Semantic Reasoning on Mobile Devices:
Do Androids Dream of Efficient Reasoners?

Carlos Bobed, Roberto Yus, Fernando Bobillo, Eduardo Mena

Department of Computer Science € Systems Engineering, University of Zaragoza, Spain

Abstract

The massive spread of mobile computing in our daily lives has attracted a huge community of mobile
application (apps) developers. These developers can take advantage of the benefits of semantic technologies
(such as knowledge sharing and reusing, and knowledge decoupling) to enhance their applications. Moreover,
the use of semantic reasoners would enable them to create more intelligent applications capable of discovering
new knowledge, inferred from the available information.

However, using semantic APIs and reasoners on current mobile devices is not a trivial task. In this paper,
we show that the most popular current available Description Logics (DL) reasoners can be used on Android-
based devices, and detail the efforts needed to port them to the Android platform. We also analyze the
performance of these reasoners on current smartphones/tablets against more than 300 ontologies from the
ORE 2013 ontology set, showing that, despite a notable difference with respect to desktop computers, their
use is feasible.

Keywords: Reasoning, Semantic Web, Mobile Computing, Android

1. Introduction 20 The most direct way to add semantic reasoning
to mobile applications would be, indeed, to rely on

In the last few years, we have witnessed a mas- external servers which would perform all the cal-
sive spread of mobile computing which is shaping culations. However, in this ubiquitous and mobile
our daily lives. This has been undoubtedly due to scenario, where context-awareness and privacy pre-
the ever increasing computing capabilities of mo- 2 serving play a crucial role, sending sensitive data
bile devices, and the almost pervasive connectivity to a remote server might be an important privacy
that the current wireless networks provide us with. breach, and even sending non-sensitive data might
As a consequence, thousands of mobile applications be dangerous as it could enable the inference of sen-
(apps) have been developed. It seems a promising sitive information. Despite the fact that reasoning
idea to enhance such applications by taking advan- % on mobile devices has been the subject of interest
tage of the well-known benefits of using ontologies from the early stages of the Semantic Web [2,13], it
in desktop computers [I], such as the improvement has not been until recently that mobile devices have
of knowledge sharing, reusing and maintenance, the been considered as effective reasoning platforms (in
decoupling of the knowledge from the application, terms of CPU power, memory, and connectivity).
or the possibility of discovering implicit knowledge 3 Thus, current mobile devices make local reasoning
by using semantic reasoners. However, while mobile feasible and open new opportunities in this area
applications have attracted a whole of attention, (e.g., mixing local with remote reasoning by deter-
the use of semantic techniques in them is quite far mining what data can be disclosed and sent to the
from being usual. server and joining the results). Moreover, despite

w0 the communications advances, there are situations
where connectivity with a server can be faulty or

Email addresses: cbobed@unizar.es (Carlos Bobed), nonexistent, and therefore the only way to perform
ryus@unizar.es (Roberto Yus), fbobilloQunizar.es the reasoning is locally.
(Fernando Bobillo), emena@unizar.es (Eduardo Mena)

Preprint submitted to Journal of Web Semantics August 19, 2015



45

50

55

60

65

70

75

80

85

90

As an example of mobile applications that are
currently taking advantage of the use of local se-
mantic reasoning, we can include Location-Based
Services (LBS) providers, mobile health (m-health)
systems, and privacy control applications:

e In LBS providers, it is often particularly im-
portant to make decisions considering the user
context (e.g., deciding the most relevant infor-
mation about means of transport at the mo-
ment). For instance, the SHERLOCK sys-
tem [4] uses a semantic reasoner and back-
ground knowledge about means of transport to
infer that both a cab and a tram are interesting
for a certain mobile user, given the information
obtained from sensors on his/her device such as
the location and time. Other location-based
semantic applications that could benefit from
semantic reasoners are DBpedia Mobile [5] and
mSpace Mobile [6].

e In the field of m-health, semantic reasoners
have been proposed as part of monitoring sys-
tems [7, [8] and clinical decision support sys-
tems [9] due to the sensitivity of the informa-
tion managed. Rafiki [9] is an example of the
latter one that uses a semantic reasoner within
the mobile device to infer possible diseases for
a patient in a rural area, where connectivity is
usually non-existent, given his/her symptoms
and context.

e Regarding privacy control applications, local
semantic reasoning could also help systems
to preserve the privacy of users by inferring
whether information about him/her should be
shared with other people or applications ac-
cording to the user context. This has been
investigated for smartphones [I0] and Google
Glass [11].

We expect more applications such as those pre-
sented to appear as we have detected the interest in
the use of semantic reasoners on mobile devices (for
example, the webpage dedicated to our research on
Semantic Web on mobile devices [12] had 1500 vis-
its during 2014, and around 2800 during the first
semester of 2015).

However, the development of semantic mobile ap-
plications has not (yet) spread due, in part, to the
fact that there are currently no remarkable efforts
to enable mobile devices with semantic reasoning
capabilities. A first possibility is developing new

95

100

105

110

115

120

125

130

135

reasoners specifically designed for mobile devices.
Examples of this alternative include mTableaw [13],
Pocket KRHyper [2], Delta [14], and Mini-ME [15]
reasoners [I6]. In order to reuse as much as possi-
ble the existing work to optimize current Descrip-
tion Logics (DL) reasoners, we are more interested
in another choice: reusing existing semantic rea-
soners on mobile devices. In particular, we have
focused on porting and using existing DL reasoners
on Android as they implement the latest reasoning
algorithms and optimizations, and their codes have
already been tested thoroughly. Moreover, as we
will see later in this paper, the efforts needed to
port some of them are indeed below the costs of de-
veloping new reasoners from scratch, as only a tiny
fraction of the source code must be changed.

We have focused our research on devices using
Android operating system [I7] due to several rea-
sons: 1) its diffusion (51% of devices use this op-
erative system according to a recent estimatiOIﬂ
but with a prevision of a heavy steady increase ac-
cording to its shipment share of 78% during the
first quarter of 2015ED, 2) its openness and thorough
documentation, and 3) the existence of a Java-like
native virtual machine (Dalvik) that makes it easier
to reuse existing Java applications, something very
important since most of the semantic APIs and rea-
soners have been developed in this language.

In our previous works [I8, [19], we began to study
the reuse of existing Semantic Web APIs and DL
reasoners on Android. The objective of this paper
is to continue this line of research by studying more
DL reasoners, performing a more complete evalua-
tion of their performance, and providing a starting
point for those who want to add semantics to their
mobile systems.

In particular, the contributions of this paper are
the following;:

e We detail the level of support of some of the ex-
isting Semantic Web APIs and DL reasoners on
Android devices. Moreover, we share our ex-
perience porting and using an important num-
ber of available reasoners (CB, ELK, HermiT,
jeel, JFact, Pellet, and TrOWL), which makes
it easier to port future versions, and might help
porting other reasoners. Finally, we also high-

Thttp://www.netmarketshare. com, last accessed 2015-07-
04.

2http://www.idc.com/prodserv/smartphone-os—
market-share. jsp, last accessed 2015-07-04.


http://www.netmarketshare.com
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp

140

145

150

155

160

165

170

175

180

light the difficulties that we have found in dif-
ferent versions of the same reasoners.

e We perform a complete empirical evaluation of
the performance of the reasoners on Android
devices and desktop computers. We consider
two reasoning tasks (classification and consis-
tency checking), analyzing the execution time
and the impact of memory, virtual machine,
and the OWL 2 profile (comparing the differ-
ences between the fragments OWL 2 DL and
OWL 2 EL). We use more than 300 ontologies
from the ORE 2013 ontology set.

The rest of this manuscript is organized as fol-
lows. Section [2] starts by overviewing some Seman-
tic Web APIs and reasoners that will be consid-
ered throughout this paper and Section [3| summa-
rizes our experiences porting these technologies to
Android. Then, after describing our experimental
setup in Section [ Sections [5] and [f] evaluate the
performance of the reasoners for the OWL 2 DL
and OWL 2 EL profiles, respectively, while Sec-
tion [7] studies the impact of the memory and the
virtual machine. Next, Section [§] includes a global
discussion. Finally, Section [J] overviews some re-
lated work and Section [[Q]sets out some conclusions
and ideas for future work.

2. Overview of Semantic Web Technologies

In this section we overview the Semantic Web
technologies that will be considered throughout this
paper. In particular, we present the semantic APIs
(Jena and OWL API) and DL reasoners that we
tried to reuse on Android devices. For completeness
sake, we will also reference other relevant DL rea-
soners in the literature. Finally, we review DL rea-
soners specifically designed for mobile devices.

2.1. Semantic Web APIs

Jenaﬂ [20] is an ontology API to manage OWL
ontologies and RDF data in Java applications.
Jena is appropriate to manage OWL 1 Full ontolo-
gies, but support for OWL 2 is not available yet.
However, it is much more used for the serializa-
tion of RDF triples and the manipulation of RDF
graphs. Jena can interact with semantic reason-
ers to discover implicit knowledge. The latest ver-
sions of Jena are split into two packages, namely

3http://jena.apache.org

185

190

195

200

205

210

215

220

225

jena-fuseki (with the Jena SPARQL server), and
apache-jena (with APIs, SPARQL engine, RDF
database, and other tools).

OWL APIE| [21] is an ontology API to manage
OWL 2 ontologies in Java applications and provides
a common interface to interact with DL reasoners.
It can be considered as a de facto standard, as the
most recent versions of most of the semantics tools
and reasoners use the OWL API to load and process
OWL 2 ontologies. The OWL API is able to process
each of the OWL 2 syntaxes defined in the W3C
specification (functional, RDF/XML, OWL/XML,
Manchester, and Turtle) and to identify the OWL 2
profiles (OWL 2 DL, OWL 2 EL, OWL 2 QL, and
OWL 2 RL). The OWL API is less appropriate for
the management of OWL 2 Full or RDF ontologies.

2.2. DL Reasoners

C’BE| [22] (Consequence-Based) reasoner supports
a fragment of OWL 2 (Horn-SHZF). As its name
suggests, the reasoner algorithm does not build
models but infers new consequent axioms. CB is
implemented in OCaml and, as far as we know, the
only supported reasoning task is classification. It
can be used from command line, as a Protégé plug-
in, and through the OWL API.

ELKP| [23], implemented in Java, is a
Consequence-Based reasoner for a subset of
OWL 2 EL. It supports different reasoning tasks,
which include classification, consistency checking,
subsumption, and realization. The classification
procedure is different from other algorithms for
OWL 2 EL. For instance, it includes several
optimizations such as concurrency of the inference
rules. ELK can be used through several interfaces,
including OWL API.

H ermﬂm [24] implements a hypertableau reason-
ing algorithm with several optimization techniques.
It supports OWL 2 and DL safe rules. Histori-
cally, it was the first DL reasoner that was able
to classify some large ontologies (such as GALEN-
original) thanks to a novel and efficient classifica-
tion algorithm. Inference services include concept
satisfiability, consistency, classification, subsump-
tion, realization, and conjunctive query answering.
HermiT is implemented in Java, and is accessible

4http://owlapi.sourceforge.net
Shttp://www.cs.ox.ac.uk/isg/tools/CB
Shttp://elk.semanticweb.org
"http://www.hermit-reasoner.com


http://jena.apache.org
http://owlapi.sourceforge.net
http://www.cs.ox.ac.uk/isg/tools/CB
http://elk.semanticweb.org
http://www.hermit-reasoner.com

230

235

240

245

250

255

260

265

270

through several interfaces, including the OWL API
and a Protégé plug-in.

jcelﬁ [25] is a Java implementation of a tractable
classification algorithm for a subset of OWL 2 EL.
jeel is based on C’E[ﬂ [26] (Classifier for £L£) rea-
soner, a Common LISP implementation of a rule-
based completion classification algorithm. Both
reasoners are open source and accessible through
the OWL API; jcel can also be used using a Protégé
plug-in.

JFactIEI is a Java port of the reasoner FaCT++,
although it does not include all of its parts and
provides an improved datatype support. FaCT++
reasonel' | [27] is a successor of Fact reasoner (FAst
Classification of Terminologies) [28]) using a dif-
ferent architecture and a more efficient implemen-
tation (FaCT was written in Common Lisp, and
FaCT++ in C++). Both Fact++ and JFact com-
pletely support OWL 2 and implement a tableau al-
gorithm [56] with several optimization techniques.
Supported reasoning tasks include concept satisfia-
bility, consistency, classification, and subsumption.
From a historical point of view, FaCT++ was the
first reasoner fully supporting OWL 2. Both rea-
soners can be used through the OWL API and are
available under a GNU license.

MORA™|[29] is an OWL 2 metareasoner that ex-
ploits module extraction techniques to divide com-
plex reasoning tasks into simpler ones that can be
solved using different reasoners. The modules of
the ontology in the OWL 2 EL profile are solved by
the ELK reasoner, and the more expressive ones are
handled using HermiT and JFact. MORe currently
supports classification and concept satisfiability. It
is implemented in Java, open source, and accessible
through the OWL API and using a Protégé plug-in.

Pelleq™] [30] supports full OWL 2 and DL safe
rules. It implements a tableau algorithm with
several optimization techniques. It was the first
reasoner fully supporting OWL 1 DL. Inference
services include concept satisfiability, consistency,
classification, subsumption, realization, and con-
junctive query answering. Pellet is implemented in
Java and has multiple interfaces to access it, includ-
ing OWL APL

8http://jcel.sourceforge.net

9http://lat.inf.tu-dresden.de/systems/cel
Ohttp://jfact.sourceforge.net
Mhttp://owl.man.ac.uk/factplusplus
2http://code.google.com/p/more-reasoner
3http://clarkparsia.com/pellet

275

280

285

290

295

300

305

310

T'I“OWZE [31] is implemented in Java and sup-
ports OWL 2, offering sound and complete rea-
soning for OWL 2 EL and OWL 2 QL, and ap-
proximate reasoning for OWL 2 DL. Inference ser-
vices include classification and conjunctive query
answering. TrOWL includes an OWL 2 EL rea-
soner (REL) to compute the classification and an
OWL 2 QL reasoner (Quill) to answer conjunc-
tive queries. Reasoning with OWL 2 DL ontolo-
gies is achieved by means of a syntactic approxima-
tion into OWL 2 EL or a semantic approximation
into OWL 2 QL, depending on the reasoning task.
TrOWL can be used through several interfaces, in-
cluding OWL API.

