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Abstract

Approaches for the processing of location-dependent queries usually assume
that the location data are expressed precisely, usually using GPS locations.
However, this is unrealistic because positioning methods do not have a perfect
accuracy (e.g., the positioning approach used in cellular networks handles only
the cell where mobile users are located). Besides, users may need to express
queries based on concepts of locations other than traditional GPS locations,
which we call location granules.

In this paper, we focus on location granule-based query processing (i.e., pro-
cessing of queries with location granules) in situations where the location data
available is imprecise, which we have called probabilistic location-dependent
queries. For that purpose, we exploit the concept of uncertainty location gran-
ule, which represents the location uncertainty of an object. In particular, we
tackle the problem of processing probabilistic inside (range) constraints. We
analyze in detail how those constraints can be processed, taking into account
both the existence of location uncertainty affecting the relevant objects and the
location granularity specified. An extensive experimental evaluation shows the
feasibility of the proposed probabilistic query processing approach and analyzes
the advantages of using index structures to speed up the query processing.

Keywords: Location-Dependent Queries, Uncertainty Management,
Probabilistic Range Queries, Mobile Computing

1. Introduction

Location-dependent queries are queries whose answers depend on the location
of certain moving objects [1]. They are a key building block for the develop-
ment of Location-Based Services (LBSs) [2, 3], which offer value-added data by
considering the locations of the mobile users to determine the data that may5

be relevant. When processing location-dependent queries, GPS locations are
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usually assumed (e.g., [1, 4, 5, 6, 7, 8, 9]). However, users usually think in
terms of places instead of coordinates (i.e., they think in terms of higher-level
location granularities), being precise locations frequently irrelevant for them.
For example, an app for tourists could allow them to look up where they are10

(e.g, address, district name, etc.), and to look for interesting points (e.g., mu-
seums, stadiums, etc.) by choosing their own terms (e.g., show me museums
in downtown) without having the user to define the specific boundaries of the
relevant areas (the app would know better than the user which the downtown
area is). As another example, if a user is travelling by subway, he/she may want15

to know the name of the next station, along with information about the district
where it is located. So, when expressing queries and retrieving their results, it
is important to manage the location granularity required by the user. To be
able to provide different views on the raw GPS locations, extending them with
semantics, we introduced the concept of location granule in [10, 11] as a set of20

geographical areas which identify a set of GPS locations under a common name
(e.g., in the example of the subway the area of each station and district would
be a different location granule, and an inclusion relationship would relate those
types of granules). This concept of location granule is similar to the notion of
place [12, 13] or spatial granule [14] proposed in the literature. In this way, loca-25

tion granules are geographical areas which represent locations with meaningful
semantics for the user, providing a more coarse-grained location representation
than GPS 1 (e.g., cities, regions, countries, roads, buildings, rooms in a building,
etc.).

To handle them within location-dependent queries, we presented a query30

processing approach in [11], and extended it with two complementary models
to represent location granules semantically in [10] and [15]. However, these
previous proposals assume that the precise GPS locations of the moving objects
are available, even though if later those locations are converted into location
granules. This is an unrealistic assumption because of several reasons:35

• Positioning methods are subject to imprecision [16] due to different rea-
sons. On the one hand, we can find that the positioning method might
have an inherent precision error and provide an area where the object
might be [17, 18], or directly have a granularity coarser than required
(i.e., cell-based location methods [19]). On the other hand, in the context40

of mobile objects, we could find that the location data is not updated as
frequently as we would like, and therefore we have to assume some im-
precision in the location of a moving object (e.g., providing an estimation
taking into account its velocity and direction [20]).

• Locations can also be deliberately obfuscated to enhance privacy using45

different methods [21, 22]. For example, if the location method can only
retrieve which street the user is in (e.g., due to his/her preferences), in-

1Note that this does not imply that GPS locations are neglected. On the contrary, GPS
locations can be translated into (and be used jointly with) meaningful area definitions.
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stead of his/her GPS location, querying for nearby objects must take into
account that the user might be in any particular position within that
street.50

Whenever there is uncertainty in the location of the objects, we cannot
provide a completely precise answer, and thus, proposing a query processing
approach that does not rely on the location precision assumption is needed.

In this paper, we focus on the processing of probabilistic location-dependent
queries with location granules, that is, queries where location granules must55

be used taking into account that the location information available about the
objects in the scenario is imprecise. Such location uncertainty in every of
aforementioned imprecision sources can be modeled using an uncertainty area
whose shape and probability distribution depends on the imprecision source
(e.g., we can calculate it out of the position and velocity as in mobile ob-60

ject databases [23], or be given by a mathematical model of the used location
method). Thus, to model such imprecision sources, our proposal is based on
the definition of uncertainty location granule, which represents the location of
an object through a probability density function that provides the probability
that the object is in each point of the area of the granule. More specifically,65

we tackle inside constraints, which retrieve the objects of a certain class (target
objects) located within a given spatial range around a specified moving object
(reference object).

For example, let us imagine a user that is looking for friends that are in the
whereabouts, using an app for such a purpose. This app could allow users to70

specify the area of search at different granularities: street, neighborhood, city,
etc. In our case, let us assume that s/he wants to retrieve friends located on
the same street where s/he is. Independently of the technology used to locate
the user, there always exists a certain location error; when precise localization
methods (such as GPS, with an imprecision of just a few meters) are not avail-75

able (e.g., indoor locations, tunnels, turned-off GPS devices, etc. ), using other
technologies such as WiFi triangulation or power maps, cell phone IDs, etc.,
lead to a significant uncertainty regarding the user’s location. Thus, due to the
imprecision, the user might be on different streets with different probabilities.
Besides, his/her friends might also have imprecise localization methods, or just80

not have updated their locations in the app (or even some of them have ob-
fuscated their location by only showing his/her street, neighborhood, city, etc.,
where s/he is currently located), which also would influence the probability of
them being on the same street as the user is. In summary, in order to provide
an answer in mobile computing environments, we cannot avoid dealing with85

uncertainty, as assuming precise and perfectly updated locations of objects in
the scenario is unrealistic.

In Figure 1, the imprecise location of a user can be seen (the user can be
in any place of the gray circle), so the user could be on street A, B, or C
with different probabilities: It is clear that (if we assume a uniform probability90

distribution) the user will be with high probability on street A or B, and will
be on street C with a very low probability. The imprecise location of his/her
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nearby friends are the green circles, and so friends that would probably be on
streets A or B (friend3, friend4, and friend5 ) would be much more likely to be
on the same street as our user.95

street A

street B

street C

friend1
friend2

user

friend3

friend5

friend4

Figure 1: Retrieving friends on the user street when locations are imprecise. The uncertain
locations are represented by circles (in gray, the user; and, the greener, the more probable
that such a friend is on the user street).

As we will see, the calculation of the objects that hold such constraints
requires solving some integrals numerically, which has an important impact on
the efficiency of the query processing. Thus, we adopt an indexed approach to
filter out as many objects as possible in the early stages of the query processing.

A preliminary work about probabilistic granule-based queries was presented100

in [24]; here, we improve and extend that seminal proposal in a number of
ways, including the introduction and analysis of uncertainty location granules for
uniform and normal probabilistic distributions, and an extensive experimental
evaluation. The uniform pdf is applied when there is no information about
the imprecision of the location of an object. In that case, we consider the105

worst case: The object can be in any place of an uncertainty area with equal
probability [23]. Another usual assumption is to consider that the imprecision of
the location follows a bivariate normal distribution [25, 26]. Thus, in this work,
we focus on inside queries and provide a systematic and detailed study of such
type of queries in the case of both uniform and normal uncertainty distributions.110

The main contributions of this paper are:
• We define new types of location-based inside queries that involve location

granules with and without uncertainty.

