

1 **Fuel type mapping with X-band SAR in military training areas for**
2 **wildfire risk assessment**

3

4 **Alberto García-Martín,^{a,c,*} Darío Domingo,^{b,c} María Teresa Lamelas,^c Juan de la Riva,^c**
5 **Francisco Escribano,^d Antonio Luis Montealegre,^{a,c} Raquel Montorio,^c Fernando Pérez-**
6 **Cabello^c**

7 ^aCentro Universitario de la Defensa-Academia General Militar, Ctra. de Huesca s/n, Zaragoza, Spain

8 ^bUniversity of Valladolid, EiFAB-iiFOR, Campus Duques de Soria s/n, Soria, Spain

9 ^cUniversity of Zaragoza, GEOFOREST-JUCA, Department of Geography and Land Management, Pedro Cerbuna
10 12, Zaragoza, Spain

11 ^dEjército de Tierra, Mando de Adiestramiento y Doctrina, San Matías 26, Granada, Spain

12

13 **Abstract.** Intense firing activities at Spanish Army Training Centers create a significant wildfire risk, requiring the
14 implementation of a specific Plan Against Forest Fires (PAFF) and an Operational Action Protocol (OAP), both of
15 which rely on accurate fuel type maps. This study evaluates the usefulness of the backscattering coefficient provided
16 by PAZ, the X-band SAR Spanish Ministry of Defense's first Earth observation satellite, for fuel type mapping to
17 support wildfire management in the "San Gregorio" Training Center (Zaragoza, Spain). The methodology involved
18 three phases: (i) processing satellite images from the first PAZ Announcement of Opportunity (AO-001); (ii)
19 delineating field plots for correlation with satellite imagery; and (iii) classifying fuel types using multinomial logistic
20 regression. Results indicate that PAZ images are effective for discriminating among the main fuel types (grassland,
21 shrubland, and woodland), achieving an overall accuracy of 82.1%. However, they are not suitable for the detailed
22 mapping of the Prometheus fuel categories, with an overall accuracy of 42.9%, primarily due to the limited penetration
23 capabilities of the X-band.

24

25 **Keywords:** Wildfire, backscattering coefficient; dominant vegetation cover; Prometheus fuel types; multinomial
26 logistic regression; Mediterranean forest.

27

28 *Alberto García-Martín, E-mail: algarcia@unizar.es

29

30 **1 Introduction**

31 Wildfires are considered as one of the most significant disturbance factors in the natural
32 ecosystems of Mediterranean regions¹. Wildfire is a landscape-shaping force in the Mediterranean
33 basin, with which societies have learned to coexist using it as a traditional management tool².
34 However, in recent decades, wildfire recurrence, magnitude and severity have increased^{3,4}. One of
35 the main causes is the heightened combustibility of vegetation masses (quantity, surface area,
36 volume, spatial continuity and the accumulation of dead matter), as a consequence of changes in
37 rural depopulation, agricultural structure and land use. Added to this is the great socio-
38 environmental challenge posed by climate change, with extreme weather conditions and prolonged
39 periods of drought⁵⁻⁷. The 2022 summer serves as a notable example of high wildfire occurrence
40 and intensity in Spain, France and Portugal⁷⁻⁹. Specifically, the area burned in Spain in 2022 tripled
41 compared to the average calculated in recent decades¹⁰. This alarming trend was also exacerbated
42 in 2025 when the total burned area had already surpassed 338,000 ha, according to the European
43 Forest Fire Information System (EFFIS) dataset¹¹.

44 This reality did not go unnoticed in the Spanish National Security Strategy 2021, currently in
45 effect, which considers wildfires as one of the main risks and threats in Spain, both in terms of
46 “Emergencies and disasters”, as well as the “Effects of climate change and degradation of the
47 natural environment”¹².

48 Wildfire risk assessment, which is key for prevention and pre-extinguishment planning,
49 integrates ignition estimation (fuel moisture, both human and natural causal factors), spread
50 conditions (wind, fuel properties and topography) and vulnerability assessment (socio-economic
51 and ecological)¹³⁻¹⁷. Specifically, the spatial assessment of wildfire risk and wildfire intensity in
52 wildland-urban interfaces requires mapping of forest fuels key parameters¹⁸. Forest fuel is the only
53 wildfire-related landscape component that can be modified through management. Therefore, it is
54 essential to know the fuel distribution, both for wildfire risk assessment and for the design of
55 wildfire prevention strategies^{18,19}.

56 Among human causal factors, the activities conducted at the Spanish Army's Training Centers
57 (TC) and Maneuver and Shooting Fields (MSF) represent a significant wildfire risk. These
58 facilities are used for essential instruction, training, and evaluation exercises with live fire to ensure

59 mission readiness²⁰. Consequently, the intense firing activity turns projectile drop zones into potent
60 ignition sources, threatening the natural environment, military infrastructure, and personnel safety.
61 This inherent risk has led to the mandatory implementation of a Plan Against Forest Fires (PAFF)
62 and an Operational Action Protocol (OAP) in all TC and MSF, as stipulated by Directive 03/19 of
63 the Chief of Staff of the Spanish Army²¹.

64 Remote sensing plays a major role in forest fuel characterization over landscapes offering
65 numerous benefits over field-based approaches, particularly in its ability to make cost-efficient
66 and objective and up-to-date observations over large and inaccessible areas. As a result, remote
67 sensing of forest fuel is an established field of research, although the collection and interpretation
68 of remotely sensed data requires clear objectives with regard to its intended use and spatial and
69 temporal applicability¹⁹. An extensive review of the scientific literature by Ref. 19 pointed out
70 different applications of remote sensing to forest fuel attributes, with works related to fuel type
71 mapping being ranked second with 37% of the articles reviewed. The origin of these articles was
72 mostly from North America and, overall, Europe, because wildfire behavior models developed for
73 these environments usually employ a fuel type classification approach (e.g. Ref. ^{22–27}).

74 A fuel type (FT) is an identifiable association of elements characterized by their shape, size,
75 arrangement, and continuity that will exhibit characteristic wildfire behavior under defined
76 combustion conditions²⁸. Different classifications of fuel types based on Rothermel's fire
77 propagation equations²⁹ can be found in the scientific literature. In the framework of the European
78 Prometheus project³⁰, an attempt was made to adapt them to the particular characteristics of
79 Mediterranean vegetation, defining seven types that take into account the height, coverage and
80 vertical continuity of the propagating elements. Specifically, the Prometheus classification
81 includes: agricultural and herbaceous vegetation (FT1); three shrubland types defined by
82 increasing height: low-lying shrubs (FT2), medium- to large-sized shrubs (FT3), and tall shrubs
83 (FT4); and three forest types differentiated by their understory structure: forests with no significant
84 understory (FT5); forests with an understory where the gap to the main canopy is > 0.5 m (FT6);
85 and forests where this gap is < 0.5 m (FT7).

86 As noted by Ref. 18, Prometheus is a fuel type classification system in Mediterranean
87 countries, being frequently used in remote sensing literature (e.g. Ref. ^{27,31–35}). However, for more
88 operational purposes, such as providing an initial approximation to support regional firefighting

89 strategies, a simplified classification is also considered. This approach categorizes fuel types based
90 on dominant vegetation, resulting in three main classes: grasslands, shrublands, and forests^{36,37}.

91 Optical passive remote sensing sensors (multispectral and hyperspectral) have been the most
92 widely used for fuel type mapping. The accuracy of the fuel type maps obtained varies depending
93 on the sensor, the statistical methods used and the characteristics of the study area, but the main
94 problem detected lies in the inability of these sensors to estimate the height of the vegetation and
95 to penetrate the forest canopy, thus unveiling the characteristics of the vegetation remaining under
96 the forest canopy^{18,19,38}.

97 In contrast, LiDAR (Light Detection and Ranging) and SAR (Synthetic Aperture Radar) active
98 remote sensing sensors are shown to be suitable for forest structure characterization, by passing
99 the aforementioned restrictions of optical passive sensors^{39–41}. Focusing on LiDAR, this type of
100 data is proven to be extremely useful in estimating vegetation height and subcanopy attributes¹⁹
101 and for forest fuel characterization and mapping^{18,42}. Although there are some examples using
102 airborne LiDAR technology alone for fuel type mapping (e.g. Ref. ^{27,43,44}), most successful
103 approaches are those that combine the use of this data with passive sensor imagery (e.g. Ref.
104 ^{5,24,26,27,34,45–49}), with experiences using spaceborne LiDAR remaining scarce (e.g. Ref. ^{50,51}).
105 However, as pointed out by Ref. 18,19, the main limitation for the use of airborne LiDAR data for
106 mapping fuel types is its cost and its limited temporal and spatial coverage. Recently, a LiDAR-
107 sensing unmanned aerial vehicle (UAV-LiDAR) has been evaluated to classify and map fuel types
108 based on the Prometheus classification in Mediterranean environments with good results. Thus,
109 although limited to local scales, UAV-LiDAR systems emerges as an ideal tool to spatialize the
110 results to larger areas using sensors covering wider spatial scales⁵².

