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Abstract

Deltas are landforms that deliver water, sediment and nutrient fluxes from upstream rivers to the
deltaic surface and eventually to oceans or inland water bodies via multiple pathways. Despite their
importance, quantitative frameworks for their analysis lack behind those available for tributary
networks. In a companion paper [Tejedor et al., 2015], we conceptualized delta channel networks as
directed graphs and used spectral graph theory to design a quantitative framework for exploring delta
connectivity and flux dynamics. Here we use this framework to introduce a suite of graph-theoretic and
entropy-based metrics, to quantify two components of a delta’s complexity: (1) Topologic, imposed by
the network connectivity and (2) Dynamic, dictated by the flux partitioning and distribution. The
metrics are aimed to facilitate comparing, contrasting, and establishing connections between deltaic
structure, process, and form. We illustrate the proposed analysis using seven deltas in diverse
morphodynamic environments and of various degrees of channel complexity. We project deltas into a
topo-dynamic space whose coordinates are given by topologic and dynamic delta complexity metrics,
and show that this space provides a basis for delta comparison and physical insight into their dynamic
behavior. We also show that the examined metrics relate to the intuitive notion of vulnerability,
measured by the impact of upstream flux changes to the shoreline flux, and reveal that complexity and
vulnerability are inversely related. Finally, we use a spatially explicit metric, akin to a delta width

function, to classify shapes of different delta types.



1. Introduction

Deltas are landforms that deliver sediment,
nutrients and water from upstream basins to the
shoreline through interconnected pathways of
channels.  They are highly productive regions
with very diverse ecosystems, fertile agriculture
areas, and often considerable subsurface resources.
As a result, their population density is high with
several megacities located in deltas. However,
climate (sea level rise) and anthropogenic changes
(e.g., upstream dams and local exploration) are
putting many deltas in peril [e.g., Syvitski et al.,
2009; see also Foufoula-Georgiou et al., 2013].
Considering that deltas are highly variable in
structure, origin and dynamics due to factors such
as climate, geology and external forcings, it is
important both to identify the bio-physical
processes that drive their growth, as well as,
understand what perturbations seem to mostly
disrupt their functionality and self-maintenance.
The question posed in this study is whether we can
construct informative metrics of topologic and
dynamic complexity of delta channel networks
that are rich enough to discriminate between the
physical processes that gave rise
morphodynamically to these complex networks of
drainage paths, as well as, to infer a delta’s
vulnerability to change. Such metrics are
proposed herein and shown to offer significant
insights in connecting delta process and form, and
in allowing comparison of deltas and inferences
about their ability to absorb changes.

The developed metrics rely on a quantitative
framework based on spectral graph theory for
studying river delta topology and dynamics. The
graph-theoretic framework presented in the
companion paper [Tejedor et al., 2015] allowed us
to  identify (contributing)  and
downstream (nourishment) subnetworks for any

upstream

given delta vertex (node), including the apex-to-
shoreline subnetworks, referred to also as outlet
subnetworks. It also allowed us to compute the
steady-state flux propagation in the delta channels
and to construct vulnerability maps that quantify
how a change in any upstream delta link would
affect the shoreline fluxes. Based on this analysis,
we defined a vulnerability index V; of an outlet
subnetwork S; draining to the outlet 7 that
quantifies the vulnerability of the outlet flux to
local flux changes on all its upstream components.
The framework was illustrated in Tejedor et al.
[2015] using two contrasting deltas: the Wax Lake
delta in the coast of Louisiana, USA and the Niger
delta in West Africa.

Having established the mathematical machinery
based on spectral graph theory that efficiently
allows to perform the above computations, we
now ask the question as to what quantitative
metrics one can build that summarize the
topologic complexity of delta networks (reflecting
their channel connectivity), as well as their
dynamic complexity (reflecting how flux dynamic
exchanges happen within the network). Such
metrics are absent from the literature hindering
further progress in quantifying relations between
the morphodynamic processes on the deltaic
surfaces and the complex collection of splitting
and rejoining channels that these processes imprint
on the landscape. Smart and Moruzzi [1971],
motivated by the exact same problem, presented a
preliminary framework based on graph theory by
which comparison metrics of delta channel
networks could be built. The metric they proposed
was a simple one, termed the “recombination
factor”, and defined as the ratio of the number of
junctions (points where two channels combine to
form one) to the number of forks (points where
one channel divides into two). This recombination



factor was computed for five different deltas and
some interesting observations were made. It is
unfortunate that not much work (to the best of our
knowledge) has followed up since the 1970s along
these lines. We see our work as a come-back to
this important problem.

A qualitative classification of deltas based on the
relative influence of the river, tide and wave
effects has been presented by Galloway [1975]. A
fourth dimension was incorporated into this
classification by Orton and Reading [1993] to
account for the prevailing sediment size delivered
to the delta. Some quantitative metrics related to
delta morphology have been proposed for river-
dominated (minimally affected by waves and tides
and bifurcation-dominated) [Edmonds et al.,
2011], wave-dominated [Jerolmack and Swenson,
2007], and tide-dominated deltas [Fagherazzi et
al., 1999; Rinaldo et al., 1999a,b; Passalacqua et
al., 2013]. These metrics include fractal properties
of the channel network [e.g., Cleveringa and Oost,
1999; Marciano et al., 2005; Seybold et al., 2007;
Edmonds et al., 2011], non-fractality of shorelines
[e.g., Wolinsky et al., 2010], island sizes and their
probability distributions [e.g., Edmonds et al.,
2011; Passalacqua et al, 2013] but are not
directly related to network topology and dynamics.
The aim of this paper is to present metrics that we
hope will re-open the dialogue started by Smart
and Moruzzi [1971] on connecting physical
properties of deltas to their intricate topologic and
dynamic structure and, in addition, allow rigorous
analysis of how structure and dynamics
predisposes a particular delta to be more
vulnerable or more robust to external
perturbations.

The developments were motivated by some
observations made in our first paper [7ejedor et

al., 2015]. As illustrated in Figure 1, for the Wax
Lake and Niger deltas the apex is connected to the
coast via a number of subnetworks, each one
delivering fluxes from the apex to one of the
shoreline vertices (outlets). These subnetworks
can be topologically very simple (a straight path of
channels) or very complex (multiple splitting and
merging paths); see Figure la and 1b for an
example which marks such outlet subnetworks.
The topologic complexity of each of the
subnetworks is embedded within the whole delta
channel network topology to result in various
degrees of “dependence” among the subnetworks.
Namely, two subnetworks that share no channels
at all (except the apex vertex) are considered
independent, while two subnetworks which
advance together until they split farther
downstream to empty their fluxes to different
outlets are considered dependent. This is
illustrated in Figure 1c and 1d where n (number of
subnetworks to which a given link belongs to)
depicts quantitatively the simplicity of the Wax
Lake delta as compared to the Niger delta. Finally,
the dynamic interdependence of the subnetworks,
measured in terms of their shared fluxes and the
fluxes that leak from one subnetwork to another,
rather than in terms of shared links, can be
minimal or significant and it relates both to the
network topology and the flux distribution within
the system. For example, the overall flux
interaction will depend on whether the shared
subnetwork links are close to the apex (wider
channels and larger fluxes) or close to the coast
(narrower channels and smaller fluxes). This is
schematically illustrated in Figure le and 1f. This
topologic and dynamic complexity of delta
networks directly determines how disturbances in
an upstream link will propagate downstream and
to the coastal outlets. The propagation of this
disturbance from upstream links to the shoreline



was quantified in our earlier paper [Tejedor et al.,
2015] by a common-sense vulnerability metric that
depicts the degree to which the flux at the coastal
vertices is affected by local flux changes at all
upstream links of the subnetworks [see Tejedor et
al., 2015 Figure 11].