• We analyze those queries considering that any probability density function
is used to model the location uncertainty, and particular solutions are115

given when the underlying probability density function is the uniform or
normal distribution.

• We propose a spatial granule-based index approach to solve inside con-
straints with uncertainty and location granules. We have tested this in-
dexing approach with an extensive experimental evaluation, where the120

efficiency of the described method for both the uniform and normal dis-
tributions can be appreciated.
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The structure of the rest of this paper is as follows. In Section 2, we present
an overview of the proposed model of location granules, extending their def-
inition to incorporate uncertainty, and we describe an indexing approach to125

efficiently process queries with location granules. In Section 3, we formally de-
fine the problems that we tackle in this paper focusing on probabilistic inside
queries, and explain our approach to tag objects with their probabilities of be-
ing part of the answer to the query. In Section 4, we present an experimental
evaluation that shows that the probabilistic granule-based location-dependent130

queries studied in this paper can be supported efficiently. In Section 5, we
present some related work. Finally, in Section 6, we draw some conclusions and
point out some ideas for future work.

2. Location Granules and Uncertainty

In this section, first, we explain the types of entities that we use to model135

environments without uncertainty, introduced in [11]. Then, we detail how
we extend this model to include uncertainty. Finally, we propose an indexing
approach for this model.

2.1. Model without Uncertainty: Location Granules

In order to model a location-aware scenario, we proposed in [11] a model140

based on the notion of location granule, which, intuitively, can be defined as a
set of one or more geographical areas which represent a coarser location under
a common name. Such a model, which did not include support to deal with
uncertainty, was based on three main elements [11]:
• Objects (O): An object represents an entity located in a position of the145

plane. It is characterized by an internal (system-managed) identifier, a
name, a GPS location (xo, yo), a class, and probably other attributes
specific to its class. For example, objects can be used to state that a
vehicle is at a certain (x1, y1) location and it is an ambulance (its class
type is an ambulance), while another vehicle is at (x2, y2) and it is a fire150

truck.

• Location Granules (LG): A location granule (or simply, a granule) refers
to one or more geographic areas or polygons which identify a set of GPS
locations under a common name. Specifically, a location granule G is
characterized by a triple 〈id, name, GA〉, where id is an internal (system-155

managed) identifier, name is the name of the granule, and GA is an area
of the plane, i.e., GA ⊆ R2. Location granules can be used to model areas
with different semantics and granularities. For example, we can model
areas such as countries (e.g., USA, Spain, etc.), states (e.g., California,
Washington, etc.), or places (e.g., Central Park, the Grand Canyon, a160

certain mall, the Union Station in Washington D.C., etc.).

• Granule Maps (GM): A granule map is a set of location granules. More
precisely, a granule map M is characterized by a tuple 〈id, name, SM 〉,
where id is an internal (system-managed) identifier, name is the name
of the granule map, and SM is a set of granules, SM = {G1, . . . , Gn}.165

For instance, with granule maps, we can express the map of the states of
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USA, where each state is a location granule which belongs to the granule
map, or the map of USA counties, depending on the location granularity
required.

Along these elements, we also defined a set of operations: inGr is a func-170

tion that, given a location granule G and an object o, returns a boolean value
indicating whether the location of the object, (xo, yo), belongs to the area GA

of G; dist computes the distance between an object’s location and a granule;
and distBtwGrs computes the distance between two granules. Different types
of distance can be considered: the limits-distance (the minimum distance to175

the boundaries of the areas composing the granule), the centroid-distance (the
distance to the centroids of the granules), and the outsideLimitsBased-distance
(a variation of the limits-distance in which all the inner points of the granule
are considered to be at zero distance). Without loss of generality, by default
we assume the limits-distance. The last two defined operators deal with gran-180

ule maps: getGrs is a function that, given a granule map M and an object o,
retrieves all the granules in SM where the location of o belongs, that is, the set
{Gi ∈ SM | (xo, yo) ∈ Gi}; getNearGr returns the granule Gi, in a granule map
M , that is the nearest to the location of an object.

However, in this proposed model, no special provisions were made to consider185

location uncertainty, which could be introduced by many causes. Thus, in the
following, we propose an extension to our model to seamlessly integrate location
uncertainty.

2.2. Model with Uncertainty: Uncertainty Location Granules

To deal with imprecise locations and probabilistic queries in our model, we190

extend the basic model by introducing the notion of uncertainty location granule.

Definition 1. An Uncertainty Location Granule (ULG), O, is a tuple O =〈id,
UGO, pdfO〉 composed by: an internal (system-managed) identifier id; UGO is
an area or a discrete set of points contained in R2, and we will say that UGO is
the uncertainty area of O; and pdfO is a probability density function (pdf) such195

that
∫
UGO

pdfO = 1; if UGO is a discrete set of points, pdfO is a probability

mass function, and so
∑

x∈UGO
pdfO(x) = 1. An element o ∈ UGO is said to

be an instance of the uncertainty location granule O.

With uncertainty location granules, we can model an imprecise location.
For example, given the GPS location of an object, we can consider that such an200

object is inside a circle centered at such GPS location and whose radius depends
on the precision (maximum possible error). In this case, the uncertainty location
granule could be 〈id, UGO, pdfO〉, where UGO is a disk and pdfO is a truncated
Gaussian pdf over the disk. We can also model the anonymization of a user’s
position [27]: the uncertainty area UGO could be a rectangle (or some other205

polygon) and pdfO would be the uniform pdf over UGO, which means that the
object can be with the same probability in any location within the area of the
uncertainty location granule.

The set of operators described in Section 2.1 is also enriched with three new
operators that relate uncertainty location granules and location granules:210
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• inGrProb(O,G) is a function that returns the probability that the object
represented by the uncertainty location granule O is inside a granule G.
This probability is calculated by inGrProb(O,G) =

∫
UGO∩GA

pdfO. We

will also denote this probability by P (O ∈ G).

• distProb(O,G), where O is an uncertainty location granule and G is a215

location granule, returns a pdf for the random variable DG
O : UGO → R

such that for any instance o ∈ UGO, DG
O(o) = dist(o,G). It is used to

calculate the probability that the object represented by the uncertainty
location granule O is at distance less than or equal to R from the location

granule G, that is, P (DG
O ≤ R) =

∫ R

0
distProb(G,O)(x)dx.220

• distProb(O1, O2), where O1 and O2 are uncertainty location granules,
returns a pdf for the random variable DO2

O1
: UGO1 × UGO2 → R, where

DO2

O1
(o1, o2) = dist(o1, o2). The returned pdf is used to calculate the

probability that the distance between O1 and O2 is less or equal to R,

P (DO2

O1
≤ R) =

∫ R

0
distProb(O1, O2)(x)dx.225

Datatype Tuple format Operators

Object (OB) 〈id, name, loc, class, otherAttr〉 dist: OB x OB → Real

Location Granule (LG) 〈id, name, GA〉 inGr: LG x OB → Boolean

dist: LG x OB → Real

distBtwGrs: LG x LG → Real

Granule Map (GM) 〈id, name, SM 〉 getGrs: GM x OB → P(LG)

getNearGr: GM x OB→ LG

Uncertainty Location Granule (ULG) 〈id, ULGt, density function〉 inGrProb: ULG x LG → Real

distProb: ULG x LG → PDF

distProb: ULG x ULG → PDF

Table 1: Basic probabilistic data model: data types and main operators for location granules
and uncertainty location granules.