111 Spaceborne SAR sensors, such as the one onboard the PAZ satellite, overcome these
112 limitations by providing images of large territories at frequent intervals in all weather conditions,
113 day and night^{39,41}. The PAZ mission is a Spanish governmental radar mission and the first satellite
114 of the Spanish National Earth Observation Program (PNOTS), which is operated directly by the
115 Spanish Ministry of Defense through the INTA (National Institute for Aerospace Technology). Its
116 objective is to cover the operational needs of security and defense and to provide services to
117 civilian users in fields such as intelligence, treaty verification, catastrophe management, and
118 wildfires, thereby supporting the Spanish National Security Strategy 2021, as mentioned above.

119 In spite of having proven that SAR images are useful for the estimation of forest parameters
120 essential for fuel model mapping, such as biomass, tree height, tree volume, and canopy closure,
121 the use of these active sensors for this issue is scarce¹⁸. Although research about forest parameters
122 with SAR images has been developed mainly using C- and L-band due to the low penetration
123 power of the X-band in the plant canopy^{53,54}, different studies have shown the sensitivity of the
124 backscatter of this band for the characterization of vegetation cover and land cover mapping (e.g.
125 Ref. ⁵⁴⁻⁶¹). Focusing on fuel types according to the dominant vegetation, X-band backscattering
126 has proven adequate for mapping grasslands⁶⁰, discriminating shrublands⁵⁷ and identifying
127 forests⁶¹.

128 In this context, this study aims to assess the utility of X-band backscatter from the PAZ satellite
129 for operational fuel mapping to support the PAFF and OAP at the TC “San Gregorio”. To achieve
130 this, we pursued two specific objectives:

131 1. Primary, operational objective: to develop and validate a baseline map of fuel types based
132 on dominant vegetation cover (grasslands, shrublands, and forests), addressing an immediate
133 operational need.

134 2. Secondary, exploratory objective: to evaluate the sensitivity and limitations of X-band
135 backscatter for discriminating the more complex Prometheus fuel models, and to assess its
136 potential to complement other remote sensing data (e.g., Sentinel-1/2 or Landsat) in future multi-
137 sensor approaches.

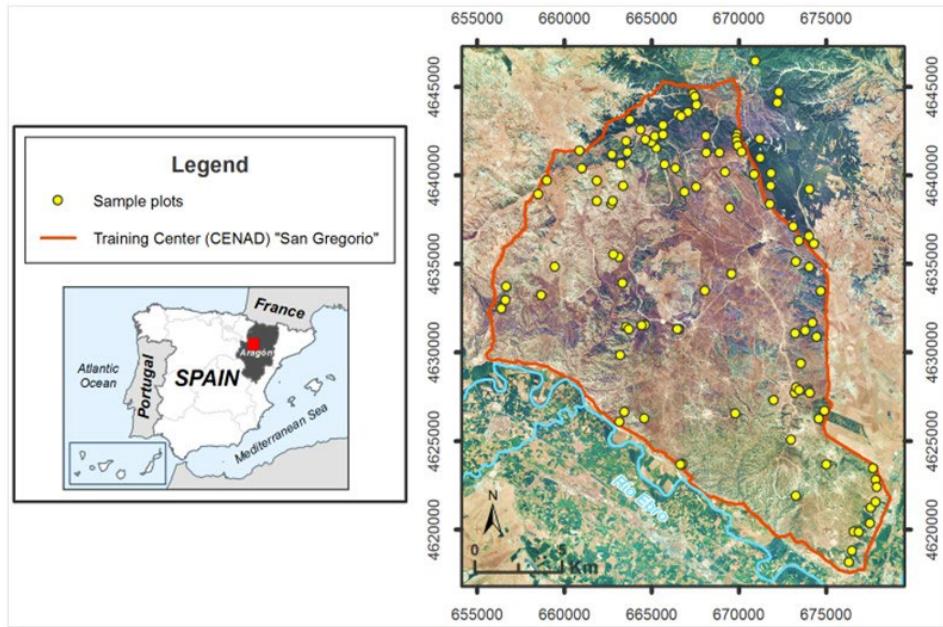
138 For this, we make use, on the one hand, of the images provided by the first Announcement of
139 Opportunity for Scientific Exploitation of the PAZ mission (AO-001) and, on the other hand, of
140 the 10-meter resolution fuel model map of the study area obtained using airborne LiDAR and
141 multispectral imagery by the authors in⁴⁵⁻⁴⁷ and specific field work.

142

143 2 Materials and Methods

144 2.1 Study area

145 The study area corresponds to the TC “San Gregorio” (41°50' N, 0°57' W) (Fig. 1), which occupies
146 an area of 33,839 ha in the central sector of the Ebro Depression, in the northeast of Spain (province
147 of Zaragoza).



148
149

Fig. 1 Study area and localization of the field plots.

150 The climate of the region is Mediterranean with continental features and a semi-arid
151 environment, characterized by irregular annual precipitation, with an average annual rainfall of
152 350 mm. The winters are cold, while summers are hot and dry. The area presents a hilly
153 topography, with altitudes ranging from about 400 m to 750 m a.s.l. and has nutrient-poor
154 gypsiferous soils.

155 The vegetation species are adapted to the adverse climatic and edaphic conditions of the area.
156 Thus, the land is dominated by grass pastures and evergreen shrubs of *Quercus coccifera* L.,
157 *Juniperus oxycedrus* L., *Rosmarinus officinalis* L. and *Thymus vulgaris* L. Mono-specific stands
158 of *Pinus halepensis* Mill., mainly concentrated in the north extreme and in discontinuous stands
159 of varying sizes along the east-southeast boundary, occupies approximately 8,200 ha and
160 constitutes the dominant tree strata. Most of these pine stands are semi-natural, although some of
161 those located in the east-southeast part were planted forty years ago.

162 *2.2 PAZ images and processing*

163 The images captured over the study area were provided by the INTA in the context of the First
164 Announcement of Opportunity for Scientific Exploitation of the PAZ mission⁶², through the AO-
165 001-040 project. The PAZ satellite is equipped with an X-band Synthetic Aperture Radar (SAR)
166 instrument operating at a center frequency of 9.65 GHz (3 cm wavelength). As part of the same

167 constellation as TerraSAR-X and TanDEM-X, it shares similar platform and instrument
168 characteristics, ensuring high-quality data⁶³.

169 PAZ offers four Level 1B product processing variants, which maintain full compatibility with
170 TerraSAR-X products⁶³. The images used in this study were acquired in ScanSAR (SC) mode and
171 processed as Multi Look Ground Range Detected (MGD) products. ScanSAR is designed for wide
172 area surveillance, providing a large scene size of 100 x 150 km with a typical azimuth resolution
173 of 18.5 m, operating with a single polarization (HH, HV, or VV) over a range of incidence angles
174 from 20° to 45°. The MGD processing level provides magnitude-detected data projected to ground
175 range using the WGS84 ellipsoid, which effectively reduces speckle noise and is well-suited for
176 thematic classification⁶⁴. The sensor features a high absolute radiometric accuracy of 0.57 dB,
177 ensuring the quality and reliability of the backscatter measurements used in our analysis. Table 1
178 shows the polarization and acquisition dates of the six images used in this work.

179 **Table 1** Acquisition dates and polarization of the PAZ images.

Acquisition date	Polarization
2020/07/06	HH
2020/07/17	HV
2020/07/28	VV
2020/08/08	HH
2020/08/19	HV
2020/08/30	VV

180
181 Given the varied topography of the study area, a critical step was to correct for terrain-induced
182 radiometric distortions. Therefore, we applied a processing chain to normalize the backscatter
183 coefficient to the area illuminated by the sensor, obtaining Gamma Naught (γ_0), as recommended
184 by Ref. ⁶⁵. All processing was performed using the ESA SNAP software package
185 (<https://earth.esa.int/eogateway/tools/snap>). The workflow began with the radiometric calibration
186 of the raw data to obtain the radar brightness coefficient, Beta Naught (β_0). This was followed by
187 a spatial multilooking step, using a 3×3 window (range × azimuth), to reduce speckle and generate
188 an approximately square pixel with a spatial resolution of 24.75 m. Next, to correct for radiometric
189 distortions caused by the terrain, Radiometric Terrain Flattening method was applied using the
190 Flattening Gamma method⁶⁵ and the SRTM 1 Arc-Second Digital Elevation Model (DEM).
191 Afterward, the images were geocoded using Geometric Terrain Correction with the Range-
192 Doppler method, employing the same DEM to ensure geometric accuracy. Finally, a Lee speckle

193 filter with a 3×3 kernel was applied to the terrain-corrected γ_0 image to further reduce residual
194 speckle noise, and the backscatter coefficient was then converted from linear scale to logarithmic
195 scale and expressed in decibels (dB).

196 According to Ref. ⁶⁶, averaging multiple co-registered SAR images is an effective method for
197 speckle reduction, provided the scene remains stable across acquisitions. We validated this
198 assumption of scene stability for our study period (August-September 2020) based on two key
199 observations: (i) field work conducted concurrently with the image acquisitions revealed no
200 significant phenological changes or disturbances in the study area and, consequently, no change
201 between fuel types, and (ii) the temporal correlation between the individual images for each
202 polarization was consistently high ($r > 0.8$). Given this demonstrated stability, an average image
203 for each polarization was generated by combining the two acquisitions, enabling multitemporal
204 multilooking and reduce residual speckle noise. Consequently, the three resulting average images
205 were used for the subsequent statistical analysis.

