernel was applied to the terrain-corrected γ0 image to further reduce residual 193 

speckle noise, and the backscatter coefficient was then converted from linear scale to logarithmic 194 

scale and expressed in decibels (dB). 195 

According to Ref. 66, averaging multiple co-registered SAR images is an effective method for 196 

speckle reduction, provided the scene remains stable across acquisitions. We validated this 197 

assumption of scene stability for our study period (August-September 2020) based on two key 198 

observations: (i) field work conducted concurrently with the image acquisitions revealed no 199 

significant phenological changes or disturbances in the study area and, consequently, no change 200 

between fuel types, and (ii) the temporal correlation between the individual images for each 201 

polarization was consistently high (r > 0.8). Given this demonstrated stability, an average image 202 

for each polarization was generated by combining the two acquisitions, enabling multitemporal 203 

multilooking and reduce residual speckle noise. Consequently, the three resulting average images 204 

were used for the subsequent statistical analysis. 205 

2.3 Field data 206 

The objective of this phase was to establish a ground-truth dataset to train and validate the two 207 

classification schemes defined in this study: (i) the baseline map of dominant vegetation cover and 208 

(ii) the Prometheus fuel types. To ensure that the collected data would be reliable for both analyses, 209 

the field sampling strategy was designed based on the Prometheus classification, given its more 210 

detailed and restrictive nature.  211 

Field data acquisition was divided into two sub-phases: (i) the location and delimitation of 50 212 

m radius plots based on a previous 10 m resolution Prometheus classification fuel type map of the 213 

study area obtained by the authors using airborne LiDAR and multispectral data (see Ref. 45-47); 214 

and (ii) field work conducted between August and September 2020 (concurrent with SAR image 215 

acquisition) to verify in situ the correspondence of each plot with the fuel model pre-assigned in 216 

the first sub-phase (Figure 2). To ensure plot suitability for digital classification models, the 217 

following requirements were followed: (i) a sufficient number of all Prometheus fuel type 218 

categories; (ii) homogeneity of fuel type within the 50 m radius plot; (iii) representativeness of 219 

slopes and topographic orientations in the study area; and (iv) accessibility to verify in situ whether 220 

the fuel type assigned by the reference cartography in Ref. 45-47 was correct. A Leica VIVA® 221 
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GS15 CS10 GNSS real-time kinematic Global Positioning System instrument was used to locate 222 

the centroids of the plots.  223 

A final set of 113 plots was established (Figure 1; Table 2), which constitutes the ground truth 224 

for this study. On the one hand, these plots were grouped according to the Dominant Vegetation 225 

Cover (DVC) classification, resulting in four main categories: Bare soil (11 plots), DVC1 226 

Grasslands (11 plots), DVC2 Shrublands (46 plots), and DVC3 Forest (45 plots). The number of 227 

plots for bare soil and grasslands categories were considered appropriate for the analysis, as these 228 

cover types are expected to have a simpler and more easily characterizable radiometric responses 229 

compared to the more structurally complex shrubland and forest classes. On the other hand, the 230 

plots were grouped following the Prometheus model, noting that Fuel Type 6 (FT6) was excluded 231 

from the dataset due to its limited representation in the study area.  232 

Table 2 Fuel types description according to Prometheus classification (FT) and dominant vegetation cover (DVC) 233 
baseline map. 234 

Prometheus fuel type (FT) description Nº of 
plots 

Dominant vegetation cover (DVC) 
description 

Nº of 
plots 

Bare soil 11 Bare soil 11 

FT1. Agricultural and herbaceous vegetation. Grass > 
60% 11 DVC1. Grasslands. Fine or light fuels, 

diameter <5 mm. Grass > 60%.  11 

FT2. Grasslands, low-lying shrubs (0.30-0.60 m) with 
30-40% of herbs. Shrub cover > 60%; Tree cover < 
50%. 

24 

DVC2. Shrublands. Medium fuels, 
diameter between 5 and 75 mm. Shrub 
cover > 60%; Tree cover < 50%. 

46 
FT3. Medium- to large-sized shrubs (0.60-2.0 m), as 
well as young trees (> 4 m). Shrub cover > 60%; Tree 
cover < 50%.   

