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Abstract   

Deltas are landforms that deliver water, sediment and nutrient fluxes from upstream rivers to the 

deltaic surface and eventually to oceans or inland water bodies via multiple pathways.  Despite their 

importance, quantitative frameworks for their analysis lack behind those available for tributary 

networks. In a companion paper [Tejedor et al., 2015], we conceptualized delta channel networks as 

directed graphs and used spectral graph theory to design a quantitative framework for exploring delta 

connectivity and flux dynamics. Here we use this framework to introduce a suite of graph-theoretic and 

entropy-based metrics, to quantify two components of a delta’s complexity: (1) Topologic, imposed by 

the network connectivity and (2) Dynamic, dictated by the flux partitioning and distribution. The 

metrics are aimed to facilitate comparing, contrasting, and establishing connections between deltaic 

structure, process, and form. We illustrate the proposed analysis using seven deltas in diverse 

morphodynamic environments and of various degrees of channel complexity. We project deltas into a 

topo-dynamic space whose coordinates are given by topologic and dynamic delta complexity metrics, 

and show that this space provides a basis for delta comparison and physical insight into their dynamic 

behavior.  We also show that the examined metrics relate to the intuitive notion of vulnerability, 

measured by the impact of upstream flux changes to the shoreline flux, and reveal that complexity and 

vulnerability are inversely related.  Finally, we use a spatially explicit metric, akin to a delta width 

function, to classify shapes of different delta types.  
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1.  Introduction 
Deltas are landforms that deliver sediment, 
nutrients and water from upstream basins to the 
shoreline through interconnected pathways of 
channels.   They are highly productive regions 
with very diverse ecosystems, fertile agriculture 
areas, and often considerable subsurface resources.  
As a result, their population density is high with 
several megacities located in deltas. However, 
climate (sea level rise) and anthropogenic changes 
(e.g., upstream dams and local exploration) are 
putting many deltas in peril [e.g., Syvitski et al., 
2009; see also Foufoula-Georgiou et al., 2013].  
Considering that deltas are highly variable in 
structure, origin and dynamics due to factors such 
as climate, geology and external forcings, it is 
important both to identify the bio-physical 
processes that drive their growth, as well as, 
understand what perturbations seem to mostly 
disrupt their functionality and self-maintenance.   
The question posed in this study is whether we can 
construct informative metrics of topologic and 
dynamic complexity of delta channel networks 
that are rich enough to discriminate between the 
physical processes that gave rise 
morphodynamically to these complex networks of 
drainage paths, as well as, to infer a delta’s 
vulnerability to change.  Such metrics are 
proposed herein and shown to offer significant 
insights in connecting delta process and form, and 
in allowing comparison of deltas and inferences 
about their ability to absorb changes. 
 
The developed metrics rely on a quantitative 
framework based on spectral graph theory for 
studying river delta topology and dynamics.  The 
graph-theoretic framework presented in the 
companion paper [Tejedor et al., 2015] allowed us 
to identify upstream (contributing) and 
downstream (nourishment) subnetworks for any 

given delta vertex (node), including the apex-to-
shoreline subnetworks, referred to also as outlet 
subnetworks. It also allowed us to compute the 
steady-state flux propagation in the delta channels 
and to construct vulnerability maps that quantify 
how a change in any upstream delta link would 
affect the shoreline fluxes. Based on this analysis, 
we defined a vulnerability index Vi of an outlet 
subnetwork Si draining to the outlet i that 
quantifies the vulnerability of the outlet flux to 
local flux changes on all its upstream components. 
The framework was illustrated in Tejedor et al. 
[2015] using two contrasting deltas: the Wax Lake 
delta in the coast of Louisiana, USA and the Niger 
delta in West Africa. 
 
Having established the mathematical machinery 
based on spectral graph theory that efficiently 
allows to perform the above computations, we 
now ask the question as to what quantitative 
metrics one can build that summarize the 
topologic complexity of delta networks (reflecting 
their channel connectivity), as well as their 
dynamic complexity (reflecting how flux dynamic 
exchanges happen within the network).  Such 
metrics are absent from the literature hindering 
further progress in quantifying relations between 
the morphodynamic processes on the deltaic 
surfaces and the complex collection of splitting 
and rejoining channels that these processes imprint 
on the landscape. Smart and Moruzzi [1971], 
motivated by the exact same problem, presented a 
preliminary framework based on graph theory by 
which comparison metrics of delta channel 
networks could be built.  The metric they proposed 
was a simple one, termed the “recombination 
factor”, and defined as the ratio of the number of 
junctions (points where two channels combine to 
form one) to the number of forks (points where 
one channel divides into two).  This recombination 
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factor was computed for five different deltas and 
some interesting observations were made.  It is 
unfortunate that not much work (to the best of our 
knowledge) has followed up since the 1970s along 
these lines.  We see our work as a come-back to 
this important problem. 
 
A qualitative classification of deltas based on the 
relative influence of the river, tide and wave 
effects has been presented by Galloway [1975].  A 
fourth dimension was incorporated into this 
classification by Orton and Reading [1993] to 
account for the prevailing sediment size delivered 
to the delta.  Some quantitative metrics related to 
delta morphology have been proposed for river-
dominated (minimally affected by waves and tides 
and bifurcation-dominated) [Edmonds et al., 
2011], wave-dominated [Jerolmack and Swenson, 
2007], and tide-dominated deltas [Fagherazzi et 
al., 1999; Rinaldo et al., 1999a,b; Passalacqua et 
al., 2013].  These metrics include fractal properties 
of the channel network [e.g., Cleveringa and Oost, 
1999; Marciano et al., 2005; Seybold et al., 2007; 
Edmonds et al., 2011], non-fractality of shorelines 
[e.g., Wolinsky et al., 2010], island sizes and their 
probability distributions [e.g., Edmonds et al., 
2011; Passalacqua et al., 2013] but are not 
directly related to network topology and dynamics.  
The aim of this paper is to present metrics that we 
hope will re-open the dialogue started by Smart 
and Moruzzi [1971] on connecting physical 
properties of deltas to their intricate topologic and 
dynamic structure and, in addition, allow rigorous 
analysis of how structure and dynamics 
predisposes a particular delta to be more 
vulnerable or more robust to external 
perturbations. 
 
The developments were motivated by some 
observations made in our first paper [Tejedor et 

al., 2015].  As illustrated in Figure 1, for the Wax 
Lake and Niger deltas the apex is connected to the 
coast via a number of subnetworks, each one 
delivering fluxes from the apex to one of the 
shoreline vertices (outlets).  These subnetworks 
can be topologically very simple (a straight path of 
channels) or very complex (multiple splitting and 
merging paths); see Figure 1a and 1b for an 
example which marks such outlet subnetworks.  
The topologic complexity of each of the 
subnetworks is embedded within the whole delta 
channel network topology to result in various 
degrees of “dependence” among the subnetworks. 
Namely, two subnetworks that share no channels 
at all (except the apex vertex) are considered 
independent, while two subnetworks which 
advance together until they split farther 
downstream to empty their fluxes to different 
outlets are considered dependent. This is 
illustrated in Figure 1c and 1d where n (number of 
subnetworks to which a given link belongs to) 
depicts quantitatively the simplicity of the Wax 
Lake delta as compared to the Niger delta. Finally, 
the dynamic interdependence of the subnetworks, 
measured in terms of their shared fluxes and the 
fluxes that leak from one subnetwork to another, 
rather than in terms of shared links, can be 
minimal or significant and it relates both to the 
network topology and the flux distribution within 
the system. For example, the overall flux 
interaction will depend on whether the shared 
subnetwork links are close to the apex (wider 
channels and larger fluxes) or close to the coast 
(narrower channels and smaller fluxes).  This is 
schematically illustrated in Figure 1e and 1f. This 
topologic and dynamic complexity of delta 
networks directly determines how disturbances in 
an upstream link will propagate downstream and 
to the coastal outlets. The propagation of this 
disturbance from upstream links to the shoreline 



5	
  
	
  

was quantified in our earlier paper [Tejedor et al., 
2015] by a common-sense vulnerability metric that 
depicts the degree to which the flux at the coastal 
vertices is affected by local flux changes at all 
upstream links of the subnetworks [see Tejedor et 
al., 2015 Figure 11]. 
 
In this paper, we extend this work and build 
rigorous metrics that quantify the topologic and 
dynamic complexity of delta networks and relate it 
to the notion of vulnerability.  In the quest to shed 
physical insight into what these metrics tell us 
about the morphological dynamic processes and 
constraints that gave rise to a delta network we 
apply our metrics to seven diverse deltas which 
reveal some interesting findings.  

The structure of the paper is as follows.  Section 2 
presents a brief description of the seven examined 
deltas and summarizes their basic physical 
characteristics.  In Section 3 we develop a suite of 
metrics that capture the topologic complexity of 
deltas. Specifically, we consider loopiness, 
structural overlapping and entropy-based topologic 
complexity.  In Section 4, metrics of dynamic 
complexity are developed.  These metrics account 
not only for topology but also for the distribution 
of the fluxes among channels of a subnetwork or 
flux leakage from one subnetwork to the others.  
The metrics of dynamic complexity introduced 
here are the subnetwork leakage, flux overlapping 
and entropy-based dynamic complexity.  The 
metric computation and comparison of seven 
deltas is presented in Section 5.  In Section 6, we 
illustrate how these metrics can be used to 
uniquely position a delta on a delta topo-dynamic 
space according to its complexity.  We also 
explore the connection of delta complexity to its 
vulnerability to change in Section 7. Section 8 
goes one step further to acknowledge the fact that 
the topologic and dynamic complexity of a delta 

network varies downstream from the apex to the 
shoreline and attempts to introduce spatially 
explicit metrics of complexity, leading to the 
notion of a delta network width function. Overall 
conclusions and directions for further research are 
discussed in Section 9. 
	
  

2.  Physical Characteristics of seven deltas 
analyzed  
To aid in the interpretation of the developed 
complexity metrics we selected a diverse set of 
delta networks on which these metrics were 
computed and contrasted. In this section, we 
summarize the physical characteristics of the 
seven deltas selected for analysis namely: (1) 
Niger, (2) Parana, (3) Yukon, (4) Irrawaddy, (5) 
Colville, (6) Wax Lake and (7) Mossy arranged in 
order of decreasing size (delta top area). We refer 
to Figure 2 for the channel networks and Table 1 
for physical characteristics of the examined deltas 
[note that a more detailed account for the Niger 
and Wax Lake deltas was provided in Tejedor et 
al., 2015].   
 
Extracting the channel networks from an air photo 
or satellite image of a delta is not an easy task.  
For this reason we have adopted here for our 
preliminary analysis the exact five traced deltas in 
the study of Smart and Moruzzi [1971] – Niger, 
Parana, Yukon, Irrawaddy, and Colville – and 
have added the Wax Lake and Mossy deltas for 
which channel networks have been extracted in 
previous studies [Edmonds et al., 2011]. The issue 
of what detail one should use in tracing a channel 
and make it part of the network or ignore it is an 
important one but not pursued in this study.  
However, we hope that the metrics presented here 
will allow the systematic study of the topologic 
and dynamic complexity of a delta system as a 
function of the detail at which its network is 
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abstracted.  This issue is further discussed in the 
conclusions. 
 
