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Abstract

In the last years, users have become used to keyword-based search interfaces due to their ease of use. By matching input keywords
against huge amounts of textual information and labeled multimedia files, current search engines satisfy most of users’ information
needs. However, the principal problem of this kind of search is the semantic gap between the input and the real user need, as
keywords are a simplification of the query intended by the user. Moreover, different users could use the same set of keywords to
search different information; even the same user could do it at different times. The search system, before accessing any data, should
discover first the intended semantics behind the user keywords, in order to return only data fulfilling such semantics. The use of
formal query languages is not an option for non-expert users, so a semantic keyword-based search based on semantic interpretation
of keyword queries could be the solution, i.e., a search that starts discovering the semantics intended for the input user keywords,
and then only data relevant to that semantics are returned as answer.

In this paper we present a system that performs semantic keyword interpretation on different data repositories. Our system 1) dis-
covers the meaning of the input keywords by consulting a generic pool of ontologies and applying different disambiguation tech-
niques, 2) once the meaning of each keyword has been established, the system combines them in a formal query that captures
the semantics intended by the user, considering different formal query languages and possibilities that could arise, but avoiding
inconsistent and semantically equivalent queries, and, finally, 3) after the user has validated the generated query that best fits her/his
intended meaning, the system routes the query to the appropriate data repositories that will retrieve data according to the semantics
of such a query. Experimental results show the semantic interpretation capabilities and the feasibility of our approach.
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1. Introduction would be to mix the expressivity of formal languages with the
ease of use of keyword queries, while making the user unaware
of the data sources being accessed to solve her/his information
needs. Therefore, to deal with these problems, we advocate for
a semantic keyword-based search based on semantic interpre-
tation of keyword queries, a keyword-based search process in
which semantics of both keywords and query languages play a

crucial role during the whole search process.

The Web has made a huge and ever-growing amount of in-
formation available to its users. To handle and take advan-
tage of this information, users have found in Web search en-
gines their best allies. Most of these search engines have a
keyword-based interface to allow users to express their infor-
mation needs, as this is an easy way for users to define their
searches. Thus, the adoption of keyword-based search inter-
faces has spread widely in the last few years. However, the
ease of use of keyword search comes from the simplicity of its
query model, whose expressivity is low compared with other
more complex query models [31]. In fact, keyword queries are
simplifications of the queries that really express the user’s infor-
mation need. On the other hand, the use of expressive formal
languages (such as SQL or SPARQL) is far from being easy
for common users. Moreover, to effectively use formal lan-
guages, the user must have previous knowledge of the under-
lying schema and data s/he is accessing. Thus, the sweet spot

In any search engine which has an unstructured query lan-
guage as input, the main steps performed are: query construc-
tion, data retrieval, and presentation of results. Out of these
three steps, the first one is crucial because the more accurate
the system is able to capture the user’s information need, the
more precise results it will retrieve. However, the importance
of this first step is usually underestimated by adopting unstruc-
tured query models (i.e., bag of keywords), making the quick
access to huge amounts of data and the ranking of results the
most important steps of the whole process, while leaving the
burden of processing non-relevant data to the user. In this way,
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these approaches might miss what the user really wanted to re-
trieve as they hide less promoted results, making current search
engines useless when looking for certain (non-popular) infor-
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mation'. To enhance the search process, we aim at enhancing
the capture of the user’s information need by combining both
the benefits of the structured query models, and the ease of use
and spread of the keyword search. When it comes to keyword
queries, the process to translate them into a structured query is
named keyword query interpretation [19]. For this task, several
approaches (e.g., [42, 46]) advocate starting with the discovery
of the meaning of each keyword among the different possible
combinations. For instance, the keyword “book” could mean
“a kind of publication” or “to reserve a hotel room”. These ap-
proaches consult a pool of ontologies (which offer a formal, ex-
plicit specification of a shared conceptualization [24]) and use
disambiguation techniques to discover the intended meaning of
each user keyword. So, plain keywords can be mapped to on-
tological terms (concepts, roles, or instances). However, direct
interpretation might not be always possible as users tend to omit
information in their keyword searches (the average number of
keywords used in keyword-based search engines “is somewhere
between 2 and 3” [36]%), and therefore, relevant underlying
knowledge should be used to enhance this interpretation.

In this paper, we delve into that line and present Query-
Gen, a system that performs semantic interpretation of keyword
queries into multiple query language over different data reposi-
tories. Our system:

1. Discovers the meaning of the input keywords by consult-
ing a generic pool of ontologies and disambiguates them
taking into account their context (the rest of the keywords
in the input set); i.e., each keyword in the input has influ-
ence on the rest of the keyword’s meanings. In this pro-
cess, it retrieves and integrates knowledge about the input
terms, which will use in latter stages.

2. Then, as a given set of user keywords (even when their
semantics have been properly established) could represent
several queries, the system finds all the possible queries
using the input keywords in order to precisely express the
exact meaning intended by the user. This is done consid-
ering different formal query languages (the use of formal
languages avoids ambiguities and expresses the user in-
formation in a precise way) which are made available to
the system by semantically modeling them, and avoiding
inconsistent and semantically equivalent queries with the
help of a Description Logics (DL) reasoner [4]. During
this process, our system considers the addition of virtual
terms. These virtual terms represent missing keywords
that users had in their mind but did not input®. This way,
our system can explore further meanings when the user has
given an incomplete input.

3. Finally, once the user has validated the generated query
that best fits her/his intended meaning, our system routes

! According to the different criteria adopted by the ranking schema, which
can take into account other aspects apart from actual popularity.

2This data still hold as for April 2015, http: //www.keyworddiscovery.
com/keyword-stats.html?date=2015-04-01, last accessed May 20,
2015.

3For example, a user looking for movies whose genre is “horror” could enter
“horror movie”, omitting the keyword “genre”.

the query to the appropriate structured data repositories
that will retrieve data according to the semantics of such a

query.

The architecture of our system is flexible enough to deal with
different ontologies, formal query languages, and query pro-
cessing capabilities of underlying data repositories. We aim
at achieving the highest expressivity possible taking as start-
ing point a plain keyword-based input as it is the most spread
method to request information (using Web search engines).
Moreover, our system is robust to incomplete inputs as, using
the retrieved background knowledge, even in case that the user
input is just a single keyword, our system is able to deal with it
by exploring the implicit information description that the user
had in mind when that keyword was posed.

In particular, the main contributions of this work are as fol-
lows:

e We present our approach to Semantic Keyword Inter-
pretation, which is completely knowledge-guided. First,
our system applies semantic techniques to disambiguate
the input keywords and retrieve further knowledge about
them; and then, it interprets the semantics of the input key-
words structuring them according the semantics of the dif-
ferent formal query languages, obtaining a formal query
that is posed to the available underlying data repositories.

e We propose a generalized keyword interpretation process
based on semantic models of the query languages used to
structure keyword queries (i.e. not tied to any particular
query language). The semantic modelling framework pro-
posed allows QueryGen not to be restricted to DL-based
query languages, but to use any query language to inter-
pret keyword queries as long as it is correctly modeled.

o Experiments are provided to show the semantic interpreta-
tion capabilities of QueryGen as well as the feasibility of
the approach.

The rest of this paper is organized as follows. Firstly, in Sec-
tion 2, we give an overview of the architecture of the whole
system. The discovery of the meaning of the keywords and
the disambiguation process are explained in Section 3. Then,
the keyword interpretation process, in the form of query gen-
eration, is shown in Section 4. The solution adopted to handle
heterogeneous query types and data is presented in Section 5. A
complete example, from some sample input keywords to the re-
trieved data, is explained step by step in Section 6. We present
experimental results on the quality and the performance of our
approach in Section 7, and discuss some related work in Sec-
tion 8. Finally, the conclusions and future work are drawn in
Section 9.

2. Architecture of the System

In this section, we present the whole pipeline that allows us to
go from plain keywords to semantic queries and, finally, access
to data stored in different data repositories. We differentiate
three main steps (see Figure 1):
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Figure 1: An overview of the whole process: from plain keywords to the data
access.

1.

Discovery of Keyword Senses: In a first step, the system
obtains the exact semantics of the input keywords to trans-
form them into semantic keywords (keywords with well-
defined semantics). To do so, it consults a pool of on-
tologies to extract the possible meanings of each keyword,
integrating the meanings that are similar enough in order
to avoid redundancy. Then, the system applies different
disambiguation techniques to finally establish the mean-
ing for each keyword taking into account its context (the
possible meanings of the rest of the keywords). However,
this is only a first step towards obtaining the semantics of
the input. Several queries might be behind a given set of
keywords, even when their semantics have been properly
established individually. For example, given the keywords
“fish” and “person” meaning “a creature that lives and can
breathe in water” and “a human being”, respectively, the
user might be asking for information about either biol-
ogists, fishermen, or even other possible interpretations
based on those individual keyword meanings.

Semantic Query Generation: Once the meaning of each
keyword has been established, our system automatically
builds a set of formal queries which, combining all the
keywords, represent the possible semantics that could be
intended by the user when s/he wrote the list of plain key-
words.

To be able to interpret keyword queries into different query
languages, QueryGen needs to be provided with seman-
tic models of such query languages. Each query lan-
guage is modeled using an augmented abstract grammar
which comprises information about which operators are
supported by that query language and their semantics. As
we will see in Section 4.1, the grammars used to model
the semantics of query languages are syntax-agnostic, and
define how to combine the operators of such query lan-
guages in terms of typed gaps, i.e. they specify which
kind of queries can be built using concepts, roles, and in-
stances in the corresponding query language (e.g.: AND
concept concept). QueryGen uses these semantic models
along with the semantic keywords obtained in the previ-
ous step to build possible interpretations in different for-
mal query languages (the expressivity of our approach is
only bounded by the expressivity of the formal query lan-

guages made available to our system to precisely express
the user intended query).