TReasoner |E| [32] supports a subset of OWL 2,
namely the Description Logic SHOZQ(D). TRea-
soner solves classification, concept satisfiability,
and consistency using a tableau algorithm with sev-
eral optimization techniques. It is implemented in
C++ and supports the OWL APIL.

Table shows a summary of every reasoner
analyzed in this paper. There exist many oth-
ers that we have not been able to consider yet.
We will enumerate now, in alphabetical order,
only those of them that will be mentioned dur-

ing this paper: Base VISm{E [33], Chainsa [34],
ConDO B3], D [36] ELepHan [37],
fuzzyD [38], KAON, [39], Koncludg=| [40],
OWLIL [41] (a family of repositories including

SwiftOWLIM reasoner), Race@ [42], SHER [43],
SOR [44], SnoRockef™| [45], WSClassifier"| [46],
and WSReasone@ [41.

2.8. DL Reasoners Designed for Mobile Devices

Apart from the DL reasoners presented in the
previous section, several DL reasoners were specif-
ically designed to run on mobile devices. We dedi-
cate this section to overview them in a chronologi-

Mhttp://trowl.eu
Bhttp://code.google.com/p/treasoner
16http://vistology.com/basevisor/basevisor.html
"http://sourceforge.net/projects/chainsaw
18http://code.google.com/p/condor-reasoner
Yhttps://code.google.com/p/db-reasoner
2Onttps://github.com/sertkaya/elephant-reasoner
2Thttp://webdiis.unizar.es/~fbobillo/fuzzyDL
22http://kaon2.semanticweb.org
23nhttp://www.derivo.de/en/produkte/konclude
24http://www.ontotext.com/owlim
25http://www.ifis.uni-luebeck.de/index.php?id=385
26http://github.com/aehrc/snorocket
2"http://code.google.com/p/wsclassifier
28nttp://isew.cs.unb.ca/wsreasoner


http://jcel.sourceforge.net
http://lat.inf.tu-dresden.de/systems/cel
http://jfact.sourceforge.net
http://owl.man.ac.uk/factplusplus
http://code.google.com/p/more-reasoner
http://clarkparsia.com/pellet
http://trowl.eu
http://code.google.com/p/treasoner
http://vistology.com/basevisor/basevisor.html
http://sourceforge.net/projects/chainsaw
http://code.google.com/p/condor-reasoner
https://code.google.com/p/db-reasoner
https://github.com/sertkaya/elephant-reasoner
http://webdiis.unizar.es/~fbobillo/fuzzyDL
http://kaon2.semanticweb.org
http://www.derivo.de/en/produkte/konclude
http://www.ontotext.com/owlim
http://www.ifis.uni-luebeck.de/index.php?id=385
http://github.com/aehrc/snorocket
http://code.google.com/p/wsclassifier
http://isew.cs.unb.ca/wsreasoner

315

320

325

330

335

340

345

Reasoner Profile Language | License OWL API
CB OWL 2 DL (fragment) OCaml | LGPL Yes
ELK OWL 2 EL (fragment) Java Apache 2.0 Yes
HermiT OWL 2 DL Java LGPL Yes
jeel OWL 2 EL (fragment) Java LGPL and Apache 2.0 Yes
JFact OWL 2 DL Java LGPL Yes
MORe OWL 2 DL Java GPL Yes
Pellet OWL 2 DL Java Dual Yes
TReasoner | OWL 2 DL (fragment) Java GPL Yes
TrOWL OWL 2 DL (approximated) Java Dual Yes

Table 1: Semantic Web reasoners and some of their characteristics.

cal order. Pocket KRHype@ [2] was the first rea-
soning engine specifically designed for mobile de-
vices. It can be seen as a version of the reasoner
KRHyper [48] for devices with limited resources,
thus disabling some of its original capabilities (such
as default negation and term indexing). It is imple-
mented in J2ME (Java Micro Edition) and imple-
ments a hypertableau algorithm for the DL SHZ.
However, the reasoner suffers from scalability is-
sues, as the authors state in [3].

Later on, Miiller et al. [I6] reported the imple-
mentation of tableau algorithm for mobile devices,
introducing some optimizations to reduce the mem-
ory usage such as assigning natural numbers to
concept expressions to reduce comparisons to in-
teger operations. Their system is implemented in
J2ME and supports the DL ALCN with unfoldable
TBoxes, but it does not have a known name and is
not publicly available.

mTableau [13], [49] is a modified version of Pel-
let 1.5 to work on mobile devices. The main idea is
to introduce some novel optimization techniques,
namely selective application of consistency rules,
skipping disjunctions, and ranking of individuals
and disjunctions leading to potential clashes. This
reasoner is not publicly available.

Delta [14] is designed to be used on mobile de-
vices, but no implementation details are given. The
reasoner uses RDF to store the ABox and OWL RL
to represent the TBox axioms. The main reasoning
task is conjunctive query answering, which is solved
by translating TBox axioms into rules to expand
the RDF triple store. The reasoner uses incremen-
tal reasoning techniques to avoid recomputing all
the inferences every time there is an update of the
ABox facts. A preliminary evaluation is performed,

29http://mobilereasoner.sourceforge.net
P g

350

355

360

365

370

375

380

obtaining sub-second query response times. This
reasoner is not publicly available.

Mz'm'-MEm [15](Mini Matchmaking Engine) is a
mobile reasoner implemented from scratch. The
supported DL is the DL ALN, whereas the sup-
ported reasoning tasks are consistency, classifica-
tion, concept satisfiability, subsumption, and other
non-standard inference services (abduction, con-
traction, and covering). It is implemented in Java
and can be run on Android devices as well as
on desktop computers. Mini-ME can be accessed
through the OWL API, as a OWLIlink server, or
using a Protégé plug-in. The authors have empir-
ically compared the performance of Mini-ME in a
mobile device and in a desktop computer. It turned
out that reasoning times are roughly one order of
magnitude higher in the Android device [15]. How-
ever, it should be stressed that these results only
hold for the not very expressive logic ALN, having
polynomial computational complexity. The authors
also performed some experiments proving that the
Android version of Mini-ME outperforms an older
version developed in J2ME [50].

3. Using Semantic Web APIs and Reasoners
on Android

In this section, we overview some key features
of Android and its current support for the semantic
technologies we tested. Then, we move onto the de-
tails of our experience porting some of them which
were not Android compatible.

3.1. Overview of Current Android Support

Most of current popular semantic reasoners are
implemented using Java (see Table [1)) and are usu-
ally used along with semantic APIs (e.g., OWL

30nttp://sisinflab.poliba.it/swottools/minime


http://mobilereasoner.sourceforge.net
http://sisinflab.poliba.it/swottools/minime

385

390

395

400

405

APT and Jena). While Android is a Linux-based
operating system whose middleware, libraries, and
APIs are written in C, it uses a Java-like virtual
machine called Dalvik [5I] that makes it possible
to support Java code. In fact, Dalvik runs “dex-
code” (Dalvik Executable), and Java bytecodes can
be converted to Dalvik-compatible .dex files to be
executed on Android. However, Dalvik does not
completely align to Java SE and so it does not sup-
port J2ME classes, AWT or Swing. Thus, running
semantic APIs and reasoners on Android could re-
quire some rewriting efforts.

Table [2] summarizes the current Android sup-
port for the main semantic APIs and DL reasoners.
We tested all of them, and found out that OWL
API 8.4.10, and the jcel 0.19.1, JFact 0.9.1, TRea-
soner revision 22, and TrOWL 1.4 reasoners can be
imported directly in Android projects. However, as
the table shows, most of them (16 out of 21) are
not directly compatible with Android. In the next
section, we explain our experience trying to port
these reasoners to Android.

Software Version Origine‘dly Currenjc ly
compatible | compatible
Jena 2.12.0 X v
OWL API 3.4.10 v v
CB build 12 X v
CEL 1.0 X X
Chainsaw 1.0 X X
ConDOR revision 13 X X
ELepHant 0.4.0 X X
ELK 0.4.0 X v
FaCT++ 1.6.3 X X
fuzzyDL build 60 X X
HermiT 1.3.8 X v
jeel 0.19.1 v v
JFact 0.9.1 v v
KAON2 unknown X X
Konclude 0.6.0 X X
MORe 0.1.5 X v
Pellet 2.3.1 X v
Racer 2.0 X X
TReasoner revision 22 v v
TrOWL 1.4 v v
WSClassifier | revision 1 X X

Table 2: Android support for some semantic APIs and DL

reasoners.

*: It has been ported by us.

3.2. Porting Semantic Technologies to Android

As Table 2] showed, there are APIs and reason-
ers that do not work directly on Android. Thus, we

410

415

420

425

430

435

440

445

450

tried to port them (or use alternative ones) to make
them work in our Android projects. In the follow-
ing, we detail how we have ported these different
technologies, and we highlight some of the possible
problems for those we did not successfully port.

As a summary, the main causes that we found for
reasoners not to be directly imported in Android
projects can be broadly classified as:

e Direct use of Java classes not supported in An-
droid.

e Use of external libraries that use unsupported
Java classes.

Most of these problems can only be detected at
runtime. So, the process we followed consisted on
importing each reasoner (downloaded from their
websites) in an Android application that we devel-
oped to automate the testing, and running it. Then,
for those reasoners that failed to run, we tried to
detect the problematic classes/libraries by study-
ing its code (whenever it was possible, as not all
the developers made available the code of their rea-
soners). Finally, we tried to replace problematic
classes/libraries by their equivalent ones for the An-
droid platform. In this section, we explain the ex-
perience trying to port the technologies that failed
to run on Android directly. Further and detailed
information about the specific methods and classes
changed for each reasoner can be found on the web-
page of the project [12] together with, if the licenses
make it possible, a download link.

We will firstly present the case of Jena API, then
the successfully ported reasoners and, finally, the
unsuccessfully ones. In both cases, reasoners will
be presented in alphabetical order.

Jena cannot be directly imported into an An-
droid project but there exists a project called An-
drojenalﬂ to port it to the Android platform. The
latest version of Androjena 0.5, which was used in
our tests, contains all the original code of Jena 2.6.2
and can be used in Android projects.

CB is implemented in OCaml and Android does
not support it natively. There are some projects to
develop OCaml interpreters for the platform, such
as the OCaml Topleveﬂ however, we chose a dif-
ferent approach: compiling the reasoner to native

3Thttps://code.google.com/p/androjena
32https://bitbucket.org/keigoi/ocaml-toplevel-
android


https://code.google.com/p/androjena
https://bitbucket.org/keigoi/ocaml-toplevel-android
https://bitbucket.org/keigoi/ocaml-toplevel-android

455

460

465

470

475

480

485

490

495

Android code. For that, we used the Android Na-
tive Development Kit (NDK)@ to cross-compile the
code for the ARM processor. The resulting native
code can be executed on Android using the command
line tool Android Debug Bridge (adb). To import
this native code into an Android project, we could
use the Java Native Interface (JNI) and Android
NDK. However, for the purpose of this paper we
tested the native code directly. Unfortunately, we
have not already been able to access CB from the
OWL API on Android.

ELK presents a problem with the only external
library that the reasoner imports. Log4j is an open
source (Apache License 2.0) logging utility that uses
classes of the Java package java.beans, which is
not completely supported in Android. There exists
a port for this libraryﬁ but in its current version
it presents some problems. Therefore, the recom-
mended process is to replace the Logd4j library by
SLF4JI§|, which is supported in Android. In this
case, we use the logdj-over-slf4j library that
allows log4j applications to be migrated to SLF4J
without changing the code. With this replacement,
ELK 0.4.0 can be used in Android projects.

HermiT references unsupported Java classes
(both in its source code and in the imported exter-
nal library JAutomata). On the one hand, we de-
tected problems with the debug, Protégé, and com-
mand line packages. Specifically, the references to
java.awt.point and other Java AWT classes must
be replaced as Android has its own graphical li-
braries. Due to their nature, we thought that these
packages would not be required by a developer who
uses the reasoner in an Android application, and
therefore, we removed all of them from our port. On
the other hand, JAut oma‘caF’_-g]7 a library for creating,
manipulating, and displaying finite-state automata,
presents two problems: 1) it references the afore-
mentioned java.awt.point class in some hashing
functions, and 2) it references two unsupported li-
braries, JUni and dk.brics.automato To
address the first problem, we just modified the
hashing functions. For the second problem, on the
one hand, we removed the JUnit library and its
references (as it is a library used for development);

33http://developer.android.com/tools/sdk/ndk
34https://code.google.com/p/android-logging-Llog4j
3%http://wuw.s1f4j.org
30http://jautomata.sourceforge.net
37http://junit.org
38http://www.brics.dk/automaton

500

505

510

515

520

525

530

535

540

and, on the other hand, we reimplemented part of
dk.brics.automaton. This library is required as
it contains a DFA/NFA (finite-state automata) im-
plementation that is used to process datatypes of
the ontology. It uses some files that contain au-
tomata that cannot be unmarshalled in Android
(as they were marshalled using Java). Thus, to
solve this problem, we reimplemented the mar-
shalling/unmarshalling methods to create a new set
of automata files compatible with Android. With
this changes HermiT 1.3.8 can be used in Android
projects.

MORe uses the HermiT, JFact, and ELK reason-
ers and, as explained previously, the original version
of HermiT and ELK are not compatible with An-
droid. Replacing the two reasoners by their ported
versions fixes this problem. Therefore, MORe 0.1.5
can be used in Android projects.