Comparison of the set of topologic and dynamic 
complexities in deltas of different age, size, 
climate, sediment, external forcing etc. is hoped to 
provide insight towards the goal of relating 
physical attributes of the delta generating 
processes to the complex self-organized 
arrangement of the channels that nourish and 
maintain the functionality of the delta system. 
 
Niger Delta: The Niger Delta located in the West 
coast of Nigeria (latitude 4.95°, longitude 6.18°), 
receives input from the Niger River at an average 
water discharge of 6130 m3 s-1 and sediment 
discharge of 3.97 x 107 tons yr-1 [Syvitski et al., 
2005]. The origin of the delta is estimated to be 80 
- 35 million years BP during the Late Cretaceous 
[Goudie, 2005].  It is the largest delta in Africa 
covering an area of 24,508 km2 and sediment is 
mostly fine sand [Orton and Reading, 1993]. The 
tidal range is 3.0 m.  It is qualitatively classified as 
tide and wave dominated [Syvitski et al., 2005]. 
We utilized the channel network outlined by Smart 
and Moruzzi [1971], and identified 181 links, 130 
vertices and 15 shoreline outlets (see Table 2). 
 
Parana Delta:  The Parana Delta, located North 
of Buenos Aires, Argentina (-33.80°, -59.25°) is 
fed by the Parana River, which delivers an average 
water discharge of 13,600 m3 s-1 and sediment 
discharge of 7.75 x 107 tons yr-1 [Syvitski et al., 
2005].  Delta genesis was estimated during the 
Middle Holocene (6,000 years BP) [Politis et al., 
2011]. Parana delta covers an area of 15,463 km2 
and sediment are mostly fine sand, silt and clay 
[Fossati et al., 2014]. The tidal range is 4.0 m.  It 
is qualitatively classified as a river and geology 
dominated delta [Syvitski et al., 2005]. We utilized 

the channel network outlined by Smart and 
Moruzzi [1971], and identified 86 links, 69 
vertices and 18 shoreline outlets. 
 
Yukon Delta: The Yukon Delta is located in the 
West coast of Alaska, USA (63.05°, -164.05°) and 
receives input from the Yukon River with an 
average water discharge of 6620 m3 s-1 and 
sediment discharge of 5.97 x 107 tons yr-1 [Syvitski 
et al., 2005]. Delta genesis is estimated to be 
during the Middle Holocene (5,000 years BP) 
[Nelson and Creager, 1977]. It has an area 
covering 8,313 km2 with mainly fine-grained 
sediments [Walker, 1998]. The tidal range is 1.5 
m.  It is qualitatively classified as a wave 
dominated delta [Syvitski et al., 2005]. We utilized 
the channel network outlined by Smart and 
Moruzzi [1971], and identified 169 links, 126 
vertices and 24 shoreline outlets in the delta.  
 
Irrawaddy Delta: The Irrawaddy delta, located in 
the Southernmost coast of Myanmar (16.20°, 
95.00°) is fed by the Irrawaddy River at an 
average water discharge of 13,558 m3 s-1  and 
sediment discharge of 2.60 x 108 tons yr-1 [Syvitski 
et al., 2005].  The delta covers an area of 6,438 
km2 with the deposited sediment composed of 
mostly mixed mud and silt [Orton and Reading, 
1993].  It is estimated that the delta began to form 
around 8,000-7,000 years BP together with most 
of the deltas in Southeast Asia [Hedley et al., 
2010]. The tidal range is 4.2 m.  It is qualitatively 
classified as a tide dominated delta [Syvitski et al., 
2005]. We utilized the channel network outlined 
by Smart and Moruzzi [1971] and identified 100 
links, 71 vertices and 6 shoreline outlets in the 
delta.  
 
Colville Delta: The Colville delta is located in the 
Northern part of Alaska, USA (70.40°, -150.65°) 
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and receives input from the Colville River with an 
average water discharge of 491.7 m3 s-1 [Orton 
and Reading, 1993] and sediment discharge of 
1.16 x 108 tons yr-1 [Arnborg et al., 1967].  The 
delta began to develop during the Middle 
Holocene (4,000 years BP) [Jorgenson et al., 
1998].  With an area of 240 km2, it is relatively 
small compared to other polar deltas. Sediment is 
mostly composed of gravel and sand [Orton and 
Reading, 1993]. The tidal range is 0.2 m.  It is 
qualitatively classified as a river dominated delta 
[Syvitski et al., 2005]. We utilized the channel 
network outlined by Smart and Moruzzi [1971], 
and identified 140 links, 107 vertices and 20 
shoreline outlets in the delta.   
 
Wax Lake Delta: The Wax Lake delta is located 
in the coast of Louisiana, USA (29.51°, -91.44°).  
It receives input from the Wax Lake outlet, a 
channel that was dredged in the early 1940s to 
mitigate flooding risk in the nearby Morgan City, 
at an average water discharge of 2,900 m3 s-1 and 
sediment discharge of 2.35 x 107 tons yr-1 [Roberts 
et al., 2003].  Sub aerial land only developed after 
the 1970s flood and has been experiencing rapid 
growth in the last two decades doubling to more 
than 100 km2 today [Roberts et al., 1997; Paola et 
al., 2011].  Sediment deposit in the delta is 
composed of approximately 67% sand [Roberts et 
al., 1997]. The tidal range is 0.40 m [Shaw et al., 
203].  It is qualitatively classified as a river 
dominated delta.  We utilized the outline of the 
Wax Lake delta channel network processed by 
Edmonds et al. [2011] containing 59 links, 56 
vertices and 24 shoreline outlets. 
 
Mossy Delta: The Mossy delta is located in 
Saskatchewan, Canada (54.07°, -102.35°), is fed 
by the Mossy River with an average water 
discharge of 300 m3 s-1  [Edmonds et al., 2011] 

and sediment discharge of 2.20 x 106 tons yr-1 

[Oosterlaan and Meyers, 1995]. The delta was 
formed as a result of the avulsion of the 
Saskatchewan River in the 1870s [Smith et al., 
1998].  Progradation of the delta resulted in an 
area of 14 km2 in the early 1940s [Oosterlaan and 
Meyers, 1995] and after the construction of a 
spillway dam in the 1960s, the delta ever since 
slowly evolved with a current area of 
approximately 17 km2.  Sediment in the delta is 
roughly 50% fine-grained sand [Edmonds et al., 
2011].  Since the delta drains into a lake (Lake 
Cumberland), the effect of tides is insignificant.  It 
is qualitatively classified as a river dominated 
delta.  We have extracted the channel network of 
Mossy delta from a satellite image copyrighted by 
Digital Globe Inc. 2014 obtained from Google 
Earth on August 15, 2014 and identified 67 links, 
61 vertices and 23 shoreline outlets. 
	
  

3.  Metrics of topologic complexity 
As can be visually appreciated in Figure 2, delta 
channel networks are complex structures with no 
obvious single attribute that can uniquely describe 
them.  Qualitatively, one can differentiate between 
mostly bifurcating deltas (Wax Lake and Mossy), 
deltas that seem to be more constrained throughout 
their spatial extent (Parana), or constrained mostly 
close to their apex (Niger, Yukon, Colville), or 
close to their outlets (Irrawaddy).  One can also 
see that some deltas include more loops than 
others and that these loops, as well as channel 
splitting and rejoining, happen at different spatial 
scales from single channels to tapestries of 
channels that seem to form sub-deltas within the 
main delta.  Here we attempt to capture these 
features in a set of quantitative metrics. 
 
For the developments that follow, we need to 
recall some basic aspects of the graph-theoretic 



8	
  
	
  

framework developed in Tejedor et al. [2015].  A 
delta is conceptualized as a directed graph with 
channels represented by links and junctions by 
vertices. Link directions correspond to the 
direction of flux propagation.  Hence a delta with 
N junctions is represented with a directed graph 
with N vertices. The adjacency matrix A is an N×N 
matrix whose element auv is unity if vertex u 
receives fluxes directly from vertex v (that is, if 
vertices u and v are connected by a link directed 
from v to u) and zero otherwise; see equation (1) 
and examples in Tejedor et al. [2015].  The in-
degree (out-degree) matrix Din (Dout) is an N×N 
diagonal matrix whose elements duu depict the 
number of links entering (exiting) vertex u.  This 
matrix Din (Dout) is uniquely determined by the 
adjacency matrix A as its element duu is the sum of 
the elements in the u-th row (column) of A.  
Finally, the Laplacian matrix, Lin (Lout) is defined 
as Din-A (Dout-A).  We also recall that the outlet 
subnetworks are identified by the non-zero 
elements of the eigenvectors of the matrix (Lout)T 
corresponding to zero eigenvalues [Tejedor et al., 
2015, Sect. 3.3].  If instead of mere topology we 
also consider flux propagation, the adjacency 
matrix A is replaced with the weighted adjacency 
matrix W, where the weights wuv correspond to the 
fraction of flux in link (vu) with respect to the flux 
in vertex v, which can be estimated from channel 
attributes, such as channel width, depth, and 
velocity or computed via numerical modeling. In 
general, a link from vertex v to vertex u is denoted 
by (vu), and, according to the above nomenclature, 
it corresponds to the element muv of the suitable 
matrix M (adjacency, degree, Laplacian, weight, 
etc.).  We assume that the examined delta has No 
outlets indexed by i = 1,…, No and refer to the 
contributing subnetworks Si of the i-th outlet as “i-
th subnework”.  
 

Based on this framework we introduce metrics that 
are defined here for individual outlet subnetworks, 
noting that the same metrics can be readily 
computed for any other non-outlet subnetwork 
draining to any node of interest different from an 
outlet node.  Specifically, we present a set of six 
metrics that try to capture three distinctive 
characteristics of topologic complexity: (1) 
Loopiness, (2) Structural Overlapping and (3) 
Entropy-based topologic complexity (see Table 3).   
 
3.1. Subnetwork Loopiness 
From inspection of Figure 2, one of the first 
observations is that young deltas like Mossy or 
Wax Lake look almost like inverted tributary 
networks.  However, other deltas like Niger or 
Parana are very far from that approximation since 
they contain loops at all scales.  We introduce two 
metrics to depict this loopiness characteristic:  
Number of alternative paths and Resistance 
Distance.   
 
3.1.1. Number of alternative paths  (Nap) 
This metric corresponds to the intuitive notion of 
counting how many different ways (called 
alternative paths, Nap) a package of flux can take 
to travel from the apex to a given outlet.  Thus 
every fork (bifurcation) in the subnetwork doubles 
the Nap (recall that in an outlet subnetwork all 
paths have to converge to a single outlet, so for 
each fork we necessarily have a stream junction). 
Note that if there are no junctions, as in the case of 
a binary tree, then each subnetwork consists of a 
unique path from the apex to its outlet and such a 
delta has the minimum Number of alternative 
paths (Nap = 1) for each subnetwork. 
 