206 *2.3 Field data*

207 The objective of this phase was to establish a ground-truth dataset to train and validate the two
208 classification schemes defined in this study: (i) the baseline map of dominant vegetation cover and
209 (ii) the Prometheus fuel types. To ensure that the collected data would be reliable for both analyses,
210 the field sampling strategy was designed based on the Prometheus classification, given its more
211 detailed and restrictive nature.

212 Field data acquisition was divided into two sub-phases: (i) the location and delimitation of 50
213 m radius plots based on a previous 10 m resolution Prometheus classification fuel type map of the
214 study area obtained by the authors using airborne LiDAR and multispectral data (see Ref. 45-47);
215 and (ii) field work conducted between August and September 2020 (concurrent with SAR image
216 acquisition) to verify in situ the correspondence of each plot with the fuel model pre-assigned in
217 the first sub-phase (Figure 2). To ensure plot suitability for digital classification models, the
218 following requirements were followed: (i) a sufficient number of all Prometheus fuel type
219 categories; (ii) homogeneity of fuel type within the 50 m radius plot; (iii) representativeness of
220 slopes and topographic orientations in the study area; and (iv) **accessibility to verify in situ whether**
221 **the fuel type assigned by the reference cartography** in Ref. 45-47 was correct. A Leica VIVA®

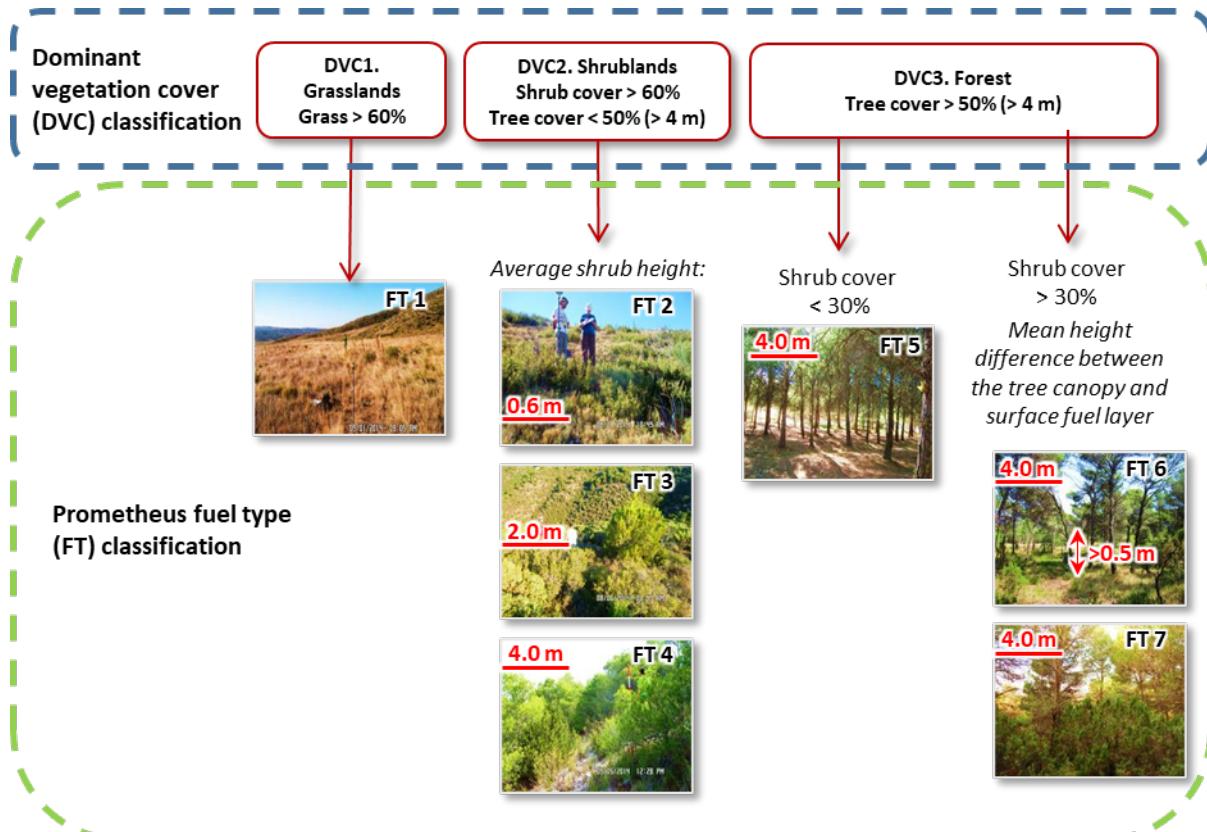
222 GS15 CS10 GNSS real-time kinematic Global Positioning System instrument was used to locate
223 the centroids of the plots.

224 A final set of 113 plots was established (Figure 1; Table 2), which constitutes the ground truth
225 for this study. On the one hand, these plots were grouped according to the Dominant Vegetation
226 Cover (DVC) classification, resulting in four main categories: Bare soil (11 plots), DVC1
227 Grasslands (11 plots), DVC2 Shrublands (46 plots), and DVC3 Forest (45 plots). The number of
228 plots for bare soil and grasslands categories were considered appropriate for the analysis, as these
229 cover types are expected to have a simpler and more easily characterizable radiometric responses
230 compared to the more structurally complex shrubland and forest classes. On the other hand, the
231 plots were grouped following the Prometheus model, noting that Fuel Type 6 (FT6) was excluded
232 from the dataset due to its limited representation in the study area.

233 **Table 2** Fuel types description according to Prometheus classification (FT) and dominant vegetation cover (DVC)
234 baseline map.

Prometheus fuel type (FT) description	Nº of plots	Dominant vegetation cover (DVC) description	Nº of plots
Bare soil	11	Bare soil	11
FT1. Agricultural and herbaceous vegetation. Grass > 60%	11	DVC1. Grasslands. Fine or light fuels, diameter <5 mm. Grass > 60%.	11
FT2. Grasslands, low-lying shrubs (0.30-0.60 m) with 30-40% of herbs. Shrub cover > 60%; Tree cover < 50%.	24		
FT3. Medium- to large-sized shrubs (0.60-2.0 m), as well as young trees (> 4 m). Shrub cover > 60%; Tree cover < 50%.	14	DVC2. Shrublands. Medium fuels, diameter between 5 and 75 mm. Shrub cover > 60%; Tree cover < 50%.	46
FT4. Tall shrubs (2.0-4.0 m) and young trees (> 4 m). Shrub cover > 60%; Tree cover < 50%.	8		
FT5. Forest areas (> 4 m) with no understory. Tree cover > 50%; Shrub cover < 30%.	24		
FT6. Forest areas (> 4 m) where the mean height difference between the tree canopy and surface fuel layer is > 0.5 m. Tree cover > 50%; Shrub cover > 30%.	2	DVC3. Forest. coarse or heavy fuels, diameter >75 mm. Tree cover > 50%.	45
FT7. Forest areas (> 4 m) where the mean height difference between the tree canopy and surface fuel layer is < 0.5 m. Tree cover > 50%; Shrub cover > 30%.	19		
Total nº of plots	113		113

235
236



237
238
239

Fig. 2 Field work conducted to verify in situ the correspondence of each plot with the fuel model pre-assigned in the first sub-phase.

240 2.4 Fuel type classification and model validation

241 To perform fuel type digital classification and obtain a cartography of the study area, the
242 radiometric value corresponding to the central pixel of each plot was extracted from the average
243 images calculated for each polarization.

244 Prior to the implementation of the digital classification, an exploratory statistical analysis was
245 conducted to investigate the relationships between the PAZ backscatter data and the fuel type
246 categories. This preliminary analysis was essential to assess the potential separability of the classes
247 within both the dominant vegetation cover and the Prometheus classification schemes. The
248 analysis was structured in two main parts.

249 First, to quantify the strength and direction of the monotonic relationship between the
250 backscatter values and the ordinal fuel type categories, the non-parametric Spearman's rank
251 correlation coefficient (ρ) was calculated. This test was selected due to its robustness and because
252 it does not assume a linear relationship between the variables, which is often the case with complex

253 interactions between SAR signals and vegetation structure^{39,67}. Second, to determine whether
254 statistically significant differences existed between the median backscatter values of the fuel
255 categories in each of the two classification schemes, the Kruskal-Wallis non-parametric test was
256 applied. This test was chosen as it does not assume a normal distribution of the data, a common
257 characteristic of SAR imagery^{39,67}. A significant result from the Kruskal-Wallis test ($p < 0.05$)
258 indicates that at least one fuel category differs from the others. To identify which specific pairs of
259 categories were significantly different from each other, a Dunn's post-hoc test with a Bonferroni
260 correction was subsequently performed. This detailed pairwise analysis is crucial for
261 understanding which fuel types are likely to be confused during the classification and for
262 evaluating the intrinsic sensitivity of the X-band backscatter to the subtle structural differences
263 defined by the Prometheus models. All exploratory statistical analyses were conducted in the R
264 programming environment. Spearman's rank correlation and the Kruskal-Wallis test were
265 calculated using functions from the base 'stats' package. The Dunn's post-hoc test for pairwise
266 comparisons was performed using the Dunn Test function from the 'FSA' package⁶⁸.