The result of this generic interpretation process is a set
of abstract queries (i.e., possible interpretations agnostic
to the actual input as they are formed using typed gaps)
that the system materializes into a list of actual queries by
substituting the typed gaps by input keywords. Then, the
set of (syntactically correct) generated queries are seman-
tically filtered using a DL reasoner.

When no query satisfies the user, our system performs a
semantic enrichment of the input by adding virtual terms.
They are generic typed gaps (to be replaced by concepts,
roles, or instances) that represent the keywords that the
user might have omitted, but without whom the intended
query cannot be built. In a new query generation step,
our system treats them as regular typed gaps but, instead
of being replaced by input keywords, they are substituted
by terms obtained from the ontologies which the input
keywords were mapped to (during the previous discovery
step). Thus any query that the user could have in mind
will be generated as a candidate interpretation as long as
the available query languages are expressive enough.

This query generation process has both a syntactic and se-
mantic dimension: it generates only syntactically correct
queries according to the grammar of each of the query
languages, and it takes into account the semantics of the
operators of each language and the semantics of the key-
words to avoid generating both duplicated and incoherent
queries. This process is performed in parallel for each
available query language as their expressivity can differ
from each other.

3. Access to Data Repositories: Finally, once the user has

validated the generated query that best fits her/his intended
meaning, the system forwards it to the appropriate under-
lying structured data repositories (databases, Linked Data
endpoints, etc.) that will retrieve data according to the se-
mantics of such a query. This is far from being a trivial
task, as their different query processing capabilities and
data models make it necessary that our system adapt itself
to their different access methods and formats of retrieved
data.

In the following sections, we include a detailed description
of each of these three main steps.

3. Discovery of Keyword Senses

As stated in the previous section, the first step that our system
performs is the discovery of the semantics that exist behind the
user keywords. This discovery is done by taking into account
the individual possible semantics of each keywords as well as
the possible semantics of its context (the rest of keywords), fol-
lowing the proposal in [46]. In particular, this process is divided
into three substeps (see Figure 2):

e Extraction of Keyword Senses: The system extracts out

the possible meanings of each keyword from a dynamic
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Figure 2: Discovery of keyword senses.

pool of ontologies (in particular, it queries Watson [16],
DBpedia [8], WordNet [38] and other ontology reposito-
ries to find ontological terms that syntactically match the
keywords - or one of their synonyms). The system builds a
sense for each matching obtained. These senses represent
the exact meaning of a keyword, and are composed of a list
of synonym URIs for the keyword, an ontological context
(defined for an ontological term in [22] as “the minimum
set of other ontological terms that, belonging to its seman-
tic description, locate the term in the ontology and charac-
terize its meaning”), and a description in natural language
of the sense. Then, the extracted senses are semantically
enriched with the ontological terms of their synonyms by
also searching in the ontology pool. The result is a list of
candidate keyword senses for each user keyword. In Fig-
ure 3, three possible senses (two as a class and one as a
property) retrieved for user keyword star are shown.
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Figure 3: Possible senses for keyword star.

o Keyword Sense Enrichment and Removal of Redundancy:
As the obtained senses were built with terms coming from
different ontologies, they could represent the same seman-
tics. An incremental algorithm is used to align the differ-
ent keyword senses and merge them when they are similar
enough. To assess the sense similarity, our system calcu-
lates a synonymy probability that considers both linguistic
and structural characteristics of the source ontologies: the
linguistic similarity is calculated considering as strings the
different labels of each term; and the structural similarity

is calculated recursively exploiting the semantics of the se-
mantic keywords (their ontological context, see Figure 3)
until a certain depth. Finally, both similarity values are
combined to obtain the resultant synonymy measure®.

Senses are merged when the estimated synonymy proba-
bility between them exceeds a certain threshold®>. Thus,
the result is a set of different possible senses for each user
keyword entered.

e Disambiguation of Keyword Senses: A disambiguation
process is carried out to select the most probable intended
sense of each user keyword by considering the possible
senses of the rest of keywords. The senses are compared
by combining [23]: (a) a web-based relatedness measure,
that measures the co-occurrence of terms on the Web ac-
cording to traditional search engines such as Google or Ya-
hoo!, (b) the overlap between the words that appear in the
context, and the words that appear in the semantic defi-
nition of the sense [5], and (c) the frequency of usage of
senses (when available, as in WordNet annotated corpora).
Thus, the best sense for each keyword will be selected ac-
cording to its context. Note that this selection can require
the user’s feedback to select the most appropriate sense for
each keyword in a semi-automatic way.

This discovery and disambiguation algorithm, which (due to
space limitations) has been summarized here for the sake of
completeness, is thoroughly described in [46], and it has been
successfully applied to very different tasks such as ontology
matching [21], the integration of senses in semantic reposito-
ries [20], or the construction of multi-sourced ontologies [10].

4. Semantic Query Generation

Once the meaning of each keyword has been established, our
system automatically builds a set of formal queries which, com-
bining all the keywords, represent the possible semantics that
could be intended by the user when s/he wrote the list of plain
keywords. The main generation steps are shown in Figure 4:

e Analysis Table Constructor: It constructs the analysis ta-
bles for the formal query languages that the generator uses
to generate the possible queries. This is done off-line and
just once for each language made available to the system.

e Query Generator: It builds the possible queries for each
query language according to its defined operators. Dur-
ing the generation process, QueryGen takes into account
the semantics of the different operators to avoid generat-
ing semantically equivalent queries.

4The formulae for the synonymy for each type of senses (concepts, roles
and instances) can be found in [46].

3In [20], the authors proposed several strategies to obtain this threshold and
validated them via thorough experimentation.



e Semantic Processor: Once the set of syntactically possi-
ble queries is obtained, the system is able to filter out the
inconsistent ones with the help of a DL reasoner. Dur-
ing this step, it also performs a semantic enrichment to try
to find possible implicit keywords that have been omitted
due to the simplistic nature of the keyword query model.
To do so, our system adds virtual terms (VTs) to the in-
put. They are generic typed terms (they can be generic
concepts, roles, or instances) that represent the keywords
that the user might have omitted, but without whom the
intended query cannot be built. When the system uses
VTs, an extra step is carried out to substitute them with
appropriate terms taken from the ontologies which the in-
put keywords were mapped to.
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Figure 4: Multi-language query generation process.

In the following, we detail these three main query generation
steps plus a presentation step to ease the intended query selec-
tion.

4.1. Analysis Table Constructor

In order to be able to interpret keyword queries into different
query languages (with their different expressivities, defined by
their operators), QueryGen has to be provided with a semantic
model of each of such query languages, in the form of an ex-
tended abstract grammar. These grammars: 1) comprise infor-
mation about the query language supported operators (and how
to combine correctly their operands), 2) leave aside the syntax
of the query languages they represent to make the generation

process independent of any particular language, and 3) are se-
mantically annotated with a twofold goal: to avoid generating
duplicated queries, and to check the satisfiability of the query
according to the knowledge retrieved by the system.

With these grammars, the system builds the analysis tables®
that are used by the Query Generator (see Section 4.2) to build
all the possible syntactically correct queries corresponding to
the input user keywords, according to each available query lan-
guage. Note that these tables are built only once for each new
output query language that is made available to the system, and
they are used every time a new query is posed to the system.

Specifying the Query Languages

To make a new query language available to our system, its
context-free grammar G must be transformed into an abstract
context-free grammar G’, where the syntax elements of such a
language have been removed. In this grammar, operators be-
come non terminals, and the right side of their productions are
the operands they accept. Instead of working with bare syntac-
tical tokens, these grammars have three basic types of tokens:
Concept (C), Role (R), and Instance (I), which correspond to
the three main types of elements in ontologies. Thus, the use
of these abstract grammars makes the translation process inde-
pendent of the syntax of the query languages. We define these
abstract grammars as tuples G’ =< Q, N, T, P >, where:

o Qis the starting symbol of the grammar, and represents the
root of the query.

o N = {Opi} U{Qps} U {Ryypes), with {Op;} containing the
set of operators of the query language; {Q,} being a set of
nonterminals to build up the different parts of the queries
(if required by the query language); and {Ryy,.s} being the
types of the returning values of the query language opera-
tors. Each element Op; is a tuple < Op;p, {prop;} >, with
the id of the operator and its associated properties.

e 7 is the set of terminals that we work with, and is con-
formed by C, R, and I (corresponding to concept, role,
and instance tokens, respectively), plus the empty token
symbol &.

e P = {< prod; localCond;, globalCond; >} is the set of
productions which define: a) if the left-side nonterminal
is an operator, an ordered list of the types of operands it
works with, and b) if it is a returning type ({Ryyes}), the
operators that produce the returning values of that type;
localCond; and globalCond; are expressions which define
the semantic conditions that have to be checked to cor-
rectly apply the operator.

These grammars makes our system able to, once it knows
whether the input keywords are concepts, roles or instances,
build semantically correct interpretations expressed as formal
queries in the different query languages that are available. In

oIt builds the Goto and Action tables, as defined in [3].



Figure 5, the extended abstract grammar corresponding to a
subset of BACK’ query language [39] is shown.