Within the graph-theoretic framework [Tejedor et 
al., 2015], it can be shown that the Number of 
alternative paths, from vertex k to the outlet of 
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subnetwork Si, is computed as the k-th component 
of the eigenvector i of the matrix (I*-AT), where AT 
is the transpose of the adjacency matrix of the 
deltaic network, and I* is obtained from the 
identity matrix by placing zero in the position (uu) 
for each outlet u (see Appendix A for proof).   
 
3.1.2. Resistance Distance (RD) 
Resistance distance is a more sophisticated metric, 
borrowed from the theory of electrical circuits, 
which can be used to measure the loopines of a 
graph. It differs from the Number of alternative 
paths in the sense that it does not just compute all 
the possible paths (in a combinatorics sense).  The 
idea behind resistance distance is to compute how 
well-connected two vertices are in a graph, not just 
in the sense of how many different paths are in-
between them, but also by acknowledging the 
existence of disjoint paths, i.e., paths that do not 
contain the same links.  
 
Klein and Randic [1993] defined formally the 
Resistance Distance (RD) between two vertices u 
and v in a graph G as the effective resistance 
between the two vertices established in an electric 
circuit network with each link replaced by a 1-ohm 
resistor.  The RD is computed using standard 
series and parallel relations (see Appendix B).  
Thus, two vertices connected by several paths 
(parallel connection) have lesser RD than if they 
are connected by only one path (series 
connection). For example, if there is only one 
possible path between two vertices, the RD is 
equivalent to the topologic distance (measured in 
terms of the number of links between the two 
vertices).  We normalize the Resistance Distance 
between the apex and the subnetwork outlet by the 
shortest topologic distance between the apex and 
the outlet. This normalization ensures that the RD 
between any two vertices is within the interval 

[0,1]. To see this, recall that for a single-path 
subnetwork the RD is equal to the topologic 
distance, and if we have more than a single path, 
the RD decreases. For a binary tree, the RD of 
every subnetwork is equal to 1.  The RD is defined 
for undirected graphs in Klein and Randic [1993], 
so for directed graphs such as delta networks we 
need to symmetrize the adjacency matrix in 
computing RD. The computation of the RD for 
subnetwork i is done in the following steps:  
 
1. Select the vertices that do not belong to the 

subnetwork i and redefine the adjacency 
matrix A by zeroing the columns and rows that 
correspond to these vertices; 

2. Symmetrize the modified Adjacency Matrix:  
As = (A+A')/2; 

3. Compute the Laplacian Lout of the symmetric 
adjacency matrix As; 

4. Compute the Moore-Penrose pseudoinverse Γ 
of the Laplacian [Penrose, 1955]; 

5. The Resistance Distance, RD(uv), between 
vertices u and v is:  

                                          
6. We define the Resistance Distance of the 

subnetwork i, RDi, as RD(uv), where v is the 
apex and u is the outlet of the subnetwork, 
normalized by the shortest topologic distance 
between the apex and the outlet. 

 
3.2. Structural Overlapping of Subnetworks 
Figure 3 shows some of the outlet subnetworks of 
Mossy and Parana deltas.  The reader can observe 
how in the Parana delta, many channels belong 
simultaneously to many subnetworks (black links 
correspond to the shared links among subnetworks 
2-18). On the other hand, Mossy delta only has 
this kind of overlapping for links located at the top 
of the structure (black links correspond to the 
shared links among subnetworks 12, 13 and 18). It 

vuuvvvuuuvRD Γ−Γ−Γ+Γ=)(
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is important to notice that this structural 
overlapping seems to be a characteristic that varies 
from delta to delta but also there can be 
heterogeneity even within a given delta.  Thus, in 
the Mossy delta, some subnetworks can share a lot 
of links but it is also possible to find subnetworks 
that are almost independent of each other (e.g., 
subnetworks 12 and 19).  In order to capture all of 
these conceptual differences we introduce two 
metrics:  Link Sharing Index and Subnetwork to 
Subnetwork Topologic Pairwise Dependence.  
 
3.2.1.  Link Sharing Index (LSI) 
This metric aims to quantify the overlapping of a 
subnetwork Si with other subnetworks in the delta 
Sj (j ≠ i). Thus, Si has a high LSI if its links are 
shared with many other subnetworks in the delta, 
and low LSI if Si consists of links that are 
exclusive to it or shared with a very few other 
subnetworks.  For that purpose, we define buv as 
the number of subnetworks the link (vu) belongs 
to. We define the subnetwork Link Sharing Index 
(LSI) by averaging the reciprocal of buv over all Ni 

links of Si: 
 

.        (1) 

 
The index takes values within the interval [0,1) 
and equals zero if and only if none of the links that 
form Si is shared with other subnetworks.  For a 
perfect binary delta of depth d (the number of 
binary bifurcations from the apex to the outlets), 
with all outlet vertices having the same depth and 
a single path from the apex, we have 
 

. (2) 

 

For d = 2, 5, and 100 we have LSIi = 0.25, 0.61, 
and 0.98 for each subnetwork of the perfect binary 
delta. This metric is useful to distinguish deltas 
that consist of a set of quasi-independent 
subnetworks from deltas that contain a substantial 
“core” common to almost all subnetworks (e.g., 
see the Parana delta).  Note that the variability of 
LSI among subnetworks of a delta system is itself 
also a metric of topologic complexity, since 
systems with larger variability of LSI values imply 
more heterogeneous link-sharing structure within 
the system. 
 
 
3.2.2. Subnetwork to Subnetwork Topologic 
Pairwise Dependence (TPD) 
In order to gain more insight into the subnetwork 
structural overlapping, which is a measure of the 
internal heterogeneity of the entire network 
structure, we define the Subnetwork to 
Subnetwork Topologic Pairwise Dependence.  
This metric shows the overlapping for all pairs of 
subnetworks, offering a picture of the local 
interaction (in the sense of link sharing) of 
subnetworks, and therefore with the potential of 
depicting subunits at mesoscales, which consist of 
groups of subnetworks.   Thus, its value for the 
pair of subnetworks Si and Sj is computed as the 
average of the reciprocal of 𝑏!"

!"  (𝑏!"
!" = 2 if the 

link (vu) belongs to both Si and Sj and 𝑏!"
!" = 1 if it 

belongs to Si but not Sj): 
 

TPDij =
1
Ni

buv
ij( )−1

(vu )∈Si
∑ ,  (3) 

 
where Ni is the number of links in subnetwork Si.  
Notice the asymmetry in the Topological Pairwise 
Dependence with respect to the indices i and j (i.e., 
TPDij ≠ TPDji ). 

LSIi = 1−
1
Ni

buv
−1

(vu )∈Si
∑

∑
=
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−−=−=
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3.3.  Entropy-based topologic complexity of 
subnetworks 
Historically, entropy was defined as a measure of 
disorder.  This interpretation has been widely used 
in physics and engineering based on the idea that a 
system evolves into an increasing state of disorder 
(the second law of thermodynamics); it can also be 
related to Boltzmann’s entropy in statistical 
mechanics based on the number of microstates 
[Prigogine, 1967; Boltzmann, 1872]. Shannon 
[1948] developed an application of entropy to 
information theory, which is different from the 
historical idea of disorder and deals with the 
information that can be gained from the 
uncertainty in the occurrence of an event.  Here we 
use Shannon’s entropy to measure the information 
content of channel splitting and rejoining in a 
delta.  We note that the information-based entropy 
has been extensively used in diverse fields ranging 
from the original application in signal processing 
[Shannon, 1948], to ecology [Rutledge et al., 
1976; Ulanowicz, 2001], hydrology [Amorocho 
and Espildora, 1973; Fiorentino et al., 1993; 
Singh, 1997 and references therein], ecohydrology 
[Ruddell and Kumar, 2009a,b], and 
geomorphology [Leopold and Langbein, 1962; 
Culling, 1988], among others.  
 
As discussed in Tejedor et al. [2015], we adopt a 
“package of flux” point of view to describe delta 
flux transport.  Namely, we consider a conceptual 
individual package of flux that enters the system at 
the apex and propagates downstream until it 
arrives at a channel junction.  Here it randomly 
decides which of possible further paths to take, 
with the probability of taking a particular path 
depending on the channel width or any other 
suitable characteristic. In other words, the package 
performs a random directed walk along the 
network of delta channels. A flow in the delta is 

conceptualized by a large number of non-
interacting flux packages that independently 
perform such a random downstream walk. To 
ensure that this process has a well defined steady-
state we assume that after reaching an outlet, each 
package reappears in the apex.  
 
Defining a “state” of this process as the occurrence 
of a random package at a particular vertex, then pi 
is the probability that state i occurs. We can define 
(–log pi) as a measure of the “surprise” that the 
occurrence of the state i (arrival of package at 
vertex i) causes.  Thus, if pi = 1 (certain event) the 
surprise is zero and if pi = 0 (impossible event), 
the surprise is infinity; the surprise grows 
exponentially from zero to infinity. 
 
The product of the probability of occurrence pi and 
the surprisal (–log pi) gives us a measure of 
uncertainty hi: 
 

.       (4) 
 
Therefore, a state that is certain or impossible does 
not have any uncertainty (i.e., if pi = 1 or 0, hi = 0).  
Note that hi is a positive function of pi in the 
interval  (0,1).  We can define the total uncertainty 
in a system as the sum of the uncertainties of each 
state: 
 

.             (5) 

 
Notice that the maximum of H is observed when 
the probabilities of occurrence for all the states are 
equal.   
 
During the evolution of a system, transitions 
among states occur as a flux package travels from 
one vertex to another. If pij is the probability of 

iii pph log−=

∑∑ −==
N

i
ii

N

i
i pphH log
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transition from state j = 1,…,N to state i = 1,…,N, 
we can define the uncertainties of those transitions 
as  
 

.     (6) 

 
For transitions, H is called joint entropy and it can 
be decomposed into two components: Mutual 
Information and Conditional Entropy. 
 
Mutual Information (MI) is a measure of the 
amount of information that one state contains 
about another state (i.e., the reduction of 
uncertainty in one state due to the knowledge of 
the other) [Cover and Thomas, 2006]. It is 
expressed as 
 

.  (7) 

 
Conditional Entropy (CE) is defined as the 
remaining uncertainty of the state i when j is 
known and is given by: 
 

,      (8) 

 
where  is the probability of transition from j 

to i given that the initial state is j. 
 
The topologic complexity quantifies the branching 
and rejoining of channels and not how the flux is 
distributed.  Therefore, to compute the topologic 
entropy-based metrics we set the probability of 
splitting in each fork  as the inverse of the 

number of offspring vertices.  The pij corresponds 
to the steady state probability of each transition 

and can be computed in a similar way as the 
steady flux calculation in section 3.2 of Tejedor et 
al. [2015] wherein the weighted adjacency matrix 
W is substituted by the adjacency matrix A. As will 
be discussed in section 4.3, in considering delta 
fluxes, the probabilities pij and  are computed 

in terms of the actual partition of fluxes. 
 