267 Following the exploratory analysis, the digital classification of fuel types was performed using
268 multinomial logistic regression. This statistical method was chosen to model the probability of a
269 given pixel belonging to one of the defined fuel type categories based on its PAZ backscatter
270 values as explanatory variables⁶⁹. This approach was selected over non-parametric machine
271 learning algorithms, such as Random Forest (RF) and Support Vector Machine (SVM), due to its
272 robustness with small to medium-sized datasets. While powerful, algorithms like RF and SVM are
273 highly flexible and data-driven, which increases the risk of overfitting when trained on a limited
274 number of samples⁷⁰, as was the case in this study (113 plots). Overfitting occurs when a model
275 learns the training data, including its statistical noise, so perfectly that it fails to generalize to new,
276 unseen data. In contrast, multinomial logistic regression is a parametric model that is less prone to
277 this issue. Its underlying assumptions provide a form of regularization, leading to simpler, more
278 generalized models that are more reliable when data is scarce⁷¹. The multinomial logistic
279 regression model was implemented in the R programming environment. The model was fitted
280 using the "multinom" function from the "nnet" package⁷², while model validation and the
281 calculation of performance metrics, such as the confusion matrix, were conducted using the
282 "Caret" package⁷³. To build and evaluate the model, the field plots were partitioned using a

283 stratified random split, allocating 75% of the data for training (n=85) and reserving the remaining
284 25% for independent validation (n=28).

285 **3 Results**

286 *3.1. Spearman correlation*

287 Table 3 presents the Spearman correlation analysis between the averaged PAZ backscatter values
288 and the fuel type categories for both the Dominant Vegetation Cover (DVC) and the Prometheus
289 (FT) classification schemes. The results for both schemes indicate that the HV polarization exhibits
290 the strongest relationship with the fuel types, showing a moderate and positive correlation for both
291 the DVC classification ($\rho = 0.496$) and the more detailed FT classification ($\rho = 0.513$). In contrast,
292 the co-polarized bands (HH and VV) showed very weak correlations for both classification
293 systems ($\rho < 0.13$). It is important to note that all reported correlations in the analysis were
294 statistically significant ($p < 0.05$). This finding is consistent with the scientific literature, which
295 widely recognizes that cross-polarization (HV) is more sensitive to volume scattering from
296 vegetation canopies than co-polarized bands^{39,67}.

297 **Table 3** Spearman's rank correlation coefficient between PAZ averaged images and fuel type categories. All the
298 relationships were statistically significant ($p < 0.05$).

PAZ averaged images	Spearman correlation DVC fuel types	Spearman correlation Prometheus fuel types
HH	0,100	0.123
HV	0.496	0.513
VV	0.060	0.083

299 *3.2 Analysis of Fuel Type Separability*

300 The Kruskal-Wallis test indicated that for both the Dominant Vegetation Cover (DVC) and the
301 Prometheus (FT) classification schemes, the backscatter values of all three PAZ polarizations (HH,
302 HV, and VV) showed statistically significant differences among the fuel type categories ($p < 0.05$)
303 (Table 4). This confirms that the X-band signal is sensitive to the structural differences between
304 the defined fuel types. To identify which specific classes could be distinguished, a Dunn's post-
305 hoc test was subsequently applied.

306 For the broader DVC classification, the Dunn's test revealed a high degree of separability
307 among the categories. Table 5 presents pairwise comparisons between the categories that were

308 statistically significant ($p < 0.05$). The HV polarization was the most versatile, successfully
309 distinguishing four of the six possible pairs. It was able to separate Grasslands (DVC1) from both
310 Shrublands (DVC2) and Forests (DVC3), and also distinguished both Shrublands and Forests from
311 Bare soil. The co-polarized bands also provided critical information. Both HH and VV
312 polarizations effectively separated Grasslands (DVC1) from Bare soil. Crucially, the VV
313 polarization was the only one capable of significantly distinguishing between Shrublands (DVC2)
314 and Forests (DVC3), a key separation for fuel type mapping. In summary, by combining the
315 information from all three polarizations, all pairs of DVC categories were found to be statistically
316 separable, indicating a strong potential for successful classification at this broader thematic level.

317 The analysis of the more detailed Prometheus types provided deeper insights into the specific
318 capabilities and limitations of the X-band backscatter. The results from the Dunn's test showed
319 that the HV polarization was again the most effective, identifying seven statistically significant
320 pairs of fuel models ($p < 0.05$) (Table 5). Notable separations were achieved between fuel types
321 with large differences in vegetation structure and biomass. For instance, forest with no understory
322 (FT5) was significantly different from all three shrubland categories (FT2, FT3, and FT4),
323 indicating that the sensor can clearly distinguish between a closed-canopy forest and open
324 shrublands. Similarly, forest with high vertical continuity (FT7) was separable from the lower-
325 stature shrub classes (FT2 and FT3). This suggests that volume scattering captured by the HV
326 channel is highly sensitive to the presence of a dense forest canopy and understory. Conversely,
327 the analysis also highlighted significant confusion between structurally similar classes. A critical
328 challenge was the lack of separability within the shrubland continuum; no significant differences
329 were found between low-lying shrubs (FT2), medium-sized shrubs (FT3), and tall shrubs (FT4).
330 This indicates that while the X-band can differentiate shrublands from forests, it struggles to
331 resolve finer-scale differences in shrub height and density. Similarly, the two main forest types,
332 FT5 (no understory) and FT7 (with understory), could not be statistically separated from each
333 other, suggesting that the X-band signal has difficulty penetrating the main forest canopy to
334 characterize the understory structure—a known limitation of this wavelength. Finally, the
335 herbaceous category (FT1) could not be reliably distinguished from bare soil or the low-shrub class
336 (FT2).

337

338
339**Table 4** Results from Kruskal-Wallis test for DVC and Prometheus FT. All variables were statistically significant (p-value < 0.05)

PAZ averaged images	Chi-square coefficient DVC fuel types	Chi-square coefficient Prometheus fuel types
HH	36.053	45.545
HV	39.090	44.022
VV	27.521	37.429

340

Table 5 Results from Dunn's test to distinguish categories DVC and Prometheus fuel types. All pairwise comparisons between the categories were statistically significant (p < 0.05)

DVC fuel types		Prometheus fuel types	
PAZ averaged images	Comparison	PAZ averaged images	Comparison
HH	Bare soil - DVC1	HH	Bare soil - FT1
	Bare soil - DVC2		Bare soil - FT2
	Bare soil - DVC3		Bare soil - FT3
	DVC2 - DVC3		FT2 - FT3
			Bare soil - FT4
			Bare soil - FT5
HV		HV	FT3 - FT5
	Bare soil - DVC1		Bare soil - FT7
	Bare soil - DVC2		FT3 - FT7
	DVC1 - DVC2		
	Bare soil - DVC3		Bare soil - FT4
	DVC1 - DVC3		Bare soil - FT5
VV		VV	FT1 - FT5
	Bare soil - DVC1		Bare soil - FT7
	Bare soil - DVC2		FT1 - FT7
	Bare soil - DVC3		
	DVC2 - DVC3		Bare soil - FT1
			Bare soil - FT2

343

3.3. Fuel type classification

The multinomial logistic regression model, utilizing the three PAZ polarization backscatter values (HH, HV, and VV) as predictors, was trained and validated to classify the Dominant Vegetation Cover (DVC) categories. The model demonstrated strong predictive performance on

348 the independent test dataset, achieving an Overall Accuracy of 82.1% and a Cohen's Kappa
349 coefficient of 0.72.

350 A detailed analysis of the model's performance is provided by the confusion matrix (Table 6).
351 The model performed exceptionally well in identifying Bare soil, classifying all test plots for this
352 category correctly (100% Producer's and User's Accuracy). The classification of the forest (DVC3)
353 category was also highly proficient, achieving a producer's accuracy of 90.9%. The primary source
354 of classification error was the significant confusion involving the grasslands (DVC1) and
355 shrublands (DVC2) categories. A notable challenge for the model was the identification of
356 grasslands, with two of the three test plots being misclassified as shrublands. This resulted in a low
357 producer's accuracy of 33.3% for the grasslands class. Consequently, although the shrublands class
358 was well-identified (81.8% producer's accuracy), it incorrectly absorbed plots from both
359 grasslands and, to a lesser extent, forest, which lowered its user's accuracy to 75%. This pattern
360 suggests that, although statistically separable, the spectral signature of grasslands in the X-band is
361 frequently confused with that of low-shrub formations, posing a challenge for the classification
362 model.

363 **Table 6** Confusion matrix and per-class accuracy metrics from the multinomial logistic regression model for the
364 Dominant Vegetation Cover (DVC) classification. The results were obtained on the independent test dataset (n=28).

	Bare soil	Grassland (DVC1)	Shrubland (DVC2)	Forest (DVC3)	User's Accuracy	Producer's Accuracy
Bare soil	100.00	0.00	0.00	0.00	100.00	100.00
Grassland (DVC1)	0.00	100.00	0.00	0.00	100.00	33.33
Shrubland (DVC2)	0.00	16.67	75.00	8.33	75.00	81.82
Forest (DVC3)	0.00	0.00	16.67	83.33	83.33	90.91

365
366 When applied to the more detailed Prometheus fuel type classification, the multinomial logistic
367 regression model showed a considerable decrease in performance. The model achieved an overall
368 accuracy of 42.9% on the independent test dataset, with a Cohen's Kappa coefficient of 0.31. These
369 metrics indicate that while the model performs better than random chance, it faces significant
370 challenges in distinguishing between these finer-scale fuel categories.