Pellet presented problems with unsupported Java
classes being referenced from its tests packages
(that can be removed) and three external libraries:
Jena (which can be replaced by Androjena as ex-
plained before), OWL API 2.2.0 (which can be re-
moved from the final compiled version), and J Axﬂ
a library to map Java classes to XML. JAXB uses
the javax.xml.bind package and the Xerceslﬂ
parser libraries which are not supported in An-
droid. This latter problem can be solved by re-
moving the JAXB .jar file and adding the source
code of both javax.xml.bind and Xerces to our
Android project. However, Dalvik has a limit of
65536 methods references per .dex file and it gets
exceeded when applying this solution. To solve
this, we removed the JAXB library and copied only
the nine classes that Pellet needs from both the
java.xml.bind package and the Xerces library to
our Android project. With this changes Pellet 2.3.1
can be used in Android projects.

Apart from the above mentioned ones, we also
tried other reasoners that we could not port to An-
droid. Some reasoners were not available at the
time when this work was performed, such as SHER,
SOR, or WSClassifier.

KAON2 presented problems when imported in
an Android project. The source code of this rea-
soner is not available, so we have been able to detect
possible problems only by analyzing the libraries it
imports. Among them, the reasoner imports Java

39mttps://jaxb.java.net
4Ohttp://xerces.apache.org


http://developer.android.com/tools/sdk/ndk
https://code.google.com/p/android-logging-log4j
http://www.slf4j.org
http://jautomata.sourceforge.net
http://junit.org
http://www.brics.dk/automaton
https://jaxb.java.net
http://xerces.apache.org

545

550

555

560

565

570

575

580

585

Remote Method Invocation (RMI) which is not sup-
ported in Android. There are two projects to port
this library to Android, LipeRMIIE and RipeRMIIf|7
which we have used in other projects and are a
possible replacement for RMI. However, they do
not align completely with the API of RMI, so,
modifying the code would be necessary. The rea-
soner might also need further code rewriting that
could only be detected by accessing the source code.
Therefore, the latest version of KAON2 cannot be
used in Android projects.

The fuzzy ontology reasoner fuzzyDL uses the
Gurobﬂ library, an optimization programming
solver. This library is not supported in Android
and, up to the authors’ knowledge, has not a sup-
ported replacement. In addition, the library has
a proprietary license and so, we could not explore
the steps needed to port it to Android. There-
fore, fuzzyDL build 60 cannot be used in Android
projects.

Finally, other reasoners are developed in lan-
guages different from Java that Android does not
support natively. In these cases, one could try
the same approach presented for CB: compiling the
code for ARM with the help of the Android NDK
and using JNI to import the code from an Android
project. For example, there are a lot of reasoners
implemented in C++, such as Chainsaw, ConDOR,
FaCT++, ELepHant, Konclude, and WSClassifier.
Porting these C++ reasoners would also make it
easier to support some metareasoners written in
Java but using reasoners implemented in C++. For
example, Chainsaw uses FaCT++ and WSClassi-
fier uses ConDOR. There are also some reasoners
implemented in Lisp, such as Racer and CEL. Note
that there is also a Racer server version that could
be used on an external device and used from clients.
However, that would require a connection between
the mobile device (client) and the server which de-
feats the purpose of our work.

4. Experimental Setup

This section describes the experimental setup
used in our empirical evaluation.

4.1. Selecting the Ontology Dataset
To evaluate the performance of the studied rea-
soners, we selected the ORE 2013 ontology set [52]

41http://lipermi.sourceforge.net
4%https://code.google.com/p/ripermi
“3http://www.gurobi . com

590

595

600

605

610

615

620

625

630

635

which contains 200 ontologies per profile (i.e.,
OWL 2 EL, OWL 2 RL, and OWL 2 DL) from
the NCBO BioPorta[*] the Oxford Ontology Li-
brar and the Manchester Ontology Reposi-
tor Every ontology has at least 100 logical ax-
ioms and 10 named concepts, and they are classi-
fied according to their number of logical axioms as
small (< 500), medium (between 500 and 4999),
and large ontologies (> 5000). The ORE 2014 on-
tology set, with 16555 ontologies, is too large for
our purposes [53].

In our case, we focused on the OWL 2 DL and
OWL 2 EL ontology sets. We did not select the
OWL 2 RL and OWL 2 QL profiles as we were
not able to port any reasoner specifically for these
profiles. Besides, we had to take into account the
restrictions that mobile devices suffer from, espe-
cially the limited CPU, memory, and battery. For
this reason, we selected a subset of the ORE 2013
ontology set carrying out the following steps:

1. We ordered the ontologies according to the

size of the file as, when evaluating mobile de-
vices, we should not only take into account
the number of logical axioms, but also the file
size (which is directly related to the memory
needed to load such ontology). We could not
ignore annotation axioms as they were prob-
lematic in our scenario: they also need to be
processed by the ontology parser and, thus,
they might consume extra memory temporally
(e.g., by the OWL API parsers).
Please note that the file size is just a heuris-
tic, because it depends on the OWL 2 syntax,
the length of URIs, and other non-logical as-
pects. In our experiments, we have considered
OWL/XML syntaxiﬂ

2. The maximum heap size per application pro-
vided by the Android version in the test
devices is 256 MB (after setting the vari-
able android:largeHeap=" ‘true’’ to get the
maximum heap size for a mobile application).
This could be the theoretical maximum size
of an ontology loaded on Android, but we
must build instances of the OWL API class
OWL-Reasoner in the device’s memory. So, we
filtered the ontology sets to take out the ontolo-
gies whose files occupied more than 128 MB.

44nhttp://bioportal.bioontology.org
http://uww.cs.ox.ac.uk/isg/ontologies
46nttp://rpc295.cs.man.ac.uk:8080/repository
4Thttp://www.w3.org/TR/owl-xmlsyntax


http://lipermi.sourceforge.net
https://code.google.com/p/ripermi
http://www.gurobi.com
http://bioportal.bioontology.org
http://www.cs.ox.ac.uk/isg/ontologies
http://rpc295.cs.man.ac.uk:8080/repository
http://www.w3.org/TR/owl-xmlsyntax

640

645

650

655

660

665

670

675

680

This resulted in 186 OWL 2 DL and 194
OWL 2 EL ontologies. However, four of the
OWL 2 DL ontologies and one OWL 2 EL on-
tology were not admitted by our testing applica-
tion because of their URIs. Therefore, our final
DL ontology set used in our experiments contains
182 OWL 2 DL ontologies, distributed as follows:
43 small, 103 medium, and 36 large ones; whereas
our EL ontology set has 193 ontologies: 72 small,
82 medium, and 39 large ones. Our full ontology set
and some ontology stats (such as their size, number
of axioms, and expressivity) can be found at [12].

4.2. Selecting the Devices

We considered two mobile devices for the tests: a
smartphone and a tablet. The smartphone selected
was a Galaxy Nexus (Android 4.2.1, 1.2 GHz dual-
core, 1 GB RAM, released in 2011, in the follow-
ing denoted as Al), and the tablet was a Galaxy
Tab 2 7.0 (Android 4.1.2, 1 GHz dual-core, 1 GB
RAM, released in 2012, denoted A2). In order to
avoid battery shortage, both devices were plugged
in during all the tests.

In our previous work [I8], we also performed some
preliminary tests with a Galaxy Tab tablet (An-
droid 2.3.3, 1.0 GHz single-core, 512MB RAM, re-
leased in 2010, denoted as A3) using five popular
ontologies: Pizza@ and Wmﬂ which are two ex-
pressive ontologies; D Bpedia 3.@ (TBox), which
can be useful for mobile application developers to
access the structured content of DBpedia (a seman-
tic entry point to Wikipedia) [65]; and the Gene
Ontology (GO)°*| and the US National Cancer In-
stitute (NCIT)P?| ontologies, which contain a high
number of concepts. Table [3| shows a summary
of the results obtained when comparing the perfor-
mance of the devices Al and A3. Al outperformed
A3 up to a 30% of increment on the performance
in some situations, and thus, we left it aside for our
experiments.

According to the official Android 1rep01r‘[l§|7 and
as of July 2015, the use of the Jelly Bean version
of Android (from 4.1.x to 4.3) represents around
37.4% of current Android devices (76.6% consider-
ing also 4.4 devices as the core of the OS is almost

48nttp://uww.co-ode.org/ontologies/pizza/pizza.owl

49nttp://wuw.w3.org/TR/owl-guide/wine.rdf

50http://dbpedia.org/Ontology

51http://www.geneontology.org

52http://ncit.nci.nih.gov

53http://developer.android.com/about/dashboards/
index.html, last accessed 2015-07-04.

685

690

695

700

\ HermiT JFact Pellet

. Al 5.13 UuDT 63.15
DBpedia a5 opT [ 115.30
Go Al | 487.98 435.60 | 83.97
A3 | OOM OOM OOM

NCT Al | 2020.48 | OOM OOM
A3 | OOM OOM OOM

Pizza Al 10.43 3.42 20.77
A3 14.88 4.90 33.22

Wine Al | 361.38 | 1609.32 | 131.80
A3 | 511.97 | 2196.05 | 194.12

Table 3: Comparison of classification time (in seconds) for
two Android devices. OOM: Out Of Memory; UDT: Unsup-
ported Data Type.

the same). Also, as of 2015, most of the devices
on the market have similar or even better capabili-
ties than the Galaxy Nexus and the Galaxy Tab 2.
Thus, with the Galaxy Nexus and the Galaxy Tab
2 we are representing the average current Android
device in terms of capabilities and Android version.

Also, we considered a desktop computer to deter-
mine how slow is reasoning on Android compared to
this baseline (taking into account that the desktop
computer hardware outperforms Android devices,
and that their virtual machines are optimized for
different purposes). In this case the desktop com-
puter selected (denoted PC) was a Windows 64-
bits, i5-2320 3.00 GHz, 16 GB RAM (12 GB were
allocated for the JVM in the tests).

4.8. Selecting the Tasks

We analyzed the behavior of the reasoners for two
standard Description Logic inference services that
were part of the ORE 2013 competition:

e Ontology classification: computing the com-
plete class hierarchy based on the subsumption
relation between the ontology classes.

e Ontology consistency: checking whether an on-
tology contains any contradictions or not.

For the moment, we did not consider other tasks
such as concept satisﬁability@ query answering,

54Concept satisfiability is subsumed by classification, so
one should test concept satisfiability on non-classified on-
tologies.


http://www.co-ode.org/ontologies/pizza/pizza.owl
http://www.w3.org/TR/owl-guide/wine.rdf
http://dbpedia.org/Ontology
http://www.geneontology.org
http://ncit.nci.nih.gov
http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html

710

715

720

725

730

735

740

745

750

or realization?] because the results obtained are
strongly dependent on the particular choice of the
selected concept, query, or individual, respectively.
To obtain significant results, each test would have
to be repeated for a considerable amount of dif-
ferent elements on each ontology. Moreover, the
selected tasks are being currently used in semantic
mobile applications. For example, SHERLOCK [4],
FaceBlock [II], and Rafiki [9] use classification,
whereas Triveni [57] also checks consistency.

We measured the performance of the different
reasoners and devices for these tasks in terms of fin-
ished tasks and computation time. Due to the high
variance of processing time on Android devices ob-
served in our preliminary experiments [18] [19], we
repeated every test three times and computed the
average and variance of the processing time. We
considered a task as finished if it was processed
without throwing any error and within a defined
timeout, which was set to 25 minutes for Android
devices and 5 minutes for the desktop computer.

Regarding the consumed memory, on Android it
is difficult to obtain a precise measure of the mem-
ory consumed (the most accurate value would be
the so called Proportional Set Size, which includes
the private memory and divides the shared pages
between all the processes that share them, but it
is just an estimation); thus, in our experiments, we
made the biggest amount of memory available (set-
ting the heap value), and focused on the amount of
tasks finished with that heap size as limit for all the
reasoners. Moreover, we considered measuring bat-
tery consumption as well, but we found several diffi-
culties to do that accurately on Android 4.x devices.
As shown in [58], where the power consumption for
some reasoners on Android 4.x is analyzed, measur-
ing this factor requires external hardware connected
to the battery of the device.

Finally, note that we are not checking if the result
returned by the reasoner is correct, we only guaran-
tee that the results are the same on Android devices
and on the desktop computer. The ORE 2013 com-
petition estimates the correctness of the DL reason-
ers by a majority vote and publishes their results,
so the interested reader is referred to [52].

55 As defined in [56], here, we consider realization as finding
the most specific concepts a given individual is an instance
of.

755

760

765

770

775

780

785

790

795

10

4.4. Selecting the Reasoners

In our previous work, we detected that reasoning
on Android devices was up to 100 times slower than
on a desktop computer for certain ontologies and
reasoners [19]. Therefore, testing all the reasoners
would require hundreds of computation hours, and
so, we selected a representative subset of popular
reasoners for our tests: ELK, HermiT, jcel, JFact,
Pellet, and TROWL. MORe was not included in
our tests because it uses ELK, HermiT, and JFact
that are already being analyzed.

Moreover, we have not included CB reasoner in
the experiments with the complete ontology set, de-
spite having tested it in our preliminary work [I§].
Although CB has the advantage of running outside
the virtual machine using native code, and thus
not being subject to the restrictions imposed by
the runtime environment, its expressivity and ease
of use are problematic. CB requires to work with
Horn-SHZF ontologies, but only 12% of our DL
ontology set are Horn-SHZF ontologies. Further-
more, using CB in a mobile application might be
quite complex due to different steps needed to make
the port work. This might be a barrier to its use in
mobile applications, especially when there are other
reasoners than can be imported and used almost di-
rectly on Android. Indeed, we have not been able
yet to access CB on Android using the OWL API,
which has become a de facto standard. Thus, we
decided to restrict the tests to the reasoners acces-
sible using the OWL API, as they are more prone
to be used in practice.

Since CB executes native code outside the vir-
tual machine of Android, it is not subject to the
restrictions imposed by the virtual machine, while
the other reasoners run within the virtual machine
in a more constrained framework. It is worth to
include some results showing the effect of this. Ta-
ble |4f compares the classification times (in seconds)
of three popular Horn ontologies (DBpedia, GO,
and NCI) on the desktop computer and the smart-
phone using CB and ELK. In this case, since CB
is not accessed using the OWL API, ELK is ac-
cessed using its own API to avoid a possible over-
head caused by the OWL API. DBpedia includes
datatypes and thus is not fully supported by CB,
so we do not consider the results of the classifica-
tiorﬂ Notice how, on PC, CB is 2.3 times faster

56Note that [I8] considers the results because the results
of the classification happen to be correct.