4.  Metrics of dynamic complexity 
In the previous section, we have introduced a set 
of metrics to quantify the topologic complexity of 
deltaic networks.  However, there is another 
component of complexity that has not been 
considered in that analysis, i.e., the complexity 
introduced by the flux partition in the system. In 
Figure 4, we present a caricature of two systems 
with the same underlying network structure and 
therefore the same basic constraint on the flux 
partition imposed by their topology.  However, 
their different geomorphologic characteristics may 
result in a different distribution of fluxes as shown 
in Figure 4.  The necessity of defining a second 
component of complexity that quantifies the 
effects of the variability of flux partition in the 
system is apparent. We denote this component as 
the dynamic complexity and we argue that 
together the topologic and dynamic complexities 
provide a comprehensive, and as we show later 
non-redundant way of characterizing a delta 
system.  For this, we first develop the dynamic 
complexity metrics and then we implement both 
metrics in the seven selected deltas for 
interpretation and comparison. 
 
The set of metrics to assess the dynamic 
complexity capture three main characteristics:  (1) 
Leakage, (2) Flux Overlapping and, (3) Entropy-
based dynamic complexity (see Table 3). The 
dynamic computations are based on the values of 
the steady state flux in each vertex and link of the 
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examined delta; those can be easily obtained 
according to the methodology in Tejedor et al. 
[2015] Sect. 3.2.  We used here the channel widths 
as a surrogate for the flux partition [see for 
example Bolla Pittaluga et al., 2003; Edmonds et 
al., 2011] although other parameterizations can be 
used as deemed appropriate for a given delta. 
 
4.1.  Subnetwork Leakage 
From the point of view of the flux, subnetworks 
are in general open systems, i.e., not all the flux 
that enters the subnetwork from the apex ends at 
its outlet, in fact, subnetworks leak out flux to the 
rest of the system.  This leaking occurs at the 
border of the subnetwork, and more specifically at 
bifurcations wherein one of the downstream 
channels still belongs to a given subnetwork, but 
the flux diverted to the other channel eventually 
drains to a different outlet (i.e., such a link belongs 
to a different subnetwork).  Quantifying the ratio 
of fluxes leaked by a subnetwork is a surrogate of 
the “interaction among subnetworks”, and thereby, 
an important characteristic of their dynamic 
complexity. 
 
Thus, we define the Leakage Index (LIi) of the 
outlet subnetwork Si as the proportion of flux that 
leaks to other subnetworks with respect to the total 
steady flux of the subnetwork Si, where the 
leakage of flux is computed as the difference 
between the total vertex flux and total link flux in 
the subnetwork: 
 

            

              (9) 

 
Here Fv represents the steady flux at vertex v, Fuv 
the steady flux at link (vu).  Note that the flux Fv at 
the upstream vertex v is equal to or larger than the 

link flux Fuv allowing for possible multiple 
channels leaving vertex v, .  Similarly, the 
flux at the downstream vertex u is equal to or 
larger than Fuv allowing for other upstream 
channels to deliver their flux to vertex u, .   
 
As mentioned before, we can interpret this 
measure as the capacity of the subnetworks to 
interact among each other. Thus, an almost 
“sealed” subnetwork (LI close to zero) is able to 
retain almost all of its flux, having almost no 
exposure/interaction with other subnetworks.  This 
situation can happen in two extreme and opposite 
configurations: (1) almost independent 
subnetworks, where only the apex is shared, or (2) 
almost completely overlapping subnetworks, 
where each subnetwork spans the whole system, 
only differing from each other in their outlets. On 
the contrary, high LI implies that the subnetwork 
has a large interface of interaction with other 
subnetworks, and exchanges a significant 
proportion of its flux.  Note that in a binary delta 
LI = 0.5 for all its subnetworks if the partition of 
fluxes in each bifurcation is equal. 
 
4.2. Flux Overlapping of Subnetworks 
In the same way that the structural overlapping has 
been defined in section 3.2, we define here its 
dynamic counterpart. Figure 3 shows how a given 
channel can belong to different subnetworks, and 
therefore, the steady flux contained in that link 
will be also shared among those subnetworks.  
However, there is a crucial difference between 
these two shared components: from the topologic 
point of view, the shared links belong equally to 
all the subnetworks, but from the dynamic point of 
view, the shared flux can drain preferentially to 
only one subnetwork.  Using the same line of 
argument as in section 3.2, we present two metrics 
to capture the different properties of flux 

LIi =
Fv

v∈Si
∑ − Fuv

(vu )∈Si
∑
Fv

v∈Si
∑ .

Fuv ≤ Fv

Fuv ≤ Fu
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overlapping:  Flux Sharing Index and Subnetwork 
to Subnetwork Dynamic Pairwise Dependence.  
 
4.2.1.  Flux Sharing Index (FSI) 
The goal of this metric is to quantify the degree of 
flux sharing imposed by the structural 
overlapping. We define the Flux Sharing Index 
(FSIi) for the subnetwork Si as follows: 
 

,  (10) 

 
where Ni is the number of vertices in the 
subnetwork Si and 𝛾!(𝑣) is the proportion of the 
flux in vertex v that arrives at outlet i (note that 
1− 𝛾!(𝑣) is the proportion of flux in vertex v that 
arrives to any outlet j, j ≠ i).  With this metric, we 
try to capture the dynamic dependence among the 
outlet subnetworks.  If a subnetwork is totally 
independent, then  𝛾! 𝑣 = 1    ∀𝑣 and all of the flux 
contained in the subnetwork will eventually be 
delivered to the outlet i. This situation corresponds 
to FSIi ≈0. On the other hand, if the subnetwork 
consists of vertices whose fluxes are shared with 
many other subnetworks then 𝛾! 𝑣 ≈ 0 and only 
a small proportion of the flux in the subnetwork i 
will be delivered to the outlet. This corresponds to 
FSIi ≈1.  Recall that 𝛾!(𝑣) can easily be computed 
as the v-th component of the eigenvector of the 

matrix that corresponds to the subnetwork 

i, and 𝑁! is the number of non-zero components of 
𝛾! [see Tejedor et al., 2015]. 
 
4.2.2. Subnetwork to Subnetwork Dynamic 
Pairwise Dependence (DPD)  
Similar to its topologic counterpart, we look for a 
deeper understanding of the heterogeneity of the 
flux distribution within the whole system by 
examining the flux sharing between subnetworks 

Si and Sj.  This metric is computed as the ratio of 
the flux contained in the links that belong to both 
subnetworks Si and Sj to the flux contained in the 
subnetwork Si:  
 

DPDij =
F(u)

u∈Sij
∑

F(v)
v∈Si
∑ ,  (11) 

where Sij is the set of links that belong to both Si 

and Sj, i.e.,  Sij = Si ∩ Sj .  Note that if the  

Topologic Pairwise Dependence between 
subnetworks Si and Sj is zero (TPDij = 0 ), DPDij  

is also zero.  However, if TPDij  has a high value, 

it does not guarantee a high value for DPDij  since 

the flux can travel preferentially to one 
subnetwork. 
 
4.3.  Entropy-based dynamic complexity of 
subnetworks 
Here we develop the entropy concept presented in 
section 3.3, to incorporate the partition of fluxes.  
Consider a steady flux F=(F1,…,FN) at the vertices 
of a delta with a weighted adjacency matrix 
W={wuv} whose element wuv specifies the 
proportion of the parental flux Fv that goes to its 
offspring u. We set the stationary probability that 
the package of flux is travelling from vertex v to 
vertex u proportional to the flux Fuv at the link that 
connects these vertices: 
 

                     
,                   (12) 

 
where  is the total flux in the links of 

subnetwork Si. We can now find the probability p•v 
of a flux package leaving vertex v (while staying 

FSIi = 1−
1
Ni

γ i (v)
v∈Si
∑

LW
out( )T

i
uv

uv F
Fp =

Fi = Fuv
(vu )∈Si
∑
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within the subnetwork Si) proportional to the flux 
leaving vertex v: 
 

              
 .           (13) 

 
Similarly, the probability pu• of a flux package 
arriving at vertex u from subnetwork Si is 
proportional to the flux entering u: 
 

               
.               (14) 

 
Recall that the joint entropy of a discrete 
distribution {puv} as defined in section 3.3, 
equation (6) can be computed as: 
 

               
.               (15) 

 
The joint entropy can be partitioned into two 
components:  Mutual Information and Conditional 
Entropy.  The Mutual Information (MI), defined in 
equation (7) as a measure of the amount of 
information shared by the pairs of vertex u and v, 
can be expressed in terms of the flux partition wuv 
as:  
 

.      (16) 

 
The Conditional Entropy (CE) defined in equation 
(8) as the average uncertainty that remains about v 
when u is known can be expressed as: 

          
.              (17) 

The entropy can be interpreted as the ability of the 
system to undergo changes [Ulanowicz et al., 
2009] or in other words, it quantifies how the 
uncertainty of the system enables it to deal with 
perturbations. Notice that for subnetworks 
consisting of linear paths, CE=0 since

, therefore for a binary delta the CE 
is zero for all its subnetworks. 
 
5.  Metric computation and comparison of 
seven deltas 
5.1.  Loopiness and Leakage of subnetworks  
From simple inspection of Figure 2, we can 
differentiate two major groups of deltas:  (1) 
bifurcation-dominated (e.g., Wax Lake and 
Mossy) and (2) loop-dominated (e.g., Niger, 
Yukon,	
   Irrawaddy, Parana,	
   and	
   Colville).  The 
metrics of loopiness that we have presented are 
able to capture this separation: bifurcation-
dominated deltas are characterized by a low 
Number of alternative paths (Nap) and a high 
Resistance Distance (RD) (see Figure 5a and 
Figure 6a).  In bifurcation-dominated deltas, most 
of the subnetworks do not have alternative paths; 
in fact, single paths connecting the delta apex to 
the shoreline outlets comprise 75% (18/24) and 
70% (16/23) of the subnetworks for the Wax Lake 
and Mossy deltas, respectively, and this is 
translated to RD equal to 1.  On the other hand, in 
loop-dominated deltas all of the subnetworks have 
multiple paths connecting the apex to the outlet, 
having values of RD significantly lower than 1 
(medians are in the interval 0.6 – 0.83).  More 
information can be untangled with a detailed 
comparison of those two metrics.  First, the Nap of 
Yukon stands out with respect to the other deltas. 
However, the range of values of RD for Yukon is 
comparable with other deltas like Niger and 
Colville. This is revealing the fact that the 
loopines in Yukon is happening at a smaller scale 

p•v =
F•v
Fi =

wuvFv
u∈Si
∑
Fi

pu• =
Fu•
Fi =

wuvFv
v∈Si
∑
Fi

H = − puv log puv
(vu )∈Si
∑

MI = puv log
puv
pu•p•v(vu )∈Si

∑ = puv log
wuv

p•v(vu )∈Si
∑

CE = − puv log
puv
2

pu•p•v(vu )∈Si
∑

vuuv ppp •• ==
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(loops consisting of fewer links) than in the other 
deltas, increasing drastically the Nap but not 
reducing so much the equivalent RD.  Besides, the 
fact that the number of paths in Yukon is high for 
almost all the subnetworks reveals that those 
small-scale loopy structures are close to the apex.  
On the other hand, there are deltas like Parana and 
Irrawaddy that have intermediate values for the 
Nap, and relatively low values of RD.  This 
tendency reveals the existence of complicated 
structures at small and medium scales.  The higher 
RD of Parana is the result of its particular 
structure, wherein the upper part is clearly loop-
dominated, but in its lower region, its structure 
changes to bifurcation-dominated, increasing the 
values of RD (see Figure 2).  Figure 6b highlights 
the potential of Nap and RD to extract 
complementary information of loopiness since 
they do not trivially relate to each other across 
deltas (i.e., different slopes for different deltas). 
 