Query — Projections’getall’ Concept
Projections —= €
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Figure 5: a) Simple BACK grammar, and b) the resulting abstract grammar
(semantic annotations are not included).

In particular, in the BACK example:
e The initial symbol Q is Query.

e For N, {Op;} contains Projections, And, All, Fill, and Some
nonterminals; {Q,,,} would be empty; and, {R,y s} contains
Concept, Role, and Instance nonterminals.

e 77, as we have defined before, contains C, R, [ and ¢ to-
kens.

e P contains each one of the productions in Figure 5.b.

Properties of the Operators. As we have seen in the definition
of the extended grammars, each of the operators comes with a
list of its properties. In particular, the properties considered are
associativity, involution, symmetry, restrictiveness and inclu-
siveness. The first three ones are well known properties, while
restrictiveness and inclusiveness are defined in [12] as follows:

Definition 1. Let C and R be the sets of concepts and roles
in the domain discourse. A binary operator op is restrictive if
there exists a function f : K — C, with K being C or R, such:

Vxe KAyeC: f(x) Ty= op(x,y) = op(x, f(x))

Definition 2. Let C and R be the sets of concepts and roles in
the domain discourse. A binary operator op is inclusive if there
exists a function f: K — C, with K being C or R, such:

Vxe KA yeC: f(x) 3y = op(x,y) = op(x, f(x))

From these definitions, and according to the semantics of
the operators in BACK, it can be shown that: 1) by choosing
f(x) = x with K = C, the And operator is restrictive, and the
Or operator is inclusive; and 2) by choosing f(x) = range(x)
with K = R, the Some and All operators are restrictive. Follow-
ing with the specification of the excerpt of BACK language, a
summary of the properties of the considered operators is shown
in Table 1.

In this example, we consider the Projection operator as asso-
ciative as all the roles that are specified in the projections list
are applied to the same concept. Thus, the order in which we
apply them does not matter. The same reasoning is applied to
consider it symmetric.

7 Although it is obsolete (discontinued since 1998), we use BACK in the
examples for didactic purposes as it is very concise and supports projections.

Table 1: Properties of the operators of BACK language.

Operator | Properties
And associativity, symmetry, restrictiveness
Some restrictiveness
All restrictiveness
Fill none
Projections | associativity, symmetry

Expressions for Semantic Checking. Each production in the
grammar can be annotated with semantic expressions that are
checked with the help of a DL reasoner. These expressions are
built using the operators shown in Table 2. There are two types
of conditions for each production, local and global ones, de-
pending on the information that they comprise:

e A local condition locCond; on a production prod; details
semantic constraints that the nonterminals on the right side
of the production must satisfy for the production being el-
igible to be fired. This is used to perform an extended
semantic type checking on the operands locally.

e A global condition globalCond; on a production prod; pro-
vides a semantic translation of the production that allows
to translate it into a checkable DL expression (even with
non-DL query languages). Using these conditions, Query-
Gen can build a global DL expression that comprises the
semantics of the associated query, and check its consis-
tency according to the retrieved knowledge.

Following with the simplified BACK example, there are no
local conditions on the different productions due to the fact
that the operators do not impose any special constraint on
their operands (apart from their general type -concept, role or
instance- which is explicitly stated in the right part of the pro-
duction). Regarding global conditions, there are several anno-
tated productions, as we can see in Table 3.

Table 3: Global conditions on the productions of the abstract grammar for
BACK language.

Production Global Condition
Query — Projections Concept And($1, $2)
Projections — Role Projections | And(Dom($1), $2)
Projections — & Thing
Concept — And $1
Concept — All $1
Concept — Fill $1
Concept — Some $1
Concept — C $1
Role —» R $1
Instance — 1 $1

The first condition tells the system to check the conjunction
of the concepts returned by the Projections operator and the rest
of the query (Concept). The concept returned by the Projec-
tions nonterminal is built according to the second condition: It



Table 2: Operators of the inner specification language to establish what has to be checked about the operators of the final specified language.

Operator

Meaning

[

SubClassOf (¢pty, cpty)

SubPropOf (role;, role,)
Dom (role)
Range (role)

Class (inst)
InstanceOf (inst, cpt)
And (cpty, cpta)

Or (cpty, cpty)
Satisfiable (cpt)

A (bool,, bool,)

V (booly, bool,)
= (bool)

Thing
Nothing
Neutral

It refers the *-th element of the right side of the production

It checks whether cpt, is subsumed by cpt,

It checks whether role; is subproperty of role,

It returns the domain of role

It returns the range of role

It returns the class of inst

It checks whether inst is instance of cpt

It returns the concept intersection

It returns the concept union

It checks the satisfiability of cpt

It calculates the boolean And of bool; and bool,

It calculates the boolean Or of bool, and bool,

It calculates the boolean Not of bool

It returns the Top concept, which is the identity element for And operator
It returns the Bottom concept, which is the identity element for Or operator
It lets the system choose which identity element to use depending on the context

appends the domains of the different roles using And operators.
The rest of the global conditions just tell the system not to touch
anything about the returned concepts. Note that there are no
global conditions for the productions with the And, Some, All,
and Fill operators because they directly map to DL-expressions
and their associated Concept can be built directly without any
given expression.

With these semantic annotations, our system is able to gener-
ate only both syntactically and semantically correct queries, as
we will see in the following subsections.

4.2. Query Generator

For each query language available, a different generation
thread is launched to build the possible queries expressed in
such a language. As example, let us assume that a user enters
keywords “person fish” to find information about people de-
voured by fishes, which are mapped to the homonym terms in
the ontology Animals®, and that the simplified version of BACK
defined is used as target query language. The query generation
process is divided into three main steps:

o Permutations of Keyword Types: To decouple the gener-
ation process of any specific language, its first stage is
syntax-based. So, the system firstly obtains all the possi-
ble permutations of the types of term (concept, role, or in-
stance) corresponding to the semantics of each input key-
word, to discover any syntactically possible query in latter
steps. In the example, person and fish are concepts, so the
output of this step would be <C,C>, as no more permuta-
tions are possible. The results of this step are shared by all
the language threads.

8http://wuw.cs.man.ac.uk/~rector/tutorials/
Biomedical-Tutorial/Tutorial-Ontologies/Animals/
Animals-tutorial-complete.owl

o Generation of abstract query trees: For each permutation
obtained in the previous step, the system generates all the
syntactically possible combinations according to the gram-
mars of the available query languages. We call these com-
binations abstract queries because they have gaps that will
be filled later with specific concepts, roles, or instances.
These abstract queries are represented as trees, where the
nodes are operators and the leaves are typed gaps (concept,
role, or instance gaps). Following the previous example,
with the input <C,C> and simplified BACK as query lan-
guage, And(C,C) would be built as an abstract query.

In this process, the system uses bottom-up parsing tech-
niques [3] and the tables that have been built off-line in the
previous Analysis Table Construction step. The semantics
of the operators are considered to avoid generating equiv-
alent queries. In particular:

— Associativity property is used to compact query trees
such as And(C,C,C), which could be the result of sev-
eral abstract query trees such as And(C, And(C,C)) or
And(And(C,C),C).

— Symmetry is used to avoid generating duplicated
trees, such as And(Some(R, C),C) and And(C,
Some(R,C)).

— Involution is used to avoid infinite loops in the
trees. For example, when considering Not operator,
Not(Not(C)) will not be generated as it is equivalent
to C.

e Query rendering: For each abstract query tree generated,
the gaps in the leaves are filled with the user keywords
matching the corresponding gap type. The result of this
step for the running example would be And(Person, Fish),
i.e., entities which are a person and a fish, which in this
case we know that do not represent what the user had in



mind although, for the system, it is a syntactically possible
query to consider.

In this step, symmetry property is considered to avoid
rendering duplicated queries. Following the example,
And(C,C) has led to And(Person,Fish), and the system has
avoided to built And(Fish,Person) as it is equivalent due to
the semantics of the operator.

Thus, at the end of this step, our system has built all the syn-
tactically possible queries in each of the available languages.
However, being syntactically correct does not imply that all of
them are semantically consistent. In the following section, we
present the techniques that our system applies to filter out the
queries that are inconsistent according to the semantics of the
keywords, and to further explore the possible query space when
no query satisfies the user (e.g. due to an incomplete input).

4.3. Semantic Processor

Once the system has obtained all the syntactically possible
queries, the Semantic Processor comes into play. As aforemen-
tioned, it has two main tasks: To check the queries semanti-
cally according to the available knowledge; and to perform a
semantic enrichment of the input to suggest further interpreta-
tions when the intended query cannot be found by the user. In
the rest of the section, we detail these processes.

Inconsistent Query Filtering

During the previous steps, all the user keywords have been
combined into queries that are syntactically correct according
to the different available query languages. However, some of
these queries might not be semantically correct according to
the semantics of keywords. So, the system filters out the incon-
sistent queries with the help of a DL reasoner using the knowl-
edge corresponding to the keyword semantics. In our exam-
ple, And(Person, Fish) would be removed in this step as it is
classified as being inconsistent (Person and Fish are defined as
disjoint classes in ontology Animals).

This consistency evaluation is direct when dealing with DL
languages as they can be directly translated into concepts and
the reasoner can be asked about their consistency. However,
when it comes to non-DL languages, we have to tell the system
how to check them via the specification of the language. As
seen in Section 4.1, there are two types of conditions associated
to each of the productions, local and global ones:

e Local conditions: They provide semantic checkings that
have to be performed on the operands of the production.
A query must hold all the local conditions constraints; oth-
erwise, it must be filtered out as inconsistent one because
there would be any production that should not have been
fired. In Figure 6, an example of a percentage operator is
shown.