800

805

810

815

820

825

830

than ELK for the GO ontology, but on the Android
device CB is 3.5 faster than ELK. Furthermore, on
PC, ELK is slightly faster than CB for the NCI on-
tology, but on A1 CB is 8 times faster. Therefore,
running native code directly without using the vir-
tual machine on Android devices seems to make a
difference. A more detailed study of this fact is left
as future work.

| CB [ ELK
DBpedia | upT | 197
| se 1w
N R

Table 4: Comparison of classification time (in seconds) for
PC and Android. UDT': Unsupported Data Type.

Regarding the reasoners designed for mobile de-
vices (see Section [2.3), we were forced to discard
Mini-ME, the only reasoner that is available and
compatible with Android. Before starting the ex-
periments, we compared the expressivity of the on-
tologies in both ontology sets with the expressiv-
ity that Mini-ME supported, and, at first, 160 on-
tologies from the DL ontology set and 42 from the
EL ontology set lay out from the expressivity sup-
ported (ALCN). Anyway, we computed the classifi-
cation of the EL ontology set, but 96 ontologies did
not finish due to several problems (such as class ex-
ceptions), and 97 ontologies reached the established
timeout for the tests. Thus, the results of 9 ontolo-
gies (5 %) are not significant enough to compare
Mini-ME with the other reasoners.

4.5. Automating the Tests

Given the large number of ontology-reasoner
tests to perform on each device (more than
11.000 tests per device: 182 DL ontologies and
4 reasoners, 193 EL ontologies and 6 reasoners, two
tasks per ontology and reasoner, and three repeti-
tions for each task), we needed a tool to automate
the process as much as possible. We studied the
possibility of automating the tests via scripting us-
ing the Android Debug Bridge (adb)li] interface,
but, we decided to perform the tests in a scenario

5Thttp://developer.android.com/tools/help/adb.html

835

840

845

850

855

860

865

870

875

880

885

11

closer to what developers using the reasoners will
face.

For that, we created an Android application that
enables us to select the reasoner to test, the ontol-
ogy set, and the reasoning task, and automatically
performs the assigned task. This application uses
the OWL API 3.4.10 to load each ontology, and
measures the time since the creation of the reasoner
(ReasonerFactory.createReasoner (ontology)).
After each test, the application stores the results
(elapsed time, result of the task, and information
about the experimental setup) in an SQLite
database.

The application is composed of three main ele-
ments: the GUI (an Android Activity) to config-
ure the test to be performed, and two Android ser-
vices: one to manage the automation of each sub-
task, and another one to perform the actual reason-
ing task. As advised in the Android development
documentation, long term operations should be al-
ways encapsulated as standalone services (instead
of background threads/tasks). The reasoning task
is subject to a predetermined timeout to control
the execution times. At first, we implemented the
mobile application using the default behaviour of
Android, this is, just one system process hosts all
the different threads and services of the application.
This implies that the heap space also is unique and
shared among all the elements of the application
(activities and services). Moreover, we relied on
Android’s mechanism to relaunch the application if
it was selected to be killed (e.g., due to excessive
resource consumption).

However, when Android detected that a task con-
sumed too much resources, it killed the whole ap-
plication instead of killing only the current task.
Despite the relaunching mechanisms, as the appli-
cation was selected to be preempted due to its in-
tensive use of resources, it seemed to be penalized
and was not relaunched immediately (in fact, it
is sensible to do so: a task that has been killed
due to greedy use of resources may retry again if
relaunched under similar conditions). Therefore,
waiting for the application to be relaunched in-
creased heavily the times needed to obtain results.
Moreover, we had to implement ad hoc code to re-
cover from these situations, e.g, via checkpointing.

To avoid this situation, we made all the compo-
nents independent by giving them their own pro-
cess (with their own virtual machine instance and
heap memory), and, instead of relying on Android,
we established an external timeout (handled by the


http://developer.android.com/tools/help/adb.html

890

895

900

905

910

915

920

925

930

manager service) that acts as a watchdog for the
times that the reasoning task is killed externally.
This way, Android only killed the service that was
performing the reasoning task, allowing the man-
ager service to discard the test when any of the two
timeouts for it were reached (the execution time
timeout and the watchdog). This saved a lot of
time, and gave us a valuable Android lesson: to
move intensive processing tasks to a service (not an
AsyncTask, but a complete Service) with its own
process in order to protect the main application.

4.6. Verifying the Android Versions

Before leaping into the main experiments, we per-
formed a set of tests on the selected reasoners to
test whether they produced exactly the same results
on Android devices as on desktop computers. The
aim of these tests was twofold: on the one hand,
we wanted to check the behavior of the Android-
compatible libraries we used to replace the unsup-
ported ones; and on the other hand, we wanted to
check the behavior of the reasoners that can be di-
rectly imported in Android projects.

We focused on the classification task because
the consistency checking is just a yes-no question.
First, as baseline, we obtained the sets of subsump-
tion axioms computed by the original version of the
reasoners running on the desktop computer. Then,
we checked that the results obtained by the rea-
soners running on Android devices contained ex-
actly the same axioms (of course, this was done
separately per ontology). The only mismatches we
found on our selected reasoners were due to two
different reasons: sometimes the reasoning task on
Android did not end before the timeout (and there-
fore, no comparison could be made), or there were
problems with some ontologies due to the encoding
of the ontology files, which led to malformed URIs
(these problems disappeared once we aligned the
file encodings, as detailed in Section .

Note that verifying the Android versions is in-
deed necessary: we found some examples where dif-
ferent versions of the ported reasoners gave differ-
ent results on Android devices and in the desktop
computeﬂ Thus, once we tested that we had not

58In JFact 1.2.1, the results of the classification and
the consistency checking are different on PC and Android.
For example, the ontology aee636cb-4238-41af-a3d6-
541d30f2e7ed_spills.owl is correctly identified as consis-
tent by the PC wversion, but is inconsistent according
to the Android version. Furthermore, in the ontology

935

940

945

950

955

960

965

970

12

introduced any problem when porting the reason-
ers to Android, we moved on to the performance
experiments.

In the following sections, we present our analysis
of the performance of reasoners on mobile devices
grouped by ontology profile. First, we present the
results obtained for the OWL 2 DL profile and then
for the OWL 2 EL profile (the same order used
in the ORE 2013 report [52]) in Sections [5] and [6]
respectively. For each profile, we present the results
obtained when comparing the reasoners in terms of
finished tasks and average computation time needed
per task. Then, we compare the time consumption
of the reasoners with the minimum set of ontologies
that every reasoner and device was able to process.
Next, in Section[7]we study the role of the limitation
of memory and the virtual machine on the reasoning
on Android devices.

5. Comparing the Reasoners for the OWL 2
DL Profile

In this section, we detail the results of our per-
formance experiments for the OWL 2 DL profile.
For our DL ontology set (with 182 ontologies), we
tested the following reasoners: JFact 0.9.1, Her-
miT 1.3.8, Pellet 2.3.1, and TrOWL 1.4. As al-
ready mentioned, we first detail the number of fin-
ished tasks per reasoner and device, to then move
on to their performance.

5.1. Comparing the Number of Finished Tasks
The results for the classification task for the desk-
top computer (PC), the Galaxy Nexus (A1), and
the Galaxy Tab 2 (A2) are shown in Figure
Figure and Figure respectively; for the

consistency checking results for PC, A1, and A2 see
Figure Figure and Figure

First of all, analyzing the results in terms of fin-
ished tasks, we can observe that, as expected, the
reasoners on PC finished more tasks than on An-
droid due to the more powerful hardware. Only
HermiT and Pellet finished a similar number of
tasks on the desktop computer and on Android de-
vices when checking the consistency (181 vs 180 and
177 vs 175-176). Moreover, the reasoners on Al fin-
ished more tasks than the same reasoners running

52cf3ab5-1662-4296-835e-b22ac92339e7_.2 DUL.owl, the
Android version misses two subclasses of the class Role,
namely Entity and E1.CRM_Entity. This problem does not
happen in JFact 0.9.1.



975

980

985

990

995

1000

Classification OWL 2 DL Ontologies (PC)

WFinished
Avg.time(s) - 5 13,7

164 3.6 H #0338
d 151
133 5

2

1

0

100
50
0

"7

Average time per finsished problem (s)

100
263

50

0

Classification OWL 2 DL Ontologies (A1)

161
143 80
60
424 39
40
20
v T + 0

Classification OWL 2 DL Ontologies (A2)

mFinished
Avg.time (s)

mFinished
Avg.time(s) - 120

200 58

91 152
150 137
117
100
50
0 :

Average lime per finsished problem (s)
Average lime per finsished problem (s)

Number of finished problems (out of 182)
Number of finished problems (out of 182)

HermiT JFact Pellet TrOWL HermiT

JFact

Pellet

Number of finished problems (out of 182)

TrOWL HermiT JFact Pellet TrOWL

()

(b)

()

Consistency OWL 2 DL Ontologies (PC)

mFinished
Avg_time(s) - 5

77 18254 i 200 - 4gg

150 3
100 2
50 1

0 0

Consistency OWL 2 DL Ontologies (A1)

415
176 4
162
35
150
131 20
10 213 25
148 2
15
50 10
5
0 0

Consistency OWL 2 DL Ontologies (A2)

mFinished
Avg time (s)

150 127
100
50

0

mFinished
Avg time (s) - 50

Number of finished problems (out of 182)
Averagetime per finsished problem (s)
Number of finished problems {out of 182

HermiT JFact Pellet TrOWL HemiT

JFact

Pellet

Average time per finsished problem (s

Number of finished preblems (out of 182)
Average time per finsished problem (s

TrOWL HermiT JFact Pellet TrOWL

(d)

Figure 1: Results (finished tasks/average time) for the complete

on A2 for most of the tests. There are only two situ-
ations where both devices finished the same number
of tasks: computing the classification with JFact
(117 out of 182 tasks on both devices), and check-
ing the consistency with HermiT (180 out of 182
tasks on both devices).

Although the number of finished tasks on the
desktop computer and on the mobile devices are
different, both Android devices follow the PC trend
for the classification task: TrOWL is the reasoner
that finished a higher number of tasks, followed
by Hermit, Pellet, and JFact. For the consistency
checking, the PC trend is not followed by the An-
droid devices: on the Android devices both HermiT
and Pellet finished more tasks than TrOWL while
TrOWL was the reasoner that finished more tasks
on PC.

Analyzing the results of TrOWL for the consis-
tency checking on Al, we noticed that the timeout
period elapsed for 13 tasks, while it never elapsed
for any task on PC. Also, 7 large ontologies that
were processed by TrOWL on PC threw out of
memory errors on the smartphone. Table [5| shows
the number of tasks that could not been finished
by the reasoners on each device and by each rea-
soner. We classify the reasons for not finishing as

(e)

1005

1010

1015

1020

13

()

OWL 2 DL ontology set.

elapsed time out (“T/O” column in the table), and
others (“Other” column). Notice that, as PC had
enough memory to perform the reasoning, the er-
rors on the “Other” column for PC are mostly due
to unsupported data types. On the Android de-
vices, the same errors always occur and some ad-
ditional problems appear: usually, out of memory
issues when processing large ontologies. Notice also
that, in some situations, timeout problems on PC
are translated into out of memory problems on An-
droid devices. This happens because the timeout
of PC was set to 5 minutes while on Android it
was set to 25 minutes. Therefore, for some compli-
cated tasks the reasoner run out of memory before
the timeout elapsed (for example, HermiT in the
consistency checking).

We would like to highlight that, although the re-
sults obtained for this test (Figure [l)) enable us to
compare the reasoners in terms of number of fin-
ished tasks, one should be cautious when comparing
their processing times. The most difficult ontologies
(i.e., the most expressive or large ones) require more
time to be classified and so, completing more tasks



1025

1030

1035

1040

1045

1050

1055

Consistency |

‘ Reasoner I Classification |
| |

T/O Other T/O Other

HermiT(PC) || 13 (7.1%) | 5 (2.7%) 1(0.6%) 0 (0%)
HermiT(A1) || 20 (11%) | 11 (6%) 0 (0%) 2 (1.1%)
HermiT(A2) || 28 (15.4%) | 13 (7.1%) 0 (0%) 2 (1.1%)
JFact(PC) || 18 (9.9%) | 31 (17%) || 8 (4.4%) | 18 (9.9%)
JFact(A1) || 26 (14.3%) | 39 (21.4%) || 18 (9.9%) | 33 (18.1%)
JFact(A2) || 23 (12.6%) | 42 (23.1%) || 24 (13.2%) | 31 (17%)

Pellet(PC) || 20 (11%) | 7 (3.9%) 5 (2.7%) 0 (0%)

Pellet(A1) || 26 (14.3%) | 13 (7.1%) || 6 (3.3%) 0 (0%)

DPellet(A2) || 33 (18.1%) | 12 (6.6%) 7 (4%) 0 (0%)

TrOWL(DC) || 1(0.6%) | 1 (0.6%) 0 (0%) 0 (0%)
TrOWL(AL) || 9 (5%) | 12 (6.6%) || 13 (7.1%) | 7 (3.9%)
TrOWL(A2) || 18 (99%) | 6 (3.3%) || 18 (9.9%) | 6 (3.3%)

Table 5: Errors for uncompleted tasks in the DL ontology
set.

could imply increasing the average time per finished
problem. For example, notice that HermiT run-
ning on Al completes 151 classification tasks with
an average time per task of 113.7s while the same
reasoner running on A2 completes 141 tasks with
an average time of 58.8s (the average time increases
about 50 seconds because of these 10 more challeng-
ing tasks). Therefore, we performed the following
test to be able to compare the processing time of
the reasoners.

5.2. Comparing the Processing Time

To fairly compare the reasoners regarding the av-
erage processing time needed per ontology, we se-
lected the minimum set of DL ontologies that all
the devices and all the reasoners were able to pro-
cess. We also split the ontologies with respect to
their number of axioms into three subsets (small,
medium, and large) obtaining a minimum DL set
of 93 ontologies for the classification task (29 small,
62 medium, and 2 large ontologies), and 124 on-
tologies for the ontology consistency checking task
(37 small, 81 medium, and 6 large ontologies).