We have characterized the topologic complexity of 
the subnetworks (apex to outlet) in terms of their 
loopines.  However this difference in their 
topology can lead to more profound consequences 
in their dynamic interaction. We have defined the 
Leakage Index (LI) to quantify those interactions 
as it measures the flux exchange among 
subnetworks. Thus, we can observe that 
subnetworks with high topologic complexity (in 
terms of loopiness) normally have lower LI.  
However, that relation is not trivial, since even 
though the underlying topology is a major 
constraint in the distribution of the steady flux, the 
process-specific dynamic partition of flux plays an 
important role.  Deltas with similar loopiness, in 
terms of median and variability among 
subnetworks, such as Irrawaddy and Parana, can 
have subnetwork leakage that significantly differs 
(in fact, reverses) in variability. On the other hand, 

deltas as different as Niger and Wax Lake in terms 
of median and variability of their loopiness have 
similar median, although vastly different 
variability, for their subnetwork leakage (see 
Figure 5b).  
 
Recall here that the Leakage Index measures the 
proportion of the flux that leaves a given 
subnetwork.  Notice that those losses only take 
place in the junctions that form the border of the 
subnetwork; we refer to those junctions as 
external.  Thus, subnetworks that contain a low 
ratio of internal to external junctions will be more 
prone to leaking out flux and therefore have high 
values of LI, and vice versa.  Subnetworks with a 
high value of loopiness are more likely to have a 
high value of the internal to external junction ratio, 
in agreement with previous results shown in this 
section. It is also important to notice at this point, 
that LI is also sensitive to the flux partition, so the 
presence of preferential paths for flux can change 
substantially the value of LI for a given topology.  
Therefore it is understandable how deltas with 
similar topologies, such as Irrawaddy and Parana, 
can have quite different LI. 
 
5.2.  Structural and flux overlapping of 
subnetworks 
We have argued in sections 3 and 4 how the 
overlapping in topology and flux among 
subnetworks is an important factor in assessing the 
complexity of the entire delta network.  To 
measure the degree to which a subnetwork shares 
its channels and fluxes with other subnetworks, we 
have introduced the Link Sharing Index (LSI) and 
Flux Sharing Index (FSI).  Figure 5c1 and 5c2 
show that both LSI and FSI have the same general 
trend in their medians but FSI has a larger 
variability for all deltas.  This is expected since 
there is no possible dynamic sharing (fluxes) 
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without topologic sharing (channels).  Therefore, 
the flux sharing can be interpreted as a modulation 
of the link sharing.   Thus, differences between the 
dynamic and topologic sharing tell us about the 
asymmetry in the flux distribution.  If we examine 
this closer, we note that Yukon and Parana have 
high LSI implying the existence of a core of links 
that are common to several subnetworks.  For 
Yukon, the range of variability of FSI is similar to 
the range of variability for LSI, suggesting an 
almost equitable distribution of fluxes among the 
different subnetworks. On the contrary, for deltas 
such as Irrawaddy and Niger the ranges of 
variability of FSI are much bigger than those for 
LSI, indicating a more asymmetric distribution of 
fluxes (presence of preferential pathways of flux 
delivery to the shoreline). In other words, for 
Parana and Yukon deltas (high values for LSI and 
FSI) there is not only topologic overlapping (links 
shared by subnetworks) but also dynamic 
overlapping wherein flux in each link is also 
shared by other subnetworks. On the other hand, 
for Irrawaddy and Niger deltas, links are relatively 
equally-shared among subnetworks but the 
dynamic components are preferentially shared in a 
sense that a large percentage of the flux in a given 
link drains to one subnetwork relative to the others 
(common topologic units but more independent 
dynamic units).  
 
The metrics discussed above can be useful in 
characterizing the overall topologic and dynamic 
dependence of each subnetwork. However, 
understanding the nature of those relationships 
(e.g., subnetworks that overlap with a few or a 
large number of other subnetworks) is necessary in 
order to tease apart the complexity of the delta as a 
whole.  Thus, we present a joint representation that 
captures those relationships, namely: Subnetwork 

to Subnetwork Topologic and Dynamic Pairwise 
Dependence.  
 
Figure 7 shows for three deltas (Mossy, Niger and 
Parana) the results of the pairwise analysis of 
topologic (left panels) and dynamic (center panels) 
dependence. Here the outlets are indexed 
consecutively and counterclockwise starting with 
the leftmost one where the delta is plotted with the 
apex on the figure’s top and outlets at the bottom. 
From the topologic pairwise analysis, tree-like 
deltas (e.g., Mossy) exhibit high values of shared 
links (red colors) close to the diagonal, and low 
otherwise.  This means that only neighboring 
subnetworks have a significant number of 
common links, which decreases fast when 
compared to farther subnetworks. Deltas like 
Niger present a similar diagonal-pattern in the 
topologic pairwise analysis. At the same time, the 
dynamic counterpart is clearly different between 
these two delta types. Specifically, in the analysis 
of bifurcation-dominated deltas, some structures 
appear symmetrically along the diagonal, meaning 
that for many pairs (i,j) subnetwork i shares the 
same proportion of flux with j as j shares with i. 
However, for loop-dominated deltas the Dynamic 
Pairwise Dependence is not symmetric at all. The 
contiguous areas of high values of sharing in both 
charts can be interpreted as mesoscale units in the 
delta, consisting of several subnetworks (see 
Figure 7 right panels), that emerge from either the 
topologic or their dynamic overlapping (or both).  
Thus, in tree-dominated deltas, the subnetworks 
separate from each other close to the apex and do 
not rejoin again, hence forming different topologic 
units. Although, the flux is subject to the 
constraint imposed by the mentioned topology, red 
colors (high pairwise dependence) are also 
observed for subnetworks located away from each 
other in the dynamic chart of Mossy delta. This is 
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due to the fact that, although far away 
subnetworks only share a few channels, those 
channels are located close to the apex and can 
contain a big percentage of the total flux.  On the 
other hand, in more complex deltas e.g., those that 
have experienced major avulsions, due to the 
existence of loops close to the apex, both 
topologic and dynamic interactions among farther 
subnetworks are present. Parana exhibits a 
paradigm of extensive systemwise interaction, 
where the system acts almost as a single unit; this 
is also reflected in the very small variability 
among the 18 outlet subnetworks in all the 
computed metrics (see Figure 5).   
 
5.3.  Entropy-based complexity of subnetworks 
Entropy measures the complexity in terms of the 
uncertainty in the splitting and rejoining paths 
(topologic) and fluxes (dynamic).  Traditionally, 
joint entropy is divided into two components the 
Mutual Information (MI) and Conditional Entropy 
(CE).  A noteworthy insight is the interpretation of 
MI and CE as measures of Rigidity and Flexibility, 
respectively for both network topology and 
dynamics; see also Ulanowicz et al. [2009]. We 
relate the concept of MI with rigidity, interpreted 
as a measure of the constraints imposed by the 
connectivity of the channel networks. Recall that 
MI measures the information shared between 
states, and in deltas those possible connections 
require a physical connectivity (channel network).  
On the other hand, CE is a measure of the 
remaining information contained in the system 
once the structure is imposed.  The source of that 
remaining information is the uncertainty still 
present in the system about the next position 
(state) of a package of flux given the knowledge of 
its current position.  Thus, subnetworks consisting 
of single paths have zero CE, since no further 
information is gained when the structure is fixed 

(i.e., given the current position of the package of 
flux, we know that its next position is directly 
downstream of the current one).  Subnetworks 
with at least one bifurcation have non-zero CE 
since even though the structure is known, the 
voyage of the package of flux is not totally 
determined (i.e., in each bifurcation, there is some 
uncertainty related to the probability of taking one 
or other alternative path).   
 
From the computation of these metrics, Figure 5d1 
and 5d2 show similar trends and variability for 
both the topologic and dynamic Mutual 
Information (MI) revealing that connectivity is the 
most important constraint underlying this concept 
of complexity. The fact that measures of 
loopiness, Nap and RD, exhibit similar trends and 
variability to those of MI reinforces its 
interpretation as the Rigidity of the system. 

The trend and variability seen for the topologic 
and dynamic MI is not generally observed for 
Conditional Entropy (see Figure 5e1, and 5e2):  (i) 
the dynamic CE is smaller than the topologic CE, 
(ii) big changes in the variability of those two 
magnitudes are observed for the same delta (e.g., 
higher topologic than dynamic variability for 
Niger and lower topologic than dynamic 
variability for Irrawaddy), and (iii) same trends 
and variability are observed for bifurcation-
dominated deltas such as Wax Lake and Mossy.  
These differences and similarities can be 
interpreted in terms of the flexibility of the system: 
(i) since flexibility deals with the information that 
remains in the system because of the uncertainty 
introduced in each bifurcation, its maximum value 
occurs when there is equal probability of splitting.  
This implies that topologic CE is always greater 
than or equal to the dynamic CE; (ii) Flexibility is 
very sensitive to flux partition.  Therefore, having 
symmetric or asymmetric partition in each fork 
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generates different variability across subnetworks 
for topologic and dynamic CE; (iii) the similarity 
in the topologic and dynamic CE for Wax Lake 
and Mossy deltas resides in their bifurcation-
dominated nature wherein very little further 
information is gained since most of the 
subnetworks are single paths (CE =0).   