A complete summary of the data types and operators can be seen in Table 1.
Let us note that the introduction of imprecise locations implies calculating some
integrals to process the queries, as it will be explained in Section 3.3. Since the
computation of these integrals could have a direct impact on the performance
(even when uniform pdfs are assumed), we should compute as few integrals as230

possible. For this reason, we introduce the following a structure to index the
uncertainty location granules and the granules in the granule maps.

2.3. Grouping and Indexing Location Granules

In order to process efficiently granule-based inside constraints, we propose
to use two independent spatial indexes to manage separately location granule235

maps and objects (with or without uncertainty). The rationale behind this
two-index schema is to take into account the volatility of the information being
indexed: The geographical data that define the different location granules where
the objects are located are less prone to change than the precise geographic
locations of the moving objects in the scenario.240
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Moreover, our approach is oriented to quickly filter those elements which are
clearly not relevant for the query that is being processed. Thus, no probability
tagging is performed at this level, but only filtering out those elements whose
probability of being part of the answer to a query posed to the index is zero.

Thus, we propose to use a Spatial Granule-Based Index (SGBI), a data245

structure which is formed by a tuple 〈GMI,OI〉, where:

• GMI (Granule Map Index) is a hash table which stores several spatial in-
dexes, each of which indexes a different granule map (and, thus, a different
layer/view on the scenario).

• OI (Object Index) is a spatial index which stores the different objects in250

the scenario taking into account their uncertainty areas.

Apart from the methods to load and index granule maps and objects, the
SGBI provides us with three main operators:

• getGranules(GranuleMapName, GPS) returns the set of location granules
of a given granularity that might contain the given GPS location using255

the GMI.

• getGranules(GranuleMapName, Area) returns the set of location granules
of a given granularity that might intersect the given area using the GMI.

• getObjects(Area) returns the set of objects which might be within the given
area, using the OI.260

Note that we do not make any assumption about either the underlying index-
ing techniques (location granules and objects ones), or the pdfs used to model
the uncertainty in the locations. In our current implementation, we have used
PR-Trees [28] for both indexes in the schema. Thus, we index both location
granules and objects with their uncertainty pdfs according to their Minimum265

Bounding Rectangles (MBRs). As we will see in Section 4, this filter is efficient
enough to process such constraints in an efficient and scalable manner. How-
ever, we are aware that we can leverage more spatial and pdfs’ information to
improve our approach, and we will explore it in the future.

In the following section, we will present the different probabilistic location270

constraints we deal with in this paper.

3. Probabilistic Granule-Based Inside Queries

In this section, we tackle the processing of probabilistic granule-based in-
side queries. First, we briefly present the change of semantics of inside queries
when location granules come into scene. Then, we formally define the different275

query constraints that we consider in this paper. Finally, we describe how such
constraints are processed.

3.1. Preliminaries: Granule-Based Inside Queries

The use of location granules in a location-dependent query can affect the
semantics and the way the query is processed. As an example, let us imagine a280
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vehicle fleet management system monitoring some trucks over France2 to control
and plan their routes. Let us suppose that a truck is broken down and it needs
to be repaired. Due to insurance restrictions, the truck can only be serviced
in garages which are within the same region, or, at the furthest in the nearest
departments of adjacent regions. Thus, in our system, we would like to know285

which garages (we will call them target objects, as they are the objects that
must be retrieved) are not farther than r kilometers from the region (FrRegion)
where the broken truck is (we will call it the reference object, as it is used as a
reference for the query constraint). Instead of expressing the query using raw
GPS coordinates (which would require the final user of our system to know the290

exact GPS coordinates of all the regions and departments, as well as to de-
fine a complex query to describe the appropriate distances between elements in
the query), our system allows to use the appropriate location granularities for
the query, handling appropriately the semantics of distances at different gran-
ularities (i.e., the distance definition might change when different granularities295

are used). Using the SQL-like query language presented in [11], this constraint
would be expressed as follows:

inside(R, gr(“FrRegions”, refObj), gr(“FrDepartments”, tgt))

where R is the radius of the inside constraint, refObj represents the identifier
of a reference object, tgt indicates the class of the target objects (we will call300

it the target class, which is garage in the previous example), and gr is the
getGrs operator that returns the granules an object is within based on the
granularity specified. Notice that interesting objects (certain garages, and their
GPS location, fulfilling some geographic constraints) will be obtained taking as
basis the GPS location of the reference object (the damaged truck) only after305

dealing with location granules: on the one hand, the region of the damaged
truck, which is used 1) to obtain garages inside it, and 2) to obtain adjacent
departments from other regions where garages can be found; and, on the other
hand, each adjacent department, which is used to obtain garages inside such
an area. The query is not as simple as asking for target objects within a given310

distance from the reference object. On the contrary, our system also supports
specifying constraints about distance among objects and areas, or among areas
and other areas.

Thus, the way this constraint is processed is illustrated in Figure 2. The
first step is to obtain the location of the reference object (see Figure 2.a), which315

represents in this case the center of the inside constraint. Next, the location
granule in which the object is located is obtained according to the granule
map specified for the reference object in the constraint (in the example, the
granule map is the set of French regions and the granule obtained is the Center
region of France), and the boundary of such a location granule is extended in320

2We are using in these examples administrative divisions (i.e., regions) and their subdivi-
sions (i.e., departments) traditionally considered in France. Thus, in France, each region is
composed by one or more departments.
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all directions according to the distance specified in the inside constraint (see
Figure 2.b), which is called buffering in the context of Geographic Information
Systems [29]. Finally, the target objects that lie in the granules of the granule
map specified for the target objects (in the previous example, the granule map
of departments) that intersect the previously calculated area are retrieved (see325

Figure 2.c).

Figure 2: Processing an inside constraint with region granularity for the reference object and
department granularity for the target objects: a) Detect the reference object (red point) in
the Center region; b) Obtain the granule the reference object lies within, and extend its area
by the inside radius (extended area, blue line); c) Retrieve target objects which lie within
granules that intersect that extended area (orange points).

The impact of using different granularities on the location-dependent con-
straint can be easily observed if we move to the example in Figure 3, where we
are interested in retrieving the garages that are inside regions which are not far-
ther than R kilometers from the department where our truck is located. Using330

the same syntax as in the above example, this constraint would be expressed as
follows:

inside(R, gr(“FrDepartments”, refObj), gr(“FrRegions”, tgt))

Specifically, in Figure 3.a, the inside constraint is expressed using the granule
map of departments of France for the reference object and the granule map of335

regions of France for the target objects (as expressed in the previous constraint),
whereas in Figure 3.b the opposite approach is taken (departments for the target
objects and regions for the reference object). Even though the objects in the
scenario are in the same locations, we can notice that the answer to the query
would be quite different.340

Let us note that the above-explained location-dependent queries use granule
maps for the reference and the target objects. It is also possible to define queries
with a granule map only for the reference object (e.g., return those garages that
are not farther than R kilometers from the department a certain truck is in), or
only for the target objects (e.g., return those garages that are inside departments345

which are not farther than R kilometers from the location of a given truck).
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Figure 3: Inside queries with different semantics depending on the granularity used: a) Re-
trieved objects (orange points) when department granularity is specified for the reference
object and region granularity is specified for the target objects; b) Retrieved objects (orange
points) when region granularity is specified for the reference object and department granularity
is specified for the target objects.