14 

FT4. Tall shrubs (2.0-4.0 m) and young trees (> 4 m). 
Shrub cover > 60%; Tree cover < 50%. 8 

FT5. Forest areas (> 4 m) with no understory. Tree 
cover > 50%; Shrub cover < 30%.  24 

DVC3. Forest. coarse or heavy fuels, 
diameter >75 mm. Tree cover > 50%.  45 

FT6. Forest areas (> 4 m) where the mean height 
difference between the tree canopy and surface fuel 
layer is > 0.5 m. Tree cover > 50%; Shrub cover > 
30%.  

2 

FT7. Forest areas (> 4 m) where the mean height 
difference between the tree canopy and surface fuel 
layer is < 0.5 m. Tree cover > 50%; Shrub cover > 
30%.  

19 

Total nº of plots 113  113 
 235 

 236 



10 

 237 
Fig. 2 Field work conducted to verify in situ the correspondence of each plot with the fuel model pre-assigned in the 238 

first sub-phase. 239 

2.4 Fuel type classification and model validation 240 

To perform fuel type digital classification and obtain a cartography of the study area, the 241 

radiometric value corresponding to the central pixel of each plot was extracted from the average 242 

images calculated for each polarization. 243 

Prior to the implementation of the digital classification, an exploratory statistical analysis was 244 

conducted to investigate the relationships between the PAZ backscatter data and the fuel type 245 

categories. This preliminary analysis was essential to assess the potential separability of the classes 246 

within both the dominant vegetation cover and the Prometheus classification schemes. The 247 

analysis was structured in two main parts. 248 

First, to quantify the strength and direction of the monotonic relationship between the 249 

backscatter values and the ordinal fuel type categories, the non-parametric Spearman's rank 250 

correlation coefficient (ρ) was calculated. This test was selected due to its robustness and because 251 

it does not assume a linear relationship between the variables, which is often the case with complex 252 
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interactions between SAR signals and vegetation structure39,67. Second, to determine whether 253 

statistically significant differences existed between the median backscatter values of the fuel 254 

categories in each of the two classification schemes, the Kruskal-Wallis non-parametric test was 255 

applied. This test was chosen as it does not assume a normal distribution of the data, a common 256 

characteristic of SAR imagery39,67. A significant result from the Kruskal-Wallis test (p < 0.05) 257 

indicates that at least one fuel category differs from the others. To identify which specific pairs of 258 

categories were significantly different from each other, a Dunn's post-hoc test with a Bonferroni 259 

correction was subsequently performed. This detailed pairwise analysis is crucial for 260 

understanding which fuel types are likely to be confused during the classification and for 261 

evaluating the intrinsic sensitivity of the X-band backscatter to the subtle structural differences 262 

defined by the Prometheus models. All exploratory statistical analyses were conducted in the R 263 

programming environment. Spearman's rank correlation and the Kruskal-Wallis test were 264 

calculated using functions from the base 'stats' package. The Dunn's post-hoc test for pairwise 265 

comparisons was performed using the Dunn Test function from the 'FSA' package68. 266 

Following the exploratory analysis, the digital classification of fuel types was performed using 267 

multinomial logistic regression. This statistical method was chosen to model the probability of a 268 

given pixel belonging to one of the defined fuel type categories based on its PAZ backscatter 269 

values as explanatory variables69. This approach was selected over non-parametric machine 270 

learning algorithms, such as Random Forest (RF) and Support Vector Machine (SVM), due to its 271 

robustness with small to medium-sized datasets. While powerful, algorithms like RF and SVM are 272 

highly flexible and data-driven, which increases the risk of overfitting when trained on a limited 273 

number of samples70, as was the case in this study (113 plots). Overfitting occurs when a model 274 

learns the training data, including its statistical noise, so perfectly that it fails to generalize to new, 275 

unseen data. In contrast, multinomial logistic regression is a parametric model that is less prone to 276 

this issue. Its underlying assumptions provide a form of regularization, leading to simpler, more 277 

generalized models that are more reliable when data is scarce71. The multinomial logistic 278 

regression model was implemented in the R programming environment. The model was fitted 279 

using the “multinom” function from the “nnet” package72, while model validation and the 280 

calculation of performance metrics, such as the confusion matrix, were conducted using the 281 

“Caret” package73. To build and evaluate the model, the field plots were partitioned using a 282 
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stratified random split, allocating 75% of the data for training (n=85) and reserving the remaining 283 

25% for independent validation (n=28). 284 

3 Results 285 

3.1. Spearman correlation 286 

Table 3 presents the Spearman correlation analysis between the averaged PAZ backscatter values 287 

and the fuel type categories for both the Dominant Vegetation Cover (DVC) and the Prometheus 288 