371 The confusion matrix (Table 7) provides a detailed view of the model's performance and
372 highlights the specific areas of confusion, which align with the findings from the exploratory

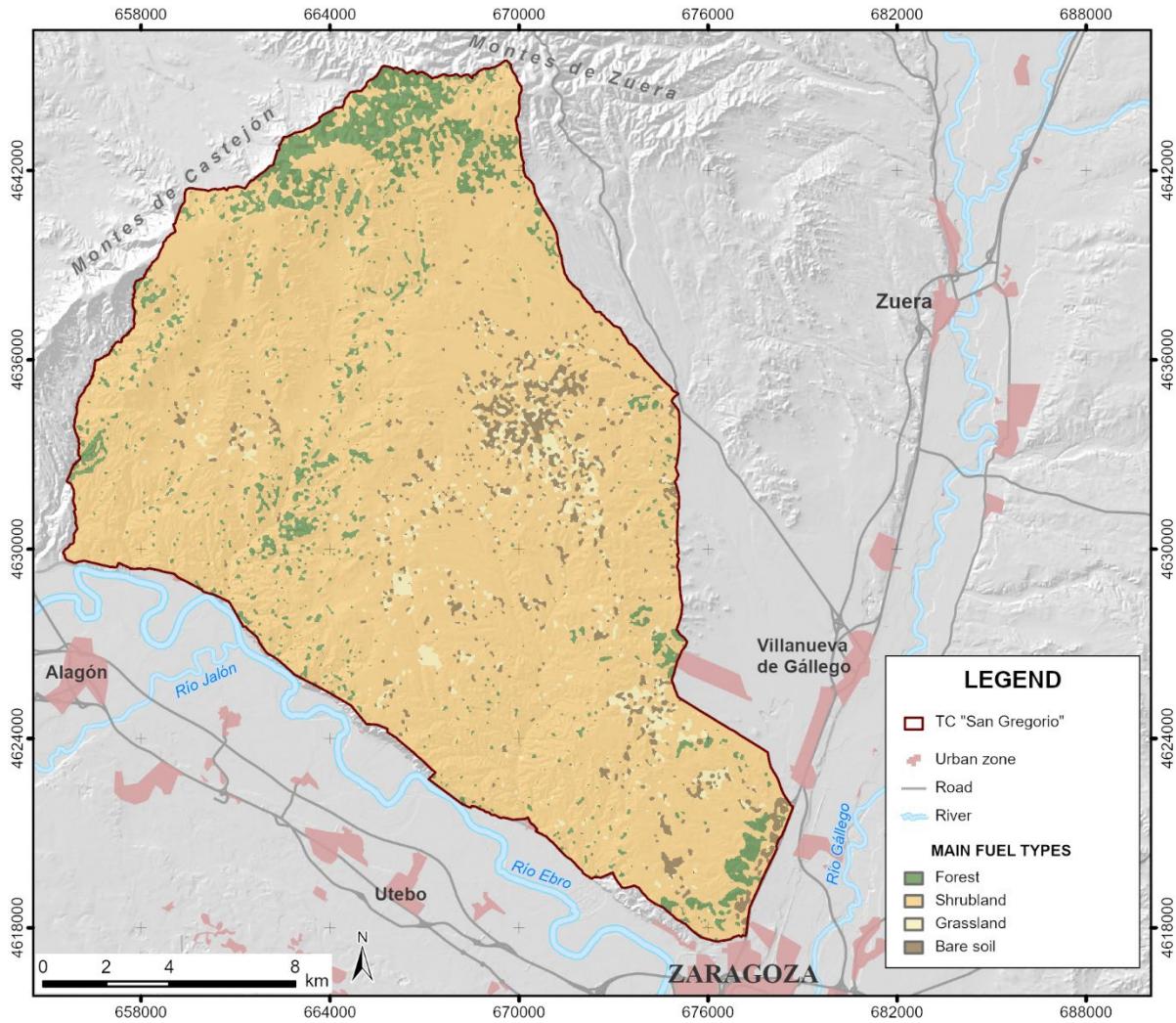
373 separability analysis. The model was successful at identifying broad structural groups. For
 374 instance, bare soil and herbaceous vegetation (FT1) were identified with moderate success. The
 375 classification of forest areas (FT5) also showed some proficiency, achieving the highest producer's
 376 accuracy (66.7%) among the vegetated classes. However, the model exhibited significant
 377 confusion between structurally similar fuel types, with three primary patterns of error being
 378 observed. First, there was considerable confusion within the shrubland continuum, where the
 379 model struggled to differentiate between the various shrub classes. Medium- to large-sized shrubs
 380 (FT3) and tall shrubs (FT4) were not correctly identified at all (0% producer's accuracy), being
 381 frequently misclassified as other shrub types or even forest. A similar pattern occurred within the
 382 forest types, as the model had great difficulty separating forest with no understory (FT5) from
 383 forest with high vertical continuity (FT7), with significant misclassifications occurring between
 384 these two categories. Finally, the model often confused herbaceous vegetation (FT1) with low-
 385 lying shrubs (FT2) and even bare soil, indicating that the X-band signal struggles to resolve the
 386 subtle differences between these sparse fuel types. In summary, these results suggest that while
 387 the PAZ X-band data can effectively separate broad categories like forests from shrublands, its
 388 sensitivity is limited for finer-scale classification within these groups.

389 Table 7 Confusion matrix and per-class accuracy metrics from the multinomial logistic regression model for the
 390 Prometheus classification. The results were obtained on the independent test dataset (n=28).

Bare soil	FT1	FT2	FT3	FT4	FT5	FT7	User's Accuracy	Producer's Accuracy
Bare soil	100.00	0.00	0.00	0.00	0.00	0.00	100.00	66.67
FT1	33.33	33.33	0.00	33.33	0.00	0.00	33.33	33.33
FT2	0.00	25.00	37.50	12.50	12.50	12.50	37.50	50.00
FT3	0.00	0.00	75.00	0.00	0.00	0.00	25.00	0.00
FT4	-	-	-	-	-	-	-	0.00
FT5	0.00	0.00	0.00	0.00	14.29	57.14	28.57	57.14
FT7	0.00	0.00	0.00	25.00	0.00	25.00	50.00	40.00

391
 392 Based on these findings, a clear difference in performance emerged between the two
 393 classification schemes. The model based on the Dominant Vegetation Cover (DVC) categories
 394 achieved an overall accuracy of 82.1% and demonstrated a robust capability to distinguish between
 395 the broad fuel classes. In contrast, the model trained on the more detailed Prometheus fuel types,
 396 while informative, yielded a modest accuracy (42.9%) and showed significant confusion between

397 structurally similar categories. Given this performance gap, it was concluded that the Prometheus-
 398 level model did not possess the necessary reliability for producing an accurate thematic map.
 399 Therefore, the final fuel type map of the study area was generated using exclusively the logistic
 400 regression model fitted with the Dominant Vegetation Cover (DVC) categories (Figure 3).



403 **4. Discussion**

404 Fuel type maps provide essential information for forest managers to support prevention, wildfire
 405 management and wildfire risk modeling^{18,19,33}. This cartography is particularly relevant in forested
 406 areas affected by wildfires⁷⁴ and where there is a potential risk of wildfires due to the activities
 407 conducted in the area⁷⁵. The TC and MSF utilized by the Spanish Army satisfy the aforementioned

408 dual criterion as they are employed for the purpose of live ammunition firing practice and are
409 situated predominantly in the Mediterranean region, distinguished by elevated aridity and
410 combustibility. Our study illustrates the utility of the X-band PAZ satellite for characterizing
411 vegetation structure in Mediterranean environments. As the first satellite of the Spanish National
412 Earth Observation Program (PNOTS), the PAZ mission is an operational asset of the Spanish
413 Ministry of Defense, designed primarily to cover security and defense needs. However, its
414 capabilities also extend to critical civilian applications, including catastrophe and wildfire
415 management. This dual-use nature makes it a uniquely suitable instrument for this study,
416 demonstrating how a strategic defense asset can be leveraged to support the specific regulations
417 developed by the Spanish Army to prevent and combat wildfires on lands under its jurisdiction.

418 The exploratory statistical analysis confirmed the sensitivity of the PAZ X-band backscatter to
419 the structural attributes of forest fuel types. Spearman's correlation analysis showed that the HV
420 cross-polarization exhibited the strongest relationships with both classification schemes ($\rho \approx 0.5$).
421 This result is consistent with the well-documented sensitivity of cross-polarization to volume
422 scattering from vegetation canopies, in contrast to the stronger surface contributions in co-
423 polarized channels^{39,67,76,77}. Its effectiveness stems from its sensitivity to various vegetation
424 parameters including biomass (e.g. Ref. ^{53,54,78,79}), vegetation water content (e.g. Ref. ⁷⁹⁻⁸¹) and
425 structural properties (e.g. Ref. ⁸²⁻⁸⁴). Likewise, the Dunn's post-hoc test revealed that at the broader
426 Dominant Vegetation Cover (DVC) level, all fuel categories were statistically separable, providing
427 a strong a priori justification for classification. Conversely, the more detailed Prometheus scheme
428 exposed the intrinsic limitations of X-band SAR for resolving subtle structural differences,
429 particularly within the shrubland continuum and between forest types with or without understory,
430 foreshadowing the challenges later observed in classification accuracy.