In the following section, we will modify the definition of these types of queries
(presented initially in [11]) to consider uncertainty. For example, if we cannot
be sure about the precise locations of the objects, and it is only known that
each of them is inside a particular area with some probability, how can these350

queries be processed?

3.2. Problem Statement

In a scenario with imprecise locations involving uncertainty location gran-
ules, we can find three different kinds of probabilistic granule-based inside con-
straints: when a granule map is specified for the reference object (Definition 2);355

when a granule map is specified for the target objects (Definition 3); and, fi-
nally, when granule maps (a single granule map or two different granule maps)
are specified for both the reference object and the target objects (Definition 4).
As far as we know, these are new types of queries, not defined and studied
previously in the literature.360

Definition 2. Let D = {O1, . . . , On} be a set of uncertainty location granules
(target objects), Or be an uncertainty location granule (reference object), and
Mr = {G1, . . . , Gn} be a granule map. A probabilistic granule-based inside
query with a granule map for the reference object retrieves the uncertainty
location granules of D that are no farther than R from the granules Gj where the365

reference object Or might be located, with a probability greater or equal than p:

q(D, Or,Mr, R, p) = {Oi ∈ D |
n∑
j=1

P (Or ∈ Gj)P (D
Gj

Oi
≤ R) ≥ p}

11



Definition 3. Let D = {O1, . . . , On} be a set of uncertainty location granules
(target objects), Or an uncertainty location granule (reference object), and Mt =
{H1, . . . ,Hm} a granule map. A probabilistic granule-based inside query with
a granule map for the target objects retrieves the uncertainty location granules370

of D with a probability greater or equal than p to be in a granule Hj ∈ Mt that
is not farther than R from the reference object Or:

q(D,Mt, Or, R, p) = {Oi ∈ D |
m∑
j=1

P (Oi ∈ Hj)P (D
Hj

Or
≤ R) ≥ p}

Definition 4. Let D = {O1, . . . , On} be a set of uncertainty location granules
(target objects), Or an uncertainty location granule (reference object), and Mr =
{G1, . . . , Gn} and Mt = {H1, . . . ,Hm} granule maps. A probabilistic granule-375

based inside query with granule maps for target and reference objects retrieves
the uncertainty location granules of D with a probability greater or equal than p
to be in a granule Hl ∈Mt that is not farther than R from a granule Gk ∈Mr

where the reference object Or might be located. That is, if we denote by dkl =
distBtwGrs(Gk, Hl), then we have:380

q(D,Mt, Or,MrR, p) = {Oi ∈ D |
n∑
k=1

m∑
l=1

P (Or ∈ Gk)P (Oi ∈ Hl)H(R− dkl) ≥ p}

where H(x) is the Heaviside function: H(x) = 1 if x ≥ 0, and H(x) = 0
otherwise.

Note how, regarding the probability threshold provided as an input to the
query, these definitions support must and may semantics [30]: must semantics,
when the query is specified to retrieve only the objects that satisfy the query385

constraint for sure (i.e., with 100% probability); and may semantics, when the
query is specified to retrieve any object that may satisfy the query constraint,
but with no guarantees (i.e., specifying a probability threshold lower than 100%
that the retrieved object must accomplish). It is not expected that the user will
manually set the probability threshold specifically for each query; instead, the390

application used by the user could manage internally several predefined thresh-
olds (e.g., possible 0%, likely 60%, high 80%, very high 90%, sure 100%) and
use them dynamically for the queries according to the learnt user preferences.

In the following section, we analyze each of the three types of probabilistic
granule-based inside constraints discussed, and illustrate the different steps that395

their processing requires.

3.3. Processing the Constraints

In this section, we analyze in detail how the different query constraints
are processed3. For simplicity of exposition, we model the uncertainty with

3The algorithms for processing the different types of queries presented in this section are
shown in Appendix A of the additional material, which can also be found at http://sid.cps.
unizar.es/projects/ProbabilisticGranules
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a continuous probability density function for all the objects in all the scenar-400

ios. The discussion for a discrete probability mass function would be analogous,
substituting the different integrals by the appropriate summations. Moreover,
for better readability, we present in Table 2 a summary of the notations used
throughout this section.

G Location granule.

EA(G,R) Extended area of a location granule, i.e., the area obtained by
extending G a distance R in all the directions.

Oi =〈id, UGi, pdfi〉 Uncertainty granule with associated uncertainty area UGi and
probability density function pdfi.

P (O ∈ G) Probability that the uncertainty granule O is in the location gran-
ule G.

DGO Random variable that for any instance o ∈ UGO returns dist(o,G).

distProb(O,G) Probability density function for DGO .

P (DGO ≤ R) Probability that the distance between G and O is less or equal to
R, i.e., the cumulative distribution function of distProb(G,O).

N(µ; Σ) Bivariate normal distribution with mean vector µ and covariance

matrix Σ: N(µ; Σ) = 1/(2π
√

Σ)
∫
e−

1
2

((x−µ)T Σ−1(x−µ))

Table 2: Summary of the basic notations used in Section 3.3.

3.3.1. Probabilistic Inside Constraints with Granule Map for the Reference Ob-405

ject

Firstly, we deal with the queries defined in Definition 2, i.e., retrieve target
objects which are not farther than R from the location granule where a reference
object is; e.g., “Which ambulances (target objects) are not farther than R from
the region (granule map for the reference object) where an accident (reference410

object) happened”. If we are dealing with precise locations, in this case, we
must first discover in which granule the reference object is in, and then retrieve
the target objects that are no farther than R from such a granule4. However,
if a location granule map has been specified for the reference object and the
location of the reference object is uncertain, we might have several granules415

where the accident could have happened with different probabilities. So, we have
to calculate the probability for each of the location granules to be the actual
one where the reference object is in, in order to obtain the actual probability of
each target object to be within an R distance.

To do so, we propose to handle the uncertain locations as uncertainty lo-420

cation granules (which are not granules existing in the granule maps used, but
dynamically obtained from the object’s location and its location imprecision
model). Thus, we have to obtain the granules which intersect the uncertainty
location granule that represents the location of the reference object, and cal-

4For the sake of simplicity, we assume in the explanation that an object with a precise
location lies only within a single location granule. However, our approach supports overlapping
location granules by performing the union of their areas.
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culate their probabilities by integrating the pdf associated to the uncertainty425

location granule on each of the different intersecting areas.
Intuitively, in Figure 4, we can see the different steps of processing an inside

constraint specifying a granule map for the reference object:

OtOt

Ot

a) b) c)

Ot
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G1

UGr
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R

UGt
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UGr
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Ot

Or
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R

G1
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Ot
UGr

Or
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R
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Figure 4: Inside constraint processing with uncertain locations and the specification of a
granule map for the reference object: a) Find granules where Or might be (G1, G2) using
its uncertainty location granule (circle UGr); b) Find target objects Ot (using their UGt)
that might be in the extended areas EA(Gi, R) of such granules (the gray areas define their
probabilities); c) Aggregate the final probabilities for each Ot.

• First, we obtain the granules in the granule map where the reference object
Or might be (G1 and G2 in Figure 4.a).430

• Then, as each of these granules contributes to the probability of Ot being
part of the answer, we have to calculate the probability of Or being at
each of the granules (intersections of UGr with G1 and G2 in Figure 4.b).
For each of the granules which has a non-zero probability, we have to
calculate the probability of Ot being at less than an R distance from them435

(intersections of the extended areas EA(G1, R) and EA(G2, R) with UGt

in Figure 4.b).