The definition of this operator tells the system that their
operands must hold that the first one is subclass of the
second one to be applicable. In this case, if Male was a
subclass of Person then this part of the query would be

Ingtance SubClassOf(Male,Person) ?
| V
Percentage Percentage($1,$2)
/ - x&mcla&ﬂf(s&l&)
Concept Concept
C C
Mae Person

Figure 6: Example of semantic checking on the local conditions of a non-DL
operator (only local conditions are shown).

locally consistent. All the nodes of a query have to be lo-
cally consistent for the query to be considered for global
consistency. Note that, otherwise, there would be a part of
the query that had been built incorrectly.

¢ Global conditions: A query holding all the local conditions
only probes that it is syntactically correct (by construc-
tion), and that all the operators have been correctly ap-
plied. However, the query might still be inconsistent due to
its whole meaning. As mentioned before, the global mean-
ing is obtained easily for DL-languages, as queries can be
seen as concepts and therefore, directly translated and se-
mantically checked. However, for non-DL languages (e.g.,
SQL-like languages) or for extensions of DL-languages
(e.g., the projection operator of the simplified BACK lan-
guage), this is not directly applicable. Global conditions
provide a translation of each of the productions of the lan-
guage to build a semantic expression that comprise the
global meaning of the query.

Our system translates the query into a checkable DL-
expression by traversing recursively its associated query
tree and applying the global conditions expressions to each
node. This traversal is performed in a depth-first way.
During it, our system applies the different condition op-
erators with the help of a DL-reasoner. Following with
the example in the query generation, if we added the key-
word owns to the input, mapped to the homonym term
in ontology Amnimals, the system could form the query
[owns](And(Person, Fish)), that is, the entities that are
owned by a (Person and Fish). In Figure 7, an example
of the global checking on this query involving a projection

is shown.
Query
/ Wmsz)
And(Dom(1), sﬁgje&ﬂ"{ Cong And( And(Dom(owns), Thing),
T G And(Person, Fish))
Role Projections And
) _ s AndsL82) And( And(Person, Thing)
s i i :
‘ * ‘ e / \ And(Person, Fish))
R € Concept Concept
owns ‘ $1 ‘ $1 And( Person, And(Person, Fish) )
C C
Person Fish

Figure 7: Example of the global semantic checking on a DL-query involving
projections (only global conditions are shown).

Going from the leafs to the root node, our system is able



to form the global expression applying the global con-
ditions on the productions. In particular, the conditions
on Projections operator establishes that, to be able to ask
for the value of a property for the instances of a partic-
ular instance, the domain of the property must be com-
patible with the concept (i.e., not disjoint, which can be
checked out by evaluating their conjunction). So, the sys-
tem applies the specification to translate the query tree into
And(Dom(owns), And(Person, Fish)). Resolving the dif-
ferent operators with the use of the DL reasoner, this ex-
pression leads to And(Person, And(Person, Fish)), which is
inconsistent as we cannot ask for the properties of a con-
cept that is not satisfiable.

Note that all these checks cannot be performed before: Un-
til the rendering step, the system is working just taking into
account the structure of the queries. It is not until the system
substitutes the typed gaps on the abstract queries with the input
terms, that the actual query is built (along with its meaning).
Due to the size of the query search space, we prioritized its re-
duction. Removing firstly all the possible abstract queries (each
of which results on a set of actual queries after the query render-
ing step) pruned the search space and lead to a lower number of
queries to be checked than working with the actual terms from
the beginning.

Finally, the performance of this step is greatly boosted by
the fact that the set of generated queries forms a conservative
extension [15] of the original ontologies. Once an ontology has
been classified, this property makes it possible to evaluate the
satisfiability of the queries without reclassifying the ontology,
as each query does not assert new knowledge into that ontology.

Semantic Enrichment

When no query either is generated or satisfies the user, our
system considers that something could be implicit in the user
input. The average number of keywords used in keyword-based
search engines “is somewhere between 2 and 3” [361°, so there
is a high chance that the user might have simplified too much
its information need, specially regarding complex queries.

To deal with this lack of information, our system adds virtual
terms (VTs) to the original list of user keywords (Insert Virtual
Terms step in Figure 4). These VTs represent possible key-
words that the user may have omitted as part of her/his query, as
akeyword query is a simplification of her/his actual information
need. Then, the previous steps are executed again to generate
queries considering these VTs. In our example, the extended
inputs considered would be “person fish VT oncp:”” and “person
fish VT,,.”, which allows the system to build, among others,
the enriched abstract query And(Person (Some(V Ty, Fish))'°.

These queries with VTs have to be rendered again (Vir-
tual Term Rendering step in Figure 4). Our system replaces
any existing VT by compatible terms (i.e., terms of the same

9This data still hold as for April 2015, http: //www.keyworddiscovery.
com/keyword-stats.html?date=2015-04-01, last accessed May 20,
2015.

10Here, VT, is the VT to be rendered with a compatible role.

type: concept, role, or instance) extracted from the ontologies
which the input keywords were mapped to in the disambigua-
tion process (see Section 3). To build only semantically correct
queries in an efficient way, the system narrows the set of can-
didate terms by using the ontology modularization techniques
described in [30].

Moreover, in this step, restrictiveness and inclusiveness prop-
erties are considered to avoid generating equivalent queries. Re-
strictiveness property allows the system to prune for VT render-
ing the super classes of the other fixed operand. For example,
if the system has to render the VT in And(Person, VT concept), it
will only consider concepts that 1) have no subsumption rela-
tionship with Person, or 2) are subsumed by Person. The rea-
son is that “any term that subsumes Person And Person” is al-
ways equivalent to “Person”. Inclusiveness works the other way
round, allowing the system to prune the subclasses of the fixed
operand.

In the example, the previous enriched abstract query is ren-
dered into And(Person (Some (is_eaten_by, Fish)) (among oth-
ers), which actually represents the exact semantics intended by
the user when s/he entered the keywords “person fish”.

Note how, in the example, our system considered only VTs
for concepts and roles. At first, we did not considered instances
for the semantic enrichment as ontologies themselves usually
do not have them (it happens frequently [48]). Moreover, it
seemed pretty safe to assume that when a user is looking for in-
formation about something very specific, the implicit keywords
might be roles or concepts, rather than instances. For example,
a user looking for information about terror movies (a possible
query might be And(Movie, Fill(genre,terror)), will input “hor-
ror movies” instead of “movies genre”. However, our approach
can effectively deal with instances as well, but we advocate for
asking the user to explicitly fill the instance value when appro-
priate instead of showing her/him all the possibilities (which
might be even unfeasible, for instance, when we are dealing
with datatypes such as strings or integers).

The query generation approach presented here extends our
previous works in [11, 12] where we focused on DL query lan-
guages only, a limitation we have got rid of without losing the
semantic capabilities of our system. We have extended them
by proposing a semantic approach to model query languages,
and applying the generation, semantic enrichment, and filtering
to non-DL query languages through the use of such semantic
models. Moreover, instead of selecting a target language, the
system considers all the possibilities and makes it transparent
for the user. Last but not least, we also consider different un-
derlying query and data models, and as we will see in the next
section.

4.4. Query Presentation

The way in which the generated queries are presented to the
user also makes a difference. Users’ attention is a capital re-
source and we have to minimize their efforts to express their
information needs. Thus, to minimize and compress the infor-
mation shown to the user, we adopt the pattern based techniques
we introduced in [12]. These techniques could be applied along
with some ranking schema, but we do not apply any ranking on



purpose to avoid hiding any possible interpretation. Moreover,
it is not clear how to identify the query that a specific user had
in mind when writing a set of keywords, as approaches based
on semantic distances would also hide possible meanings.

Table 4: Queries and patterns generated for “person bus” using BACK.
Queries Patterns

all(drives, person) and bus

all(drives, bus) and person allR, C) and C

some(drives, person) and bus

some(drives, bus) and person some(R, C) and C

all(drives, bus and person)

all(R, C and C)

some(drives, bus and person)

some(R, C and C)

(C: concept, R: role)

In brief, our system takes advantage of the syntactic similar-
ity of the generated queries and of the ontological classification
of the terms that compose the queries. It analyzes the struc-
ture of the queries to extract common syntactic query patterns
which lead to a very compact representation of the queries. A
small example is shown in Table 4 for the input “person drives”.
Then, the candidates for each substitution are organized accord-
ing to their taxonomy, and a DL reasoner is used to navigate
through their direct subsumers and subsumees. This is espe-
cially useful when the system tries to find out the user’s inten-
tion by adding VTs. A query pattern shows an expression with
the VTs not substituted (i.e., with gaps) and the system main-
tains a list of potential candidates for each gap (see Figure 8).

‘F\xl

someifiis_eaten by [*} Fish) and Person | subsurmers Level |

| Subsumees ‘

Figure 8: Example of query pattern for “person fish”.

See Section 7.3 for an evaluation of the reduction effective-
ness of this presentation technique. Finally, note that these pat-
terns could be easily translated into natural language to make
the usage of the different information sources and their associ-
ated formal query languages transparent to the user, although
this is out of the scope of this paper.