Comparing Trends. Figure and Figure

show the results obtained for the reasoners com-
puting the classification and consistency, respec-
tively, on the three devices with the minimum set
of DL ontologies. First of all, as in our previ-
ous test, the mobile devices follow the PC general
trend. There are two exceptions: on the one hand,
TrOWL was slightly faster on PC for the classifi-
cation of the medium set of ontologies than for the
large one (about 0.2s), but on the mobile devices it
was slightly slower (around 3s on the Al device); on
the other hand, HermiT was slightly faster on PC
for checking the consistency of the small set than

1060

1065

1070

1075

14

for the medium one (around 0.02s), but, on the mo-
bile devices, it was slightly slower (around 0.7s on
the Al device). However, in the case of the classifi-
cation in HermiT, the difference between the small
and medium sets is also small but the trend on the
desktop computer and the mobile devices is similar.

Classification OWL 2 DL Ontologies

ssmall ®medium ®large

o
o
=

=
=1

Average classificationtime (s)_.
- =

o

-PC Al A2 PC A1 A2 PC A1 A2 PC A1 A2
HermiT JFact Pellet TroOwL
()
Consistency OWL 2 DL Ontologies
ssmall ®medium ®large

o
=]
=]

o
=]

Average consistency time (s) .
>

01 1 !
PC Al
JFact

PC A1
HermiT

A2 A2 PC A

Pellet

A2 PC A

TrOWL

A2

(b)

Figure 2: Average computing time for each ontology group
in the minimum set of OWL 2 DL ontologies processed by
all the devices and reasoners.

Comparing Performance. Table [f]shows the differ-
ence on the performance of the desktop computer,
the smartphone, and the tablet in terms of the
number of times of PC being faster than the An-
droid devices. In general, PC outperformed Al and
A2 for all the reasoners. The greatest differences
happen in the large ontology set, where, for ex-
ample, the desktop computer is almost 110 times
faster than A1l when checking consistency using
TrOWL, and almost 200 times faster than A2
when computing classification with HermiT. How-
ever, the consistency checking of the small set of
ontologies in the PC was “only” 2 times faster



1080

1085

1090

1095

1100

1105

1110

than A1l for JFact (from 0.16s to 0.31s) and Pel-
let (from 0.24s to 0.37s).

Classification Consistency
S‘M‘L S‘M‘L

=
Horwi |2t 1o & |5 o4
e LB LT L
Pellet ié ;11 ig gg g 164 17263
TOWL | i5tor [ 5 (T 1e [0 142

Table 6: Number of times (rounded to the closest integer)
of the PC version being faster than the Android ones for the
small (S), medium (M), and large (L) OWL 2 DL ontology
set.

TrOWL was the fastest reasoner in both devices
for the classification of all the ontology sets, but
it uses approximate reasoning in OWL 2 DL. Note
also that the difference between the different rea-
soners is smaller on PC than on mobile devices, for
both reasoning tasks. In the mobile devices, the
order of the reasoners according to their reasoning
times is usually the same as in the desktop com-
puter, although this is not always the case due to
the variance of the results obtained for each test
repetition.

6. Comparing the Reasoners for the OWL 2
EL Profile

In this section, we detail the results of our per-
formance experiments for the OWL 2 EL profile.
For the OWL 2 EL ontology set (with 193 ontolo-
gies), we tested the following reasoners: ELK 0.4.0,
HermiT 1.5.8, jeel 0.19.1, JFact 0.9.1, Pellet 2.5.1,
and TrOWL 1.4.

6.1. Comparing the Number of Finished Tasks

The results for the classification task for the desk-
top computer (PC), the Galaxy Nexus (Al), and
the Galaxy Tab 2 (A2) are shown in Figure
Figure and Figure respectively; for the
consistency checking results for PC, A1, and A2 see
Figure Figure and Figure

As above mentioned for the DL ontology set,
we can observe that the reasoners on PC fin-
ished more tasks than on Android. However,
the difference on the number of finished tasks is
smaller than for the DL ontology set. On the

1115

1120

1125

1130

1135

1140

15

one hand, in the DL ontology set, the difference
of finished tasks on PC and Al is: 16 (for clas-
sification) and 25 (for consistency checking) for
JFact; 19 and 20 for TrOWL; 13 and 1 for HermiT';
and 12 and 1 for Pellet. On the other hand, in the
EL ontology set the difference of finished tasks on
PC and Al is: 12 and 10 for JFact; 2 and 2 for
TrOWL; 4 and 4 for jcel; 4 and 1 for Her-
miT'; 4 and 1 for Pellet; and 1 and 0 for FLK. This
can be explained because of the difference of expres-
sivity of the two ontology sets. As the EL profile is
less expressive, performing reasoning tasks within
this profile is less costly. Therefore, more tasks can
be finished on the mobile devices.

Also, in general, Al finished more tasks than A2.
There are only two situations where both devices
finished the same number of tasks: first, ELK fin-
ished 190 out of 193 classifications on both devices;
and second, Herm:iT finished 192 out of 193 consis-
tency checkings on both devices.

Table [7] shows the results for the analysis of the
tasks that were not finished. As for the DL ontology
set, the errors of the “Other” column for the PC are
mostly due to unsupported datatypes or ontologies
that could not be processed by the reasoner. On
the Android devices, the increment on the number
of “Other” errors is due to out of memory errors.
Notice also that the number of “Other” errors for
the consistency checking is zero in HermiT, Pellet,
and FLK, for the three tested devices.

Reasoner Classification (193) Consistency (193)
T/O [ Other T/O | Other
ELK(PC) 2 (1%) 0 0 0
ELK(AL) || 1(05%) | 2 (1%) 0 0
ELK(A2) 2 (%) | 1(05%) || 1(05%) 0
HermiT(PC) || 3 (1.6%) 0 0 0
HermiT(A1) || 7 (3.6%) 0 1 (0.5%) 0
HermiT(A2) || 10 (5.2%) 0 1 (0.5%) 0
jcel(PC) || 1 (0.54%) | 13 (6.7%) 0 13 (6.7%)
jcel(AL) 0 18 (9.3%) || 5 (2.6%) | 12 (6.2%)
jeel(A2) 7 (3.6%) | 12 (6.2%) || 7 (3.6%) | 13 (6.7%)
JFact(PC) || 6 (31%) | 2 (1%) || 3 (1.6%) | 1 (0.5%)
JFact(A1) 12 (6.2%) | 8 (4.1%) || 8 (4.1%) | 6 (3.1%)
JFact(A2) 10 (52%) | 12 (6.2%) || 9 (4.7%) | 7 (3.6%)
Pellet(PC) || 3 (L.6%) | 4 (2.1%) 0 0
Pellet(A1) || 6 (3.1%) | 5 (2.6%) || 1 (0.5%) 0
Pellet (A2) 10 (5.2%) | 5 (2.6%) || 3 (1.6%) 0
TrOWL(PC) || 2 (1%) 0 1(0.5%) 0
TOWL(AL) || 2 (%) | 20%) | 20%) | 1(05%)
TrOWL(A2) || 5 (2.6%) | 1(05%) | 4 (2.1%) | 1 (0.5%)

Table 7: Errors for uncompleted tasks in the EL ontology
set.



1145

1150

1155

1160

1165

Classification OWL 2 EL Ontologies (PC)

WFinished
Avg.time(s) - 3
191

Number of finished problems (out of 193)

ELK HermiT jecel JFact Pellet TrOWL

Average time per finsished problem (s)

Number of finished problems (out of 193)

Classification OWL 2 EL Ontologies (A1)

mFinished
Avg.time (s)

JFact Pellet TrOWL

ELK HermiT jcel

Average lime per finsished problem (s)

Number of finished problems (out of 193)

Classification OWL 2 EL Ontologies (A2)
mFinished

84.4 Avg.time (s)

183

ELK HermiT jcel JFact Pellet TrOWL

Average lime per finsished problem (s)

()

(b)

()

Consistency OWL 2 EL Ontologies (PC)

mFinished
Avg time(s) ~ 3

Consistency OWL 2 EL Ontologies (A1)

mFinished

Consistency OWL 2 EL Ontologies (A2)

mFinished

00 1193 193 g9 193 192

180 2,
34

150
1

100
1

50
0,
0 0

200 193

N
o

o

3

o
=]
=3

o
o
3

Number of finished problems (out of 193)
Averagetime per finsished problem (s)
Number of finished problems {out of 193)

ELK HermlT jeel  JFact Pellet TrOWL

Avg.time(s) - 50 & & Avg.time (s) @
192 192 %5 5 'S gpp 192 192 190 188 5
176 179 0 B El 173 177 8
5 5 :
N 5 - i &
» o %)
2% £ a =
= 100 e
20 B 3 3
=
= = =
0 w5 S0 S
5 8 g o
© - [
0 0z E o E
ELK HemiT jcel JFact Pellet TIOWL =z ELK HermiT jcel JFact Pellet TrOWL

(d)

(e)

()

Figure 3: Results (finished tasks/average time) for the complete OWL 2 EL ontology set.

6.2. Comparing the Processing Time

As we did for the DL ontology set, we selected the
minimum set of EL ontologies that all the devices
and all the reasoners were able to process to be able
to fairly compare the performance of the reason-
ers regarding the average processing time per on-
tology. We also split the ontologies with respect to
their number of axioms (small, medium, and large)
obtaining a minimum EL set of 152 ontologies for
classification (62 small, 67 medium, and 23 large on-
tologies) and 166 ontologies for consistency check-
ing (65 small, 72 medium, and 29 large ontologies).

Comparing Trends. Figure and Figure

show the results obtained for classification and con-
sistency, respectively. Notice that both mobile de-
vices follow the general trend obtained for the PC.
For all the reasoners and devices, the average time
for the small set is smaller than the time for the
medium one, which in turn is smaller than for the
large set. There are two situations that should re-
quire further explanation: first, HermiT was faster
on A2 than on A1l for the classification of the small
and medium sets of ontologies; and second, Pellet
was as fast on A2 for the classification of the small
set as for the medium one (while it was faster on

1170

1175

1180

1185

1190

16

the PC and Al). Analyzing the results per ontology
of these ontology sets, we observed that there were
some ontologies where the variance of the measured
times for the three repetitions of each test was high,
which led to these situations.

Comparing Performance. Table [§| shows the dif-
ference of performance between the PC and the
two mobile devices in terms of number of times
of the PC executions being faster than the An-
droid ones. As in the DL ontology set, in gen-
eral, the desktop computer outperformed the mo-
bile devices for all the reasoners. The greatest
differences are again achieved on the large and
medium ontology sets. For example, for the clas-
sification of these sets using HermiT, PC is al-
most 70 times faster than A1, and almost 150 times
faster than A2. In general, the differences be-
tween PC and the mobile devices are smaller for
consistency checking. Notice that there is a situ-
ation where the Android devices were faster than
the desktop computer: in the consistency check-
ing with ELK, PC was 0.8 (from 0.26s to 0.21s)
and 0.6 (from 0.26s to 0.15s) times “faster” than
A1l and A2 devices, respectively (these values are
coherent with the observed variance).



1195

1200

1205

As it happens in the DL ontology set, the dif-
ference between the different reasoners on PC is
smaller than on the mobile devices. Furthermore,
the order of the reasoners according to their rea-
soning times is usually the same as in the desktop
computer.

Classification OWL 2 EL Ontologies

small ®medium ®mlarge

(=}
=
=}

o
=]

Average classification time (s)_.
- =

o

TPCA1A2 PC A1AZ PC A1AZ PC A1A2 PC A1A2 PC A1A2
ELK JFact Pellet TrOWL

HermiT jcel

(a)

1210

Consistency OWL 2 EL Ontologies

small ®medium ®large

o
o
=)

=]
=]

1215

1220

Average consistencytime (s) _.
= 2
1

"PCA1A2 PC A1A2 PC ATA2 PC A1A2 PC A1A2 PC Al A2
ELK HermiT jeel JFact Pellet TrOWL

(b)

Figure 4: Average computing time for each ontology in the 2%

minimum set of OWL 2 EL ontologies processed by all the
devices and reasoners.

7. Other Experiments
1230
In this section we summarize some additional ex-
periments measuring other interesting features of
the mobile devices, namely the impact of the mem-

ory and the virtual machine.
1235

7.1. Analyzing the Impact of Memory

After comparing the results obtained for PC and
Android, we wanted to check how the limitation
of memory that Android imposes on applications 1240
and its management by the OS affects the results.
Our goal was to check whether the processing time

17

Classification || Consistency

SIMJ L [[SI[M] L

AL 2615 1] 4]13

ELK T 7 (a3 (14 [ 2
HormiT LAL][5L 69 60 [[3] 9 [20
A2 |14 |47 143 ([ 3| 9 | 33

o AL 3 [12] 33 [[7[20]5
J A2 [ 7 [17] 49 |6 18| 71
ALJ1L]60] 62 1] 419

TFact oo Tea [ 92 115 | 20
AL 3109 27 [1]5]21

Pellet o 3176 [ 36 1 5 | 37
AL 8 271 20 [ 8] 28] 24

TOWL o7 T3s 29 (5 |59 | 62

Table 8: Number of times (rounded to the closest integer)
of the PC version being faster than the Android ones for the
small (S), medium (M), and large (L) OWL 2 EL ontology
set.

would be affected if the maximum memory for the
application was limited.

Firstly, we restricted the maximum memory for
the desktop computer to 256 MB RAM (the maxi-
mum size that Android assigns to the applications
in our test devices) and computed the classification
of the DL and the EL ontology sets. We observed
that there are significant differences on the num-
ber of finished tasks but not on the reasoning time.
Figures [f] and [6] compare the number of finished
classifications in PC, PC with the memory limita-
tion (denoted PCmem), and Al for the small (S),
medium (M), and large (L) OWL 2 DL ontology
set. In particular, we represent the differences be-
tween the number of finished tasks in the devices:
PC vs. PCmem, PC vs. Al, and PCmem vs. Al.