• Finally, we have to weight and aggregate the different contributions to
calculate the actual probability of Ot being part of the answer set (Fig-
ure 4.c).440

Formally, let Or and Ot be a reference and a target object with associated
uncertainty location granules 〈idr, UGr, pdfr〉 and 〈idt, UGt, pdft〉, respectively,
and Mr = {G1, . . . , Gn} be a granule map for the reference object. We denote by
EA(Gi, R) the extended area of a granule Gi ∈Mr by the radius R (the distance
threshold for the inside constraint), i.e., EA(Gi, R) = Gi + B(0, R), where445

B(0, R) is a ball centered at the origin and radius R, and + is the Minkowski
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sum (buffering operation). The probability that the object Ot is in the answer
set (AS) is the sum, for each possible granule Gi, of the probability that the
reference object is in the granule Gi multiplied by the probability that the target
object is in the extended area of the granule Gi, that is:450

P (Ot ∈ AS) =
∑

Gi∈Mr

P (Or ∈ Gi)P (Ot ∈ EA(Gi, R))

Therefore, using the probability density functions pdfr and pdft, we have that:

P (Ot ∈ AS) =
∑

Gi∈Mr

∫
Gi∩UGr

pdfr

∫
EA(Gi,R)∩UGt

pdft (1a)

Computation with the Uniform Distribution If we consider the case that
we have a uniform pdf, then the formula can be simplified to calculate areas:

P (Ot ∈ AS) =
∑

Gi∈Mr

Area(Gi ∩ UGr)
Area(UGr)

Area(EA(Gi, R) ∩ UGt)
Area(UGt)

(1b)

Computation with the Normal Distribution For the normal distribution,
we have:

P (Ot ∈ AS) =
∑

Gi∈Mr

∫
Gi

N(µr; Σr)

∫
EA(Gi,R)

N(µt; Σt) (1c)

where N(µ; Σ) is a bivariate normal distribution with mean µ and covariance
matrix Σ.455

3.3.2. Probabilistic Inside Constraints with Granule Map for the Target Objects

Now, we move onto the queries defined in Definition 3, i.e., retrieve target
objects that are within location granules which are not farther than R from the
location of the reference object ; e.g., “Which ambulances (target objects) are
situated in regions (granule map for target objects) that are not farther than R460

from a car accident (reference object)”. It is similar to the previous case, but
now the target objects Ot are the ones that have associated a list of potential
location granules along with their probabilities. Looking at Figure 5, intuitively:

• First, we identify the granules that are at a distance less than R from
Or (H1 and H2 in Figure 5.a) where, for simplicity and without loss of465

generality, we are assuming that H1 and H2 are granules with the same
shape than the granules G1 and G2 shown in Figure 4).

• Then, for each of those granules, we have to calculate its exact probability
of being within a distance R from the reference object; in Figure 5.b, the
intersections of UGr with the extended areas of the different granules are470

all the points where Or can be at less than such a distance. For each of
the granules which has a non-zero probability, we have to calculate the
probability that Ot is within that granule (intersection of UGt with H1

and H2 in Figure 5.b).
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Figure 5: Inside constraint processing with uncertain locations and the specification of a
granule map for the target objects: a) Find all the location granules that might be at distance
less than R from Or (H1, H2) using its uncertainty location granule (UGr); b) Calculate the
probability of each Hi being within an R range, and, for each target object Ot that might lie
within Hi, calculate their probability; c) Aggregate the final probabilities for each Ot.

• As in the previous constraint, we have to ponder and aggregate the dif-475

ferent contributions to calculate the actual probability of Ot being part of
the answer set (Figure 5.c).

Similarly to what was shown for the previous type of probabilistic granule-
based constraint, if we denote by Mt = {H1, . . . ,Hm} the granule map for the
target objects, we can calculate the probability that the target object Ot is in
the answer set AS by:

P (Ot ∈ AS) =
∑

Hi∈Mt

∫
EA(Hi,R)∩UGr

pdfr

∫
Hi∩UGt

pdft (2a)

Computation with the Uniform Distribution If we consider uniform
pdfs, again the probabilities can be computed by calculating areas:

P (Ot ∈ AS) =
∑
Gi∈M

Area(EA(Hi, R) ∩ UGr)
Area(UGr)

Area(Hi ∩ UGt)
Area(UGt)

(2b)

Computation with the Normal Distribution For the normal distribution,
we have:

P (Ot ∈ AS) =
∑

Hi∈Mt

∫
EA(Hi,R)

N(µr; Σr)

∫
Hi

N(µt; Σt) (2c)
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3.3.3. Probabilistic Inside Constraints with Granule Map for Both the Reference
Object and the Target Objects480

Finally, we deal with the queries defined in Definition 4, i.e., retrieve target
objects that are within location granules which are not farther than R from the
location granule where the reference object lies; e.g., “Which fire trucks (target
objects) are in regions (granule map for target objects) that are not farther than
R from the city (granule map for the reference object) where a car accident485

(reference object) happened”. We illustrate how to process these constraints
with Figure 6:

Or
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G2

Ot
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Ot
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a) b)

Figure 6: Inside constraint processing with uncertain locations and the specification of a
granule map for both the reference and the target objects: Contributions of the probabilities of
Or being insideG1 andG2 (parts a and b in the figure, respectively) to ponder the probabilities
of Ot1 and Ot2 of being part of the answer set by affecting the maximum probabilities of the
location granules they might lie within (H1 and H2).

• First, we obtain the granules in the granule map where the reference object
Or might lie (intersection of UGr with the granules G1 and G2).

• For each of the intersected granules, we have to obtain the granules in the490

granule map for the target objects that are not farther than R from them.
Note that, at this point, we are perfectly sure about the distances between
granules (they are not uncertainty location granules) and we can obtain
them by buffering the granules Gi and intersecting them.

• For each of the previously-obtained granules (granules H1 and H2 in the495

figure), we have to calculate the probability of Ot being within them (in-
tersection of UGt with them).

• Finally, again, we have to ponder and aggregate each of the contributions.

Formally, we denote by Mr = {G1, . . . , Gn} the granule map for the ref-
erence object Or, and by Mt = {H1, . . . ,Hm} the granule map for the target
objects. As previously, EA(Gi, R) denotes the extended area of the granule
Gi, and 〈UGr, pdfr〉 and 〈UGt, pdft〉 the uncertainty location granules Or and
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Ot, respectively. If M is a granule map and B is a granule, we use the nota-
tion NEM

B = {H ∈ M | H ∩ B 6= ∅} to denote the granules H in the granule
map M that have non-empty intersection with the granule B. We can find the
probability that a target object is in the answer set, P (Ot ∈ AS), as follows:

P (Ot ∈ AS) =
∑

Gi∈Mr

∑
Hj∈NE

Mt
Gi

P (Or ∈ Gi)P (Ot ∈ Hj)

In this way, we compute the summation of the probability that the reference
object is in a granule Gi of the granule map Mr multiplied by the probability
that the target object is in a granule Hj of Mt such that Hj ∩EA(Gi, R) is not
empty. In terms of the density functions, we have:

P (Ot ∈ AS) =
∑

Gi∈Mr

∑
Hj∈NE

Mt
Gi

∫
Gi∩UGr

pdfr

∫
Hj∩UGt

pdft (3a)

Computation with the Uniform Distribution As in the previous cases,
Equation 3a can be calculated for uniformly distributed pdfs as:

P (Ot ∈ AS) =
∑
Gi∈M

∑
Hj∈NE

Mt
Gi

Area(Gi ∩ UGr)
Area(UGr)