 
6.  Constructing a Topo-Dynamic 
Complexity Space for Deltas 
Having developed the framework to assess the 
complexity of deltas, it is now possible to push 
forward the idea of defining a complexity space 
where deltas can be mapped and compared. 
Different topologic and dynamic characteristics of 
a delta can be considered coordinates of a Topo-
Dynamic complexity space.  A particular choice of 
the examined characteristics (and hence space 
dimension) would depend on the specific problem 
being addressed. For illustration purposes we have 
chosen two metrics, one topologic and one 
dynamic, to construct a topo-dynamic space for 
the seven examined deltas.  We have chosen the 
Number of alternative paths (Nap) as a surrogate 
for Topologic Complexity and the Leakage Index 
(LI) for Dynamic Complexity. The resulting space 
is shown in Figure 8, which shows the median and 
interquartile range (the range between 25% and 
75%) for each space component and every delta.  
A general trend is observed: the more 
topologically complex a delta is, the lower its 
dynamic complexity although the variability of 
each component (coming from the collection of 
subnetworks in each delta) can be very large.  This 
trend is expected since the larger the topologic 
complexity, the smaller the proportion of external 
links (border), which are able to interact with the 
rest of the delta, and therefore the lesser the 
possibility of fluxes leaking out.  The special case 
of a binary tree delta (with equal flux partition in 

each bifurcation) has the minimum topologic 
complexity (Nap=1), i.e., all the subnetworks 
consist of a linear path, and a dynamic complexity 
LI = 0.5, as illustrated in Figure 8.  We observe 
that the Wax Lake and Mossy deltas are the 
closest to that binary tree, depicting the almost 
bifurcating topology but also the more complex 
dynamics due to flux sharing.  In spite of this 
general trend, other interesting and more detailed 
properties can also be observed.  For example, 
deltas like Colville and Yukon have similar 
dynamic complexity, but Yukon is clearly more 
complex in terms of topology.  Likewise, Colville 
and Niger have comparable topologic complexity, 
but Niger is more dynamically complex.  A more 
detailed explanation of the meaning of those 
similarities and differences has been presented in 
the previous sections, together with other metrics, 
but what we attempt to put forward here is the idea 
of a simple representation, in which both the 
topologic and dynamic complexity are able to 
position deltas in a common space to 
quantitatively compare and eventually classify 
them.  
 
7. Relating the concepts of Complexity and 
Vulnerability  
In Tejedor et al. [2015], vulnerability was defined 
in terms of how changes in upstream links would 
affect the shoreline fluxes.  We now ask the 
question of whether and how the vulnerability of 
the system might relate to its complexity.  We 
illustrate in Figure 9 the comparison between the 
average Vulnerability Index Vi for the different 
delta subnetworks as defined in Tejedor et al. 
[2015] equation (14) and (a) the topologic 
complexity and (b) dynamic complexity.  We have 
chosen the Number of alternative paths (Nap) as a 
surrogate for topologic complexity and the 
Conditional Entropy (CE) for dynamic 
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complexity. As expected, the higher the Number 
of alternative paths, the lower the vulnerability 
index but the relation is not trivial (Figure 9a).  
Note that in the vulnerability analysis, single path 
subnetworks are the most vulnerable since a 
change of flux in that path propagates directly to 
the outlet. At the same time, subnetworks with 
multiple splitting and joining paths are less 
vulnerable. However, the degree of vulnerability 
depends on the specific topology of the 
subnetwork as indicated by the variability 
associated with the values for individual 
subnetworks.  We also observe the appearance of 
“unoccupied areas” in this space: there are no 
subnetworks with high (low) Number of 
alternative paths and high (low) vulnerability.   
 
From Figure 9b we observe that the Vulnerability 
Index has a however general decreasing trend with 
the dynamic CE, although the scatter around this 
relationship is more pronounced compared to that 
between the Vulnerability and the Number of 
alternative paths (Fig. 9a).  The observation that 
there are no low (high) values of the vulnerability 
index when the dynamic CE is low (high), 
reinforces the inverse relationship between 
vulnerability and complexity.  We have chosen the 
weighted CE as a surrogate for dynamic 
complexity since it can be interpreted as the 
flexibility of the subnetworks to deliver fluxes to 
the outlets.  Note that the vulnerability index 
cannot be uniquely determined by either the 
topologic or the dynamic complexity separately, 
revealing the necessity of a multivariate analysis 
and reinforcing the need for a quantitative 
framework using both the topologic and dynamic 
complexities to better understand vulnerability. 
The exact relationship between vulnerability and 
the topo-dynamic complexity is of course 
complicated.  A 3D space that considers these 

three quantities jointly would be revealing but it is 
left for future research. 
 
8.  Spatially explicit metrics of complexity: 
a delta width function 
All the metrics developed so far study 
subnetworks as units without reference to their 
complexity at specific distances from the apex.  It 
is of interest however to examine how this 
complexity might change as one moves 
downstream from the apex to the shoreline.  As a 
preliminary step in this direction we introduce 
here the delta width function, defined as the 
number of links intersected at different distances 
from the apex, similar to the width function for 
river networks defined as the number of streams at 
a given distance from the outlet [Rodriguez-Iturbe 
and Rinaldo, 1997]. Figure 10 (right panels) 
illustrates this concept where for simplicity 
distance is measured radially from the apex. 
Normalizing this distance by the maximum 
distance (distance from apex to the actual 
shoreline) and normalizing the number of links at 
a given distance by the maximum possible number 
of links intercepted at any distance, Figure 10a 
shows the normalized width function for the seven 
deltas. Also for comparison, the normalized width 
function of a binary bifurcating tree is displayed 
on the same plot (notice that its staircase shape is 
due to the strict hierarchy of the tree together with 
the assumption of equal link lengths at each level 
of generation).  We observe that for tree-like 
deltas (Wax Lake and Mossy), the normalized 
number of links is an increasing function of the 
normalized distance achieving the maximum at the 
current shoreline similar to the behavior for the 
binary tree.  More complex deltas, on the other 
hand, attain a maximum before the current 
shoreline (e.g., Irrawaddy at normalized distance ≈ 
0.78, Colville and Niger ≈ 0.90, and Yukon ≈ 
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0.95) except for Parana with maximum located at 
the current shoreline.  These results highlight the 
idea that Parana can be thought of as two deltas in 
tandem [Smart and Moruzzi, 1971]:  the upper half 
near the apex with a narrow region similar to 
braided rivers containing the core links, and the 
lower half with a topology similar to a bifurcation-
dominated delta.    
 
The width function is a useful tool to differentiate 
among different configurations of delta networks.  
Figure 11 illustrates schematically the different 
trends of the width function and their 
interpretations.  An increasing trend for a range of 
distances from the apex is associated with 
divergent structures, i.e., dominated by 
bifurcations.  On the other hand, a decreasing 
trend is indicative of convergent structures, i.e., 
confluence-dominated area of the delta.  Finally, if 
a region has a similar number of confluences and 
bifurcations, it is indicative of a confined structure 
and will manifest itself as a constant width 
function.   According to this classification, tree-
dominated deltas such as Mossy and Wax Lake are  
characterized by mostly divergent structures.  
Loop-dominated deltas exhibit a convergent 
structure for a range of distances close to the 
shoreline.  Lastly, the Parana delta is a clear 
example of a delta with a confined structure where 
the width function is fairly constant over a large 
part of the delta (normalized distance of 0.2 to 0.8 
from the apex to the outlet; see Figure 10a). 
 
Although the spatial analysis of a mature delta 
cannot be used as a surrogate for its temporal 
evolution (due to the possibility of internal 
rearrangement of channels caused by avulsions 
and major flooding) it can still be used as a rough 
proxy.  Figure 10b shows the evolution of the 
seven deltas in the topo-dynamic space.  The 

arrows indicate the direction of increasing distance 
from the apex.  Each line corresponds to the mean 
topologic complexity and to the mean dynamic 
complexity as we move from the apex to the 
shoreline. From a spatial evolution perspective, 
deltas evolve by increasing their topologic 
complexity (in terms of Nap) and decreasing their 
dynamic complexity (in terms of LI).  This is 
compatible with the idea that young (old) deltas 
are topologically simple (complex) with 
subnetworks exchanging a large (small) proportion 
of fluxes.  
 
9.  Conclusions and open problems   
In Tejedor et al. [2015], we introduced a 
framework based on spectral graph theory, by 
which delta channel networks can be studied as 
rooted directed acyclic graphs opening the door to 
efficiently compute several properties of interest 
via simple algebraic manipulations. Specifically, 
we demonstrated how upstream (contributing) and 
downstream (nourishment) subnetworks can be 
identified and extracted by operations on the so-
called Adjacency matrix, which uniquely 
characterizes the connectivity of a graph.   
Approaching propagation of fluxes via a random 
walk on a network, steady-state solutions of fluxes 
were obtained via the Laplacian operator (similar 
to the known advection-diffusion operations on a 
porous medium).  The present paper builds on the 
results of spectral graph theory to define a number 
of metrics that depict the topologic and dynamic 
complexity of delta channel networks, a necessary 
step in the quest of understanding how the 
physical processes forming a delta relate to the 
complex transport pathways they leave behind on 
the landscape.  The topologic complexity metrics 
we proposed depict three topologic characteristics:  
Loopiness, Structural Overlapping and Entropy-
based topologic complexity, while the dynamic 
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complexity metrics are grouped to capture three 
main dynamic features: Leakage, Flux 
Overlapping and Entropy-based dynamic 
complexity.  We used entropy concepts to quantify 
how the flux between links, constrained by the 
organized patterns of splitting and re-joining, 
partitions the total entropy into Mutual 
Information (rigidity) and Conditional Entropy 
(flexibility). Finally, we introduced the delta width 
function that can be used to classify deltas 
according to their spatially-explicit network 
configuration.   All metrics were implemented and 
compared on seven diverse deltas. 
 
The results have provided some valuable insights 
with main conclusions being: 
(1) Jointly, the topologic and dynamic complexity 

of a river delta places it in a unique position in 
a delta topo-dynamic space, revealing that as 
topologic complexity decreases (e.g., fewer 
loops and simpler subnetwork structures 
connecting the apex to the shoreline outlets) 
the dynamic complexity (flux exchanged 
among subnetworks) increases. At the limit of 
minimum (maximum) topologic (dynamic) 
complexity is a purely bifurcating tree and we 
see that the simpler and younger (e.g., Mossy 
and Wax Lake) deltas are, in fact, closer to 
such a bifurcating delta in the topo-dynamic 
space.  This is also observed in all other 
metrics.     

(2) A spatially-explicit interrogation of a delta in 
terms of its normalized number of links versus 
normalized distance from the apex (delta width 
function) reveals that one can quantify easily 
deltas that are mostly divergent, convergent or 
geologically confined, as well as transitions 
from one regime to another. This is apparent in 
the mostly bifurcating (divergent) structure of 
the Wax Lake and Mossy deltas, and depicts 

the mostly confined structure of the Parana 
delta.  

(3) A tapestry plot that records the topologic (link 
sharing between subnetworks) and dynamic 
(flux sharing between subnetworks) structure 
of a delta as a whole system, can be used to 
identify coherent subunits of a delta and 
provide a complementary representation of its 
spatial topologic and dynamic structure.  

(4) The topologic and dynamic complexity of 
deltas seem to relate to its vulnerability to 
change, i.e., to the way a delta responds in 
propagating upstream disturbances to its 
shoreline outlets.  Specifically, we report an 
inverse non-trivial relationship between 
vulnerability and two indices of topologic 
(Number of alternative paths) and dynamic 
(Conditional Entropy) metrics. 