We can see that the number of finished tasks over
small ontologies is the same in all the cases. For
medium ontologies, PC and PCmem only differ in
one OWL 2 DL ontology, although A1 does not fin-
ish 14 OWL 2 DL and 5 OWL 2 EL ontologies.
The only OWL 2 DL reasoner that does not finish
a smaller number of tasks on Al is TrOWL, which
computes approximated reasoning in this profile. In
large ontologies, the number of unfinished tasks on
PCmem and Al is significant: more than 10% in
the EL ontology set and more than 50% in the
DL ontology set. Overall, the number of finished
tasks in PCmem and A1 is comparable: 586 vs 572
OWL 2 DL ontologies, and 1099 vs 1095 OWL 2 EL
ontologies. Note that some tasks finished on A1 but
not on PCmem.

After investigating the role of memory on the



1245

1250

1255

1260

1265

1270

1275

1280

1285

1290

desktop computer, we also limited the memory on
the Android devices. To do that, we restricted the
maximum memory heap for the application to the
“standard memory heap” by setting the variable
android:largeHeap="‘‘false’’. In particular, we
restricted the memory to 96 MB. Since the exper-
iments on Android devices are more costly, we re-
stricted to the classification (the most challenging
task) of the DL ontology set using Pellet and the
Galaxy Nexus smartphone (A1, as it was the fastest
device). For this experiment, we did not want to
consider TrOWL (it only offers approximate rea-
soning in the DL ontology set) and JFact (because
of the smaller number of finished classifications on
A1l); between HermiT and Pellet we chose the latter
one to decrease the total computation time because,
as shown in Figure [2] (a), it was usually faster.

The first aspect to highlight from the results
is that, as it happened when limiting the mem-
ory on Android, limiting the memory decreased
the number of finished tasks. The reasoner fin-
ished 143 tasks before and 135 after the memory
limitation. These 8 tasks that could not be fin-
ished by the “limited version” include 2 medium
and 6 large ontologies. Figure [7] shows the com-
parison of the time needed for every ontology that
the reasoner was able to classify in the two tests.
In the graph, we plot the processing times differ-
ence as a percentage of the time required by the
non-limited version (y-axis) and the time needed
by the non-limited version in seconds (x-axis). The
first thing we can highlight is that there are some
negative values which mean that the limited ver-
sion was faster than the non-limited version. This
can be explained because measuring time consump-
tion of the same application on the same device can
have a small variance due to the management of the
running applications done by the OS. Moreover, for
ontologies that can be classified quickly (under 5s),
the difference is around 40%, and reaches even 60%
in some cases. In these cases, the ontologies require
around 1s to be classified, so the actual difference
in seconds is around 0.5s. Regarding the values ob-
tained, notice that the difference between the two
versions for those ontologies that need 15s or more
to be classified is less than 2%. This includes on-
tologies that needed 80s-250s, where the difference
is less than 1s. Therefore, the main conclusion of
this test is that limiting the memory on the devices
do not significantly modifies the time consumption,
but it does affect the number of accomplished tasks.

18

Classification OWL 2 DL Ontologies
PC-PCmem mPC-A1 mPCmem-A1

Difference of the number of solved tasks

HermiT JFact Pellet TrOWL

Figure 5: Comparison of the number of finished classifica-
tions of OWL 2 DL ontologies.

Classification OWL 2 EL Ontologies
PC-PCmem ®PC-A1 m®mPCmem-A1

Difference of the number of solved tasks

SMLSMLSMLSMLSEMLSML

ELK HermiT jeel JFact Pellet TrOWL

Figure 6: Comparison of the number of finished classifica-
tions of OWL 2 EL ontologies.

Difference on the processing time (%)

0.1 1 10
Classification time (s)

Figure 7: Comparison of the Pellet reasoner on Android with
limited and “unlimited” memory.



1295

1300

1305

1310

1315

1320

1325

1330

1335

1340

7.2. Analyzing the Impact of the Virtual Machine

Very recently, as of November 2014, Google re-
leased the new Android 5.0 version that includes
a new runtime environment called Android Run-
time (ART) to replace the Dalvik virtual machine.
While the previous virtual machine Dalvik uses
just-in-time compilation every time an application
is launched, ART uses a more sophisticated ahead-
of-time compilation that can be performed just once
during the installation of the application. This way,
processor and battery usage are optimized. There-
fore, the performance of mobile applications run-
ning on the new virtual machine is expected to
increase. However, attending to historic informa-
tion, it is expected that previous versions of the
OS would continue maintaining their popularity.
In fact, Android 4.X required a bit more than a
year to reach 50% of the Android devices and, as of
July 2015, previous versions were present on almost
a 6% of the global device{"”]

We performed a final test with this new run-
time environment to show the expected tendency
in the future. We used a Google Nexus 5 smart-
phone (equipped with a 2.26 GHz quad-core pro-
cessor and 2 GB of RAM) for this test. We com-
puted the classification of 10 ontologies extracted
from the DL ontology set which we used in our
tests in [19] using Pellet. We ran this test twice,
one with the current Android version (4.4) using
the Dalvik virtual machine, and another one with
the new Android version (5.0) using ART.

Figure [8| shows the comparison of the classifica-
tion time on both virtual machines and for each of
the 7 ontologies that finished the test (2 of them
failed because of unsupported datatypes, and an-
other one elapsed a time out). Notice that the
new Android version and its virtual machine out-
performed the previous one for all the ontologies us-
ing the same hardware. In fact, Pellet on the ART
virtual machine was 2.5 times faster on average. As
the tests were only performed once for each device
we should take this number with a pinch of salt
due to the variance of the times measured in our
previous experiments. However, the improvement
is similar with large, medium, and small ontologies
so we can highlight that reasoners on the new ART
virtual machine could be around 2 times faster than
in Dalvik. Therefore, although reasoning on a desk-

59http://developer.android.com/about/dashboards/
index.html, last accessed 2015-07-04.

1345

1350

1355

1360

1365

1370

19

top computer clearly continues outperforming rea-
soning on mobile devices, the processing times on
mobile devices will go on decreasing as more pow-
erful hardware and OS and software optimizations
will be available, making reasoning on mobile de-
vices even more feasible.

E;E!il

-y
(=]
(=]

o

mdalvik
ART

Classification time (s)

Figure 8: Comparison of the Pellet reasoner on the Dalvik
and ART virtual machines.

8. Discussion

In this section, we present some key ideas ex-
tracted from our experience within this project. We
believe that developers of existing and future se-
mantic APIs and reasoners can benefit from taking
into account these pieces of advice to enable mobile
application (and specifically Android) developers to
use their technologies. We also hope that develop-
ers of mobile applications that are considering using
semantic technologies find these advices interesting
when creating their applications.

Regarding the coding of semantic APIs and rea-
soners, we highlight the following points:

e Some of the reasoners we have studied and/or
ported include many functionalities that might
not be required for mobile application devel-
opers (e.g., graphical packages or remote ac-
cess). We advocate for modular designs with a
micro-kernel supporting only the core reason-
ing tasks, and with the rest of functionalities
(e.g. parsers, query processing, etc.) included
in separated modules. This would greatly help
porting and using them, as the deployed ver-
sion could be tailored and thus, some of the
limitations of mobile devices could be avoided.


http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html

1375

1380

1385

1390

1395

1400

1405

1410

1415

e Using native code to develop a reasoner can
help the developer to avoid many of the limita-
tions that the virtual machine imposes, achiev-
ing better performance. However, the difficulty
of use of a reasoner within a mobile applica-
tion/an Android project might be an unbear-
able barrier that could reduce the popularity of
the reasoner. For this reason, there should be a
simple, and if possible standard, mechanism to
support its use from mobile applications. For
that, we advocate providing always interfaces
(such as OWL API or Jena) for mobile appli-
cation developers.

e Beware of using some common standard Java
libraries. Current Android/Dalvik versions do
not perfectly align to a standard Java envi-
ronment (e.g., all the graphical packages are
not supported), and, even worse, there are li-
braries which are not completely included on
current versions of Android and do not throw
compilation or execution errors (e.g., JAXB
and Xerces). Therefore, it is possible to im-
port some reasoners on an Android project
but the results of the reasoning are not the
same as on desktop computers (as it happens
in JFact 1.2.1).

e Keep in mind resource limitations. Regarding
memory, in Android, we can reduce the mem-
ory imprint by using shared libraries. How-
ever, one might end up exceeding the maximal
number of methods that can be invoked from
a single dex ﬁl@ Thus, we advocate trying
to use only those packages/classes needed and
building a customized version of the library.

e As a final suggestion, using open-source li-
censes and distributing the code (as, for exam-
ple, HermiT and Pellet) can help developers
to find programmers willing to help in porting
existing reasoners (as we have done) to other
mobile OS, such as iOS.

Regarding the use and performance of semantic
technologies on current Android devices:

e The performance of all the semantic reasoners
we tested on Android is lower than on a PC.

60 Although multidex mobile applications can be build
since Android 4.0 (SDK 14), there are many doc-
umented problems with it, and we discourage its
use, see https://developer.android.com/tools/building/
multidex.html for details.

1420

1425

1430

1435

1440

1445

1450

1455

1460

1465

20

Indeed, the PC is from 1.5 to 150 times faster
in our tests depending on the task and the on-
tology. Therefore, complicated tasks such as
classification of large ontologies should be re-
duced to the minimum.

e The reasoners tested on Android behave sim-
ilarly to the same version on a desktop com-
puter: reasoners that are faster on desktop
computer are generally faster on Android too.

e The variance of the reasoning time is higher
on Android devices than on desktop comput-
ers. In the case of Android devices, the time
variance is almost negligible for small ontolo-
gies, moderate for medium ontologies, and sig-
nificant for larger ontologies. Ontologies in the
OWL 2 DL ontology set usually produce higher
variances than OWL 2 EL ontologies. Note
that the main priority in Android is the respon-
siveness of the device, and, thus, its scheduling
policies seem to penalize applications which re-
quire intensive use of resources (e.g., CPU time
and memory). In general, DL ontologies re-
quire more computation time than EL ontolo-
gies, and thus, they are more prone to be af-
fected by the variance introduced by the pos-
sible context changes.

e When developing a mobile semantic applica-
tion, it is a good idea to separate the reasoning
thread in an isolated process whenever possi-
ble, and not relying on Android to relaunch it
if it gets killed (e.g., due to memory issues). If
a task is killed for being too resource greedy,
Android seems to penalize it and does not re-
sume it immediately.

e To use the full potential of mobile devices, rea-
soners could compile the core of their code as
Android native code and avoid this way the
overhead of the Android virtual machine.

e Android uses UTF-8 as encoding by default.
Problems with the characters in the URIs can
appear when working with ontologies that have
been developed in an editor that stores them
in any other encoding.

We also want to share some experiences with
mobile application developers (researchers or not).
First, with respect to the use of DL reasoners specif-
ically designed for mobile devices, some authors of
these reasoners argued that “current Semantic Web
reasoners cannot be ported without a significant re-
write effort” [15]. After our work, this is no longer


https://developer.android.com/tools/building/multidex.html
https://developer.android.com/tools/building/multidex.html

1470

1475

1480

1485

1490

1495

1500

1505

1510

true, as we have made it possible to reuse exist-
ing semantic APIs and DL reasoners on Android
and, in some cases, no rewriting was even needed.
However, it is interesting to study if these reason-
ers outperform reused reasoners in mobile devices.
In fact, most of the optimization techniques imple-
mented by classical DL reasoners cannot easily be
adopted in mobile systems, since they decrease run-
ning time but definitely increase the use of memory,
which is limited in mobile devices. Thus, a study
of the trade-off between expressivity and resource
consumption for mobile devices could be useful.

In our experience, the use of semantic technolo-
gies on mobile devices allowed us to create smart
mobile applications that do not require Internet
connection and preserve the privacy of users by
avoiding the use of cloud-based services. For ex-
ample, SHERLOCK [4] uses JFact, while Face-
Block [11], Rafiki [9], and Triveni [57] use HermiT
(see Section for a short description of these appli-
cations). We only experienced problems when deal-
ing with large ontologies (with hundreds of individ-
uals) and complex SWRL rules. In those scenarios
(large ontologies), the classification time exceeded
the amount of time a user would be willing to wait
for an answer.

9. Related Work

This section will be divided in two parts. Firstly,
we will overview the previous work on supporting
DL reasoners on mobile devices. Then, we will
point to some relevant literature on empirical eval-
uations of DL reasoners on desktop computers.

9.1. Reusing and FEvaluating DL Reasoners on Mo-
bile Devices

To the best of our knowledge, our work is the
first effort to offer a systematic support and evalu-
ation of the performance of existing DL reasoners
on mobile devices. However, there are some previ-
ous works in the field that are worth mentioning.

Using ELK on Android devices has been recently
investigated [61]. In particular, the authors imple-
mented some minor changes to make the reasoner
work on an Android smartphone and performed
some experiments on a Google Nexus 4 Android 4.2
phone. In particular, the authors measured the
classification time of 5 £L ontologies both in the
Android device and in a desktop computer. The
results show that reasoning times in the Android

1515

1520

1525

1530

1535

1540

1545

1550

1555

1560

1565

21

device are acceptable even if much slower (two or-
ders of magnitude) than in the desktop version. We
have also considered ELK in our experiments, mea-
suring and comparing its reasoning times over more
ontologies.

As previously mentioned, using Pellet on mobile
(J2ME) devices has been investigated [49, [13]. The
modification of Pellet reasoner included some new
optimization techniques and was called mTableau.
The authors did some experiments on a desktop
computer, proving that the optimization is useful
to reduce the response time in situations of limited
memory. They also performed some experiments
(4 consistency tests over 2 ontologies) in a PDA
showing that the reasoning times are acceptable.
However, their approach is more oriented to prov-
ing the usefulness of the optimizations rather than
performing a comparison between the performance
of the reasoner in mobile and desktop devices.