In this paper, we extend this work and build
rigorous metrics that quantify the topologic and
dynamic complexity of delta networks and relate it
to the notion of vulnerability. In the quest to shed
physical insight into what these metrics tell us
about the morphological dynamic processes and
constraints that gave rise to a delta network we
apply our metrics to seven diverse deltas which
reveal some interesting findings.

The structure of the paper is as follows. Section 2
presents a brief description of the seven examined
deltas and summarizes their basic physical
characteristics. In Section 3 we develop a suite of
metrics that capture the topologic complexity of
deltas. Specifically, we consider loopiness,
structural overlapping and entropy-based topologic
complexity. In Section 4, metrics of dynamic
complexity are developed. These metrics account
not only for topology but also for the distribution
of the fluxes among channels of a subnetwork or
flux leakage from one subnetwork to the others.
The metrics of dynamic complexity introduced
here are the subnetwork leakage, flux overlapping
and entropy-based dynamic complexity. The
metric computation and comparison of seven
deltas is presented in Section 5. In Section 6, we
illustrate how these metrics can be used to
uniquely position a delta on a delta topo-dynamic
space according to its complexity. We also
explore the connection of delta complexity to its
vulnerability to change in Section 7. Section 8
goes one step further to acknowledge the fact that
the topologic and dynamic complexity of a delta

network varies downstream from the apex to the
shoreline and attempts to introduce spatially
explicit metrics of complexity, leading to the
notion of a delta network width function. Overall
conclusions and directions for further research are
discussed in Section 9.

2. Physical Characteristics of seven deltas
analyzed

To aid in the interpretation of the developed
complexity metrics we selected a diverse set of
delta networks on which these metrics were
computed and contrasted. In this section, we
summarize the physical characteristics of the
seven deltas selected for analysis namely: (1)
Niger, (2) Parana, (3) Yukon, (4) Irrawaddy, (5)
Colville, (6) Wax Lake and (7) Mossy arranged in
order of decreasing size (delta top area). We refer
to Figure 2 for the channel networks and Table 1
for physical characteristics of the examined deltas
[note that a more detailed account for the Niger
and Wax Lake deltas was provided in Tejedor et
al., 2015].

Extracting the channel networks from an air photo
or satellite image of a delta is not an easy task.
For this reason we have adopted here for our
preliminary analysis the exact five traced deltas in
the study of Smart and Moruzzi [1971] — Niger,
Parana, Yukon, Irrawaddy, and Colville — and
have added the Wax Lake and Mossy deltas for
which channel networks have been extracted in
previous studies [Edmonds et al., 2011]. The issue
of what detail one should use in tracing a channel
and make it part of the network or ignore it is an
important one but not pursued in this study.
However, we hope that the metrics presented here
will allow the systematic study of the topologic
and dynamic complexity of a delta system as a
function of the detail at which its network is
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abstracted. This issue is further discussed in the
conclusions.

Comparison of the set of topologic and dynamic
complexities in deltas of different age, size,
climate, sediment, external forcing etc. is hoped to
provide insight towards the goal of relating
physical attributes of the delta generating
processes to the complex self-organized
arrangement of the channels that nourish and
maintain the functionality of the delta system.

Niger Delta: The Niger Delta located in the West
coast of Nigeria (latitude 4.95°, longitude 6.18°),
receives input from the Niger River at an average
water discharge of 6130 m’ s’ and sediment
discharge of 3.97 x 107 tons yr' [Syvitski et al.,
2005]. The origin of the delta is estimated to be 80
- 35 million years BP during the Late Cretaceous
[Goudie, 2005]. It is the largest delta in Africa
covering an area of 24,508 km” and sediment is
mostly fine sand [Orton and Reading, 1993]. The
tidal range is 3.0 m. It is qualitatively classified as
tide and wave dominated [Syvitski et al., 2005].
We utilized the channel network outlined by Smart
and Moruzzi [1971], and identified 181 links, 130
vertices and 15 shoreline outlets (see Table 2).

Parana Delta: The Parana Delta, located North
of Buenos Aires, Argentina (-33.80°, -59.25°) is
fed by the Parana River, which delivers an average
water discharge of 13,600 m’ s and sediment
discharge of 7.75 x 107 tons yr'' [Syvitski et al.,
2005]. Delta genesis was estimated during the
Middle Holocene (6,000 years BP) [Politis et al.,
2011]. Parana delta covers an area of 15,463 km’
and sediment are mostly fine sand, silt and clay
[Fossati et al., 2014]. The tidal range is 4.0 m. It
is qualitatively classified as a river and geology
dominated delta [Syvitski et al., 2005]. We utilized

the channel network outlined by Smart and
Moruzzi [1971], and identified 86 links, 69
vertices and 18 shoreline outlets.

Yukon Delta: The Yukon Delta is located in the
West coast of Alaska, USA (63.05°, -164.05°) and
receives input from the Yukon River with an
average water discharge of 6620 m’ s' and
sediment discharge of 5.97 x 10" tons yr' [Syvitski
et al., 2005]. Delta genesis is estimated to be
during the Middle Holocene (5,000 years BP)
[Nelson and Creager, 1977]. It has an area
covering 8313 km® with mainly fine-grained
sediments [Walker, 1998]. The tidal range is 1.5
m. It is qualitatively classified as a wave
dominated delta [Syvitski et al., 2005]. We utilized
the channel network outlined by Smart and
Moruzzi [1971], and identified 169 links, 126
vertices and 24 shoreline outlets in the delta.

Irrawaddy Delta: The [rrawaddy delta, located in
the Southernmost coast of Myanmar (16.20°,
95.00°) is fed by the Irrawaddy River at an
average water discharge of 13,558 m’ s and
sediment discharge of 2.60 x 10% tons yr'' [Syvitski
et al, 2005]. The delta covers an area of 6,438
km® with the deposited sediment composed of
mostly mixed mud and silt [Orton and Reading,
1993]. It is estimated that the delta began to form
around 8,000-7,000 years BP together with most
of the deltas in Southeast Asia [Hedley et al.,
2010]. The tidal range is 4.2 m. It is qualitatively
classified as a tide dominated delta [Syvitski et al.,
2005]. We utilized the channel network outlined
by Smart and Moruzzi [1971] and identified 100
links, 71 vertices and 6 shoreline outlets in the
delta.

Colville Delta: The Colville delta is located in the
Northern part of Alaska, USA (70.40°, -150.65°)



and receives input from the Colville River with an
average water discharge of 491.7 m’ s”' [Orton
and Reading, 1993] and sediment discharge of
1.16 x 10° tons yr' [Arnborg et al., 1967]. The
delta began to develop during the Middle
Holocene (4,000 years BP) [Jorgenson et al.,
1998]. With an area of 240 km’, it is relatively
small compared to other polar deltas. Sediment is
mostly composed of gravel and sand [Orton and
Reading, 1993]. The tidal range is 0.2 m. It is
qualitatively classified as a river dominated delta
[Syvitski et al., 2005]. We utilized the channel
network outlined by Smart and Moruzzi [1971],
and identified 140 links, 107 vertices and 20
shoreline outlets in the delta.