(FT) classification schemes. The results for both schemes indicate that the HV polarization exhibits 289 

the strongest relationship with the fuel types, showing a moderate and positive correlation for both 290 

the DVC classification (ρ = 0.496) and the more detailed FT classification (ρ = 0.513). In contrast, 291 

the co-polarized bands (HH and VV) showed very weak correlations for both classification 292 

systems (ρ < 0.13). It is important to note that all reported correlations in the analysis were 293 

statistically significant (p < 0.05). This finding is consistent with the scientific literature, which 294 

widely recognizes that cross-polarization (HV) is more sensitive to volume scattering from 295 

vegetation canopies than co-polarized bands39,67.  296 

Table 3 Spearman's rank correlation coefficient between PAZ averaged images and fuel type categories. All the 297 
relationships were statistically significant (p < 0.05).  298 

PAZ averaged images  Spearman correlation 
DVC fuel types 

Spearman correlation 
Prometheus fuel types 

HH 0,100 0.123 
HV 0.496 0.513 
VV 0.060 0.083 

3.2 Analysis of Fuel Type Separability 299 

The Kruskal-Wallis test indicated that for both the Dominant Vegetation Cover (DVC) and the 300 

Prometheus (FT) classification schemes, the backscatter values of all three PAZ polarizations (HH, 301 

HV, and VV) showed statistically significant differences among the fuel type categories (p < 0.05) 302 

(Table 4). This confirms that the X-band signal is sensitive to the structural differences between 303 

the defined fuel types. To identify which specific classes could be distinguished, a Dunn's post-304 

hoc test was subsequently applied. 305 

For the broader DVC classification, the Dunn's test revealed a high degree of separability 306 

among the categories. Table 5 presents pairwise comparisons between the categories that were 307 
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statistically significant (p < 0.05). The HV polarization was the most versatile, successfully 308 

distinguishing four of the six possible pairs. It was able to separate Grasslands (DVC1) from both 309 

Shrublands (DVC2) and Forests (DVC3), and also distinguished both Shrublands and Forests from 310 

Bare soil. The co-polarized bands also provided critical information. Both HH and VV 311 

polarizations effectively separated Grasslands (DVC1) from Bare soil. Crucially, the VV 312 

polarization was the only one capable of significantly distinguishing between Shrublands (DVC2) 313 

and Forests (DVC3), a key separation for fuel type mapping. In summary, by combining the 314 

information from all three polarizations, all pairs of DVC categories were found to be statistically 315 

separable, indicating a strong potential for successful classification at this broader thematic level. 316 

The analysis of the more detailed Prometheus types provided deeper insights into the specific 317 

capabilities and limitations of the X-band backscatter. The results from the Dunn's test showed 318 

that the HV polarization was again the most effective, identifying seven statistically significant 319 

pairs of fuel models (p < 0.05) (Table 5). Notable separations were achieved between fuel types 320 

with large differences in vegetation structure and biomass. For instance, forest with no understory 321 

(FT5) was significantly different from all three shrubland categories (FT2, FT3, and FT4), 322 

indicating that the sensor can clearly distinguish between a closed-canopy forest and open 323 

shrublands. Similarly, forest with high vertical continuity (FT7) was separable from the lower-324 

stature shrub classes (FT2 and FT3). This suggests that volume scattering captured by the HV 325 

channel is highly sensitive to the presence of a dense forest canopy and understory. Conversely, 326 

the analysis also highlighted significant confusion between structurally similar classes. A critical 327 

challenge was the lack of separability within the shrubland continuum; no significant differences 328 

were found between low-lying shrubs (FT2), medium-sized shrubs (FT3), and tall shrubs (FT4). 329 

This indicates that while the X-band can differentiate shrublands from forests, it struggles to 330 

resolve finer-scale differences in shrub height and density. Similarly, the two main forest types, 331 

FT5 (no understory) and FT7 (with understory), could not be statistically separated from each 332 

other, suggesting that the X-band signal has difficulty penetrating the main forest canopy to 333 

characterize the understory structure—a known limitation of this wavelength. Finally, the 334 

herbaceous category (FT1) could not be reliably distinguished from bare soil or the low-shrub class 335 