431 These pre-classification insights were directly reflected in the performance of the multinomial
432 logistic regression model. For the DVC classification, the model achieved a high overall accuracy
433 of 82.1% (Kappa = 0.72), indicating robust discrimination between bare soil, grasslands,
434 shrublands, and forests. This result is particularly noteworthy as it was achieved using only a single
435 SAR-based approach, which is independent of cloud cover and illumination conditions,
436 highlighting its suitability for operational mapping. The main source of error was the
437 misclassification of grasslands as shrublands. This confusion likely reflects a known limitation of
438 X-band backscatter: its restricted dynamic range when characterizing vegetation. Previous studies

439 have shown that the sensor signal tends to saturate over dense grasslands and shrublands, reducing
440 its ability to capture structural differences at high biomass levels^{57,85}. The sensor is also relatively
441 insensitive to subtle variations in low-biomass formations. As a result, sparse grasslands and low-
442 lying shrubs produce similarly weak backscatter responses, making them difficult to distinguish
443 and leading to systematic misclassification between these two categories. Furthermore, from a
444 statistical standpoint, the distinction between the grassland and shrubland categories may have
445 been poorly characterized in our work due to the imbalanced number of plots in each class (11 and
446 46, respectively). To better resolve this confusion, it would be necessary to increase the sample
447 size for the grassland category in future fieldwork.

448 Limitations of X-band SAR for resolving subtle structural differences—particularly within the
449 shrubland continuum and between forest types with or without an understory—have been
450 highlighted in several studies. For example, in forested environments, the shallow penetration
451 depth of X-band hampers the detection of sub-canopy layers, making it difficult to distinguish
452 forests with and without understory⁸⁶. More recent analyses confirm this limitation: TanDEM-X
453 data show restricted sensitivity to sub-canopy topography due to the limited penetration of X-band
454 through dense canopies⁸⁷, and X-band inversion algorithms demonstrate reduced accuracy in
455 stratified stands where understory is present⁸⁸. Together, these findings corroborate that while X-
456 band SAR is highly effective for broad vegetation mapping, it lacks the structural sensitivity
457 required for finer differentiation within shrublands and between forest structural types.

458 By comparison, our work has achieved similar accuracies for Prometheus in Mediterranean
459 regions in approaches that have been used a single data sensor (e.g. Ref. ²⁷), but lower than
460 approaches that relied on multi-sensor fusion approaches—integrating LiDAR to capture vertical
461 structure and multispectral and/or SAR data to characterize vegetation composition and vigor (e.g.
462 Ref. ^{5,89}). Focusing on our own previous experiences in the study area, the confusion matrix hit
463 rates represent about 59% of those obtained with SPOT-5 and low-density Airborne Laser Scanner
464 (ALS) data⁴⁵⁻⁴⁷, 47% of those achieved with the Discrete Anisotropic Radiative Transfer (DART)
465 model used to replicate low-density small-footprint LiDAR measurements⁶ and 51% of those
466 obtained when combining Landsat and GEDI data⁵¹. It should be noted, however, that datasets of
467 this last study are not continuous, but discretized in circular diameter traces.

468 Finally, the use of multinomial logistic regression instead of more complex machine learning
469 algorithms such as Support Vector Machines (SVM) or Random Forest (RF) was a deliberate

470 methodological choice. While non-parametric methods have been reported to achieve high
471 accuracies in some fuel mapping studies, they are highly data-demanding and prone to overfitting
472 with small to medium-sized samples⁷⁰. For example, Arellano-Pérez et al.⁹⁰ observed that the RF
473 algorithm overestimated data from small sample plots (123 field plots) when modelling surface
474 and canopy fuel characteristics with Sentinel-2A data and Hu et al.⁹¹ observed this phenomenon
475 when predicting forest stand volume with Sentinel-2A imagery and 459 field plots. Our previous
476 studies also showed that overfitting was produced in RF when predicting different forest attributes
477 when the field sample is not very large (192 plots Domingo et al.⁹² and Domingo et al.⁹³), although
478 in Domingo et al.⁵ SVM had good accuracy to classify Prometheus fuel types using 136 plots as
479 ground-truth.

480 **5 Conclusions**

481 This study aimed to assess the utility of X-band backscatter from the PAZ satellite for
482 operational fuel mapping to support the PAFF and OAP at the TC “San Gregorio”. This general
483 objective was motivated by the critical need to improve wildfire risk management in highly fire
484 prone areas, such as military training areas.

485 The two specific objectives were addressed with different levels of success. First, the study
486 sought to develop and validate a baseline map of fuel types based on dominant vegetation cover
487 (grasslands, shrublands, and forests), addressing an immediate operational need. This objective
488 was successfully achieved: all three SAR polarizations were sensitive to vegetation structure, with
489 HV cross-polarization performing best. Using a multinomial logistic regression model, a reliable
490 map of dominant vegetation cover was produced, achieving high overall accuracy (82.1%) and
491 effectively distinguishing between bare soil, grasslands, shrublands, and forests. Second, the study
492 aimed to conduct an exploratory analysis of X-band sensitivity for discriminating the more
493 complex Prometheus fuel types, assessing its potential to complement other remote sensing data.
494 The analysis revealed limitations: while broad structural differences were detectable, the
495 classification of detailed Prometheus fuel types reached only 42.9% accuracy. This highlights that
496 PAZ X-band imagery alone is insufficient for fine-scale fuel mapping but remains valuable for
497 strategic, broad-level applications.

498 Finally, the sensitivity of HV polarization suggests that future work could explore synergistic
499 use with other data sources, including longer-wavelength radar (C and L bands), LiDAR (UAV,

500 airborne, or satellite), and medium- to high-resolution optical imagery (e.g., Sentinel-2). Advanced
501 PolSAR and InSAR techniques applied to PAZ data could further enhance biomass and vegetation
502 structure characterization, improving fuel type classification in more detailed multi-sensor
503 approaches.

504 *Disclosures*

505 The authors declare that there are no financial interests, commercial affiliations, or other potential
506 conflicts of interest that could have influenced the objectivity of this research or the writing of this
507 paper.

508 *Code and Data Availability*

509 The data that support the findings of this article are not publicly available due to security and
510 defense concerns. They can be requested from the author at algarcia@unizar.es.

511

512 *Acknowledgments*

513 This research was funded by the projects “AO-001-040” of the National Institute for Aerospace
514 Technology (INTA), “FUELPAZ” [2019-12] of the Centro Universitario de la Defensa of the
515 Academia General Militar (CUD-AGM), and “PaF” [PID2020-118886RB-I00] of the Ministerio
516 de Ciencia, Innovación y Universidades; and by the Government of Aragon [Geoforest S51_23R,
517 FEDER “Construyendo Europa desde Aragón”]. ChatGPT 3.5, Gemini 2.5 pro and DeepL were
518 used for the linguistic and grammatical cleaning of the text.

519 *References*

- 520 1. R. Lasaponara and A. Lanorte, “Remotely sensed characterization of forest fuel types by using
521 satellite ASTER data,” *Int. J. Appl. Earth Obs. Geoinf.* **9**(3), 225–234 (2007)
522 [doi:10.1016/j.jag.2006.08.001].
- 523 2. J. G. Pausas et al., “Are wildfires a disaster in the Mediterranean basin? A review,” *Int. J. Wildl.*
524 *Fire* **17**(6), 713–723 (2008) [doi:10.1071/WF07151].
- 525 3. S. González-De Vega, J. De las Heras, and D. Moya, “Resilience of Mediterranean terrestrial
526 ecosystems and fire severity in semiarid areas: Responses of Aleppo pine forests in the short, mid
527 and long term,” *Sci. Total Environ.* **573**, 1171–1177, Elsevier B.V. (2016)

528 [doi:10.1016/j.scitotenv.2016.03.115].

529 4. A. San-Miguel-Ayanz, J.; Rodrigues, M.; de Oliveira, S.S.; Pacheco, C.K.; Moreira, F.; Duguy,
530 B.; Camia, “Land Cover Change and Fire Regime in the European Mediterranean Region,” in
531 Post-Fire Management and Restoration of Southern European Forests. Managing Forest
532 Ecosystems **24**, Springer, J. Moreira, F., Arianoutsou, M., Corona, P., De las Heras, Ed., p. 2208,
533 Dordrecht (2012) [doi:10.1007/978-94-007-2208-8_2].

534 5. D. Domingo et al., “Fuel type classification using airborne laser scanning and sentinel 2 data in
535 mediterranean forest affected by wildfires,” *Remote Sens.* **12**(21), 1–22 (2020)
536 [doi:10.3390/rs12213660].

537 6. S. Revilla et al., “Assessing the potential of the dart model to discrete return lidar simulation—
538 application to fuel type mapping,” *Remote Sens.* **13**(3) (2021) [doi:10.3390/rs13030342].

539 7. M. Rodrigues et al., “Drivers and implications of the extreme 2022 wildfire season in Southwest
540 Europe,” *Sci. Total Environ.* **859**(September 2022), 160320, Elsevier B.V. (2023)
541 [doi:10.1016/j.scitotenv.2022.160320].