This study is seen as the beginning of further 
exploratory analysis of deltas to understand and 
quantify how bio-physical processes, climate and 
geologic constraints, as well as human actions, 
change the topologic and dynamic connectivity of 
deltaic surfaces and thus affect the way deltas will 
respond to future perturbations. Two ideas for 
future work are proposed herein: 
(1) Although considerable satellite imagery for 

deltas is available, automatic extraction of 
delta channels from such images is not 
possible hampering extensive analysis not only 
of a much larger number of deltas, but also a 
single delta under different seasonal flows or 
as it has evolved over time.  An interesting 
question to address will be to examine how the 
scale at which a delta is seen (detail of 
mapping its channels) affects the metrics of 
topologic and dynamic complexity and what 
scale is necessary to achieve some robustness 
on these metrics. Are there any scaling 
relationships (akin to those in tributary channel 



23	
  
	
  

networks and also in braided river networks, 
e.g., see Sapozhnikov and Foufoula-Georgiou, 
1997) that can relate properties of the system 
at one scale to those at another scale? Is there 
scale-invariance present in any of those 
relationships? For example, do smaller in size 
subnetworks leak out more flux in a way that 
can be parameterized by size and complexity? 

(2) In addition to the natural observatories of 
deltas, where analysis is based on real data, 
numerical observatories which can provide a 
wealth of simulated deltas under controlled 
physical conditions are expected to provide 
considerable insight on the problem of how 
physical processes building a deltaic surface 
express themselves in the spatial and temporal 
patterns of its channel structures. For example, 
numerical simulations based on detailed 
hydrodynamic models have shown that the 
shape and the structure of deltas depend on the 
cohesiveness of the soil [Caldwell and 
Edmonds, 2014], forcings such as wind waves 
and tides [Nardin and Fagherazzi, 2012; 
Leonardi et al., 2013] etc. Also reduced 
complexity models [Liang et al., 2015a,b] 
offer a simpler way to experiment with semi-
physical rules and map their effect on the delta 
channel structure.  Such models also offer a 
mechanism for studying the question as to how 
the complexity of a single delta evolves over 
time as the delta builds and its channels avulse 
due to localized instabilities, propagating 
laterally and downstream and reorganizing 
portions of the deltaic surface.  

 
Appendix A: Finding the Number of 
Alternative Paths to an Outlet 
Here we show how to compute the number of 
alternative paths from a given node within a delta 
to any given outlet using simple matrix operations 

on the directed graph G that describes the delta. 
Two paths are considered different if they differ 
by at least one non-shared link.  
 
Number of alternative paths: Consider a delta 
system represented by an acyclic rooted directed 
graph G with adjacency matrix A. Assume that the 
system has k outlets indexed as i =1,…,k. Consider 
the matrix M = (I*-AT), where AT is the transpose 
of the adjacency matrix, and I* is obtained from 
the identity matrix by placing zero in the position 
(uu) for each outlet u. Then 
(i) The null space of M has dimension 

(multiplicity of the eigenvalue zero) equal 
to the number of outlets k; 

(ii) There exists a unique basis γi, i=1,…,k, of 
this null space in (i.e., the basis 
consists of k vectors each having N 
components) with the property  

     for  j=1,…k. 

That is, the component of the vector γi is 
unity at the outlet i (γi(i)=1) and zero at all 
other outlets (γi(j)=0 for j≠i, j=1,…,k).  

(iii) The non-outlet vertex v belongs to the 
contributing subnetwork Si if and only if 
γi(v) ≠ 0. 

(iv) The value γi(v) equals the number of 
alternative paths from vertex v to the outlet 
i. 

 
Proof: 
(i) We observe that there exists at least one 
indexing of the vertices of the rooted directed 
acyclic graph G such that each offspring vertex 
has a higher index than its parental vertex. In this 
indexing, the internal vertices have indexes from 1 
to (|V| - k) -- |V| being the number of the vertices 
in G -- and the outlets have indexes from (|V| - k 

 
N

γ i ( j) = δ ij =
1, i = j;
0, i ≠ j

⎧
⎨
⎪

⎩⎪
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+1) to |V|. By construction, the matrix M is upper 
triangular, with ones on the main diagonal for the 
first (|V| - k) rows and with the last k rows being 
zero. Using the rank-nullity theorem [Meyer, 
2000], dim(ker(M)) = k. 
 
(ii) Consider an eigenvector γ that corresponds to 
the eigenvalue 0 of the matrix M=(I*-AT).  By the 
definition of the eigenvalue 

(I*-AT) γ = I*γ - ATγ = 0,                 (1) 
 

which implies 

I*γ = AT γ.    (2) 

In coordinate form, this becomes 

γ (v) = ajvγ ( j)
j
∑  (for v that are not outlets.) (3) 

In other words, γ (v) is the sum of the components 
γ (ui) of all the offspring {ui} of v within G.  

Next, we explicitly construct k independent 
eigenvectors that correspond to the zero 
eigenvalue of M. Namely, the i-th eigenvector γi 
will correspond to the outlet i = 1,…,k. It is 
constructed by letting γi(i) = 1 and γi(j) = 0 for all 
the other outlets (that is for all j =1,…,k such that j 
≠ i) and computing the other components using 
Eq. (3). The linear independence of the vectors {γi}	
  
follows	
   from the above construction of the 
components for the outlet indices: only one vector 
has non-zero value at coordinate i = 1,…,k.  The 
characteristic property (ii) holds by construction.  

The above procedure produces k independent 
vectors. Since the dimension of the kernel of M is 
k, we constructed a basis for this kernel. 

(iii) Follows from construction of the vector 
components using Eq. (3), as described in the 

proof of (ii) above. 

(iv) We prove the statement by induction. The 
induction base is given by the observation that γi(i) 
= 1 for the outlet i of the subnetwork Si, which can 
be interpreted as the existence of a unique path 
from the outlet to itself. For induction step we 
consider an interval vertex v and assume that for 
all its offspring uj the number of alternate paths 
from uj to the outlet i is given by γi(uj). We have  

γ i (v) = au1vγ i (u1)+ ...+ aukvγ i (uk ) = γ i (u1)+ ...+ γ i (uk ) , 

which is indeed the number of paths from v to i. 
This completes the proof. 

Remark: We notice that the above result is very 
similar to our statements on finding contributing 
and nourishing subnetworks in the companion 
paper [Tejedor et al., 2015]. However, this result, 
unlike those in [Tejedor et al., 2015], does not 
follow from the work of Caughman and Veerman 
[2006], since it involves the matrix M that cannot 
be represented as D(I-S), with D being a non-
negative diagonal and S – stochastic. 

 
Appendix B: Resistance Distance 
A schematic representation of two subnetworks is 
shown in Figure A1: Subnetwork 1 (top) 
connecting the Apex to the Outlet 1 (O1), and 
Subnetwork 2 (bottom) joining the Apex to Outlet 
2 (O2).  Both subnetworks have the same number 
of links equal to 6 and the shortest path from the 
apex to the outlet consisting of 3 links.  Here, we 
want to introduce with more detail concepts 
related with Resistance Distance (RD) described in 
section 3.1.2, and show differences in the way it 
quantifies the complexity of a subnetwork with 
respect to the Number of alternative paths (Nap).  
Following Klein and Randic [1993], we can define 
Resistance Distance between the apex and the 
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outlet, as the effective resistance between them 
when each link of the graph is replaced by a 1-
ohm resistor.  In the theory of electrical circuits, 
the effective resistance is computed based on the 
arrangement of the resistors: 
 
(1) Resistors in series: The connected resistors 

only share one junction (black square), so the 
current flows through one resistor after the 
other (e.g., Resistors 1-2-3 and 4-5-6, see top 
panel of Figure A1). The effective resistance 
of resistors in series is equal to the sum of the 
values of the individual resistors, 

.  (A1) 

 
(2) Resistors in parallel: The connected resistors 

share two junctions, so the current flows at the 
same time to both resistors (e.g., Resistors 1 
and 4, 2 and 5, 3 and 4; see bottom panel of 
Figure A1).  The effective resistance of 
resistors in parallel can be computed as:

.
(A2) 

 
Therefore, the equivalent resistance from Apex to 
Outlet 1 and Outlet 2 are as follows: 

 

 

 

 
Note that both subnetworks have the same 
Resistance Distance.  Resistance Distance can be 
interpreted as the  “effective distance”, in the 
sense that if multiple routes connect two vertices 
of a graph, these vertices are closer to each other 
than if they are connected only by one route. Thus, 
the apex is three links apart from both outlets 1 
and 2, but the Resistance Distance is half of that 
number implying the existence of alternative 
routes between them.  On the other hand, the 
Number of alternative paths between the apex and 
outlet O1 is 2 (Paths: 1-2-3, and 4-5-6) while the 
Number of alternative paths between the apex and 
outlet O2 is 23=8 (Paths: 1-2-3, 1-2-6, 1-5-3, 1-5-
6, 4-2-3, 4-2-6, 4-5-3 and 4-5-6).   
 
Both metrics can be used to characterize the 
complexity of the topologic structure, but they are 
not equivalent.  While the Number of alternative 
paths is able to account for all the possible 
combinations of paths, Resistance Distance looks 
at the alternative routes; penalizing some 
combinations that do not really add disjoint paths.  
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Notations  
A   adjacency matrix  
As   symmetrized adjacency matrix 
auv   element of A 
buv   number of subnetworks link (vu) belongs to 
CEi   Conditional Entropy in subnetwork i 
d   depth of the binary tree 
duu   elements of the degree matrix D 
DPDij   Dynamic Pairwise Dependence between subnetworks i and j 
Din   in-degree matrix 

Dout   out-degree matrix 
DCEi   Dynamic Conditional Entropy in subnetwork i 
DMIi   Dynamic Mutual Information in subnetwork i 
Fi   total flux in the links of subnetwork i 
Fu   steady flux at vertex u 

Fuv   steady flux at link (vu) 
FSIi   Flux Sharing Index of subnetwork i 
hi   measure of uncertainty of state i 
H   total uncertainty 
I*    identity matrix with zeros in the elements corresponding to the outlets 
Lin   in-degree directed graph Laplacian 

Lout   out-degree directed graph Laplacian 
   weighted  out-degree directed graph Laplacian 

LIi   Leakage Index in subnetwork i 
LSIi   Link Sharing Index among subnetworks i 
MIi   Mutual Information in subnetwork i 
n    number of subnetworks to which a given link belongs to 
No   number of outlets 
Ni   number of links/vertices in subnetwork i 
Nap,i   Number of alternative paths in subnetwork i 
pi    probability that state i occurs 
pij   probability of transition from state j to state i 
puv   probability that the package of flux is travelling from vertex v to vertex u 
pu.   probability of a package of flux arriving at vertex u 
p.v   probability of a package of flux leaving vertex v 

   probability of transition from j to i given that the initial state is j 

RDi   Resistance Distance in subnetwork i 
Si   subnetwork i 
Sij   intersection of links/vertices in subnetworks i and j 

LW
out

ijp →



28	
  
	
  

TPDij   Topologic Pairwise Dependence between subnetworks i and j 
TCEi   Topologic Conditional Entropy in subnetwork i 
TMIi   Topologic Mutual Information in subnetwork i 
u   vertex 
Vi	
   	
   	
   global vulnerability of outlet subnetwork i  

wuv   element of W 
W   weighted adjacency matrix  
𝛾!(𝑣)    proportion of flux at vertex v that arrives at outlet i 
Γ   Moore-Penrose pseudoinverse of the Laplacian 
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TABLES 

Table 1.  Location and summary of physical characteristics for each delta. 