5. Access to Data Repositories

Once QueryGen has obtained the intended semantic query,
it has to access the underlying data corresponding to its se-
mantics. These underlying data might be stored in different
data repositories, with different data organizations, and with
different query capabilities (query languages and formats of an-
swers) [47]. Moreover, the accessed data repositories might
support queries of different nature, e.g., some repositories pro-
cess only snapshot queries, while others might be capable of
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processing continuous ones, refreshing the answers continually
and requiring a different communication schema.

To provide QueryGen with enough flexibility to deal with
this data heterogeneity, we advocate for the architecture shown
in Figure 9, whose main modules are the following:

LOQOMOTION

@

-
o
selects
< & semantic query

DBPedia
SPARQL Endpoint

L

Figure 9: Our system can retrieve data from different channels and data models.

e Dispatcher: Once the user selects her/his intended query
from those generated by QueryGen, the Dispatcher poses
the query to the underlying data repositories that are ca-
pable to process it. It consults the characteristics of their
query processing services that their Adapters expose, and,
depending on them, creates the appropriate communica-
tion channels. For example, a snapshot query only implies
one answer, while a continuous query needs answer re-
freshments along the time. Every underlying system that
is capable of processing the selected query is accessed in a
parallel way as any of them could hold the desired answer.
Finally, the Dispatcher correlates the data coming from the
different systems and presents them to the user.

e Adapter: It wraps the access to the data stored in informa-
tion systems with a certain data organization (e.g., there
is an Adapter for relational databases, a different one for
SPARQL endpoints, etc.). It registers itself in QueryGen
providing information about the querying capabilities of
the accessed information system, and making itself avail-
able to the Dispatcher. There is one instance of the appro-
priate kind of Adapter for each system accessed by Query-
Gen.

Thus, once the query has been rendered and selected, it is
forwarded to the Adapters that are able to process it. The ef-
fort of translating the selected query into the final query lan-
guage syntax falls upon the Adapter. Note that the Adapter
developer is responsible for modelling the language using an
abstract grammar, and thus, QueryGen is syntax agnostic: It is
completely guided by the query language models provided by
the Adapters. Finally, note that the selected query will never
have virtual terms: It will be a well-formed query which uses
the senses of the input keywords along with ontological terms
that have suggested to substitute the virtual terms (in the query
rendering step).

In QueryGen, each Adapter Ad; is characterized by a tuple

< {< langida lang;{?% >}s {Qlype}’ {dformat} >

where:



o {< langis,lang.)* >} is the set of languages that the

Adapter Ad; is capable to process. When the Adapter reg-
isters itself, the Dispatcher checks whether the language
has been already added to the system. If it was, it adds Ad;
to the list of systems that are capable of process lang;,.
Otherwise, it adds the new language to the system, requir-
ing the Analysis Table Constructor to build the information
needed to enable QueryGen to use it.

® {Ospe} is type of queries that the Adapter Ad; supports.
In particular, QueryGen is able to deal with the following

types:

— Snapshot queries: they are posed and answered once,
in a pull way (e.g. a SQL query against a relational
DB).

— Monitoring queries: they are posed once, but the an-
swer is updated continually in a pull way (the Dis-
patcher is responsible for retrieving the new data).
This type of queries is useful when, independently
of the frequency at which the answer/data might
change, the updates are not critical and, therefore,
the system might relax the resources requirements,
executing a snapshot periodically (e.g. a web service
providing information about the weather, invoked ev-
ery hour).

— Continuous queries: they are posed once, but the an-
swer is updated continually via update events in a
push way (e.g. a location dependent query where the
position of the mobile objects is continuously chang-
ing [29]). Itis the underlying system, via its Adapter,
who updates the answer at the requested query re-
freshment frequency.

® {dformar} 1s the set of data formats that the Adapter Ad; is
able to offer (e.g. CSV values, RDF/XML, etc).

QueryGen relies completely on the implemented Adapters to
access data, thus, the way data is actually accessed (e.g., feder-
ated query processing) is transparent to QueryGen. QueryGen
routes the selected query and establishes the appropriate com-
munication channels with each of the Adapters capable of pro-
cessing it. In the developed prototype of QueryGen, we have
integrated successfully the data access to two information sys-
tems of different nature: the location-dependent query proces-
sor LOQOMOTION [29] (which processes continuous queries)
and DBpedia [8] (as SPARQL Endpoint)'!. The registering tu-
ples for their Adapters comprise the following information (for
LQOOMOTION and DBpedia'?, respectively):

< {< KeyLOQO, KeyLOQOGrammar >},
{S napshot, Monitoring, Continuous}, {CS V} >

1We refer the interested reader to [9] for the details of the semantic models
of both query languages.

12The DBpedia Adapter performs a query rewriting from the DL queries ex-
pressed in simplified BACK into SPARQL.

< {< S Back, S BackGrammar >},{Snapshot},{RDF} >

As above mentioned, Adapters are in charge of performing
the translation of the syntax-free semantic queries into the fi-
nal languages that their underlying systems process. This ar-
chitecture is an evolution of the wrappers proposed in OB-
SERVER [37], which adapted the queries to the different an-
swering capabilities of the data repositories. In particular, the
main capabilities that our system inherits from OBSERVER are
the data integration capabilities, the query alignment capabili-
ties (OBSERVER used static mappings, but dynamic mappings
could also be considered), and the ability of processing incom-
plete queries, this is, accessing several sources to obtain an ap-
propriate answer (this is done at Adapters level). The separa-
tion into two elements allows us to increase the flexibility and
integrate systems that have different query processing capabil-
ities, not only concerning the language expressivity, but also
concerning both the query types and data models.

Finally, we want to remark that, independently of the under-
lying data repository accessed, QueryGen only access to data
that corresponds to the semantics stated by the user, which have
been maintained all along the process, thanks to the transforma-
tion of plain input keywords into a semantic query representing
exactly what the user wanted to retrieve.

6. From Keywords to Data: A Complete Example

In this section, we give a complete example from the input of
the user to the data retrieved from DBpedia'® to illustrate each
of the steps performed by our system. We restrict the seman-
tics to the different ontologies used in DBpedia for the sake of
simplicity in the explanations. As an illustrative example, let
us assume that a user watched old cartoons starred by a dumb
tall black dog many years ago. S/he does not recall its name
(in fact, s/he is thinking about Goofy, the Disney character), but
s/he wants to know since when this character exists. As s/he
cannot provide more specific input, s/he inputs the keywords
“Fictional Dog Appearance”:

1. In the disambiguation process, our system offers the user
several interpretations for each keyword:

o For “Fictional” one of the proposed meanings is the
concept dbo:FictionalCharacter.

e For “Dog”, one of the proposed meanings is
an integrated sense containing the DBpedia URL
dbpedia:resource/Dog, considered as an instance
of Animal in the DBpedia ontology.

e For “Appearance” one of the proposed meanings is
the role dbo: firstAppearance.

2. In the generation process, the user cannot find the intended
query, as no combinations of FictionalCharacter, Dog and

13The namespaces used in this section are dbpedia http: //dbpedia.org/,
dbo http://dbpedia.org/ontology/, dbpprop http://dbpedia.org/
property/, and dbresource http://dbpedia.org/resource/



firstAppearance represents her/his intended query. How-
ever, by considering one VT during the semantic enrich-
ment step, the system can try adding the role dbpprop:
species. This allows the system to find out the query
intended by the user:

[firstAppearancel(FictionalCharacter and (Fill species Dog))

which has to be read as “retrieve the first appearance of the
fictional characters whose species is dog”.

3. The system detects that the query can be processed by
the DBpedia Adapter and forwards the query to it. The
adapter translates the query into the corresponding under-
lying query language (a SPARQL sentence):

SELECT * FROM <http://dbpedia.org>

WHERE { ?x a dbo:FictionalCharacter.
?x dbpprop:species dbresource:Dog.
?x dbo:firstAppearance 7y. }

which retrieves the first appearance of several fictional
dogs (see Table 5), among which Goofy’s can be found'4.

Table 5: Results for the first appearance of fictional dogs returned by DBpedia
(including Goofy’s).

Character
FirstAppearance
dbresource:Huckleberry_Hound
Huckleberry Hound Meets Wee Willie (1958)
dbresource: Goofy
Mickey’s Revue (1932)
dbresource:Scrappy-Doo
The Scarab Lives! (Scooby-Doo and Scrappy-Doo)
dbresource:Spike_and_Tyke_(characters)
Dog Trouble (18 April 1942)
dbresource:Spike_and_Tyke_(characters)
Love That Pup (1949)
dbresource:Bolt_(character)
Bolt
dbresource:Toto_(0z)
The Wonderful Wizard of Oz (1900)
dbresource:Max_Goof
Fathers Are People (1951) (as Gooty. Jr)
dbresource:Max_Goof
Goof Troop (1992) (as Max Goof)
dbresource:Puppy_(Alice’s_Adventures_in_Wonderland)
Alice’s Adventures in Wonderland

dbresource:Rude_Dog
1986
dbresource:0die
Garfield comic strip (August 8, 1978)

In this example, the system presented an average of five
senses for each input keyword, which resulted in 14 query pat-
terns representing 172 queries. If we search Google using the
same input (“Fictional Dog Appearance”), it returns 674.000
results, without any reference to Goofy in the ten first pages!>.

14The amount of results returned by the public SPARQL endpoint of DBpe-
dia depends on the current workload, the results presented are from May 20,
2015.