Wax Lake Delta: The Wax Lake delta is located
in the coast of Louisiana, USA (29.51°, -91.44°).
It receives input from the Wax Lake outlet, a
channel that was dredged in the early 1940s to
mitigate flooding risk in the nearby Morgan City,
at an average water discharge of 2,900 m® s™' and
sediment discharge of 2.35 x 10" tons yr'' [Roberts
et al., 2003]. Sub aerial land only developed after
the 1970s flood and has been experiencing rapid
growth in the last two decades doubling to more
than 100 km? today [Roberts et al., 1997; Paola et
al., 2011]. Sediment deposit in the delta is
composed of approximately 67% sand [Roberts et
al., 1997]. The tidal range is 0.40 m [Shaw et al.,
203]. It is qualitatively classified as a river
dominated delta. We utilized the outline of the
Wax Lake delta channel network processed by
Edmonds et al. [2011] containing 59 links, 56
vertices and 24 shoreline outlets.

Mossy Delta: The Mossy delta is located in
Saskatchewan, Canada (54.07°, -102.35°), is fed
by the Mossy River with an average water
discharge of 300 m’ s [Edmonds et al., 2011]

and sediment discharge of 2.20 x 10° tons yr’'
[Oosterlaan and Meyers, 1995]. The delta was
formed as a result of the avulsion of the
Saskatchewan River in the 1870s [Smith et al.,
1998]. Progradation of the delta resulted in an
area of 14 km? in the early 1940s [Oosterlaan and
Meyers, 1995] and after the construction of a
spillway dam in the 1960s, the delta ever since
slowly evolved with a current area of
approximately 17 km®. Sediment in the delta is
roughly 50% fine-grained sand [Edmonds et al.,
2011]. Since the delta drains into a lake (Lake
Cumberland), the effect of tides is insignificant. It
is qualitatively classified as a river dominated
delta. We have extracted the channel network of
Mossy delta from a satellite image copyrighted by
Digital Globe Inc. 2014 obtained from Google
Earth on August 15, 2014 and identified 67 links,
61 vertices and 23 shoreline outlets.

3. Metrics of topologic complexity

As can be visually appreciated in Figure 2, delta
channel networks are complex structures with no
obvious single attribute that can uniquely describe
them. Qualitatively, one can differentiate between
mostly bifurcating deltas (Wax Lake and Mossy),
deltas that seem to be more constrained throughout
their spatial extent (Parana), or constrained mostly
close to their apex (Niger, Yukon, Colville), or
close to their outlets (Irrawaddy). One can also
see that some deltas include more loops than
others and that these loops, as well as channel
splitting and rejoining, happen at different spatial
scales from single channels to tapestries of
channels that seem to form sub-deltas within the
main delta. Here we attempt to capture these
features in a set of quantitative metrics.

For the developments that follow, we need to
recall some basic aspects of the graph-theoretic
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framework developed in Tejedor et al. [2015]. A
delta is conceptualized as a directed graph with
channels represented by links and junctions by
vertices. Link directions correspond to the
direction of flux propagation. Hence a delta with
N junctions is represented with a directed graph
with N vertices. The adjacency matrix 4 is an NxN
matrix whose element a,, is unity if vertex u
receives fluxes directly from vertex v (that is, if
vertices u and v are connected by a link directed
from v to u) and zero otherwise; see equation (1)
and examples in Tejedor et al. [2015]. The in-
degree (out-degree) matrix D™ (D°) is an NxN
diagonal matrix whose elements d,, depict the
number of links entering (exiting) vertex u. This
matrix D™ (D*") is uniquely determined by the
adjacency matrix 4 as its element d,, is the sum of
the elements in the u-th row (column) of A.
Finally, the Laplacian matrix, L™ (L°") is defined
as D™-A (D°"-4). We also recall that the outlet
subnetworks are identified by the non-zero
elements of the eigenvectors of the matrix (L°")"
corresponding to zero eigenvalues [7ejedor et al.,
2015, Sect. 3.3]. If instead of mere topology we
also consider flux propagation, the adjacency
matrix 4 is replaced with the weighted adjacency
matrix W, where the weights w,, correspond to the
fraction of flux in link (vu) with respect to the flux
in vertex v, which can be estimated from channel
attributes, such as channel width, depth, and
velocity or computed via numerical modeling. In
general, a link from vertex v to vertex u is denoted
by (vu), and, according to the above nomenclature,
it corresponds to the element m,, of the suitable
matrix M (adjacency, degree, Laplacian, weight,
etc.). We assume that the examined delta has N,
outlets indexed by i = 1,..., N, and refer to the
contributing subnetworks S; of the i-th outlet as “i-
th subnework™.

Based on this framework we introduce metrics that
are defined here for individual outlet subnetworks,
noting that the same metrics can be readily
computed for any other non-outlet subnetwork
draining to any node of interest different from an
outlet node. Specifically, we present a set of six
metrics that try to capture three distinctive
characteristics of topologic complexity: (1)
Loopiness, (2) Structural Overlapping and (3)
Entropy-based topologic complexity (see Table 3).

3.1. Subnetwork Loopiness

From inspection of Figure 2, one of the first
observations is that young deltas like Mossy or
Wax Lake look almost like inverted tributary
networks. However, other deltas like Niger or
Parana are very far from that approximation since
they contain loops at all scales. We introduce two
metrics to depict this loopiness characteristic:
Number of alternative paths and Resistance
Distance.

3.1.1. Number of alternative paths (NVap)

This metric corresponds to the intuitive notion of
counting how many different ways (called
alternative paths, N,,) a package of flux can take
to travel from the apex to a given outlet. Thus
every fork (bifurcation) in the subnetwork doubles
the N, (recall that in an outlet subnetwork all
paths have to converge to a single outlet, so for
each fork we necessarily have a stream junction).
Note that if there are no junctions, as in the case of
a binary tree, then each subnetwork consists of a
unique path from the apex to its outlet and such a
delta has the minimum Number of alternative
paths (N, = 1) for each subnetwork.

Within the graph-theoretic framework [7ejedor et
al., 2015], it can be shown that the Number of
alternative paths, from vertex k to the outlet of



subnetwork S;, is computed as the k-th component
of the eigenvector i of the matrix (/*-4"), where A"
is the transpose of the adjacency matrix of the
deltaic network, and /* is obtained from the
identity matrix by placing zero in the position (uu)
for each outlet u (see Appendix A for proof).

3.1.2. Resistance Distance (RD)

Resistance distance is a more sophisticated metric,
borrowed from the theory of electrical circuits,
which can be used to measure the loopines of a
graph. It differs from the Number of alternative
paths in the sense that it does not just compute all
the possible paths (in a combinatorics sense). The
idea behind resistance distance is to compute how
well-connected two vertices are in a graph, not just
in the sense of how many different paths are in-
between them, but also by acknowledging the
existence of disjoint paths, i.e., paths that do not
contain the same links.