(FT2). 336 

 337 
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Table 4 Results from Kruskal-Wallis test for DVC and Prometheus FT. All variables were statistically significant 338 
(p-value < 0.05) 339 

PAZ averaged images Chi-square coefficient 
DVC fuel types 

Chi-square coefficient 
Prometheus fuel types 

HH 36.053 45.545 
HV 39.090 44.022 
VV 27.521 37.429 

 340 

Table 5 Results from Dunn's test to distinguish categories DVC and Prometheus fuel types. All pairwise 341 
comparisons between the categories were statistically significant (p < 0.05) 342 

DVC fuel types Prometheus fuel types 
PAZ averaged 

images Comparison PAZ averaged 
images Comparison 

HH 

Bare soil - DVC1 
Bare soil - DVC2 
Bare soil - DVC3 
DVC2 - DVC3 

HH 

Bare soil - FT1 
Bare soil - FT2 
Bare soil - FT3 

FT2 - FT3 
Bare soil - FT4 
Bare soil - FT5 

FT3 - FT5 
Bare soil - FT7 

FT3 - FT7 

HV 

Bare soil - DVC1 
Bare soil - DVC2 
DVC1 - DVC2 

Bare soil - DVC3 
DVC1 - DVC3 

HV 

Bare soil - FT2 
Bare soil - FT3 

FT1 - FT3 
FT2 - FT3 

Bare soil - FT4 
Bare soil - FT5 

FT1 - FT5 
Bare soil - FT7 

FT1 - FT7 

VV 

Bare soil - DVC1 
Bare soil - DVC2 
Bare soil - DVC3 
DVC2 - DVC3 

VV 

Bare soil - FT1 
Bare soil - FT2 
Bare soil - FT3 
Bare soil - FT4 

FT2 - FT5 
FT3 - FT5 

Bare soil - FT7 
 343 

3.3. Fuel type classification 344 

The multinomial logistic regression model, utilizing the three PAZ polarization backscatter 345 

values (HH, HV, and VV) as predictors, was trained and validated to classify the Dominant 346 

Vegetation Cover (DVC) categories. The model demonstrated strong predictive performance on 347 
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the independent test dataset, achieving an Overall Accuracy of 82.1% and a Cohen’s Kappa 348 

coefficient of 0.72.  349 

A detailed analysis of the model's performance is provided by the confusion matrix (Table 6). 350 

The model performed exceptionally well in identifying Bare soil, classifying all test plots for this 351 

category correctly (100% Producer's and User's Accuracy). The classification of the forest (DVC3) 352 

category was also highly proficient, achieving a producer's accuracy of 90.9%. The primary source 353 

of classification error was the significant confusion involving the grasslands (DVC1) and 354 

shrublands (DVC2) categories. A notable challenge for the model was the identification of 355 

grasslands, with two of the three test plots being misclassified as shrublands. This resulted in a low 356 

producer's accuracy of 33.3% for the grasslands class. Consequently, although the shrublands class 357 

was well-identified (81.8% producer's accuracy), it incorrectly absorbed plots from both 358 

grasslands and, to a lesser extent, forest, which lowered its user's accuracy to 75%. This pattern 359 

suggests that, although statistically separable, the spectral signature of grasslands in the X-band is 360 

frequently confused with that of low-shrub formations, posing a challenge for the classification 361 

model. 362 

Table 6 Confusion matrix and per-class accuracy metrics from the multinomial logistic regression model for the 363 
Dominant Vegetation Cover (DVC) classification. The results were obtained on the independent test dataset (n=28). 364 

 Bare soil Grassland 
(DVC1) 

Shrubland 
(DVC2)  

Forest 
(DVC3) 

User’s 
Accuracy 

Producer’s 
Accuracy 

Bare soil 100.00 0.00 0.00 0.00 100.00 100.00 
Grassland 
(DVC1) 0.00 100.00 0.00 0.00 100.00 33.33 