15 Another possible input would be “tall black dog”, for which Google does
not include any reference to Goofy in the ten first pages either. QueryGen
obtains the query using terms from ontologies not used by DBpedia. Thus, we
have chosen this example for illustrative purposes.
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The first result returned by Google links a list of famous fic-
tional dogs in Wikipedia. But in that list there is no answer to
the user query (first appearance of Goofy): s/he has to browse
the whole list of 119 dogs to find Goofy (and recall its name,
hopefully), and click its page to look for the information inside
the text. Notice that the list returned by our system contains the
first appearances of dog characters, while the list in Wikipedia
links to dog characters pages (not necessarily containing their
first appearance). Thus, taking the same input as starting point,
our system has performed a semantic search returning the first
appearance of fictional dogs, while using a search engine we
can just obtain information about dogs.

7. Experimental Results

In this section, we present the evaluation of our approach
from different points of view. We start presenting a qualitative
evaluation of the whole process against a query set used in a
search contest over Linked Data. Then, we analyze the perfor-
mance of the different steps of the approach, and the reduction
rate achieved by the reduction techniques we apply in the query
generation process.

7.1. Evaluation of Discovery of User’s Intended Query

The goal of this evaluation is to assess the semantic capabil-
ities of QueryGen to discover the meaning of input keywords
and achieve their correct interpretation comprising a user’s in-
formation need. The evaluation has been done against the test
query set provided by the search contest Query Answering over
Linked Data (QALD)'®[34]. This contest/track focuses on as-
sessing natural language interfaces over Linked Data; however,
it also provides the same queries expressed in keywords to as-
sess keyword-based systems. This contest considers DBpedia
along with an RDF export of MusicBrainz!” as data sets, and
provides 100 queries with the expected results for each of them.
We selected the set for the 2013 contest, QALD-3, to perform
the evaluation, and in the following we will refer to it as the
QALD query set.

In the QALD query set, for each query, they provide a
SPARQL query that expresses the exact semantics correspond-
ing to the input (natural language or keywords). In our test, we
consider a success if QueryGen obtains a query that expresses
the same semantics (i.e., can be considered as equivalent) as the
attached SPARQL query.

To ease the explanations, despite the fact that QueryGen is
able to use different query languages to interpret the input, we
selected the simplified BACK language extended with: 1) the
inverse version of Some and Fill operators, 2) an operator to
project the value of a property of an instance, and 3) aggrega-
tion operators. We have used a controlled set of 55 ontolo-
gies to be able to trace and repeat the experiments (the test

1ohttp://greententacle.techfak.uni-bielefeld.de/~cunger/
qald/, last accessed May 20, 2015.
7http://musicbrainz.org/, last accessed May 20, 2015.



collection OWLS-TC4'8 plus the ontologies dbpedia_3.6.0wl",
schema.orgzo, People+Pets21, Koala®*, Animals®, and Word-
Net). Moreover, we also considered the set of properties that
are automatically extracted by DBpedia, but are not currently
included in its ontology (Raw Infobox Property Definitions),
and the lookup service** provided by DBpedia to discover fur-
ther mappings to DBpedia’s resources.

In Table 6, we show the quantitative information about the re-
sults>: QueryGen achieves the correct interpretation in 64.64%
of the cases. The reasons for not achieving a suitable query for
the input keywords were: 1) the lack of proper knowledge in
the provided ontologies (15 out of 35 cases), and 2) the lack of
expressivity of the language (26 out of 35 cases).

Table 6: Success rate of QueryGen against the QALD test query set.

Intended Query Number of cases Rate
Generated with 0 VTs 34
Generated with 1 VT 27 64.64%
Generated with 2 VTs 3
Not Generated 35 35.36%

In the following, we detail 6 cases out of the 99 queries (see
Table 7) to illustrate different issues that we have found per-
forming the test:

e For the input keywords “trumpet player, bandleader”, our
system maps: trumpet and bandleader as instances in
WNet, which are merged with the homonym resources ob-
tained via the DBpedia lookup service; and player to the
concept Player also in WNet, as “someone who plays a
musical instrument”. With two extra roles from the re-
sources’ ontological context, QueryGen can build Player
and (fill(instrument, Trumpet)) and (fill(occupation, Ban-
dleader)) which is the intended query.

e For the input keywords “San Francisco, nickname”, our
system discovers San Francisco as the city in WNet and
merges it with the DBpedia’s resource; and obtains nick-
name from the set of automatically extracted properties of
DBpedia. With those terms, QueryGen can build the in-
tended query [nickname] SanFrancisco with no extra term.

e For the input keywords “current, national leader,
Methodist”, our system cannot find the intended query.

Bnttp://projects.semwebcentral .org/projects/owls-tc/

Yhttp://downloads.dbpedia.org/3.6/dbpedia_3.6.owl

http://schema.org/docs/schemaorg. owl

2lhttp://www.cs.man.ac.uk/~horrocks/ISWC2003/Tutorial/
people+tpets.owl.rdf

2http://protege.stanford.edu/plugins/owl/owl-1library/
koala.owl

Bhttp://www.cs.man.ac.uk/~rector/tutorials/
Biomedical-Tutorial/Tutorial-Ontologies/Animals/
Animals-tutorial-complete.owl

2*http://wiki.dbpedia.org/projects/dbpedia-lookup, last ac-
cessed May 20, 2015.

25QALD-3 only provides 99 queries, instead of the 100 queries provided in
the previous edition.
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Although it offers Methodism as a possible meaning for
Methodist, it has not enough ontological resources to
obtain all the required information to build the query.
In particular, in DBpedia, this information is stated via
yago:CurrentNationalLeaders, which is out of the knowl-

edge consulted for disambiguating purposes?®.

e For the input keywords “Margaret Thatcher, chemist”,
MargaretThatcher is mapped as an instance of WNet
and merged with its DBpedia’s resource, and chemist is
mapped to ontosem:chemist (among others). However,
the selected query language lacks an operator to check
whether an instance belongs to a particular concept.

e For the input keywords “company, Munich”, our system
maps Company to portal:Company (among others), and
Munich to the city instance in WNet (among others). With
one extra role (in this case protont:LocatedIn, equivalent
to dbprop:location), our system is able to build Company
and fill(location, Munich), which is the intended query.

e For the input keywords “film, starring, direct, Clint East-
wood”, our system considers ClintEastwood altogether
as a single instance, obtaining its associated resource
from the DBpedia lookup service. On the other hand,
it maps film to schema.org:Movie, among other sources
(merged); starring to its homonym term in DBpedia on-
tology (among others), and direct to DBpedia:director
(merged). However, the instance ClintEastwood is needed
twice to build the intended query. Thus, with this one
extra instance, QueryGen can build the intended query
Movie and fill(director, ClintEastwood) and fill(starring,
ClintEastwood).

QALD Contest. InTable 8, an excerpt of the results of QALD-3
contest are shown [13]. We will focus on the semantic capabil-
ities of our system to compare its performance with the other
contestants.

QALD-3 considers that a question is right when it was an-
swered with an F-measure of 1, and that is partially right when
it was answered with an F-measure strictly between 0 and 1;
while our evaluation considers a right question when QueryGen
has achieved a proper interpretation (regardless data access,
which Adapters’ different implementations are responsible for).
Thus, to align the results of QALD-3 with our evaluation of
QueryGen’s semantic interpretation, we will consider the num-
ber of processed queries (Processed column in Table 8) as an
upper bound of the number of correctly interpreted queries, and
the sum of both right and partially queries (Right and Partially
columns in Table 8) as a lower bound.

QueryGen has been able to process them all using as input
the query expressed in keywords, instead of using the query ex-
pressed in natural language. Focusing just in the upper bounds,

26We discarded using YAGO as a disambiguation source in this test due to
their complex categories, which introduce ambiguity. For example, concepts
such as yago:PresidentsOfTheUnitedStates or yago:SchoolTypes are especially
difficult to handle, as explicitly stated by the QALD authors in [34]. Never-
theless, we are working on how to introduce this kind of sources in QueryGen
without being affected by the noise.



Table 7: Question, input keywords, generated query, and number of VTs needed for an excerpt of the QALD questions.

Question Keywords Query VTs
Give me a list of all trumpet players that | trumpet player, bandleader v Player and (fill(instrument, Trumpet)) and 2 roles
were bandleaders (fill(occupation, Bandleader))

What are the nicknames of San Francisco? San Francisco, nickname v [nickname] SanFrancisco 0 VTs
Give me all current Methodist national | current, national leader, | X no query (due to lack of knowledge)

leader Methodist

Was Margaret Thatcher a chemist? Margaret Thatcher, chemist X no query (due to lack of expressivity)

Give me all companies in Munich company, Munich v Company and fill(location, Munich) 1 role
Which films starring Clint Eastwood did he | film, starring, direct, Clint | v Movie and fill(director, ClintEastwood) and | 1 instance
direct himself? Eastwood fill(starring, ClintEastwood)

Table 8: QALD-3 Results for DBpedia (test query set).

System Total | Processed | Right | Partially
squall2sparql 99 99 80 13
CASIA 99 52 29 8
Scalewelis 99 70 32 1
RTV 99 55 30 4
Intui2 99 99 28 4
SWIP 99 21 15 2

QueryGen would qualify in 4th position with its 64 correctly
interpreted queries, behind squall2sparql [18], Intui2 [17], and
close to Scalewelis [25]. If we focus on the QALD-3 lower
bound, QueryGen would only be behind squall2spargl, which
has been able to obtain a close interpretation to 93 queries (80
of which are perfect interpretations as QueryGen ones). How-
ever, we cannot draw more conclusions out of this data, as
we cannot assume that the difference between processed and
right/partially queries in QALD is due to an incorrect seman-
tic interpretation 2. Thus, QueryGen would qualify from 2nd
to 4th regarding semantic interpretation capabilities, which we
consider meritable as QueryGen is using just the plain keyword
input, which is a strong simplification of the actual query.