Klein and Randic [1993] defined formally the
Resistance Distance (RD) between two vertices u
and v in a graph G as the effective resistance
between the two vertices established in an electric
circuit network with each link replaced by a 1-ohm
resistor. The RD is computed using standard
series and parallel relations (see Appendix B).
Thus, two vertices connected by several paths
(parallel connection) have lesser RD than if they
are connected by only one path (series
connection). For example, if there is only one
possible path between two vertices, the RD is
equivalent to the topologic distance (measured in
terms of the number of links between the two
vertices). We normalize the Resistance Distance
between the apex and the subnetwork outlet by the
shortest topologic distance between the apex and
the outlet. This normalization ensures that the RD
between any two vertices is within the interval

[0,1]. To see this, recall that for a single-path
subnetwork the RD is equal to the topologic
distance, and if we have more than a single path,
the RD decreases. For a binary tree, the RD of
every subnetwork is equal to 1. The RD is defined
for undirected graphs in Klein and Randic [1993],
so for directed graphs such as delta networks we
need to symmetrize the adjacency matrix in
computing RD. The computation of the RD for
subnetwork 7 is done in the following steps:

1. Select the vertices that do not belong to the
subnetwork i and redefine the adjacency
matrix 4 by zeroing the columns and rows that
correspond to these vertices;

2. Symmetrize the modified Adjacency Matrix:
As= (A+A4")/2;

3. Compute the Laplacian L

out

of the symmetric
adjacency matrix As;

4. Compute the Moore-Penrose pseudoinverse I”
of the Laplacian [Penrose, 1955];

5. The Resistance Distance, RD(uv), between
vertices u and v is:

RD(w)=1+1 -1 -T,

6. We define the Resistance Distance of the
subnetwork i, RD;, as RD(uv), where v is the
apex and u is the outlet of the subnetwork,
normalized by the shortest topologic distance
between the apex and the outlet.

3.2. Structural Overlapping of Subnetworks

Figure 3 shows some of the outlet subnetworks of
Mossy and Parana deltas. The reader can observe
how in the Parana delta, many channels belong
simultaneously to many subnetworks (black links
correspond to the shared links among subnetworks
2-18). On the other hand, Mossy delta only has
this kind of overlapping for links located at the top
of the structure (black links correspond to the
shared links among subnetworks 12, 13 and 18). It



is important to notice that this structural
overlapping seems to be a characteristic that varies
from delta to delta but also there can be
heterogeneity even within a given delta. Thus, in
the Mossy delta, some subnetworks can share a lot
of links but it is also possible to find subnetworks
that are almost independent of each other (e.g.,
subnetworks 12 and 19). In order to capture all of
these conceptual differences we introduce two
metrics: Link Sharing Index and Subnetwork to
Subnetwork Topologic Pairwise Dependence.

3.2.1. Link Sharing Index (LS1])

This metric aims to quantify the overlapping of a
subnetwork S; with other subnetworks in the delta
S; (j # i). Thus, S; has a high LSI if its links are
shared with many other subnetworks in the delta,
and low LSI if S; consists of links that are
exclusive to it or shared with a very few other
subnetworks. For that purpose, we define b,, as
the number of subnetworks the link (vi) belongs
to. We define the subnetwork Link Sharing Index
(LSI) by averaging the reciprocal of b,, over all N;
links of S

LSI,:l—i > bl (1)

i (vu)eS;

The index takes values within the interval [0,1)
and equals zero if and only if none of the links that
form S; is shared with other subnetworks. For a
perfect binary delta of depth d (the number of
binary bifurcations from the apex to the outlets),
with all outlet vertices having the same depth and
a single path from the apex, we have

1¢ 1 271
LSI[:1——22,171:1—F. )

n=1

For d = 2, 5, and 100 we have LSI; = 0.25, 0.61,
and 0.98 for each subnetwork of the perfect binary
delta. This metric is useful to distinguish deltas
that consist of a set of quasi-independent
subnetworks from deltas that contain a substantial
“core” common to almost all subnetworks (e.g.,
see the Parana delta). Note that the variability of
LSI among subnetworks of a delta system is itself
also a metric of topologic complexity, since
systems with larger variability of LS/ values imply
more heterogeneous link-sharing structure within
the system.

3.2.2. Subnetwork to Subnetwork Topologic
Pairwise Dependence (7PD)

In order to gain more insight into the subnetwork
structural overlapping, which is a measure of the
internal heterogeneity of the entire network
structure, we define the Subnetwork to
Subnetwork Topologic Pairwise Dependence.
This metric shows the overlapping for all pairs of
subnetworks, offering a picture of the local
interaction (in the sense of link sharing) of
subnetworks, and therefore with the potential of
depicting subunits at mesoscales, which consist of
groups of subnetworks. Thus, its value for the
pair of subnetworks S; and S; is computed as the

average of the reciprocal of bfljv (b,), = 2 if the
link (vu) belongs to both S; and S; and bfjv =1ifit
belongs to S; but not S)):

P, =— 3 (1), (3)

i (vu)es;

where N; is the number of links in subnetwork S;.
Notice the asymmetry in the Topological Pairwise
Dependence with respect to the indices 7 and j (i.e.,
TPD, #TPD,).
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3.3. Entropy-based topologic complexity of
subnetworks

Historically, entropy was defined as a measure of
disorder. This interpretation has been widely used
in physics and engineering based on the idea that a
system evolves into an increasing state of disorder
(the second law of thermodynamics); it can also be
related to Boltzmann’s entropy in statistical
mechanics based on the number of microstates
[Prigogine, 1967; Boltzmann, 1872]. Shannon
[1948] developed an application of entropy to
information theory, which is different from the
historical idea of disorder and deals with the
information that can be gained from the
uncertainty in the occurrence of an event. Here we
use Shannon’s entropy to measure the information
content of channel splitting and rejoining in a
delta. We note that the information-based entropy
has been extensively used in diverse fields ranging
from the original application in signal processing
[Shannon, 1948], to ecology [Rutledge et al.,
1976; Ulanowicz, 2001], hydrology [Amorocho
and Espildora, 1973; Fiorentino et al., 1993;
Singh, 1997 and references therein], ecohydrology
[Ruddell 2009a,b], and
geomorphology [Leopold and Langbein, 1962;
Culling, 1988], among others.

and Kumar,

As discussed in Tejedor et al. [2015], we adopt a
“package of flux” point of view to describe delta
flux transport. Namely, we consider a conceptual
individual package of flux that enters the system at
the apex and propagates downstream until it
arrives at a channel junction. Here it randomly
decides which of possible further paths to take,
with the probability of taking a particular path
depending on the channel width or any other
suitable characteristic. In other words, the package
performs a random directed walk along the
network of delta channels. A flow in the delta is

conceptualized by a large number of non-
interacting flux packages that independently
perform such a random downstream walk. To
ensure that this process has a well defined steady-
state we assume that after reaching an outlet, each
package reappears in the apex.

Defining a “state” of this process as the occurrence
of a random package at a particular vertex, then p;
is the probability that state i occurs. We can define
(-log pi) as a measure of the “surprise” that the
occurrence of the state i (arrival of package at
vertex i) causes. Thus, if p; = 1 (certain event) the
surprise is zero and if p; = 0 (impossible event),
the surprise is infinity; the surprise grows
exponentially from zero to infinity.