Area(Hj ∩ UGt)
Area(UGt)

(3b)

500

Computation with the Normal Distribution For the normal distribution,
we have:

P (Ot ∈ AS) =
∑

Gi∈Mr

∑
Hj∈NE

Mt
Gi

∫
Gi

N(µr; Σr)

∫
Hj

N(µt; Σt) (3c)

For clarity, we include Algorithm 1 to illustrate the details of the processing
of this type of queries using the proposed SGBI described in Section 2.3. First,
we have to obtain the possible granules where the reference object lies using the
SGBI (line 3). For each of those possible candidates (lines 4–20), we calculate505

the probability that the reference object actually lies within it (line 5). For those
granules that contribute to the answer, we calculate their buffering and obtain
the granules that might be at a distance less than R from them using the SGBI
(lines 7–8). Then, after checking whether they are actually at such distance
(line 10), we proceed to obtain the target objects which might lie within each510

target granule using the SGBI (line 11). For those filtered objects, we calculate
their probabilities according to the formulation we have shown and update them
to obtain the final probability (lines 13–14). Finally, the set of candidate objects
is filtered using the probability threshold (line 22).
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Algorithm 1 Query processing with granule maps for the ref. and the target objects

Require: Regarding the input: SGBI is the spatial index, GMapNameRef is the granule
map to be used for the reference object, GMapNameTgt is the granule map to be used for
the target objects, refObject is the reference object in the constraint, R is the radius of
the inside query, and threshold is the probability that the objects in the answer set must
achieve. It also requires geom, an object specialized in performing geometric operations.

Ensure: Retrieves the objects that satisfies the constraint with a probability above the given
threshold.

1: /* candSet is a table where each object is tagged with its probability */
2: candSet ← ∅
3: candRefGranules←SGBI.getGranules(GMapNameRef, refObject.UG.area)
4: for g in candRefGranules do
5: probRefObjectInG ← inGrProb(g, refObject)
6: if probRefObjectInG > 0 then
7: extArea ← geom.buffer(g.area, R)
8: candTgtGranules ← SGBI.getGranules(GMapNameTgt, extArea)
9: for h in candTgtGranules do

10: if geom.intersects(extArea, h.area) then
11: affObjects ← SGBI.getObjects(h.area)
12: for obj in affObjects do
13: probInGranuleH ← inGrProb(h, obj)
14: // update the probability by adding the current value
15: candSet.update(obj, probRefObjectInG * probInGranuleH)
16: end for
17: end if
18: end for
19: end if
20: end for
21: // filter out the objects above the probability threshold
22: candSet.filterOut(threshold)
23: returns candSet

4. Experimental Evaluation515

To validate our proposal in terms of performance and scalability, we have
performed an extensive experimental evaluation. In Section 4.1, we first spec-
ify the implementation details of our prototype and the experimental settings.
Then, we present our experimental results using different sets of granule maps
in Sections 4.2 and 4.3.520

4.1. Experimental Settings

To show the feasibility of our approach, we have developed a prototype
that is capable of processing location-based queries with granule-based inside
constraints in the presence of location uncertainty. Our prototype has been
implemented using Java 1.7 as programming language, and the JTS Topology525

Suite 1.135. We have also developed an interactive applet6 to help visualizing the

5http://sourceforge.net/projects/jts-topo-suite/
6http://sid.cps.unizar.es/projects/ProbabilisticGranules/granulesApplet.html.

Note that applets are not currently supported by the Chrome browser, so we provide an
alternative Java WebStart version available in this webpage.
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semantics of the granule-based constraints when uncertainty comes into play. In
the following, we detail the specifics for the scenarios and the parameters which
are considered in the experiments for the three type of queries described in
Section 3.2, as well as the algorithms used to calculate the required integrals.530

Pdfs considered and integral calculations In the experiments, we have
evaluated our approach adopting both the uniform and normal probability dis-
tributions as uncertainty models. Indeed, the calculation of the integrals in
Equations 1a, 2a, and 3a clearly affects the performance of our approach. Even
with these pdfs, the calculus of the integral over an arbitrary area has a big535

impact on the performance, as it requires very expensive numerical methods
such as Monte Carlo or Vegas integrations. Thus, without loss of generality, we
consider in our experiments that the areas of the location granules are polygons.
In this way, for the uniform distribution, we solve Equations 1b, 2b, and 3b by
finding the intersecting areas between polygons (these intersecting areas are cal-540

culated using the functions provided in the JTS library), having a quadratic cost
in the number of edges. For the normal distribution, we solve Equations 1c, 2c,
and 3c by implementing the algorithm presented in [31] to integrate the normal
distribution over a polygon, having a linear cost in the number of edges. Let us
note that restricting the areas to polygons is sufficiently general to cover real545

problems, and also a challenging scenario.

Granule maps considered We have considered two different sets of granule
maps to evaluate our approach. To cover the scenario in the tests using different
granularities, we have generated a large set of granule maps in a 4,000×4,000
grid using an algorithm based on building Voronoi diagrams [32] from a set550

of random points. In particular, we have constructed 20 granule maps which
contain 10–70 location granules with a mean of about 8 edges per granule. This
set will be referred to as generated granule maps. On the other hand, to evaluate
our approach with more detailed granule maps, we have used a set of granule
maps corresponding to a lower-detail representation of the maps of Spain and555

France at two different granularities (provinces and regions). The corresponding
granules were generated by detecting polygons from a vectorial map of Spain
and France, with a mean of about 16 and 25 edges per granule at province
granularity, respectively, and a mean of 10 and 55 edges per granule at region
granularity, respectively. These maps are framed within a 4,000×4,000 grid,560

and will be referred to as country-based granule maps.

Objects and uncertainty As the dataset of objects for the generated gran-
ules scenario, we have generated a set of 1 million points, which are randomly
placed in the 4000×4000 grid. For the country-based granule maps, we have
generated additional object datasets (of 1 million objects each), also randomly565
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placed, but forced to lie within the boundaries of the country7. In the generated
scenarios, the objects occupy up to 6.25% of the area, while in the Spain and
France-based scenarios occupy up to 24.8% and 13.8% of the area, respectively.

With each of these points, an uncertainty granule (or object) is constructed
depending on the considered pdf. With the uniform distribution, we consider570

that the pdf for the uncertainty granule is the uniform distribution over a disk
centered at each point with a given radius. For the values of the radius (the
uncertainty), we have considered three values: 10, 30, and 50 distance units.
With the normal distribution, we consider that each point is the mean of a
bivariate normal distribution with covariance matrix equal to a diagonal matrix575

[σ2, σ2], where we consider σ to be 1, 5, or 10 distance units. We only take
diagonal covariance matrices into account for the normal distribution, since
by means of an affine transformation we can reduce the problem to diagonal
covariance matrices without affecting the performance [31].

SGBI, inside radii and probability thresholds In order to assess the580

benefits of using our proposed indexing data structure SGBI, we carried out
the tests using both a non-indexed implementation of our approach and an
SGBI implementation based on PR-trees [28] (as introduced in Section 2.3).
The SGBI implementation we use translates the different areas involved in the
processing of each of the types of location granule-based constraints into their585

MBRs, and indexes the objects in the scenario using the MBRs of the areas
where their pdfs are defined. In the case of the normal distribution, we consider
that the pdf is defined in a rectangle dom centered at the mean µ and dimensions
dom = [µ ± 6σ], since the value of the integral over any area outside dom is
guaranteed to be smaller than 10−20. In this way, for a given query, our current590

SGBI implementation is able to filter out both irrelevant granules and objects
in an efficient way.