Apart from these results, QALD-3 contest detected four
queries that all systems answered, and another four ones that
none did. QueryGen achieved the correct interpretation for the
four former ones, while managed to obtain the intended query
in 3 out of the 4 latter ones. The remaining one is the query
“Does the new Battlestar Galactica series have more episodes
than the old one?”, expressed as “new BattleStar Galactica se-
ries, episodes, more, old Battle Star Galactica series” in key-
words. QueryGen fails to disambiguate the new from the old
series, and even if it could, there is still a lack of expressivity
as, apart from applying aggregation to count the episodes, we
would need an operator to compare the results of such aggrega-
tions.

Evaluation Conclusions. In spite of the lack of knowledge and
expressivity of the query language selected, QueryGen has been

2TThere are no further explanations of each systems’s problems in the
QALD-3 report.
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able to generate the intended queries with exactly the semantics
needed for most of the queries:

e The disambiguation process has been successful almost in
all the cases, detecting correctly the meanings, and merg-
ing and enriching the senses of the keywords.

e The generation process reaches the user’s intended query
whenever the expressivity of the query language allows to
build it (64.64% of the cases for the query language se-
lected in the evaluation).

e The usage of virtual terms to discover implicit meanings
is present in the 46.87% of the queries that we have been
able to generate with our system. The rest of the successful
queries have been generated with O virtual terms.

e Anyway, there are still times when QueryGen fails to gen-
erate the intended query (35 out of the 99 queries) due to
two main reasons: 1) the lack of knowledge, which could
be addressed by upgrading the dynamic pool of ontolo-
gies; and 2) the lack of expressivity of the query language
selected for the test, which can be addressed by adding
languages expressive enough to express the user’s query.

Thus, the flexibility of QueryGen regarding the sources of
knowledge consulted and the query models supported makes
it possible to alleviate the problems detected in the evaluation.
On the one hand, the more ontologies available in the pool of
ontologies consulted by QueryGen, the more semantic interpre-
tations can be considered. On the other hand, despite the fact
that we have performed this test with just one selected query
language, notice that QueryGen searches for the intended query
taking into account all the available languages: for a given in-
put it could express the intended query in some query language,
for the next input another query language could be used, auto-
matically.

So, despite existing still a long road for improvements in our
approach, we think we are on the correct way. In the following
subsections, we turn our focus on different performance issues
of QueryGen to show the scalability of our approach.

7.2. Keyword Disambiguation Performance
To test the feasibility of our disambiguation technique, we
have performed an extensive performance test focused only on




the first step of our approach. It was executed on a Sunfire
X2200 (2 x AMD Dual Core 2600 MHz, 8GB RAM). The set
of ontologies used is the same one used in the previous section,
a total of 55 ontologies were consulted by our prototype. In
this experiment, we established an upper bound to the amount
of candidate senses/ontological terms that were considered for
each input keyword (i.e., QueryGen was able to consider up
to 30 candidate senses for each input keyword), but it was not
reached for any input keyword.

30,00

25,00

20,00

—_
v
=
E 15,00
[ 10,00 /f*’/‘___————‘
5,00 —
—
S
0.00 1 Kwd 2 Kwds 3 Kwds 4 Kwds 5 Kwds
——Depth 1 4,22 7,35 9,01 10,26 11,51

—m-Depth 1 -cached
Depth 2
——Depth 2 - cached

0,35
6,92
1,83

1,08
19,38
8,58

1,31
23,23
10,38

1,39
24,25
13,79

1,65
24,99
14,36

Figure 10: Keyword disambiguation performance evaluation.

The input keywords were selected randomly out from a set
of actual queries proposed by students of different degrees with
skills in Computer Science, and grouped according to their size
in number of keywords. We considered fifty sets of input key-
words to perform the tests, ten for each number of keywords. In
Figure 10, the results for different sizes of the inputs are shown.
As it can be seen, the disambiguation times depend on which
depth (how many levels of parent and children terms in the on-
tological context) is considered for matching. From previous
experiments, we have seen that using a depth greater than two
lead to wrong results. This is due to the fact that the closer you
get to the TOP concept in the ontologies, the more false posi-
tives appear, as too general subsumer terms are considered. So,
a depth of two levels is considered to be semantically optimal.
The cached results correspond to executions on which the ex-
traction procedures had been already performed and stored, as
at first, it was the most expensive task. However, the results
of the sense alignment step can also be cached, and we expect
these times to be even lower.

7.3. Query Generation Performance

We turn our focus now on the performance of the query gen-
eration step. To effectively measure the performance of the gen-
eration step, as well as the impact of the reduction techniques
that QueryGen applies, we used two well-known ontologies out
of the previous used set: People+Pets and Koala. Using their
terms as limited vocabulary, we assured that the terms were go-
ing to be discovered in the disambiguation process, and that
there were no false positives while merging and aligning the
possible senses (which might introduce semantic noise in the
process). The selected ontologies are two popular ones of sim-
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ilar size?® to those used in well-known benchmarks such as the
OAEI®. The DL reasoner used in the tests was Pellet 2.2.2 [43].
Due to space limitations, we only show the experimental re-
sults obtained with simplified BACK as output query language
because most search approaches are based only on conjunctive
queries. Nevertheless, we have also performed the experiments
with another non-DL languages, and we obtained similar exe-
cution times and conclusions.

For the experiments, we considered different sample sets of
input keywords (selected from the terms of the above ontolo-
gies) and measured average values grouped by the number of
keywords in the set. As in the evaluation of the performance of
the disambiguation process, these inputs were based on actual
queries proposed by students of different degrees with skills in
Computer Science. The sets were chosen according to the fol-
lowing distribution: 10 sets with a single keyword (5 select-
ing a role and 5 selecting a concept), 15 sets with two key-
words (5 sets where both keywords are roles, 5 sets where
both keywords are concepts, and 5 sets where one keyword
is a role and the other one is a concept), 20 sets with three
keywords (5 with 2 concepts and 1 role, 5 with 1 concept
and 2 roles, 5 with 3 concepts, and 5 with 3 roles) and, fol-
lowing the same idea, 25 sets with four keywords and 30 sets
with five keywords. Notice that, even though our approach
can effectively deal with instances as well, we do not consider
sets with instances because the selected ontologies do not have
instances (as it happens frequently [48]). We set the maxi-
mum number of keywords to 5, as the average number of key-
words used in keyword-based search engines “is somewhere
between 2 and 3” [36], and thus we can see how our system
performs with inputs below and above this average number of
keywords.

We conducted four experiments: 1) no VTs added, the sys-
tem works only with the user keywords; 2) one VT added, to
try to find a possible missing keyword; 3) two VTs (1+1), is
the same situation as 2) with an extra refinement step once the
user has selected a candidate for the first VT to be rendered;
and 4) two VTs added, to find two possible missing keywords
at the same time>’. We have also considered that the user inputs
at least one keyword.

The X-axis in Figures 11.a and 11.b represents the total key-
words considered, i.e., the input and the VTs added by the sys-
tem. Thus, considering 3 keywords, the results are for 3 user
keywords (no VTs), 2 user keywords and 1 VT (one VT),
and 1 user keyword and 2 VTs. As it can be seen in Fig-
ure 11.a (notice that the Y-axis is in log scale), the average times
for 3 and 4 keywords are similar and really low (recall that the
average number of input keywords was between 2 and 3). Thus,
we can look on how they behave regarding the queries presented
to the user. Figure 11.b shows the average number of generated

28People+Pets has 96 terms (60 concepts, 15 roles, and 21 instances), while
Koala has 32 terms (21 concepts, 5 roles, and 6 instances).

Phttp://oaei.ontologymatching. org/, last accessed May 20, 2015.

30We do not consider adding more than 2 VTs because we do not aim at
discovering the user’s intended query when too many keywords were missed in
the input.
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Figure 11: Performance evaluation: processing time, and average number of
queries and shown patterns.

queries and the average number of patterns that are presented to
the user. In these experiments, taking into account the proper-
ties of the different operators reduced the amount of generated
queries up to a 70% (it depended on the amount of input key-
words, and whether virtual terms where considered), while the
semantic filter considered unsatisfiable (and filtered out) a mean
percentage ranging from 8.5% to 17% of the resulting queries.
Finally, the use of query patterns reduces up to an average 92%
the final options that the user is presented with. Figure 11.b
also shows that, despite generating a higher number of queries,
the system compresses the queries more when it has two VTs at
once than in the other situations. This may be beneficial to the
user, but it might require her/him more time navigating through
the candidate keywords for the VTs. The number of queries is
lower for two VTs (1+1) as, in the refinement step, the user has
fixed a VT and there are less options. Thus, we would advocate
for using only one virtual term at a time, as adding two terms at
the same time increases the amount of patterns shown at once
to the user.

8. Related Work

One of the first systems whose goal is building formal
queries from keywords in the area of the Semantic Web is Sem-
Search [33]. In this system, the input is matched to semantic en-
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tities by means of text indexes, and then a set of predefined tem-
plates is used to interpret the queries in the language SeRQL.
However, not all the possible queries are considered in those
templates, and therefore the system could fail in generating the
user’s intended query. On the contrary, our system performs a
semantic disambiguation process to obtain the meaning of the
keywords. Then, it considers the semantics of the languages
to interpret and generate all the possible queries semantically
correct that are processable by the underlying systems.