The product of the probability of occurrence p; and
the surprisal (-log p;) gives us a measure of
uncertainty 4;:

h.=—p,logp,. 4)

Therefore, a state that is certain or impossible does
not have any uncertainty (i.e., if p; =1 or 0, #; = 0).
Note that 4; is a positive function of p; in the
interval (0,1). We can define the total uncertainty
in a system as the sum of the uncertainties of each
state:

N N
H=3h==3 plogp,. (5)

Notice that the maximum of H is observed when
the probabilities of occurrence for all the states are
equal.

During the evolution of a system, transitions
among states occur as a flux package travels from
one vertex to another. If p;; is the probability of
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transition from state j = 1,...,N to state i = 1,...,N,
we can define the uncertainties of those transitions
as

N
H= th‘/ :_sz:f logp;. (6
i

i,j

For transitions, H is called joint entropy and it can
be decomposed into two components: Mutual
Information and Conditional Entropy.

Mutual Information (MI) is a measure of the
amount of information that one state contains
about another state (i.e., the reduction of
uncertainty in one state due to the knowledge of
the other) [Cover and Thomas, 2006]. It is
expressed as

M= p,log Do (7)
i Pip;

Conditional Entropy (CE) is defined as the
remaining uncertainty of the state i when j is
known and is given by:

N
CE = _Zpi/ logpj—>i ’ (8)

i,j

where p, ,; is the probability of transition from j

to 7 given that the initial state is j.

The topologic complexity quantifies the branching
and rejoining of channels and not how the flux is
distributed. Therefore, to compute the topologic
entropy-based metrics we set the probability of

splitting in each fork p;; as the inverse of the

number of offspring vertices. The p;; corresponds
to the steady state probability of each transition

and can be computed in a similar way as the
steady flux calculation in section 3.2 of Tejedor et
al. [2015] wherein the weighted adjacency matrix
W is substituted by the adjacency matrix 4. As will
be discussed in section 4.3, in considering delta

fluxes, the probabilities p; and p, ,; are computed

in terms of the actual partition of fluxes.

4. Metrics of dynamic complexity

In the previous section, we have introduced a set
of metrics to quantify the topologic complexity of
deltaic networks. However, there is another
component of complexity that has not been
considered in that analysis, i.e., the complexity
introduced by the flux partition in the system. In
Figure 4, we present a caricature of two systems
with the same underlying network structure and
therefore the same basic constraint on the flux
partition imposed by their topology. However,
their different geomorphologic characteristics may
result in a different distribution of fluxes as shown
in Figure 4. The necessity of defining a second
component of complexity that quantifies the
effects of the variability of flux partition in the
system is apparent. We denote this component as
the dynamic complexity and we argue that
together the topologic and dynamic complexities
provide a comprehensive, and as we show later
non-redundant way of characterizing a delta
system. For this, we first develop the dynamic
complexity metrics and then we implement both
metrics in the seven selected deltas for
interpretation and comparison.

The set of metrics to assess the dynamic
complexity capture three main characteristics: (1)
Leakage, (2) Flux Overlapping and, (3) Entropy-
based dynamic complexity (see Table 3). The
dynamic computations are based on the values of
the steady state flux in each vertex and link of the
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examined delta; those can be easily obtained
according to the methodology in Tejedor et al.
[2015] Sect. 3.2. We used here the channel widths
as a surrogate for the flux partition [see for
example Bolla Pittaluga et al., 2003; Edmonds et
al., 2011] although other parameterizations can be
used as deemed appropriate for a given delta.

4.1. Subnetwork Leakage

From the point of view of the flux, subnetworks
are in general open systems, i.e., not all the flux
that enters the subnetwork from the apex ends at
its outlet, in fact, subnetworks leak out flux to the
rest of the system. This leaking occurs at the
border of the subnetwork, and more specifically at
bifurcations wherein one of the downstream
channels still belongs to a given subnetwork, but
the flux diverted to the other channel eventually
drains to a different outlet (i.e., such a link belongs
to a different subnetwork). Quantifying the ratio
of fluxes leaked by a subnetwork is a surrogate of
the “interaction among subnetworks”, and thereby,
an important characteristic of their dynamic
complexity.

Thus, we define the Leakage Index (LI;) of the
outlet subnetwork S; as the proportion of flux that
leaks to other subnetworks with respect to the total
steady flux of the subnetwork S; where the
leakage of flux is computed as the difference
between the total vertex flux and total link flux in
the subnetwork:

D FE- D F,
LI =25 oS )

’ YF,

ves;

Here F, represents the steady flux at vertex v, Fy,
the steady flux at link (vi). Note that the flux F, at
the upstream vertex v is equal to or larger than the

link flux F,, allowing for possible multiple
channels leaving vertex v, F,, <F, . Similarly, the

flux at the downstream vertex u is equal to or
larger than F,, allowing for other upstream
channels to deliver their flux to vertex u, F,, < F,.

uv

As mentioned before, we can interpret this
measure as the capacity of the subnetworks to
interact among each other. Thus, an almost
“sealed” subnetwork (LI close to zero) is able to
retain almost all of its flux, having almost no
exposure/interaction with other subnetworks. This
situation can happen in two extreme and opposite
configurations: (D) almost independent
subnetworks, where only the apex is shared, or (2)
almost completely overlapping subnetworks,
where each subnetwork spans the whole system,
only differing from each other in their outlets. On
the contrary, high L/ implies that the subnetwork
has a large interface of interaction with other
subnetworks, and exchanges a significant
proportion of its flux. Note that in a binary delta
LI = 0.5 for all its subnetworks if the partition of
fluxes in each bifurcation is equal.

4.2. Flux Overlapping of Subnetworks

In the same way that the structural overlapping has
been defined in section 3.2, we define here its
dynamic counterpart. Figure 3 shows how a given
channel can belong to different subnetworks, and
therefore, the steady flux contained in that link
will be also shared among those subnetworks.
However, there is a crucial difference between
these two shared components: from the topologic
point of view, the shared links belong equally to
all the subnetworks, but from the dynamic point of
view, the shared flux can drain preferentially to
only one subnetwork. Using the same line of
argument as in section 3.2, we present two metrics
to capture the different properties of flux
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overlapping: Flux Sharing Index and Subnetwork
to Subnetwork Dynamic Pairwise Dependence.

4.2.1. Flux Sharing Index (FS7)

The goal of this metric is to quantify the degree of
flux sharing imposed by the structural
overlapping. We define the Flux Sharing Index
(FSI;) for the subnetwork S; as follows:

FSI, :1—Ni2yi(v), (10)

i ves;

where N; is the number of vertices in the
subnetwork S; and y;(v) is the proportion of the
flux in vertex v that arrives at outlet i (note that
1 — y;(v) is the proportion of flux in vertex v that
arrives to any outlet j, j # /). With this metric, we
try to capture the dynamic dependence among the
outlet subnetworks. If a subnetwork is totally
independent, then y;(v) = 1 Vv and all of the flux
contained in the subnetwork will eventually be
delivered to the outlet i. This situation corresponds
to FSI; =0. On the other hand, if the subnetwork
consists of vertices whose fluxes are shared with
many other subnetworks then y;(v) = 0 and only
a small proportion of the flux in the subnetwork i
will be delivered to the outlet. This corresponds to
FSI; =1. Recall that y;(v) can easily be computed
as the v-th component of the eigenvector of the

T
matrix (L‘;;“) that corresponds to the subnetwork

i, and N; is the number of non-zero components of
i [see Tejedor et al., 2015].