Delta Location Area 
(km2) 

Age 
(yrs) 

Apex to shoreline 
average distance 

(km) 

Dominant 
Forcing 

References 
 

1.  Niger Nigeria 24,508 Late Cretaceous+ 

(80-35 Million BP) 

  160 Wave/Tide* +
Goudie, 2005; 

*
Syvitski et al., 2005 

2.  Parana Argentina 15,463 Middle Holocene+ 

(6,000 BP) 

213 River/Geology* +
Politis et al., 2011; 

*
Syvitski et al., 2005 

3.  Yukon Alaska, 

USA 

8,313 Middle Holocene+ 

(5,000 BP) 

80 Wave* +
Nelson and Creager, 

1977; 
*

Syvitski et al., 

2005 

4.  Irrawaddy Myanmar 6,438 Middle Holocene+ 

(8,000-7,000 BP) 

117 Tide* +
Hedley et al., 2010;

 

*
Syvitski et al., 2005 

5.  Colville Alaska, 

USA 

240 Middle Holocene+ 

(4,000 BP) 

22.5 River* +
Jorgenson et al., 

1998; 
*

Walker, 1998 

6.  Wax Lake Louisiana, 

USA 

100 75+ 11.5 River* +
Roberts et al., 1997;

 

*
Edmonds et al., 2011 

7.  Mossy Canada 17 140+ 4.7 River* +
Smith et al., 1998;

 

*
Edmonds et al., 2011 
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Table 2.  Summary of simple topologic characteristics of each delta channel network.  The recombination factor introduced 

by Smart and Moruzzi [1971] is computed based on rudimentary graph theory.  Note that the values reported here for Niger, 

Parana, Yukon, Irrawaddy and Colville have been obtained from the analysis of the images by Smart and Moruzzi [1971]; 

values for Wax Lake were obtained from the analysis of the network extracted by Edmonds et al. [2011]; and values for 

Mossy were obtained from the analysis of the network extracted from Google Earth.   

 

Delta NL 
# of links 

NV 
# of 

vertices 

NO 
# of 

outlets 

NJ 
# of 

junction 
vertices 

NF 
# of fork 
vertices 

Recombination 
factor 
α=NJ/NF 

1.  Niger 181 130 15 50 65 0.769 

2.  Parana 86 69 18 18 33 0.545 

3.  Yukon 169 126 24 37 65 0.569 

4.  Irrawaddy 100 71 6 30 35 0.857 

5.  Colville 140 107 20 34 53 0.642 

6.  Wax Lake 59 56 24 5 27 0.185 

7.  Mossy 67 61 23 10 28 0.357 
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Table 3.  Summary of metrics. 

Metrics Description 

 
A.  Metrics of Topologic Complexity  
 

 

1.  Loopiness 
    1.1.  Number of alternative paths   

                  1.2.  Resistance Distance 

Quantifies the loopiness of each subnetwork via (1.1) the 
intuitive notion of the Number of alternative paths from 
the apex to the outlet and (1.2) the notion of equivalent 
resistance in the theory of electrical circuits. 

2.  Structural Overlapping   
    2.1.  Link Sharing Index 
    2.2.  Subnetwork to Subnetwork Topologic  
            Pairwise Dependence  

Quantifies the degree to which the network links are 
shared among (2.1) different outlet subnetworks and 
(2.2) pairs of subnetworks. 

3.  Entropy-based Topologic Complexity 
    3.1. Topologic Mutual Information 
    3.2. Topologic Conditional Entropy 

Quantifies the (3.1) rigidity and (3.2) flexibility in the 
system imposed by the underlying topologic 
connectivity.  

 
B.  Metrics of Dynamic Complexity 

 
 

4. Subnetwork Leakage 
Leakage Index measures the proportion of flux leaking 
from a subnetwork before the flux is delivered to the 
outlet. 

5.  Flux Overlapping   
    5.1.  Flux Sharing Index 
    5.2.  Subnetwork to Subnetwork Dynamic  
            Pairwise Dependence 

Quantifies the degree to which the network fluxes are 
shared among (5.1) different outlet subnetworks and 
(5.2) pairs of subnetworks. 

6.  Entropy-based Dynamic Complexity 
    6.1. Dynamic Mutual Information 
    6.2. Dynamic Conditional Entropy 

Quantifies the (6.1) rigidity and (6.2) flexibility in the 
system taking into account physical processes that 
control the partition of fluxes. 
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Figure 1.  Qualitative illustration of topologic and dynamic complexity of delta channel networks.  

Panels (a,b): topologic complexity of subnetworks within a delta system ranging from a single path to a 

collection of splitting and rejoining paths connecting the apex to the outlet. Panels (c,d): shared links 

among subnetworks that drain to different outlets – a link might be part of only one subnetwork (n=1) 

or a number of subnetworks n depending on the overall topologic structure of the delta system. Panels 

(e,f): flux interaction among subnetworks -- bifurcation of channels within a subnetwork that led their 

fluxes to another subnetwork characterize the dynamic exchange of fluxes and depends both on the 

topology of the network and also the flux distribution.  
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Figure 2.  Location of seven deltas and their corresponding channel networks numbered according to 

size (largest to smallest area). We used the Smart and Moruzzi [1971] networks for (1) Niger, (2) 

Parana, (3) Yukon, (4) Irrawaddy, and (5) Colville Deltas.   For (6) Wax Lake we used the network 

extracted by Edmonds et al. [2011].  We have extracted the network of (7) Mossy from Google Earth.  

Satellite images are copyrighted by Digital Globe Inc. 2014. 
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Figure 3.  Structural Overlapping.  (Left panel)  Three different outlet subnetworks have been 

highlighted for the Mossy delta.  Black links represent the common part to the 3 subnetworks, and blue 

channels the common part to subnetworks 12 and 13, but not to 19.  (Right panel)  Outlet subnetworks 

2 and 18 of Parana delta are highlighted.  Black links represent the common part to both subnetworks.    
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Figure 4. Asymmetric Flux distribution.  Caricatures (a) and (b) illustrate two deltas with the same 

underlying topology (channel network structure) but different flux distribution.  The amount of flux in 

each channel is illustrated by the width of the blue lines.  Thus, (a) shows a delta where fluxes are 

evenly distributed among the different channels, while (b) presents a delta with a clear preferential path 

by which the main portion of flux is delivered from the apex to the shoreline.  As expected, these deltas 

cannot be differentiated based on their topologic complexity, but only based on their dynamic 

complexity, which is significantly different. 
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Figure 5.  Summary of topologic (a, c1-e1) and dynamic (b, c2-e2) complexity metrics for the seven 

deltas (NI = Niger, PR = Parana, YK = Yukon, IW = Irrawaddy, CV = Colville, WL = Wax Lake, MO 

= Mossy).  We note that for a binary tree (for depth d =10) the topologic metrics are equal to:  Nap =1, 

LSI = 0.80, TMI =1.99  and TCE =0 and the Wax Lake and Mossy deltas are the closest to those values, 

as expected. 
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Figure 6.  Resistance Distance. (a) Resistance Distance for each delta, and (b).  Resistance Distance 

vs. Number of alternative paths.  Note that the two metrics relate to each other as expected (the larger 

the Number of alternative paths the smaller the Resistance Distance, e.g., a clear relationship in Niger 

and Yukon deltas) but this relationship is non-trivial for some deltas depicting pronounced differences 

(e.g., different slopes).  For a binary tree, the Resistance Distance is equal to 1 and the Number of 

alternative paths is also 1 for all subnetworks. (Note:  NI = Niger, PR = Parana, YK = Yukon, IW = 

Irrawaddy, CV = Colville, WL = Wax Lake, MO = Mossy) 
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Figure 7.  Subnetwork to Subnetwork Topologic (left panels) and Dynamic (center panels) Pairwise 

Dependence.  Outlets are indexed consecutively and counterclockwise starting with the leftmost one 

where the delta is plotted with the apex on the figure’s top and outlets at the bottom.  The cell (i,j) of 

the topologic (dynamic) dependence represents the percentage of links (fluxes) shared by subnetworks 

i and j with respect to the total number of links (fluxes) in subnetwork i.  Red (blue) colors represent 

high (low) values of sharing. Right panels illustrate the topologic and dynamic units at intermediate 

scales that arise from the interpretation of the pairwise dependence. 
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Figure 8.  Topo-dynamic Complexity Space for deltas. We define a 2D space where the x-axis 

corresponds to the dynamic exchange of the different subnetworks measured by the Leakage Index, 

and the y-axis corresponds to the topologic complexity measured by the Number of alternative paths 

from apex to outlet.  Each colored cross corresponds to a different delta, and the orange dot 

corresponds to a binary tree. The vertical (horizontal) component of each cross runs from the 25th until 

the 75th percentile of the Number of alternative paths (Leakage Index). The filled dot for each delta 

corresponds to the intersection point of the medians of both parameters: Number of alternative paths 

and Leakage Index. 
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Figure 9. Relation of Vulnerability to Topologic and Dynamic Complexity.  Vulnerability Index vs. 

Number of alternative paths (left) and vs. Dynamic Conditional Entropy (right). As expected, the more 

complex a delta is the more “robust” it is to change.  This is because alternative paths and equitable 

flux distribution minimize the effects of a flux change in upstream links to the flux reaching the outlet. 
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Figure 10. Spatially explicit metrics of complexity.  (Right panels) Schematic representation of 

contours radially scaled at normalized distances of 25%, 50%, 75% and 100% of the current shoreline.  

The squares show the intersections at the different distances. (a) Delta width function for the seven 

deltas examined. (b) Each line represents the smoothened trajectory in the topo-dynamic complexity 

space (intersection of the mean of both Leakage Index and Number of alternative paths) for each 

radially scaled delta from the apex to the shoreline.  Note, that if actual data on shoreline and channel 

network evolution existed this plot would capture the progression of the topo-dynamic complexity of 

the evolving delta. 
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Figure 11. Width function and delta network shape.  Different trends can be observed in the delta 

width function (normalized number of intersected links vs. normalized distance from apex): (i) 

Divergent, illustrated by Delta A, for which the delta width function is an increasing function of the 

distance from the apex, (ii) Convergent, illustrated in the lower portion of Delta B wherein the delta 

width function is a decreasing function of the distance from the apex, and (iii) Confined, illustrated by 

the middle portion of Delta C, for which the delta width function remains constant as the distance from 

the apex increases.  
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Figure A1.  Illustration of two subnetworks.  Subnetwork 1: Apex connects to the outlet 1 (O1) via two 

paths, each composed of three links (note that the presence of vertices in the path implies for a delta 

system that other links (dashed lines) initiate at each of those vertices but drain to another outlet).  

Subnetwork 2:  Apex drains to the outlet 2 (O2) via a more intricate structure.   

 

 

 

 

 

 

 

 