Shrubland 
(DVC2) 0.00 16.67 75.00 8.33 75.00 81.82 

Forest 
(DVC3) 0.00 0.00 16.67 83.33 83.33 90.91 

 365 

When applied to the more detailed Prometheus fuel type classification, the multinomial logistic 366 

regression model showed a considerable decrease in performance. The model achieved an overall 367 

accuracy of 42.9% on the independent test dataset, with a Cohen’s Kappa coefficient of 0.31. These 368 

metrics indicate that while the model performs better than random chance, it faces significant 369 

challenges in distinguishing between these finer-scale fuel categories. 370 

The confusion matrix (Table 7) provides a detailed view of the model's performance and 371 

highlights the specific areas of confusion, which align with the findings from the exploratory 372 
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separability analysis. The model was successful at identifying broad structural groups. For 373 

instance, bare soil and herbaceous vegetation (FT1) were identified with moderate success. The 374 

classification of forest areas (FT5) also showed some proficiency, achieving the highest producer's 375 

accuracy (66.7%) among the vegetated classes. However, the model exhibited significant 376 

confusion between structurally similar fuel types, with three primary patterns of error being 377 

observed. First, there was considerable confusion within the shrubland continuum, where the 378 

model struggled to differentiate between the various shrub classes. Medium- to large-sized shrubs 379 

(FT3) and tall shrubs (FT4) were not correctly identified at all (0% producer's accuracy), being 380 

frequently misclassified as other shrub types or even forest. A similar pattern occurred within the 381 

forest types, as the model had great difficulty separating forest with no understory (FT5) from 382 

forest with high vertical continuity (FT7), with significant misclassifications occurring between 383 

these two categories. Finally, the model often confused herbaceous vegetation (FT1) with low-384 

lying shrubs (FT2) and even bare soil, indicating that the X-band signal struggles to resolve the 385 

subtle differences between these sparse fuel types. In summary, these results suggest that while 386 

the PAZ X-band data can effectively separate broad categories like forests from shrublands, its 387 

sensitivity is limited for finer-scale classification within these groups. 388 

Table 7 Confusion matrix and per-class accuracy metrics from the multinomial logistic regression model for the 389 
Prometheus classification. The results were obtained on the independent test dataset (n=28). 390 

 Bare 
soil FT1 FT2 FT3 FT4 FT5 FT7 User’s 

Accuracy 
Producer’s 
Accuracy 

Bare 
soil 100.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 66.67 

FT1 33.33 33.33 0.00 33.33 0.00 0.00 0.00 33.33 33.33 
FT2 0.00 25.00 37.50 12.50 12.50 12.50 0.00 37.50 50.00 
FT3 0.00 0.00 75.00 0.00 0.00 0.00 25.00 0.00 0.00 
FT4 - - - - - - - - 0.00 
FT5 0.00 0.00 0.00 0.00 14.29 57.14 28.57 57.14 66.67 
FT7 0.00 0.00 0.00 25.00 0.00 25.00 50.00 50.00 40.00 

 391 

Based on these findings, a clear difference in performance emerged between the two 392 

classification schemes. The model based on the Dominant Vegetation Cover (DVC) categories 393 

achieved an overall accuracy of 82.1% and demonstrated a robust capability to distinguish between 394 

the broad fuel classes. In contrast, the model trained on the more detailed Prometheus fuel types, 395 

while informative, yielded a modest accuracy (42.9%) and showed significant confusion between 396 
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structurally similar categories. Given this performance gap, it was concluded that the Prometheus-397 

level model did not possess the necessary reliability for producing an accurate thematic map. 398 

Therefore, the final fuel type map of the study area was generated using exclusively the logistic 399 

regression model fitted with the Dominant Vegetation Cover (DVC) categories (Figure 3). 400 

 401 
Fig. 3 Map of the dominant vegetation cover (DVC) fuel types in the TC “San Gregorio”.  402 

4. Discussion 403 

Fuel type maps provide essential information for forest managers to support prevention, wildfire 404 

management and wildfire risk modeling18,19,33. This cartography is particularly relevant in forested 405 

areas affected by wildfires74 and where there is a potential risk of wildfires due to the activities 406 

conducted in the area75. The TC and MSF utilized by the Spanish Army satisfy the aforementioned 407 
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dual criterion as they are employed for the purpose of live ammunition firing practice and are 408 

situated predominantly in the Mediterranean region, distinguished by elevated aridity and 409 

combustibility. Our study illustrates the utility of the X-band PAZ satellite for characterizing 410 

vegetation structure in Mediterranean environments. As the first satellite of the Spanish National 411 

Earth Observation Program (PNOTS), the PAZ mission is an operational asset of the Spanish 412 

Ministry of Defense, designed primarily to cover security and defense needs. However, its 413 

capabilities also extend to critical civilian applications, including catastrophe and wildfire 414 

management. This dual-use nature makes it a uniquely suitable instrument for this study, 415 

demonstrating how a strategic defense asset can be leveraged to support the specific regulations 416 

developed by the Spanish Army to prevent and combat wildfires on lands under its jurisdiction. 417 