4.2.2. Subnetwork to Subnetwork Dynamic
Pairwise Dependence (DPD)

Similar to its topologic counterpart, we look for a
deeper understanding of the heterogeneity of the
flux distribution within the whole system by
examining the flux sharing between subnetworks

S;and S;. This metric is computed as the ratio of
the flux contained in the links that belong to both
subnetworks S; and S; to the flux contained in the
subnetwork S;:

Y Fu)

UES;;

Y FW)’ (b

veS;

DPD;

where §j; is the set of links that belong to both S;
and §; ie, S,=S,1S,. Note that if the

Topologic  Pairwise = Dependence  between
subnetworks S; and §; is zero (TPD; =0), DPD,

is also zero. However, if TPD; has a high value,
it does not guarantee a high value for DPD; since

the flux can travel preferentially to one
subnetwork.

4.3. Entropy-based dynamic complexity of
subnetworks

Here we develop the entropy concept presented in
section 3.3, to incorporate the partition of fluxes.
Consider a steady flux F=(F,...,Fy) at the vertices
of a delta with a weighted adjacency matrix
W={w,,} whose element w,, specifies the
proportion of the parental flux F, that goes to its
offspring u. We set the stationary probability that
the package of flux is travelling from vertex v to
vertex u proportional to the flux F),, at the link that
connects these vertices:

F,
=, 12
Pu="pi (12)

where F' = z F, is the total flux in the links of

(vu)eS;

subnetwork S;. We can now find the probability p,,
of a flux package leaving vertex v (while staying
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within the subnetwork S;) proportional to the flux
leaving vertex v:

N
ues;
F F (13)

p.\}
Similarly, the probability p,, of a flux package
arriving at vertex u from subnetwork S; is
proportional to the flux entering u:

> w,F,

) —
=L =— 14
pu- F] Fl ( )

Recall that the joint entropy of a discrete
distribution {p,,} as defined in section 3.3,
equation (6) can be computed as:

H=-Y p,logp, . (15)

(vu)eS;

The joint entropy can be partitioned into two
components: Mutual Information and Conditional
Entropy. The Mutual Information (MI), defined in
equation (7) as a measure of the amount of
information shared by the pairs of vertex u and v,
can be expressed in terms of the flux partition wy,
as:

Mi=Y p.log—Pr—=3 p logZe . (16)

uy
(vu)es; puopov (vu)es; pov

The Conditional Entropy (CE) defined in equation
(8) as the average uncertainty that remains about v
when u is known can be expressed as:

2
CE=-Y p,log—Le—. (17)

(vu)eS; 700 o 3

The entropy can be interpreted as the ability of the
system to undergo changes [Ulanowicz et al.,
2009] or in other words, it quantifies how the
uncertainty of the system enables it to deal with
perturbations. Notice that for subnetworks
consisting of linear paths, CE=0 since
Doy = Do = D.,- therefore for a binary delta the CE

1s zero for all its subnetworks.

5. Metric computation and comparison of
seven deltas

5.1. Loopiness and Leakage of subnetworks
From simple inspection of Figure 2, we can
differentiate two major groups of deltas: (1)
bifurcation-dominated (e.g., Wax Lake and
Mossy) and (2) loop-dominated (e.g., Niger,
Yukon, Irrawaddy, Parana, and Colville). The
metrics of loopiness that we have presented are
able to capture this separation: bifurcation-
dominated deltas are characterized by a low
Number of alternative paths (N,) and a high
Resistance Distance (RD) (see Figure 5a and
Figure 6a). In bifurcation-dominated deltas, most
of the subnetworks do not have alternative paths;
in fact, single paths connecting the delta apex to
the shoreline outlets comprise 75% (18/24) and
70% (16/23) of the subnetworks for the Wax Lake
and Mossy deltas, respectively, and this is
translated to RD equal to 1. On the other hand, in
loop-dominated deltas all of the subnetworks have
multiple paths connecting the apex to the outlet,
having values of RD significantly lower than 1
(medians are in the interval 0.6 — 0.83). More
information can be untangled with a detailed
comparison of those two metrics. First, the N,, of
Yukon stands out with respect to the other deltas.
However, the range of values of RD for Yukon is
comparable with other deltas like Niger and
Colville. This is revealing the fact that the
loopines in Yukon is happening at a smaller scale
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(loops consisting of fewer links) than in the other
deltas, increasing drastically the N, but not
reducing so much the equivalent RD. Besides, the
fact that the number of paths in Yukon is high for
almost all the subnetworks reveals that those
small-scale loopy structures are close to the apex.
On the other hand, there are deltas like Parana and
Irrawaddy that have intermediate values for the
Ngp, and relatively low values of RD. This
tendency reveals the existence of complicated
structures at small and medium scales. The higher
RD of Parana is the result of its particular
structure, wherein the upper part is clearly loop-
dominated, but in its lower region, its structure
changes to bifurcation-dominated, increasing the
values of RD (see Figure 2). Figure 6b highlights
the potential of N, and RD to extract
complementary information of loopiness since
they do not trivially relate to each other across
deltas (i.e., different slopes for different deltas).

We have characterized the topologic complexity of
the subnetworks (apex to outlet) in terms of their
loopines.  However this difference in their
topology can lead to more profound consequences
in their dynamic interaction. We have defined the
Leakage Index (L/) to quantify those interactions
as it measures the flux exchange among
subnetworks. Thus, we can observe that
subnetworks with high topologic complexity (in
terms of loopiness) normally have lower LI.
However, that relation is not trivial, since even
though the underlying topology is a major
constraint in the distribution of the steady flux, the
process-specific dynamic partition of flux plays an
important role. Deltas with similar loopiness, in
terms of median and variability among
subnetworks, such as Irrawaddy and Parana, can
have subnetwork leakage that significantly differs
(in fact, reverses) in variability. On the other hand,

deltas as different as Niger and Wax Lake in terms
of median and variability of their loopiness have
similar median, although wvastly different
variability, for their subnetwork leakage (see
Figure 5b).

Recall here that the Leakage Index measures the
proportion of the flux that leaves a given
subnetwork. Notice that those losses only take
place in the junctions that form the border of the
subnetwork; we refer to those junctions as
external. Thus, subnetworks that contain a low
ratio of internal to external junctions will be more
prone to leaking out flux and therefore have high
values of L/, and vice versa. Subnetworks with a
high value of loopiness are more likely to have a
high value of the internal to external junction ratio,
in agreement with previous results shown in this
section. It is also important to notice at this point,
that LI is also sensitive to the flux partition, so the
presence of preferential paths for flux can change
substantially the value of L/ for a given topology.
Therefore it is understandable how deltas with
similar topologies, such as Irrawaddy and Parana,
can have quite different L1.