Finally, there are three recent works that con-
sider the use of reasoners on mobile devices com-
plementing our work. Regarding battery consump-
tion, [58] analyzes the performance per watt of
Jena, Pellet, and HermiT over two ontologies. The
authors found a nearly linear relationship between
energy consumption and processing time, and stud-
ied the effects of some smartphone features (WikFi,
3G, and 4G radios) on battery consumption. More
recently, [59] studies the battery consumption on
Android 5.x (API 21) of Pellet, Hermit, and An-
drojena, performing four different reasoning tasks
over some datasets generated using the LUBM
benchmark generator [60]. Their software-based
approach could be used to extend our study on
the performance of DL reasoners on current and
future versions of Android. Finally, [62] presents
a benchmark framework for mobile semantic rea-
soners allowing them to be deployed on different
platforms such as Android or i0S. So far, the au-
thors have only considered 4 reasoners (AndroJena,
Nools, RDFQuery, and RDFStore-JS), since their
work is more focused on generability and extensi-
bility, making it easier to add new mobile platforms
and reasoners.

The main novelties of this paper with respect to
our previous work [I8] [I9] are a more detailed de-
scription of the porting process, the study of more
semantic reasoners (MORe, TrOWL, and TRea-
soner), reasoning tasks (consistency), and ontolo-
gies (the whole set of ontologies used in ORE 2013),
new experiments (with a new evaluation of the roles
of memory and virtual machine in Android devices),



1570

1575

1580

1585

1590

1595

1600

1605

1610

1615

and some recommendations for application and rea-
soner developers.

9.2. FEvaluating DL Reasoners on Desktop Com-
puters

The developers of some reasoners have performed
evaluations of their systems with the main objec-
tive of showing that their new tools outperformed
existing ones. There are also several (more or less)
independent experimental comparisons in the liter-
ature that we will overview here.

In [63], FaCT++, Pellet 1.1.0, and Racer 1.8.0
reasoners were compared for the classification of 135
OWL ontologies, with FaCT++ being slightly
preferable (faster and more robust). Then, in [64],
FaCT++ 1.1.3, Pellet 1.3, and RacerPro 1.8.1, were
compared along with KAON?2 for the classification
of 172 ontologies, without a clear winner due to
the considerable difference of performance across
ontologies.

HermiT, KAON2, Pellet, RacerPro, Sesame, and
Swift OWLIM reasoners were compared for classifi-
cation and conjunctive query answering over 3303
ontologies in [65]. The authors concluded that
Swift OWLIM may be preferable in low expressive
languages, RacerPro can be recommended in ex-
pressive ontologies with small ABoxes, and KAON2
is the best alternative in the other cases.

The reasoners CB, CEL, DB, FaCT++, and Her-
miT were evaluated for the classification of 4 ELH
ontologies [36]. CB is the best option, although the
results are focused on evaluating the new technique
of computing classification using an SQL system.

Dentler et al. [66] evaluated 8 reasoners (CB build
6, CEL 0.4.0, FaCT++ 1.5.0, HermiT 1.3.0, Pellet
2.2.2, RacerPro 2.0 preview, Snorocket 1.3.2, and
TrOWL 0.5.1) over 3 OWL 2 EL ontologies for 4
reasoning tasks (classification, concept satisfiabil-
ity, TBox consistency, and subsumption). As usual,
there is not a clear winner. Besides, the authors
also performed a very detailed comparison of other
features of the reasoners.

Another experiment measures the classification
time of 358 real-world ontologies for 4 reasoners
(FaCT++, HermiT, Pellet, and TrOWL) [67]. The
best reasoner depends on the criteria: Fact++ has
the lowest median, HermiT has the lowest mean,
TrOWL has the lowest number of errors, and Pellet
has the lowest number of errors among the complete
reasoners.

Since DLs usually have a good performance in
practice but high worst-case complexities, [68] in-

1620

1625

1630

1635

1640

1645

1650

1655

1660

1665

22

vestigates how often reasoning with existing on-
tologies requires an unreasonable time. The au-
thors consider 4 reasoners (FaCT++ 1.6.1, Her-
miT 1.3.6, JFact 1.0, and Pellet 2.3.0) and 1071
ontologies, showing that most of the times there is
some reasoner giving a quick response time, with
Pellet being the most robust one. Hence, most of
the existing ontologies on the Web are not inher-
ently intractable but just hard for some particular
DL reasoners.

Finally, it is worth to mention that the OWL
Reasoner Evaluation Workshop (ORE) series orga-
nize DL reasoner competitions. The 2012 compe-
tition®T] considered 143 ontologies and 5 reasoning
tasks (classification, consistency, concept satisfia-
bility, entailment, and instance retrieval) for 4 rea-
soners (FaCT++, HermiT, jcel, and WSReasoner).
The 2013 competition [52] considered 204 ontolo-
gies classified in 3 profiles (OWL 2 DL, OWL 2
EL, and OWL 2 RL) and 3 reasoning tasks (clas-
sification, consistency, and concept satisfiability)
for 14 reasoners (BaseVISor, Chainsaw, ELepHant,
ELK, FaCT++, HermiT, jcel, JFact, Konclude,
MORe, SnoRocket, Treasoner, TrOWL, and WS-
Classifier). The competition organizers gave pri-
ority to robustness of the systems rather than the
reasoning times alone. The latest editions held at
2014 [53] and 2015 [54] considered more than 16500
unique ontologies divided in 2 profiles (OWL 2 DL,
and OWL 2 EL), and 3 reasoning tasks (classifi-
cation, consistency checking, and realisation). The
number of ontologies used out from the ontology
set depended on the profile and the reasoning task,
ranging from 200 ontologies used for realization in
DL profile to 300 ontologies used for classification
in EL profile. The participants in the 2014 edi-
tion were Chainsaw, ELepHant, ELK, FaCT++,
HermiT, jcel, JFact, Konclude, MORe, Treasoner,
and TrOWL (11 reasoners), and the participants in
the 2015 edition were Chainsaw, ELephant, ELK,
FaCT++, HermiT, jcel, JFact, Konclude, MORe,
PAGOdA, Pellet, Racer, and TrOWL (13 reason-
ers). In all the competitions, the best reasoner de-
pends on the reasoning task and the expressivity of
the ontology.

10. Conclusions and Future Work

The emergence of mobile computing in our daily
lives requires considering new applications where

6lhttp://www.cs.ox.ac.uk/isg/conferences/ORE2012/
evaluation/index.html


http://www.cs.ox.ac.uk/isg/conferences/ORE2012/evaluation/index.html
http://www.cs.ox.ac.uk/isg/conferences/ORE2012/evaluation/index.html

1670

1675

1680

1685

1690

1695

1700

1705

1710

1715

semantic technologies will be useful. However, some
efforts are needed to enable developers to use on-
tologies and ontology reasoning in their mobile ap-
plications.

In this paper, we have shown that using semantic
technologies on current mobile devices is feasible.
Focusing on Android-based devices, we have been
able to use most of the available semantic reasoners.
In particular, we were able to use CB, ELK, Her-
miT, jcel, JFact, MORe, Pellet, TReasoner, and
TrOWL. However, our ongoing work shows that
using semantic reasoners on mobile devices is not
trivial. In general, some manual work is needed
due to the presence of unsupported Java libraries
and classes in Dalvik, making some rewriting efforts
necessary. We have detailed the changes needed to
make some reasoners work, hoping that this will
make porting future versions easier. Unfortunately,
it turned out that newer versions of some reason-
ers (HermiT and Pellet) are not easier to port than
older ones, and we have also experienced some new
errors with JFact versions starting from 1.0.

In order to test the reasoners on Android devices,
we have designed some experiments with standard
ontology sets used in the OWL Reasoner Evalua-
tion 2013 workshop. We considered using the on-
tology set used in the 2014 workshop, but the num-
ber of ontologies (16555) is huge. First, we have
tested that the ported versions on Android obtain
the same results than the original versions on PCs.
Then, we have tested the performance of the rea-
soners in terms of number of tasks finished and time
consumed per task in two mobile devices, a smart-
phone and a tablet. Finally, we have tested the
role of the amount of available memory and the
virtual machine used on Android. The complete
results of our experiments can be found on the web-
page [12], together with a detailed description of all
the changes needed to port the semantic reasoners
and, if the licenses make it possible, download links.

From a practical point of view, the main limi-
tation that reasoners will face on current smart-
phones/tablets concerns memory usage and pro-
cessing time (and hence, battery consumption).
Our experiments show that reasoners running on
a PC are 1.5 to 150 times faster than on Android
devices. Also, the number of out of memory errors
increase on Android devices compared with PCs,
usually in the OWL 2 DL profile and in larger on-
tologies. We also noticed important differences in
the performance of the three analyzed Android de-
vices, showing that, although mobile devices are far

1720

1725

1730

1735

1740

1745

1750

1755

1760

1765

23

from being desktop computers, they are increasing
their capabilities quickly as needed by challenging
tasks, such as semantic reasoning. We have recently
done some tests with more modern devices that con-
firm this trend. In addition, we have shown some
results with the future Android runtime, ART, that
show that the same tasks on the same devices can
be executed around 2 times faster.

We would like to finish this summary of the con-
clusions of the paper with a statistical curiosity. We
estimate that the complete empirical experimenta-
tion reported in this paper required a total comput-
ing time of more than 1000 hours (which is more
than 41 days only for the computation of the dif-
ferent tests).

As future work we would like to port and evaluate
more semantic reasoners. We are especially inter-
ested in reasoners for OWL 2 QL and OWL 2 RL
profiles, as we have not been able so far to port any
reasoner specifically designed for such languages,
and in the evaluation of CB over Horn ontologies.
Moreover, to extend the insight on the capabilities
of mobile devices, we are interested on evaluating
other reasoning tasks such as query answering or
realization, as they involve ABox reasoning and are
interesting in many mobile scenarios; and on study-
ing the impact of using the reasoners through their
own APIs instead of the OWL API. Finally, we
would like to extend our study to include the mo-
bile device’s battery in order to show the feasibil-
ity of using DL reasoners in real applications. We
plan to do so by measuring the energy consumption
(similarly as in [58] and [59]), and by analysing the
influence of the battery level in the performance
of the different reasoners in disconnected scenarios
(devices not plugged to any power source).

Acknowledgments

This research work has been supported by the
CICYT projects TIN2010-21387-C02-02, TIN2013-
46238-C4-4-R, and DGA-FSE. We would like to
thank Guillermo Esteban, for his help with the
porting of the reasoners to Android, and the anony-
mous reviewers for their valuable comments on an
earlier version of this paper.

[1] T.R. Gruber, A translation approach to portable ontol-
ogy specifications, Knowledge Acquisition 5 (2) (1993)
199-220.

[2] A. Sinner, T. Kleemann, KRHyper In your pocket, in:
20th Intl. Conf. on Automated Deduction (CADE-20),
Vol. 3632, LNCS, Springer, 2005, pp. 45-458.



1770

1775

1780

1785

1790

1795

1800

1805

1810

1815

1820

1825

1830

(3]

[4]

(6]

(7]

[9]

(10]

(11]

[12]

(13]

(14]

(15]

[16]

(17)

18]

(19]

T. Kleemann, Towards mobile reasoning, in: 2006 Intl.
Workshop on Description Logics (DL 2006), 2006.

R. Yus, E. Mena, S. Ilarri, A. Illarramendi, SHER-
LOCK: Semantic management of location-based ser-
vices in wireless environments, Pervasive and Mobile
Computing 15 (2014) 87-99.

C. Becker, C. Bizer, Exploring the geospatial Semantic
Web with DBpedia Mobile, Journal of Web Semantics.
M. L. Wilson, A. Russell, D. A. Smith, A. Owens,
M. M. C. Schraefel, mSpace Mobile: A mobile appli-
cation for the Semantic Web, in: 2nd Intl. Workshop
on Interaction Design and the Semantic Web, 2005.

N. Ambroise, S. Boussonnie, A. Eckmann, A smart-
phone application for chronic disease self-management,
in: 2013 Mobile and Information Technologies in
Medicine and Health Conference (MobileMED 2013),
2013.

S. R. Abidi, S. S. R. Abidi, A. Abusharekh, A semantic
web based mobile framework for designing personalized
patient self-management interventions, in: 2013 Mobile
and Information Technologies in Medicine and Health
Conference (MobileMED 2013), 2013.

P. Pappachan, R. Yus, A. Joshi, T. Finin, Rafiki:
A semantic and collaborative approach to community
health-care in underserved areas, in: Proc. of the 10th
IEEE Intl. Conf. on Collaborative Computing: Net-
working, Applications and Worksharing (Collaborate-
Com 2014), 2014.

D. Ghosh, A. Joshi, T. Finin, P. Jagtap, Privacy control
in smart phones using semantically rich reasoning and
context modeling, in: 2012 IEEE Symposium on Se-
curity and Privacy Workshops (SPW 2012), 2012, pp.
82-85.

R. Yus, P. Pappachan, P. K. Das, E. Mena, A. Joshi,
T. Finin, FaceBlock: Privacy-aware pictures for Google
Glass, in: 12th Annual Intl. Conf. on Mobile Systems,
Applications, and Services (MobiSys 2014), 2014, pp.
366-366.

Android goes semantic!, http://sid.cps.unizar.es/
AndroidSemanticl

L. Steller, S. Krishnaswamy, M. M. Gaber, Enabling
scalable semantic reasoning for mobile services, Interna-
tional Journal on Semantic Web and Information Sys-
tems 5 (2) (2009) 91-116.

B. Motik, I. Horrocks, S. M. Kim, Delta-reasoner: A
Semantic Web reasoner for an intelligent mobile plat-
form, in: 21st World Wide Web Conference (WWW
2012), Companion Volume, 2012, pp. 63-72.

M. Ruta, F. Scioscia, E. D. Sciascio, F. Gramegna,
G. Loseto, Mini-ME: the mini matchmaking engine, in:
1st Intl. Workshop on OWL Reasoner Evaluation (ORE
2012), Vol. 858, CEUR-WS, 2012.

F. Miiller, M. Hanselmann, T. Liebig, O. Noppens, A
tableaux-based mobile DL reasoner - An experience re-
port, in: 19th Intl. Workshop on Description Logics (DL
2006), Vol. 189, CEUR-WS, 2006.