The exploratory statistical analysis confirmed the sensitivity of the PAZ X-band backscatter to 418 

the structural attributes of forest fuel types. Spearman’s correlation analysis showed that the HV 419 

cross-polarization exhibited the strongest relationships with both classification schemes (ρ ≈ 0.5). 420 

This result is consistent with the well-documented sensitivity of cross-polarization to volume 421 

scattering from vegetation canopies, in contrast to the stronger surface contributions in co-422 

polarized channels39,67,76,77. Its effectiveness stems from its sensitivity to various vegetation 423 

parameters including biomass (e.g. Ref. 53,54,78,79), vegetation water content (e.g. Ref. 79–81) and 424 

structural properties (e.g. Ref. 82–84). Likewise, the Dunn’s post-hoc test revealed that at the broader 425 

Dominant Vegetation Cover (DVC) level, all fuel categories were statistically separable, providing 426 

a strong a priori justification for classification. Conversely, the more detailed Prometheus scheme 427 

exposed the intrinsic limitations of X-band SAR for resolving subtle structural differences, 428 

particularly within the shrubland continuum and between forest types with or without understory, 429 

foreshadowing the challenges later observed in classification accuracy. 430 

These pre-classification insights were directly reflected in the performance of the multinomial 431 

logistic regression model. For the DVC classification, the model achieved a high overall accuracy 432 

of 82.1% (Kappa = 0.72), indicating robust discrimination between bare soil, grasslands, 433 

shrublands, and forests. This result is particularly noteworthy as it was achieved using only a single 434 

SAR-based approach, which is independent of cloud cover and illumination conditions, 435 

highlighting its suitability for operational mapping. The main source of error was the 436 

misclassification of grasslands as shrublands. This confusion likely reflects a known limitation of 437 

X-band backscatter: its restricted dynamic range when characterizing vegetation. Previous studies 438 
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have shown that the sensor signal tends to saturate over dense grasslands and shrublands, reducing 439 

its ability to capture structural differences at high biomass levels57,85. The sensor is also relatively 440 

insensitive to subtle variations in low-biomass formations. As a result, sparse grasslands and low-441 

lying shrubs produce similarly weak backscatter responses, making them difficult to distinguish 442 

and leading to systematic misclassification between these two categories. Furthermore, from a 443 

statistical standpoint, the distinction between the grassland and shrubland categories may have 444 

been poorly characterized in our work due to the imbalanced number of plots in each class (11 and 445 

46, respectively). To better resolve this confusion, it would be necessary to increase the sample 446 

size for the grassland category in future fieldwork.  447 

Limitations of X-band SAR for resolving subtle structural differences—particularly within the 448 

shrubland continuum and between forest types with or without an understory—have been 449 

highlighted in several studies. For example, in forested environments, the shallow penetration 450 

depth of X-band hampers the detection of sub-canopy layers, making it difficult to distinguish 451 

forests with and without understory86. More recent analyses confirm this limitation: TanDEM-X 452 

data show restricted sensitivity to sub-canopy topography due to the limited penetration of X-band 453 

through dense canopies87, and X-band inversion algorithms demonstrate reduced accuracy in 454 

stratified stands where understory is present88. Together, these findings corroborate that while X-455 

band SAR is highly effective for broad vegetation mapping, it lacks the structural sensitivity 456 

required for finer differentiation within shrublands and between forest structural types.  457 

By comparison, our work has achieved similar accuracies for Prometheus in Mediterranean 458 

regions in approaches that have been used a single data sensor (e.g. Ref. 27), but lower than 459 

approaches that relied on multi-sensor fusion approaches—integrating LiDAR to capture vertical 460 

structure and multispectral and/or SAR data to characterize vegetation composition and vigor (e.g. 461 

Ref. 5,89). Focusing on our own previous experiences in the study area, the confusion matrix hit 462 

rates represent about 59% of those obtained with SPOT-5 and low-density Airborne Laser Scanner 463 

(ALS) data45–47, 47% of those achieved with the Discrete Anisotropic Radiative Transfer (DART) 464 

model used to replicate low-density small-footprint LiDAR measurements6 and 51% of those 465 

obtained when combining Landsat and GEDI data51. It should be noted, however, that datasets of 466 

this last study are not continuous, but discretized in circular diameter traces. 467 