542 8. J. San-Miguel-Ayanz et al., *Advance Report on Forest Fires in Europe, Middle East and North
543 Africa 2022*, in Publications Office of the European Union, Luxembourg(May) (2023)
544 [doi:10.2760/091540].

545 9. M. Rodrigues et al., “An empirical assessment of the potential of post-fire recovery of tree-forest
546 communities in Mediterranean environments,” *For. Ecol. Manage.* **552**(November 2023) (2024)
547 [doi:10.1016/j.foreco.2023.121587].

548 10. M. A. Tanase et al., “Long-term annual estimation of forest above ground biomass, canopy cover,
549 and height from airborne and spaceborne sensors synergies in the Iberian Peninsula,” *Environ.
550 Res.* **259**(May), 119432, Elsevier Inc. (2024) [doi:10.1016/j.envres.2024.119432].

551 11. J. R. C. (JRC) European Commission, “European Forest Fire Information System (EFFIS)
552 dataset,” 2025, <<https://effis.jrc.ec.europa.eu>> (accessed 2 October 2025).

553 12. Presidencia del Gobierno de España, *Estrategia de Seguridad Nacional 2021*, in Ministerio de la
554 Presidencia, Realciones con las Cortes y Memoria Democrática, G. de España, Ed., Madrid
555 (2021).

556 13. E. Chuvieco et al., “Towards an Integrated Approach to Wildfire Risk Assessment: When, Where,
557 What and How May the Landscapes Burn,” *Fire* **6**(5), 1–60 (2023) [doi:10.3390/fire6050215].

558 14. E. Chuvieco et al., “Development of a framework for fire risk assessment using remote sensing
559 and geographic information system technologies,” *Ecol. Modell.* **221**(1), 46–58 (2010)
560 [doi:10.1016/j.ecolmodel.2008.11.017].

561 15. A. Novo et al., “Mapping Forest Fire Risk — A Case Study in,” *Remote Sens.* **12** (2020).

562 16. M. Naderpour, H. M. Rizeei, and F. Ramezani, “Forest fire risk prediction: A spatial deep neural
563 network-based framework,” *Remote Sens.* **13**(13) (2021) [doi:10.3390/rs13132513].

564 17. Z. Parvar, S. Saeidi, and S. Mirkarimi, “Integrating meteorological and geospatial data for forest
565 fire risk assessment,” *J. Environ. Manage.* **358**(April), 120925, Elsevier Ltd (2024)
566 [doi:10.1016/j.jenvman.2024.120925].

567 18. A. Abdollahi and M. Yebra, “Forest fuel type classification: Review of remote sensing techniques,
568 constraints and future trends,” *J. Environ. Manage.* **342**(June), 118315, Elsevier Ltd (2023)
569 [doi:10.1016/j.jenvman.2023.118315].

570 19. M. G. Gale et al., “Forest fire fuel through the lens of remote sensing: Review of approaches,
571 challenges and future directions in the remote sensing of biotic determinants of fire behaviour,”
572 *Remote Sens. Environ.* **255**(July 2020), 112282, Elsevier Inc. (2021)
573 [doi:10.1016/j.rse.2020.112282].

574 20. Revista Ejército, “Centro de Adiestramiento San Gregorio,” *Rev. Ejército* **800**, 8–29 (2007).

575 21. Ministry of Defence, “Directiva 03/19: Acciones contra incendios forestales en los campos de
576 maniobras y tiro, y otras propiedades asignadas al Ejército de Tierra,” Madrid (2019).

577 22. A. Alonso-Benito et al., “Pixel and object-based classification approaches for mapping forest fuel
578 types in Tenerife Island from ASTER data,” *Int. J. Wildl. Fire* **22**(3), 306–317 (2013)
579 [doi:10.1071/WF11068].

580 23. S. Bajocco et al., “Mapping forest fuels through vegetation phenology: The role of coarse-
581 resolution satellite time-series,” *PLoS One* **10**(3), 1–14 (2015)
582 [doi:10.1371/journal.pone.0119811].

583 24. M. K. Jakubowski et al., “Predicting surface fuel models and fuel metrics using lidar and CIR
584 imagery in a dense mixed conifer forest,” *Photogramm. Eng. Remote Sens.* **79**(1), 37–49 (2013).

585 25. A. Stefanidou et al., “Fuel type mapping using object-based image analysis of DMC and Landsat-8
586 OLI imagery,” *Geocarto Int.* **33**(10), 1064–1083 (2018) [doi:10.1080/10106049.2017.1333532].

587 26. M. F. Rosa and D. A. Stow, “Mapping fuels at the wildland-urban interface using colour ortho-
588 images and LiDAR data,” *Geocarto Int.* **29**(5), 570–588 (2014)
589 [doi:10.1080/10106049.2013.819040].

590 27. M. Huesca, D. Riaño, and S. L. Ustin, “Spectral mapping methods applied to LiDAR data:
591 Application to fuel type mapping,” *Int. J. Appl. Earth Obs. Geoinf.* **74**(August 2018), 159–168
592 (2019) [doi:10.1016/j.jag.2018.08.020].

593 28. M. E. Merrill, D. F., Alexander, *Glossary of forest fire management terms*, Committee on Forest
594 Fire Management, National Research Council of Canada., Ottawa (1987).

595 29. R. C. Rothermel, *A mathematical model for predicting fire spread in wildland fuels. US*

664 Forest Landscapes Using a UAV-LiDAR System and Integration Possibilities with Handheld
665 Mobile Laser Scanner Systems," *Remote Sens.* **16**, 3536 (2024)
666 [doi:<https://doi.org/10.3390/rs16183536>].

667 53. S. Sinha et al., "A review of radar remote sensing for biomass estimation," *Int. J. Environ. Sci.
668 Technol.* **12**(5), 1779–1792 (2015) [doi:[10.1007/s13762-015-0750-0](https://doi.org/10.1007/s13762-015-0750-0)].

669 54. M. Santoro and O. Cartus, "Research pathways of forest above-ground biomass estimation based
670 on SAR backscatter and interferometric SAR observations," *Remote Sens.* **10**(4) (2018)
671 [doi:[10.3390/rs10040608](https://doi.org/10.3390/rs10040608)].

672 55. S. Englhart, V. Keuck, and F. Siegert, "Aboveground biomass retrieval in tropical forests - The
673 potential of combined X- and L-band SAR data use," *Remote Sens. Environ.* **115**(5), 1260–1271,
674 Elsevier Inc. (2011) [doi:[10.1016/j.rse.2011.01.008](https://doi.org/10.1016/j.rse.2011.01.008)].

675 56. F. Capodici, G. D'Urso, and A. Maltese, "Investigating the relationship between x-band SAR data
676 from COSMO-skymed satellite and NDVI for LAI detection," *Remote Sens.* **5**(3), 1389–1404
677 (2013) [doi:[10.3390/rs5031389](https://doi.org/10.3390/rs5031389)].

678 57. Y. Duguay et al., "Potential of C and X band SAR for shrub growth monitoring in sub-arctic
679 environments," *Remote Sens.* **7**(7), 9410–9430 (2015) [doi:[10.3390/rs70709410](https://doi.org/10.3390/rs70709410)].

680 58. R. Hagensieker and B. Waske, "Evaluation of multi-frequency SAR images for tropical land cover
681 mapping," *Remote Sens.* **10**(2) (2018) [doi:[10.3390/rs10020257](https://doi.org/10.3390/rs10020257)].

682 59. M. Santoro et al., "Complementarity of X-, C-, and L-band SAR backscatter observations to
683 retrieve forest stem volume in boreal forest," *Remote Sens.* **11**(13) (2019)
684 [doi:[10.3390/rs11131563](https://doi.org/10.3390/rs11131563)].

685 60. C. Schuster et al., "Grassland habitat mapping by intra-annual time series analysis -Comparison of
686 RapidEye and TerraSAR-X satellite data," *Int. J. Appl. Earth Obs. Geoinf.* **34**(1), 25–34, Elsevier
687 B.V. (2015) [doi:[10.1016/j.jag.2014.06.004](https://doi.org/10.1016/j.jag.2014.06.004)].

688 61. H. J. Persson et al., "Experiences from large-scale forest mapping of Sweden using TanDEM-X
689 data," *Remote Sens.* **9**(12) (2017) [doi:[10.3390/rs9121253](https://doi.org/10.3390/rs9121253)].

690 62. N. C. Gonzalez Bonilla, M. J.; Cuerda Munoz, J. M.; Carrasco, E. V. ; Rodriguez M. G. ; Vazquez,
691 "PAZ Mission. Science Activities," in EUSAR 2021; 13th European Conference on Synthetic
692 Aperture Radar, pp. 110–113, Verlag GMBD, Berlin (2021).

693 63. M. González Bonilla, M.J.; Cuerda Muñoz, J.M.; García Rodríguez, "PAZ Product definition
694 procedure," in EUSAR 2018; 12th European Conference on Synthetic Aperture Radar, pp. 892–
695 895, Verlag GMBD, Aachen (2018).

696 64. M. J. . González Bonilla et al., "Explotación científica de la misión paz anuncio de oportunidad:
697 lanzamiento de la fase científica de PAZ (PAZ/INT/CALVAL/AO/001)," Madrid (2019).