E. Burnette, Hello, Android: Introducing Google’s Mo-
bile Development Platform, The Pragmatic Program-
mers, LLC., 2010.

R. Yus, C. Bobed, G. Esteban, F. Bobillo, E. Mena,
Android goes semantic: DL reasoners on smartphones,
in: 2nd Intl. Workshop on OWL Reasoner Evaluation
(ORE 2013), Vol. 1015, CEUR-WS, 2013, pp. 46-52.
C. Bobed, F. Bobillo, R. Yus, G. Esteban, E. Mena, An-
droid went semantic: Time for evaluation, in: 3rd Intl.

1835

1840

1845

1850

1855

1860

1865

1870

1875

1880

1885

1890

1895

24

20]

(21]

[22]

23]

[24]

[25]

(26]

27]

28]

29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

Workshop on OWL Reasoner Evaluation (ORE 2014),
Vol. 1207, CEUR-WS, 2014, pp. 23-29.

B. McBride, Jena: A Semantic Web toolkit, IEEE In-
ternet Computing 6 (6) (2002) 55-59.

M. Horridge, S. Bechhofer, The OWL API: A Java API
for OWL ontologies, Semantic Web Journal 2 (1) (2011)
11-21.

Y. Kazakov, Consequence-driven reasoning for Horn
SHIQ ontologies, in: 21st Intl. Joint Conf. on Arti-
ficial intelligence (IJCAI 2009), 2009, pp. 2040-2045.
Y. Kazakov, M. Krotzsch, F. Simancik, The incredible
ELK, Journal of Automated Reasoning 53 (2014) 1-61.
B. Glimm, I. Horrocks, B. Motik, G. Stoilos, Z. Wang,
HermiT: An OWL 2 reasoner, Journal of Automated
Reasoning 53 (3) (2014) 245-269.

J. Mendez, jcel: A modular rule-based reasoner, in: 1st
Intl. Workshop on OWL Reasoner Evaluation (ORE
2012), Vol. 858, CEUR-WS, 2012.

F. Baader, C. Lutz, B. Suntisrivaraporn, CEL - A
polynomial-time reasoner for life science ontologies, in:
3rd Intl. Joint Conf. on Automated Reasoning (IJCAR
2006), Vol. 4130, LNAI, Springer, 2006, pp. 287-291.
D. Tsarkov, I. Horrocks, FaCT++ description logic rea-
soner: system description, in: 3rd Intl. Joint Conf. on
Automated Reasoning (IJCAR 2006), 2006.

I. Horrocks, Using an expressive description logic:
FaCT or fiction?, in: Proc. of the 6th Intl. Conf. on the
Principles of Knowledge Representation and Reasoning
(KR 1998), Morgan Kaufmann Publishers, 1998, pp.
636—647.

A. Armas-Romero, B. Cuenca-Grau, I. Horrocks,
E. Jiménez-Ruiz, MORe: a modular owl reasoner for
ontology classification, in: 2nd Intl. Workshop on OWL
Reasoner Evaluation (ORE 2013), Vol. 1015, CEUR-
WS, 2013, pp. 61-67.

E. Sirin, B. Parsia, B. Cuenca-Grau, A. Kalyanpur,
Y. Katz, Pellet: A practical OWL-DL reasoner, Journal
of Web Semantics 5 (2) (2007) 51-53.

E. Thomas, J. Z. Pan, Y. Ren, TrOWL: Tractable OWL
2 reasoning infrastructure, in: 7th Extended Semantic
Web Conference (ESWC 2010), 2010.

A. V. Grigorev, A. G. Ivashko, TReasoner: System de-
scription, in: Proc. of the 2nd Intl. Workshop on OWL
Reasoner Evaluation (ORE 2013), Vol. 1015, CEUR-
WS, 2013, pp. 26-31.

C. J. Matheus, K. Baclawski, M. M. Kokar, Basevi-
sor: A triples-based inference engine outfitted to pro-
cess RuleML and r-entailment rules, in: Proc. of the
2nd Intl. Conf. on Rules and Rule Markup Languages
for the Semantic Web (RuleML 2006), 2006, pp. 67-74.
D. Tsarkov, I. Palmisano, Chainsaw: a metareasoner
for large ontologies, in: Proc. of the 1st Intl. Workshop
on OWL Reasoner Evaluation (ORE 2012), Vol. 858,
CEUR-WS, 2012.

F. Simanck, Y. Kazakov, 1. Horrocks, Consequence-
based reasoning beyond Horn ontologies, in: 22nd
Intl. Joint Conf. on Artificial Intelligence (IJCAI 2011),
2011, pp. 1093-1098.

V. Delaitre, Y. Kazakov, Classifying ELH ontologies
in SQL databases, in: 6th Intl. Workshop on OWL:
Experiences and Directions (OWLED 2009), Vol. 529,
CEUR-WS, 2009.

B. Sertkaya, The ELepHant reasoner system descrip-
tion, in: 2nd Intl. Workshop on OWL Reasoner Eval-
uation (ORE 2013), Vol. 1015, CEUR-WS, 2013, pp.


http://sid.cps.unizar.es/AndroidSemantic
http://sid.cps.unizar.es/AndroidSemantic
http://sid.cps.unizar.es/AndroidSemantic

1900

1905

1910

1915

1920

1925

1930

1935

1940

1945

1950

1955

1960

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47)

(48]

[49]

[50]

[51]

[52]

[53]

[54]

87-93.

F. Bobillo, U. Straccia, fuzzyDL: An expressive fuzzy
Description Logic reasoner, in: 17th IEEE Intl. Conf.
on Fuzzy Systems (FUZZ-IEEE 2008), 2008, pp. 923—
930.

B. Motik, R. Studer, KAON2-a scalable reasoning tool
for the Semantic Web, in: 2nd European Semantic Web
Conference (ESWC 2005), 2005.

A. Steigmiller, T. Liebig, B. Glimm, Konclude: System
description, Journal of Web Semantics 27-28 (2014) 78—
85.

B. Bishop, A. Kiryakov, D. Ognyanoff, Z. Tashev,
R. Velkov, OWLIM: A family of scalable semantic
repositories, Semantic Web Journal 2 (2011) 33-42.

V. Haarslev, K. Hidde, R. Moller, M. Wessel, The Rac-
erPro knowledge representation and reasoning system,
Semantic Web Journal 3 (2012) 267-277.

J. Dolby, A. Fokoue, A. Kalyanpur, E. Schon-
berg, K. Srinivas, Scalable highly expressive reasoner
(SHER), Journal of Web Semantics 7 (4) (2009) 357—
361.

J. Lu, L. Ma, L. Zhang, J.-S. Brunner, C. Wang, Y. Pan,
Y. Yu, SOR: A practical system for ontology storage,
reasoning and search, in: Proc. of the 33rd Intl. Conf.
on Very Large Data Bases (VLDB 2007), ACM, 2007,
pp. 1402-1405.

M. Lawley, C. Bousquet, Fast classification in Protégé:
Snorocket as an OWL 2 EL reasoner, in: Australasian
Ontology Workshop 2010 (AOW 2010), 2010, pp. 45—
50.

W. Song, B. Spencer, W. Du, A transformation ap-
proach for classifying ALCHZ(D) ontologies with a
consequence-based ALCH reasoner, in: 2nd Intl. Work-
shop on OWL Reasoner Evaluation (ORE 2013), Vol.
1015, CEUR-~-WS, 2013, pp. 39-45.

W. Song, B. Spencer, W. Du, WSReasoner: a proto-
type hybrid reasoner for ALCHOZ ontology classifica-
tion using a weakening and strengthening approach, in:
1st Intl. Workshop on OWL Reasoner Evaluation (ORE
2012), Vol. 858, CEUR-WS, 2012.

C. Wernhard, System description: KRHyper, Tech.
rep., Fachberichte Informatik 142003, Universitat
Koblenz-Landau (2003).

L. Steller, S. Krishnaswamy, Pervasive service discov-
ery: mTableaux mobile reasoning, in: I-SEMANTICS
2008, Springer, 2008.

M. Ruta, E. D. Sciascio, F. Scioscia, Concept abduction
and contraction in semantic-based P2P environments,
Web Intelligence and Agent Systems 9 (2011) 179-207.
H.-S. Oh, B.-J. Kim, H.-K. Choi, S.-M. Moon, Evalua-
tion of Android Dalvik virtual machine, in: 10th Intl.
Workshop on Java Technologies for Real-time and Em-
bedded Systems (JTRES 2012), 2012.

R. S. Gongalves, S. Bail, E. Jiménez-Ruiz, N. Matent-
zoglu, B. Parsia, B. Glimm, Y. Kazakov, OWL Rea-
soner Evaluation (ORE) workshop 2013 results: Short
report, in: 2nd Intl. Workshop on OWL Reasoner Eval-
uation (ORE 2013), Vol. 1015, CEUR-WS, 2013, pp.
1-18.

S. Bail, B. Glimm, E. Jiménez-Ruiz, N. Matentzoglu,
B. Parsia, A. Steigmiller, Summary ORE 2014 compe-
tition, in: 3rd Intl. Workshop on OWL Reasoner Eval-
uation (ORE 2014), Vol. 1207, CEUR-WS, 2014, pp.
IV-VII.

S. Dumontier, B. Glimm, R. S. Gongalves, M. Horridge,

1965

1970

1975

1980

1985

1990

1995

2000

2005

2010

2015

2020

25

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67)

(68]

E. Jiménez-Ruiz, N. Matentzoglu, B. Parsia, G. Sta-
mou, G. Stoilos, Summary ORE 2015 competition, in:
4th Intl. Workshop on OWL Reasoner Evaluation (ORE
2015), Vol. 1387, CEUR-WS, 2015, pp. IV-VI.

C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker,
R. Cyganiak, S. Hellmann, DBpedia - A crystallization
point for the Web of Data, Journal of Web Semantics
7 (3) (2009) 154-165.

F. Baader, D. Calvanese, D. McGuinnes, D. Nardi,
P. Patel-Schneider, The Description Logic handbook.
Theory, implementation and applications, Cambridge
University Press, 2003.

R. Yus, P. Pappachan, P. K. Das, T. Finin, A. Joshi,
E. Mena, Semantics for privacy and shared context, in:
2nd Intl. Workshop on Society, Privacy and the Seman-
tic Web - Policy and Technology (PrivOn 2014), 2014.
E. Patton, D. McGuinness, A power consumption
benchmark for reasoners on mobile devices, in: 13th
Intl. Semantic Web Conference (ISWC 2014), Part I,
Vol. 8796, LNCS, Springer, 2014, pp. 409-424.

E. Valincius, H. Nguyen, J. Z. Pan, A power consump-
tion benchmark framework for ontology reasoning on
Android devices, in: 4th Intl. Workshop on OWL Rea-
soner Evaluation (ORE 2015), Vol. 1387, CEUR-WS,
2015, pp. 80-86.

Y. Guo, Z. Pan, J. Heflin, LUBM: A benchmark for
OWL knowledge base systems, Journal of Web Seman-
tics 3 (2-3) (2005) 158-182.

Y. Kazakov, P. Klinov, Experimenting with ELK rea-
soner on Android, in: Proc. of the 2nd Intl. Workshop
on OWL Reasoner Evaluation (ORE 2013), Vol. 1015,
CEUR-WS, 2013, pp. 68-74.

W. V. Woensel, N. A. Haider, A. Ahmad, S. S. R. Abidi,
A cross-platform benchmark framework for mobile se-
mantic web reasoning engines, in: Proc. of the 13th
Intl. Semantic Web Conference (ISWC 2014), Part I,
Vol. 8796, LNCS, Springer, 2014, pp. 389-408.

Z. Pan, Benchmarking DL reasoners using realistic on-
tologies, in: Proc. of the workshop on OWL: Experi-
ences and Directions (OWLED 2005), Vol. 188, CEUR-
WS, 2005.

T. Gardiner, D. Tsarkov, I. Horrocks, Framework for an
automated comparison of description logic reasoners, in:
5th Intl. Semantic Web Conference (ISWC 2006), Vol.
4273, LNCS, Springer, 2006, pp. 654—667.

J. Bock, P. Haase, Q. Ji, R. Volz, Benchmarking OWL
reasoners, in: Proc. of the Intl. Workshop on Advancing
Reasoning on the Web: Scalability and Commonsense
(ARea 2008), 2008.

K. Dentler, R. Cornet, A. ten Teije, N. de Keizer, Com-
parison of reasoners for large ontologies in the OWL 2
EL profile, Semantic Web Journal 2 (2) (2011) 71-87.
Y. B. Kang, Y. F. Li, S. Krishnaswamy, A rigorous char-
acterization of classification performance - A tale of four
reasoners, in: 1st Intl. Workshop on OWL Reasoner
Evaluation (ORE 2012), Vol. 858, CEUR-WS, 2012.
R. S. Gongalves, N. Matentzoglu, B. Parsia, U. Sattler,
The empirical robustness of description logic classifica-
tion, in: 26th Intl. Workshop on Description Logics (DL
2013), Vol. 1014, CEUR-WS, 2013, pp. 197-208.



	Introduction
	Overview of Semantic Web Technologies
	Semantic Web APIs
	DL Reasoners
	DL Reasoners Designed for Mobile Devices

	Using Semantic Web APIs and Reasoners on Android
	Overview of Current Android Support
	Porting Semantic Technologies to Android

	Experimental Setup
	Selecting the Ontology Dataset
	Selecting the Devices
	Selecting the Tasks
	Selecting the Reasoners
	Automating the Tests
	Verifying the Android Versions

	Comparing the Reasoners for the OWL 2 DL Profile
	Comparing the Number of Finished Tasks
	Comparing the Processing Time

	Comparing the Reasoners for the OWL 2 EL Profile
	Comparing the Number of Finished Tasks
	Comparing the Processing Time

	Other Experiments
	Analyzing the Impact of Memory
	Analyzing the Impact of the Virtual Machine

	Discussion
	Related Work
	Reusing and Evaluating DL Reasoners on Mobile Devices
	Evaluating DL Reasoners on Desktop Computers

	Conclusions and Future Work