5.2. Structural and flux overlapping of
subnetworks

We have argued in sections 3 and 4 how the
overlapping in topology and flux among
subnetworks is an important factor in assessing the
complexity of the entire delta network. To
measure the degree to which a subnetwork shares
its channels and fluxes with other subnetworks, we
have introduced the Link Sharing Index (LSI) and
Flux Sharing Index (FSI). Figure 5cl and 5c2
show that both LSI and FSI have the same general
trend in their medians but FS/ has a larger
variability for all deltas. This is expected since
there is no possible dynamic sharing (fluxes)
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without topologic sharing (channels). Therefore,
the flux sharing can be interpreted as a modulation
of the link sharing. Thus, differences between the
dynamic and topologic sharing tell us about the
asymmetry in the flux distribution. If we examine
this closer, we note that Yukon and Parana have
high LSI implying the existence of a core of links
that are common to several subnetworks. For
Yukon, the range of variability of FSI is similar to
the range of variability for LSI, suggesting an
almost equitable distribution of fluxes among the
different subnetworks. On the contrary, for deltas
such as Irrawaddy and Niger the ranges of
variability of FSI are much bigger than those for
LSI, indicating a more asymmetric distribution of
fluxes (presence of preferential pathways of flux
delivery to the shoreline). In other words, for
Parana and Yukon deltas (high values for LS/ and
F'SI) there is not only topologic overlapping (links
shared by subnetworks) but also dynamic
overlapping wherein flux in each link is also
shared by other subnetworks. On the other hand,
for Irrawaddy and Niger deltas, links are relatively
equally-shared among subnetworks but the
dynamic components are preferentially shared in a
sense that a large percentage of the flux in a given
link drains to one subnetwork relative to the others
(common topologic units but more independent
dynamic units).

The metrics discussed above can be useful in
characterizing the overall topologic and dynamic
dependence of each subnetwork. However,
understanding the nature of those relationships
(e.g., subnetworks that overlap with a few or a
large number of other subnetworks) is necessary in
order to tease apart the complexity of the delta as a
whole. Thus, we present a joint representation that
captures those relationships, namely: Subnetwork

to Subnetwork Topologic and Dynamic Pairwise
Dependence.

Figure 7 shows for three deltas (Mossy, Niger and
Parana) the results of the pairwise analysis of
topologic (left panels) and dynamic (center panels)
dependence. Here the outlets are indexed
consecutively and counterclockwise starting with
the leftmost one where the delta is plotted with the
apex on the figure’s top and outlets at the bottom.
From the topologic pairwise analysis, tree-like
deltas (e.g., Mossy) exhibit high values of shared
links (red colors) close to the diagonal, and low
otherwise. ~This means that only neighboring
subnetworks have a significant number of
common links, which decreases fast when
compared to farther subnetworks. Deltas like
Niger present a similar diagonal-pattern in the
topologic pairwise analysis. At the same time, the
dynamic counterpart is clearly different between
these two delta types. Specifically, in the analysis
of bifurcation-dominated deltas, some structures
appear symmetrically along the diagonal, meaning
that for many pairs (ij) subnetwork i shares the
same proportion of flux with j as j shares with i.
However, for loop-dominated deltas the Dynamic
Pairwise Dependence is not symmetric at all. The
contiguous areas of high values of sharing in both
charts can be interpreted as mesoscale units in the
delta, consisting of several subnetworks (see
Figure 7 right panels), that emerge from either the
topologic or their dynamic overlapping (or both).
Thus, in tree-dominated deltas, the subnetworks
separate from each other close to the apex and do
not rejoin again, hence forming different topologic
units. Although, the flux is subject to the
constraint imposed by the mentioned topology, red
colors (high pairwise dependence) are also
observed for subnetworks located away from each
other in the dynamic chart of Mossy delta. This is
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due to the fact that, although far away
subnetworks only share a few channels, those
channels are located close to the apex and can
contain a big percentage of the total flux. On the
other hand, in more complex deltas e.g., those that
have experienced major avulsions, due to the
existence of loops close to the apex, both
topologic and dynamic interactions among farther
subnetworks are present. Parana exhibits a
paradigm of extensive systemwise interaction,
where the system acts almost as a single unit; this
is also reflected in the very small variability
among the 18 outlet subnetworks in all the
computed metrics (see Figure 5).

5.3. Entropy-based complexity of subnetworks

Entropy measures the complexity in terms of the
uncertainty in the splitting and rejoining paths
(topologic) and fluxes (dynamic). Traditionally,
joint entropy is divided into two components the
Mutual Information (M) and Conditional Entropy
(CE). A noteworthy insight is the interpretation of
MI and CE as measures of Rigidity and Flexibility,
respectively for both network topology and
dynamics; see also Ulanowicz et al. [2009]. We
relate the concept of MI with rigidity, interpreted
as a measure of the constraints imposed by the
connectivity of the channel networks. Recall that
MI measures the information shared between
states, and in deltas those possible connections
require a physical connectivity (channel network).
On the other hand, CE is a measure of the
remaining information contained in the system
once the structure is imposed. The source of that
remaining information is the uncertainty still
present in the system about the next position
(state) of a package of flux given the knowledge of
its current position. Thus, subnetworks consisting
of single paths have zero CE, since no further
information is gained when the structure is fixed

(i.e., given the current position of the package of
flux, we know that its next position is directly
downstream of the current one). Subnetworks
with at least one bifurcation have non-zero CE
since even though the structure is known, the
voyage of the package of flux is not totally
determined (i.e., in each bifurcation, there is some
uncertainty related to the probability of taking one
or other alternative path).

From the computation of these metrics, Figure 5d1
and 5d2 show similar trends and variability for
both the topologic and dynamic Mutual
Information (MI) revealing that connectivity is the
most important constraint underlying this concept
of complexity. The fact that measures of
loopiness, Ny, and RD, exhibit similar trends and
variability to those of MI reinforces its
interpretation as the Rigidity of the system.

The trend and variability seen for the topologic
and dynamic MI is not generally observed for
Conditional Entropy (see Figure 5Sel, and 5¢2): (i)
the dynamic CE is smaller than the topologic CE,
(i) big changes in the variability of those two
magnitudes are observed for the same delta (e.g.,
higher topologic than dynamic variability for
Niger and lower topologic than dynamic
variability for Irrawaddy), and (iii) same trends
and variability are observed for bifurcation-
dominated deltas such as Wax Lake and Mossy.
These differences and similarities can be
interpreted in terms of the flexibility of the system:
(1) since flexibility deals with the information that
remains in the system because of the uncertainty
introduced in each bifurcation, its maximum value
occurs when there is equal probability of splitting.
This implies that topologic CE is always greater
than or equal to the dynamic CE; (ii) Flexibility is
very sensitive to flux partition. Therefore, having
symmetric or asymmetric partition in each fork
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generates different variability across subnetworks
for topologic and dynamic CE; (iii) the similarity
in the topologic and dynamic CE for Wax Lake
and Mossy deltas resides in their bifurcation-
dominated nature wherein very little further
information is gained since most of the
subnetworks are single paths (CE =0).