698 65. D. Small, “Flattening gamma: Radiometric terrain correction for SAR imagery,” IEEE Trans.
699 Geosci. Remote Sens. **49**(8), 3081–3093, IEEE (2011) [doi:10.1109/TGRS.2011.2120616].

700 66. S. Quegan and J. J. Yu, “Filtering of multichannel SAR images,” IEEE Trans. Geosci. Remote
701 Sens. **39**(11), 2373–2379 (2001) [doi:10.1109/36.964973].

702 67. C. . Oliver and S. Quegan, *Understanding synthetic aperture radar images*, SciTech Publishing
703 (2004).

704 68. D. H. . Ogle et al., “FSA: Simple Fisheries Stock Assessment Methods” (2025)
705 [doi:10.32614/CRAN].

706 69. D. W. . Hosmer, S. . Lemeshow, and R. X. . Sturdivant, *Applied logistic regression*, John Wiley &
707 Sons (2013).

708 70. T. . Hastie, R. . Tibshirani, and J. . Friedman, *The elements of statistical learning: Data mining,
709 inference, and prediction*, Springer-Verlag (2009).

710 71. T. Van Der Ploeg, P. C. Austin, and E. W. Steyerberg, “Modern modelling techniques are data
711 hungry: A simulation study for predicting dichotomous endpoints,” BMC Med. Res. Methodol.
712 **14**(1), 1–13 (2014) [doi:10.1186/1471-2288-14-137].

713 72. W. N. . Venables and B. D. . Ripley, *Modern Applied Statistics with S*, Springer, New York
714 (2002).

715 73. C. H. Van Essen, D.C.; Drury, H.A.; Dickson, J.; Harwell, J.; Hanlon, D.; Anderson, “An
716 integrated software suite for surface-based analyses of cerebral cortex,” J. Am. Med. Inform.
717 Assoc. **8**, 443–459 (2001).

718 74. P. J. Gelabert et al., “Forest structural diversity characterization in Mediterranean landscapes
719 affected by fires using Airborne Laser Scanning data,” GIScience Remote Sens. **57**(4), 497–509,
720 Taylor & Francis (2020) [doi:10.1080/15481603.2020.1738060].

721 75. E. Aragoneses and E. Chuvieco, “Generation and mapping of fuel types for fire risk assessment,”
722 Fire **4**(3) (2021) [doi:10.3390/fire4030059].

723 76. A. Chhabra et al., “RADAR-Vegetation Structural Perpendicular Index (R-VSPI) for the
724 Quantification of Wildfire Impact and Post-Fire Vegetation Recovery,” Remote Sens. **14**(13), 1–
725 18 (2022) [doi:10.3390/rs14133132].

726 77. C. Wang et al., “Interpretable Multi-Sensor Fusion of Optical and SAR Data for GEDI-Based
727 Canopy Height Mapping in Southeastern North Carolina,” Remote Sens. **17**(9) (2025)
728 [doi:10.3390/rs17091536].

729 78. O. Cartus, M. Santoro, and J. Kellndorfer, “Mapping forest aboveground biomass in the
730 Northeastern United States with ALOS PALSAR dual-polarization L-band,” Remote Sens.
731 Environ. **124**, 466–478, Elsevier Inc. (2012) [doi:10.1016/j.rse.2012.05.029].

732 79. P. Ferrazzoli et al., "The potential of multifrequency polarimetric sar in assessing agricultural and
733 arboreous biomass," *IEEE Trans. Geosci. Remote Sens.* **35**(1), 5–17 (1997)
734 [doi:10.1109/36.551929].

735 80. P. N. Bernardino et al., "Estimating vegetation water content from Sentinel-1 C-band SAR data
736 over savanna and grassland ecosystems," *Environ. Res. Lett.* **19**(3) (2024) [doi:10.1088/1748-
737 9326/ad288f].

738 81. P. K. Srivastava et al., "Evaluation of radar vegetation indices for vegetation water content
739 estimation using data from a ground-based SMAP simulator," *Int. Geosci. Remote Sens. Symp.*
740 **2015-Novem**, 1296–1299, IEEE (2015) [doi:10.1109/IGARSS.2015.7326012].

741 82. K. Wessels et al., "Quantifying the sensitivity of L-Band SAR to a decade of vegetation structure
742 changes in savannas," *Remote Sens. Environ.* **284**(August 2022), 113369, Elsevier Inc. (2023)
743 [doi:10.1016/j.rse.2022.113369].

744 83. C. M. Ryan et al., "Quantifying small-scale deforestation and forest degradation in African
745 woodlands using radar imagery," *Glob. Chang. Biol.* **18**(1), 243–257 (2012) [doi:10.1111/j.1365-
746 2486.2011.02551.x].

747 84. M. Tanase et al., "Sensitivity of SAR data to post-fire forest regrowth in Mediterranean and boreal
748 forests," *Remote Sens. Environ.* **115**(8), 2075–2085, Elsevier Inc. (2011)
749 [doi:10.1016/j.rse.2011.04.009].

750 85. M. El Hajj et al., "Irrigated grassland monitoring using a time series of TerraSAR-X and COSMO-
751 SkyMed X-Band SAR data," *Remote Sens.* **6**(10), 10002–10032 (2014)
752 [doi:10.3390/rs61010002].

753 86. S. Erasmi et al., "Sensitivity of bistatic TanDEM-X data to stand structural parameters in
754 temperate forests," *Remote Sens.* **11**(24), 1–18 (2019) [doi:10.3390/rs11242966].

755 87. J. Zhu et al., "High-resolution sub-canopy topography mapping via TanDEM-X DEM combined
756 with future P-band BIOMASS PolInSAR data," *J. Geod.* **97**(12), 1–21, Springer Berlin Heidelberg
757 (2023) [doi:10.1007/s00190-023-01807-0].

758 88. C. Shen et al., "Research on forest height inversion algorithm based on X-band SAR data," in
759 International Conference on Precision Instruments and Optical Engineering, p. 12585 (2023)
760 [doi:<https://doi.org/10.1117/12.2667940>].

761 89. J. M. Fernández-Guisuraga et al., "Estimation of Prometheus fuel types using physically based
762 remote sensing techniques," *Fire Ecol.* **21**(1), Springer International Publishing (2025)
763 [doi:10.1186/s42408-025-00373-4].

764 90. S. Arellano-Pérez et al., "Potential of Sentinel-2A data to model surface and canopy fuel
765 characteristics in relation to crown fire hazard," *Remote Sens.* **10**(10) (2018)

766 [doi:10.3390/rs10101645].

767 91. Y. Hu et al., “Estimating forest stock volume in Hunan Province, China, by integrating in situ plot

768 data, Sentinel-2 images, and linear and machine learning regression models,” *Remote Sens.* **12**(1)

769 (2020) [doi:10.3390/RS12010186].

770 92. D. Domingo et al., “Quantifying forest residual biomass in *Pinus halepensis* Miller stands using

771 Airborne Laser Scanning data,” *GIScience Remote Sens.* **56**(8), 1210–1232 (2019)

772 [doi:10.1080/15481603.2019.1641653].

773 93. D. Domingo et al., “Temporal transferability of pine forest attributes modeling using low-density

774 airborne laser scanning data,” *Remote Sens.* **11**(3) (2019) [doi:10.3390/rs11030261].

775

776 **First Author** is an Associate Professor at the University Center of Defense at the General Military

777 Academy of Spain and an Honorary Fellow at the University of Zaragoza. He holds B.S.. M.S..

778 and Ph.D. degrees from the University of Zaragoza in Geography (2001). Geographic Information

779 Technologies (2004). and Land Management and Environment (2009). respectively. He has

780 authored more than 25 JCR papers and 10 book chapters. and has delivered numerous contributions

781 at international and national conferences. His current research focuses on the estimation of

782 continuous forestry parameters and the analysis of forest fires. specializing in fuel modeling. burn

783 severity. and plant regeneration using remote sensing. Geographic Information Systems (GIS). and

784 fieldwork.

785

786 **Caption List**

787

788 **Fig. 1** Study area and localization of the field plots.

789 **Fig. 2** Field work conducted to verify in situ the correspondence of each plot with the fuel model

790 pre-assigned in the first sub-phase.

791 **Fig. 3** Map of the dominant vegetation cover (DVC) fuel types in the TC “San Gregorio”.

792 **Table 1** Acquisition dates and polarization of the PAZ images.

793 **Table 2** Fuel types description according to Prometheus classification (FT) and dominant

794 vegetation cover (DVC) baseline map.

795 **Table 3** Spearman's rank correlation coefficient between PAZ averaged images and fuel type

796 categories. All the relationships were statistically significant ($p < 0.05$).

797 **Table 4** Results from Kruskal-Wallis test for DVC and Prometheus FT. All variables were
798 statistically significant (p-value < 0.05).

799 **Table 5** Results from Dunn's test to distinguish categories DVC and Prometheus fuel types. All
800 pairwise comparisons between the categories were statistically significant (p < 0.05).

801 **Table 6** Confusion matrix and per-class accuracy metrics from the multinomial logistic regression
802 model for the Dominant Vegetation Cover (DVC) classification. The results were obtained on the
803 independent test dataset (n=28).

804 **Table 7** Confusion matrix and per-class accuracy metrics from the multinomial logistic regression
805 model for the Prometheus classification. The results were obtained on the independent test dataset
806 (n=28).

807