We divided the tests into three main groups, which correspond to each of the
different proposed constraints presented in Section 3.2, and the two probability
distributions used. To evaluate the performance for each of such sets of granule595

maps, we used as inside radius values of 100, 300, and 500 distance units (in
the Spanish scenario, a distance unit translates into 350 m, and in the French
one a distance unit translates into 280 m), and probability thresholds 0.25, 0.50,
and 0.75.

Finally, all the experiments were run on a computer with an Intel Core600

i5-2320 processor running at 3.00 GHz and 16 GB of RAM memory.

4.2. Experimental Results for Generated Granule Maps

We firstly focus on the first set of experiments, which considers generated
granule maps. A summary of the parameters used in these experiments can
be seen in Table 3. In Figure 7, due to space limitations, we only show the605

results for queries where location granules are used for both the reference object

7The scenarios and object datasets can be found at http://sid.cps.unizar.es/projects/
ProbabilisticGranules/.
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and the target objects (experimental figures for the other cases can be seen
in Appendix B). The left and right columns show the results when the SGBI
implementation is not and is used, respectively (left column, No Indexed, right
column, Indexed).610

Number of granule maps 20 (5 granule maps for each number of gran-
ules)

Number of granules in maps 10, 30, 50, 70
Total target objects in D 102, 103, 104, 105, 106

Locations of the reference object (Or) (2000,2000), (2000±1500,2000±1500)
Uniform pdf: Radius for uncertainty area
of reference and target objects

10, 30, 50

Normal pdf: standard deviation σ of ref-
erence and target objects

1, 5, 10

R (inside radius) 100, 300, 500
p (probability threshold) 0.25, 0.50, 0.75

Table 3: Generated scenarios: parameters and their different values for the performance
experiments of queries with granule maps (all the possible combinations were evaluated). The
bold values are the default values used for the detailed analysis of the influence of the different
parameters.

Unsurprisingly, the execution times depend directly on the number of objects
in the scenario and on the semantics of the different constraints, as they affect
the number of granules involved in the query. In fact, the amount of granules
involved in the constraint processing acts as a multiplier (each granule involved
implies a complete calculation of its contribution to the final probability of an615

object to be part of the answer). The left-most column of Figure 7 (not indexed
tests) shows that the costs increase linearly with the amount of granules involved
in the query. However, in all the types of queries considered, the use of the SGBI
improved dramatically the performance of the approach, making it feasible for
both (normal and uniform) probability distributions.620

Regarding the differences between the two different distributions, the non-
indexed results show how, without the use of the SGBI, both approaches are
quite similar in terms of cost and scalability. Moreover, when the SGBI comes
into play, the speedups (in percentage terms) are also similar. These results
show the feasibility and scalability of our proposal.625

In Figure 8, we show the influence of the query parameters on the processing
times for the different constraints when using the SGBI (see Appendix B for the
complete set of graphs, with and without using SGBI). The particular values for
each of the fixed parameters in the different settings are shown in bold in Table 3.
Regarding the influence of the inside radius and the uncertainty area (Figures 8.a630

and 8.c), we can see how the larger the inside radius of the constraint or the
uncertainty area, the higher the processing costs, as more objects are relevant for
the query. Furthermore, with respect to the threshold of the queries (Figure 8.b),
the value of the threshold has no impact on the processing time for each type of
constraint, since in our implementation we calculate the final probability for all635

the relevant objects. Let us also note the difference between the uniform and
normal pdf graphs: the constraint for the reference object (refObject) has the
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100 Obj. 1,000 Obj. 10,000 Obj. 100,000 Obj. 1,000,000 Obj.

10 Granules 0.13 0.46 1.88 5.80 52.35

30 Granules 0.09 0.29 1.38 3.51 28.00

50 Granules 0.08 0.26 1.31 3.31 26.31

70 Granules 0.08 0.24 1.18 2.99 22.94
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100 Obj. 1,000 Obj. 10,000 Obj. 100,000 Obj. 1,000,000 Obj.

10 Granules 0.30 0.87 3.61 15.13 149.67

30 Granules 0.40 1.08 4.43 22.73 223.42

50 Granules 0.48 1.25 5.15 29.88 296.10

70 Granules 0.52 1.31 5.60 34.80 345.90
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(a) Processing times using a uniform pdf considering generated granule maps for both the reference
and target objects.

100 Obj. 1,000 Obj. 10,000 Obj. 100,000 Obj. 1,000,000 Obj.

10 Granules 0.03 0.06 0.17 0.95 8.19

30 Granules 0.03 0.05 0.11 0.52 4.00

50 Granules 0.03 0.05 0.11 0.46 3.36

70 Granules 0.04 0.06 0.13 0.56 3.63
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100 Obj. 1,000 Obj. 10,000 Obj. 100,000 Obj. 1,000,000 Obj.

10 Granules 0.05 0.11 0.54 4.43 41.69

30 Granules 0.06 0.16 0.95 8.38 81.20

50 Granules 0.07 0.21 1.33 12.06 116.95

70 Granules 0.08 0.29 1.89 15.38 149.35
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(b) Processing times using a normal pdf considering generated granule maps for both the reference
and target objects.

Figure 7: Performance results in the generated scenarios for the considered pdfs. The X axis
shows the number of objects in the scenario (ranging from 100 to 1,000,000), while the Y axis
(in log scale) shows the query execution time (in seconds). The graphs on the left show the
times when no SGBI is used, and the ones on the right when it is used to index the elements
in the scenario.

lowest processing time for the uniform pdf, while it has the highest one for the
normal pdf. This is due to the cost of the calculation of the final probabilities
for each object that has not been filtered by the SGBI: it is quadratic regarding640

the number of edges of the polygons involved for the uniform pdf, while it
is linear for the normal pdf. In the case of the reference object constraint,
the probabilities are calculated against the extended (buffered) granules, which
introduces a lot of edges (in our implementation,up to 16 for each corner). On
the other hand, for the target objects (tgtObjects), and for both the reference and645

the target objects (both) constraints, such probabilities are calculated against
the granules of the default granule map, which have an average of 8 edges in this
case (significantly fewer edges than in the case of the buffered granules). In the
case of the normal pdf, despite the fact that we have less relevant objects for the
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refObject constraint, and we have to calculate fewer probabilities than for the650

tgtObjects and both constraints, the time cost to calculate such probabilities of
the buffered granules with many edges is bigger than the time cost to calculate
more probabilities against granules with less edges. In the case of the uniform
pdf, as the time complexity of the calculation of the probability is quadratic,
this effect is not seen, and the refObject constraint is computed faster than in655

the case of the tgtObjects and both constraints.
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(a) Processing times for different inside radii in a single scenario.
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(b) Processing times for different threshold values in a single scenario.
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(c) Processing times for different uncertainty radii/sigmas in a single scenario.