Finally, the use of multinomial logistic regression instead of more complex machine learning 468 

algorithms such as Support Vector Machines (SVM) or Random Forest (RF) was a deliberate 469 
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methodological choice. While non-parametric methods have been reported to achieve high 470 

accuracies in some fuel mapping studies, they are highly data-demanding and prone to overfitting 471 

with small to medium-sized samples70. For example, Arellano-Pérez et al.90 observed that the RF 472 

algorithm overestimated data from small sample plots (123 field plots) when modelling surface 473 

and canopy fuel characteristics with Sentinel-2A data and Hu et al.91 observed this phenomenon 474 

when predicting forest stand volume with Sentinel-2A imagery and 459 field plots. Our previous 475 

studies also showed that overfitting was produced in RF when predicting different forest attributes 476 

when the field sample is not very large (192 plots Domingo et al.92 and Domingo et al.93), although 477 

in Domingo et al.5  SVM had good accuracy to classify Prometheus fuel types using 136 plots as 478 

ground-truth. 479 

5 Conclusions 480 

This study aimed to assess the utility of X-band backscatter from the PAZ satellite for 481 

operational fuel mapping to support the PAFF and OAP at the TC “San Gregorio”. This general 482 

objective was motivated by the critical need to improve wildfire risk management in highly fire 483 

prone areas, such as military training areas. 484 

The two specific objectives were addressed with different levels of success. First, the study 485 

sought to develop and validate a baseline map of fuel types based on dominant vegetation cover 486 

(grasslands, shrublands, and forests), addressing an immediate operational need. This objective 487 

was successfully achieved: all three SAR polarizations were sensitive to vegetation structure, with 488 

HV cross-polarization performing best. Using a multinomial logistic regression model, a reliable 489 

map of dominant vegetation cover was produced, achieving high overall accuracy (82.1%) and 490 

effectively distinguishing between bare soil, grasslands, shrublands, and forests. Second, the study 491 

aimed to conduct an exploratory analysis of X-band sensitivity for discriminating the more 492 

complex Prometheus fuel types, assessing its potential to complement other remote sensing data. 493 

The analysis revealed limitations: while broad structural differences were detectable, the 494 

classification of detailed Prometheus fuel types reached only 42.9% accuracy. This highlights that 495 

PAZ X-band imagery alone is insufficient for fine-scale fuel mapping but remains valuable for 496 

strategic, broad-level applications. 497 

Finally, the sensitivity of HV polarization suggests that future work could explore synergistic 498 

use with other data sources, including longer-wavelength radar (C and L bands), LiDAR (UAV, 499 



21 

airborne, or satellite), and medium- to high-resolution optical imagery (e.g., Sentinel-2). Advanced 500 

PolSAR and InSAR techniques applied to PAZ data could further enhance biomass and vegetation 501 

structure characterization, improving fuel type classification in more detailed multi-sensor 502 

approaches. 503 
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Fig. 1 Study area and localization of the field plots. 788 

Fig. 2 Field work conducted to verify in situ the correspondence of each plot with the fuel model 789 

pre-assigned in the first sub-phase. 790 

Fig. 3 Map of the dominant vegetation cover (DVC) fuel types in the TC “San Gregorio”. 791 

Table 1 Acquisition dates and polarization of the PAZ images. 792 

Table 2 Fuel types description according to Prometheus classification (FT) and dominant 793 

vegetation cover (DVC) baseline map. 794 

Table 3 Spearman's rank correlation coefficient between PAZ averaged images and fuel type 795 

categories. All the relationships were statistically significant (p < 0.05). 796 
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Table 4 Results from Kruskal-Wallis test for DVC and Prometheus FT. All variables were 797 

statistically significant (p-value < 0.05). 798 

Table 5 Results from Dunn's test to distinguish categories DVC and Prometheus fuel types. All 799 

pairwise comparisons between the categories were statistically significant (p < 0.05). 800 

Table 6 Confusion matrix and per-class accuracy metrics from the multinomial logistic regression 801 

model for the Dominant Vegetation Cover (DVC) classification. The results were obtained on the 802 

independent test dataset (n=28). 803 

Table 7 Confusion matrix and per-class accuracy metrics from the multinomial logistic regression 804 

model for the Prometheus classification. The results were obtained on the independent test dataset 805 

(n=28). 806 
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