Other relevant systems in the area of semantic search
are SemSearchPro [45], Q2Semantic [26], SPARK [51], and
QUICK [49]. These systems find all the paths that can be de-
rived from a RDF graph, until a predefined depth, to gener-
ate the queries. These kind of techniques have been improved
and extended in several different ways. In [19] they propose a
similar approach to keyword interpretation but they introduce
the context of the user’s search (the knowledge about previ-
ous queries) to focus the whole search process. More recently,
in [44], the authors propose to interactively suggest different
constraints on the different possible queries to clarify the user’s
intention in order to enhance the search. Finally, in [32], the
authors enhance the scalability and accuracy of these keyword
search techniques over graphs by partitioning the underlying
RDF graph, and using a summarization of it based on calcu-
lated templates to narrow the search space. However, the query
model that all these approaches support is restricted to con-
junctive queries and their data models are bounded to RDF
model. Regarding all these approaches, our system is able to
adopt different query models through the definition of its for-
mal language, and the data models supported can be extended
via the use of Adapters. Besides, none of these approaches sup-
ports reasoning capabilities for query reduction and inconsis-
tent query filtering, as opposed to our system. Our approach
works at a higher semantic level, as it exploits the background
knowledge not only to build new queries but also to infer which
ones are satisfiable and to avoid the generation of inconsistent
queries.

In the semantic search field, the most similar work to ours
is the research line followed by Pound et al. [40, 41]. Firstly,
in [41], the authors proposed a structured query language that
had keywords as their main building blocks. They exploit
this structure to obtain possible interpretations on a particular
knowledge base, which has to be previously indexed. In fact,
this part of their system could be used by QueryGen by adding
their query language. Then, in [40], they focused on how to
obtain the possible structured keyword queries from a raw key-
word input. To do so, they detect the types (not the seman-
tics) of the keywords using Natural Language techniques, and
map these inputs to query schemas that are learned from an an-
notated query log. Thus, they advocate for finding firstly the
structure of the input keywords, to then access the appropriate
data. However, as they do not establish the exact semantics of
the input keywords in the first step (they work just with part of
the speech tags, which are similar to the tokens we use in our
extended grammars), they have to run another disambiguation
process when accessing the data. Moreover, they are attached
to just one query language and data model, and, as they only



use query schemas learned from a log, the system could fail in
generating the user’s intended query. Finally, as stated above,
our system is able to assess the satisfiability of the generated in-
terpretations taking into account both the semantics of the key-
words and the query languages, and filter out the inconsistent
ones.

There are also some works in the area of databases to provide
a keyword-based interface for databases, such as BANKS [1],
DISCOVER [28] and DBXplore [2], i.e., translating a set of
keywords into SQL queries. However, as emphasized in [6],
most of these works rely only on extensional knowledge ob-
tained by applying IR-retrieval techniques, and so they do
not consider the intensional knowledge (the structural knowl-
edge). Besides, most of these approaches build only conjunc-
tive queries and require the use of a specific language by the
user to express some constraints (e.g., less than). In [53], the
authors provide a guided search which, given the user key-
words, generates a list of valid queries (i.e., they correspond to
syntactically correct SQL statements). This is done by match-
ing the keywords against some query templates that are learned
from previous query logs, and using those templates to suggest
possible interpretations. Thus, they do not take into account the
actual semantics of the input keywords nor the semantics of the
different operators of their target query language as QueryGen
does to avoid generating redundant or inconsistent queries.

In this field, Keymantic [6] and QUEST [7] are the most re-
lated works to ours. In Keymantic, authors focus on mapping
the keywords on entities of the relational schema of a database
and interpret them as an SQL query to provide keyword based
search over databases without having to process the extensional
data. More recently, in QUEST, the authors propose a keyword
interpretation that maps the keywords to different terms in the
database terminology by exploiting its full-text index (in fact,
when they have not access to the database extension, they use
Keymantic techniques to do so), and then, they build interpreta-
tions in the form of join-paths at schema level. Both approaches
are oriented to keyword search over databases and the interpre-
tation process has only one target query model. In turn, our
approach is capable of obtaining the semantics of the keywords
without specifying a target schema, interpreting the queries into
different query models, taking into account the semantics of all
the elements (keywords, query language, operators, etc.) all
along the process; and, finally, accessing different underlying
data models considering the previously well-established seman-
tics.

Although Question Answering systems are traditionally
more related to the processing of Natural Language (according
to [27], their goal is “to allow a user to ask a question in ev-
eryday language and receive an answer quickly and succinctly,
with sufficient context to validate the answer”), in essence,
QueryGen shares their objectives. According to the classifi-
cation given in [35], our system would fall into the category
of ontology-based semantic QA systems, taking keywords as
input. However, instead of having a single data source, our sys-
tem is flexible enough to adapt itself to different data models
by defining them according to their data access methods (query
language and types of query processing). Using several differ-
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ent techniques, we tackle some of the traditional problems that
these systems face [35]: 1) QueryGen maps the vocabulary of
the user to the vocabulary of the data sources (provided that
the data sources are semantically described, and the ontology
is made available), 2) it disambiguates the different possible in-
terpretations due to polysemy (and, in our case, also due to the
lack of expressivity of the keyword model), 3) by consulting
dynamic ontological sources, it gets rid of the domain-specific
limitations that many QA approaches exhibit, 4) it works even
in the absence of enough input via the semantic enrichment
step, and 5) last but not least, it does not only use the con-
sulted ontologies to interpret the query, but to filter the incon-
sistent queries that would make no sense with the help of a DL
reasoner. However, we have to bear in mind that the premises
which QA systems and QueryGen build on are quite different,
and we are aware (and we are working on it) that we can in-
troduce several techniques from these systems to improve the
whole semantic keyword-search process that we have presented
in this work, as, for example, the input segmentation approach
used in [50].

Summing up, to our knowledge, our system is the most flex-
ible solution in terms of query and data models supported.
Moreover, our proposal takes into account the semantics of all
the elements that take part of the keyword interpretation pro-
cess, and is the only one that uses a DL reasoner to infer new in-
formation and remove semantically inconsistent queries (which
can be expressed even in non-DL languages).

9. Conclusions and Future Work

In this paper, we have presented a system that enables se-
mantic keyword-based search by interpreting keyword queries.
This involves establishing the semantics of each of the input
keywords firstly, and then interpreting them to capture the ex-
act semantics intended by the user. During the process, our
system exploits several semantic resources: a pool of third-
party ontologies, formal query language specifications, and a
Description Logics reasoner. This way, our system, taking a
set of keywords as input, is capable of discovering their mean-
ing and giving them a correct interpretation considering the se-
mantics of both the keywords and the query languages (used
transparently for the user) all along the process. The proposed
system has the following features:

e [t discovers the meaning of the input keywords by consult-
ing a pool of ontologies. This makes it possible to han-
dle very different domains, and not to be constrained to a
fixed source of semantic information. During this process,
our system merges the meanings that are considered sim-
ilar enough and proposes the most probable semantics for
each of the input keywords. To do so, it performs a disam-
biguation process that takes into account the semantics of
all them as a whole.

e Our approach performs the keyword interpretation via
a query generation process independent of the available



query languages. In this interpretation process, our sys-
tem can handle any associated query language whenever it
is specified via a semantically annotated grammar. More-
over, it takes into account the semantic properties of the
query languages to avoid generating semantically equiva-
lent queries. Finally, the user is not aware of the different
underlying query models, as the system performs the gen-
eration in all the available ones (they correspond to differ-
ent data repositories).

e With the help of a DL reasoner, it is capable to filter out
inconsistent queries according to the knowledge retrieved.
This is not only applicable to DL queries, but also to non-
DL languages, which makes our approach very flexible.
This filtering is greatly boosted by the fact that the set
of generated queries are a conservative extension of the
source ontologies, and therefore, their satisfiability can be
assessed without having to reclassify the knowledge.

e [t performs internally a semantic enrichment of the input
to fill the possible gap between the user keywords and the
user’s intended query. This is done by using virtual terms,
which allows the system to explore further meanings when
the user’s input is incomplete. To render them, the system
considers the semantic information dynamically obtained
and integrated during the disambiguation process.

e The process is independent of the underlying data models
and makes the access to them transparent to the user, pro-
viding a unique point of entry to heterogeneous systems.
By using the Adapters, our system provides huge flexi-
bility regarding the systems that can be accessed. In our
prototype, we have successfully integrated two very dif-
ferent information systems such as LOQOMOTION and
DBpedia (its SPARQL Endpoint).

Moreover, we have shown the good results achieved by
QueryGen regarding its semantic capability to discover the
user’s intended query from input keywords, and the results of
the performance tests carried out have shown the feasibility of
our approach.

As future work, we want to study the possibility of mapping
input keywords to operators in the formal query languages. This
would give us further information that could be used to further
narrow the interpretation search space, as it would force the use
of a specific operator in the generated queries. In this line, we
would like to apply techniques such as those presented in [14]
and [52] to improve the interpretation capabilities of QueryGen.
Moreover, we want to study how our system could benefit from
third-party NLP modules to deal with Named Entity recogni-
tion and with full natural language inputs. Finally, we want
to further research in the user interaction issue. In particular,
we are planning to apply visual techniques to help the user to
select their intended query, and perform massive tests with dif-
ferent kinds of final users to measure the semantic accuracy of
our prototype.
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