Figure 8: Influence of the different parameters in the processing times of the different con-
straints considered. The X axis of each graph shows the values for the specific studied pa-
rameter (distance units for the inside radius, probability value for the threshold, and distance
unit/σ for the uncertainty in the uniform/normal pdf case), while the Y axis shows the query
execution time (in seconds). All the graphs show the results when the SGBI is used.
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4.3. Experimental Results for Country-Based Granule Maps

In this subsection, we explain the results of the experiments for the Spain
and France based scenarios. Figure 9 shows the results for the case when granule
maps are considered for both the reference and target objects8. Table 4 contains660

the parameters that have been used to run the experiments. In this case, as
the SGBI proved to be useful for both distributions, we directly performed
the experiments using the indexed implementation. In these scenarios, there
are several factors that increase the processing times (note the time differences
between Figure 7 and Figure 9):665

Number of granule maps four, two maps (regions and provinces) for each
country (Spain and France)

Number of granules in maps In Spain: 14 (regions map), 47 (provinces map)
In France: 22 (regions map), 96 (provinces map)

Total target objects in D 102, 103, 104, 105, 106

Locations of the reference object (Or) (2000,2000), (2000±500,2000)
Uniform pdf: Radius for uncertainty
area of reference and target objects

10, 30, 50

Normal pdf: standard deviation σ of
reference and target objects

1, 5, 10

R (inside radius) 100, 300, 500
p (probability threshold) 0.25, 0.50, 0.75

Table 4: Country-based scenario: parameters and their different values for the performance
experiments of queries with granule maps representing areas of Spain and France (all the
possible combinations were evaluated). In these scenarios, we consider the point (2000,2000)
as the center of the countries, and a distance unit translates into 350 m for the Spanish maps,
and into 280 m for the French ones.

• Firstly, the number of objects per area unit in these scenarios is higher.
This increase in the object density leads to a higher number of objects
affected by the constraints (in the experiments, about the double than in
the first set of experiments).

• Secondly, as we use the same values of radius and the number of granules670

per area unit is higher, the number of granules affected by each constraint
is higher. This, as explained before, acts as a multiplier of the processing
costs, as we have to treat each of the affected areas which contributes to
the final answer set (an average of about 14 granules were affected for each
query).675

• Finally, we have to bear in mind that the level of detail (the number of
edges) of the granules in these scenarios is higher, which also has an impact
on the cost of processing both the intersections and the individual object
inclusion tests (we move from an average of about 8 edges per granule in
the generated scenarios to an average of 25 edges per granule in the latter680

ones).

8Again, we refer the interested reader to the complete set of experiments which can be
found at Appendix B of the additional material.

25



1009Obj. 1,0009Obj. 10,0009Obj. 100,0009Obj. 1,000,0009Obj.

Spain-Regions 0.04 0.11 0.58 4.21 36.71

Spain-Provinces 0.04 0.08 0.28 1.65 12.48

France-Regions 0.08 0.21 1.29 10.09 90.16

France-Departments 0.05 0.11 0.45 2.94 23.98
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Spain-Regions 0.16 0.66 2.45 7.94 63.04

Spain-Provinces 0.14 0.49 1.88 5.26 41.21

France-Regions 0.17 0.67 3.26 10.13 82.20

France-Departments 0.12 0.44 2.23 5.20 37.18
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Figure 9: Performance results in the country-based scenarios for the considered pdfs and
considering granule maps for both the reference and target objects. The X axis shows the
number of objects in the scenario (ranging from 100 to 1,000,000), while the Y axis (in log
scale) shows the query execution time (in seconds). Both graphs display the results using the
SGBI implementation.

Thus, the main contribution to the increment of times comes from the first
two reasons commented above, as the processing times increased by a factor
of 2.5–3, due to the increase of objects and granules affected by the constraints.
Notice that, even though the processing cost increases with a very high number685

of objects, this is actually a very extreme case where we are considering that all
those objects are target objects that could potentially be part of the answer to
the query. Moreover, the use of our SGBI implementation reduces the processing
times drastically and makes our approach feasible even with a very high number
of objects.690

Finally, note how these calculations could be easily parallelized if several
CPUs are available, as in these types of queries the calculations for each of
the granules are independent of each other (we would only have to aggregate
them at the end to obtain the final probabilities). Moreover, we are aware
that we could leverage more spatial and pdfs information, and adopt different695

optimization strategies (i.e., pruning the search space taking into account the
probability threshold9) to improve our approach. Last but not least, we could
consider other non-location dependent constraints (e.g., restrictions about the
type of objects required or about other non-spatial attributes) that could be
used for pre-filtering, to reduce the number of objects having an impact on the700

performance.

5. Related Work

In the last two decades, the study of query processing techniques in the
context of spatio-temporal databases and moving object databases (MOD) has
experienced a considerably increasing interest among researchers, particularly705

9In our experiments, as no special optimization was implemented regarding the probability
threshold, the probability threshold parameter did not have influence on the performance
results.
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with the emergence of new technologies and services which depend on the loca-
tions of objects (e.g., see [1] for a survey, and [9]). However, usually, existing
works focused on query processing do not assume uncertainty for the locations
of the objects. Although some approaches consider different location resolutions
(e.g., see [33]), the problem of processing classical constraints such as inside con-710

sidering at the same time the location uncertainty and the interest of handling
location at different granularities has not been addressed.

Some relevant approaches that consider modeling the uncertainty of location
information in the context of MOD, as well as for static objects, are [25, 34],
but these proposals do not tackle the processing of queries at different location715

granularities. In [25], the authors introduced an uncertainty model where the
Gaussian pdf is used to process the trajectories of the moving objects. Besides,
in [34], a study of probabilistic range queries for static objects was carried out.
All these types of probabilistic queries involve using numerical methods to cal-
culate the probability that an object is within a region. Since these calculations720

can take a long execution time, a filter step can be introduced (see [26, 35]).
Other types of constraints, such as probabilistic nearest neighbor queries, have
been also studied [36, 37]. We refer the interested reader to [1] for a good survey
of contributions in this area.

Summing up, whereas the topic of location uncertainty is relevant, it is725

important to emphasize that, to the best of our knowledge, there is no existing
proposal that has considered probabilistic queries with granule maps, apart from
our work in [24], where we proposed a first preliminary approach. In this paper,
we settle the theoretical basis of the uncertainty location granules that allows
us to define a model where we can formalize the definition of the different kinds730

of probabilistic location-based queries using granule maps; a filter is applied to
prune/validate objects in queries, substantially improving their performance;
and we perform a detailed study of all types of the presented queries along with
a set of comprehensive experiments.

6. Conclusions and Future Work735

The expressivity of location-dependent queries can be enhanced by allowing
the user to use different location granularities to express his/her needs according
to different granule maps for each situation. This reduces the gap between how
users refer to locations and the underlying location data available. Moreover, the
specification of different granularities may have an impact not only on the query740

semantics but also on the performance and the way the results are presented
to the user. However, location mechanisms usually are subject to imprecision
(inherent to the sensors used to locate the objects, or introduced to force it, for
example, for privacy issues).

In this paper, we have proposed a model to deal with location imprecision745

using uncertainty location granules, thus extending the use of location granules
with a probabilistic approach. In particular:

• We have formalized the concept of uncertainty location granule to model
uncertain locations and their relationship with traditional location gran-
ules (granules without uncertainty).750
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• We have defined and developed new types of probabilistic location-based
inside queries that involve location granules with uncertainty.

• We have analyzed those probabilistic location-based constraints, provided
a general method to solve them, and proved its feasibility when the un-
derlying probability density functions are the uniform and normal distri-755

butions.

• We have performed an exhaustive performance evaluation. The experi-
mental results obtained are satisfactory in the different scenarios consid-
ered, showing the efficiency and scalability of the proposal.

As future work, we plan to study other popular location-dependent con-760

straints (such as nearest-neighbor queries, closest-pairs [38, 39] and similarity
joins [38], as well as reverse kNN queries [40]) from the perspective of loca-
tion granules with uncertainty. Finally, we are currently studying ways to en-
hance location granules by extending them with additional semantic information
and exploit it in reasoning processes, extending our initial proposals presented765

in [10, 15].
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