6. Constructing a

Complexity Space for Deltas
Having developed the framework to assess the
complexity of deltas, it is now possible to push
forward the idea of defining a complexity space
where deltas can be mapped and compared.
Different topologic and dynamic characteristics of
a delta can be considered coordinates of a Topo-

Topo-Dynamic

Dynamic complexity space. A particular choice of
the examined characteristics (and hence space
dimension) would depend on the specific problem
being addressed. For illustration purposes we have
chosen two metrics, one topologic and one
dynamic, to construct a topo-dynamic space for
the seven examined deltas. We have chosen the
Number of alternative paths (N,p) as a surrogate
for Topologic Complexity and the Leakage Index
(LI) for Dynamic Complexity. The resulting space
is shown in Figure 8, which shows the median and
interquartile range (the range between 25% and
75%) for each space component and every delta.
A general trend 1is observed: the more
topologically complex a delta is, the lower its
dynamic complexity although the variability of
each component (coming from the collection of
subnetworks in each delta) can be very large. This
trend is expected since the larger the topologic
complexity, the smaller the proportion of external
links (border), which are able to interact with the
rest of the delta, and therefore the lesser the
possibility of fluxes leaking out. The special case
of a binary tree delta (with equal flux partition in

each bifurcation) has the minimum topologic
complexity (Npp=1), i.e., all the subnetworks
consist of a linear path, and a dynamic complexity
LI = 0.5, as illustrated in Figure 8. We observe
that the Wax Lake and Mossy deltas are the
closest to that binary tree, depicting the almost
bifurcating topology but also the more complex
dynamics due to flux sharing. In spite of this
general trend, other interesting and more detailed
properties can also be observed. For example,
deltas like Colville and Yukon have similar
dynamic complexity, but Yukon is clearly more
complex in terms of topology. Likewise, Colville
and Niger have comparable topologic complexity,
but Niger is more dynamically complex. A more
detailed explanation of the meaning of those
similarities and differences has been presented in
the previous sections, together with other metrics,
but what we attempt to put forward here is the idea
of a simple representation, in which both the
topologic and dynamic complexity are able to
position deltas in a common space to
quantitatively compare and eventually classify
them.

7. Relating the concepts of Complexity and
Vulnerability

In Tejedor et al. [2015], vulnerability was defined
in terms of how changes in upstream links would
affect the shoreline fluxes. We now ask the
question of whether and how the vulnerability of
the system might relate to its complexity. We
illustrate in Figure 9 the comparison between the
average Vulnerability Index V; for the different
delta subnetworks as defined in Tejedor et al.
[2015] equation (14) and (a) the topologic
complexity and (b) dynamic complexity. We have
chosen the Number of alternative paths (V) as a
surrogate for topologic complexity and the
Conditional ~ Entropy (CE) for  dynamic
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complexity. As expected, the higher the Number
of alternative paths, the lower the vulnerability
index but the relation is not trivial (Figure 9a).
Note that in the vulnerability analysis, single path
subnetworks are the most vulnerable since a
change of flux in that path propagates directly to
the outlet. At the same time, subnetworks with
multiple splitting and joining paths are less
vulnerable. However, the degree of vulnerability
depends on the specific topology of the
subnetwork as indicated by the variability
associated with the wvalues for individual
subnetworks. We also observe the appearance of
“unoccupied areas” in this space: there are no
subnetworks with high (low) Number of
alternative paths and high (low) vulnerability.

From Figure 9b we observe that the Vulnerability
Index has a however general decreasing trend with
the dynamic CE, although the scatter around this
relationship is more pronounced compared to that
between the Vulnerability and the Number of
alternative paths (Fig. 9a). The observation that
there are no low (high) values of the vulnerability
index when the dynamic CE is low (high),
reinforces the inverse relationship between
vulnerability and complexity. We have chosen the
weighted CE as a surrogate for dynamic
complexity since it can be interpreted as the
flexibility of the subnetworks to deliver fluxes to
the outlets. Note that the vulnerability index
cannot be uniquely determined by either the
topologic or the dynamic complexity separately,
revealing the necessity of a multivariate analysis
and reinforcing the need for a quantitative
framework using both the topologic and dynamic
complexities to better understand vulnerability.
The exact relationship between vulnerability and
the topo-dynamic complexity is of course
complicated. A 3D space that considers these

three quantities jointly would be revealing but it is
left for future research.

8. Spatially explicit metrics of complexity:
a delta width function

All  the metrics developed so far study
subnetworks as units without reference to their
complexity at specific distances from the apex. It
is of interest however to examine how this
complexity might change as one moves
downstream from the apex to the shoreline. As a
preliminary step in this direction we introduce
here the delta width function, defined as the
number of links intersected at different distances
from the apex, similar to the width function for
river networks defined as the number of streams at
a given distance from the outlet [Rodriguez-Iturbe
and Rinaldo, 1997]. Figure 10 (right panels)
illustrates this concept where for simplicity
distance is measured radially from the apex.
Normalizing this distance by the maximum
distance (distance from apex to the actual
shoreline) and normalizing the number of links at
a given distance by the maximum possible number
of links intercepted at any distance, Figure 10a
shows the normalized width function for the seven
deltas. Also for comparison, the normalized width
function of a binary bifurcating tree is displayed
on the same plot (notice that its staircase shape is
due to the strict hierarchy of the tree together with
the assumption of equal link lengths at each level
of generation). We observe that for tree-like
deltas (Wax Lake and Mossy), the normalized
number of links is an increasing function of the
normalized distance achieving the maximum at the
current shoreline similar to the behavior for the
binary tree. More complex deltas, on the other
hand, attain a maximum before the current
shoreline (e.g., Irrawaddy at normalized distance =
0.78, Colville and Niger = 0.90, and Yukon =
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0.95) except for Parana with maximum located at
the current shoreline. These results highlight the
idea that Parana can be thought of as two deltas in
tandem [Smart and Moruzzi, 1971]: the upper half
near the apex with a narrow region similar to
braided rivers containing the core links, and the
lower half with a topology similar to a bifurcation-
dominated delta.

The width function is a useful tool to differentiate
among different configurations of delta networks.
Figure 11 illustrates schematically the different
trends of the width function and their
interpretations. An increasing trend for a range of
distances from the apex is associated with
divergent dominated by
bifurcations. On the other hand, a decreasing

structures, 1.e.,

trend is indicative of convergent structures, i.e.,
confluence-dominated area of the delta. Finally, if
a region has a similar number of confluences and
bifurcations, it is indicative of a confined structure
and will manifest itself as a constant width
function.  According to this classification, tree-
dominated deltas such as Mossy and Wax Lake are
characterized by mostly divergent structures.
Loop-dominated deltas exhibit a convergent
structure for a range of distances close to the
shoreline. Lastly, the Parana delta is a clear
example of a delta with a confined structure where
the width function is fairly constant over a large
part of the delta (normalized distance of 0.2 to 0.8
from the apex to the outlet; see Figure 10a).

Although the spatial analysis of a mature delta
cannot be used as a surrogate for its temporal
evolution (due to the possibility of internal
rearrangement of channels caused by avulsions
and major flooding) it can still be used as a rough
proxy. Figure 10b shows the evolution of the
seven deltas in the topo-dynamic space. The

arrows indicate the direction of increasing distance
from the apex. Each line corresponds to the mean
topologic complexity and to the mean dynamic
complexity as we move from the apex to the
shoreline. From a spatial evolution perspective,
deltas evolve by increasing their topologic
complexity (in terms of N,,) and decreasing their
dynamic complexity (in terms of LI). This is
compatible with the idea that young (old) deltas
are  topologically simple (complex) with
subnetworks exchanging a large (small) proportion
of fluxes.

9. Conclusions and open problems

In Tejedor et al. [2015], we introduced a
framework based on spectral graph theory, by
which delta channel networks can be studied as
rooted directed acyclic graphs opening the door to
efficiently compute several properties of interest
via simple algebraic manipulations. Specifically,
we demonstrated how upstream (contributing) and
downstream (nourishment) subnetworks can be
identified and extracted by operations on the so-
called Adjacency matrix, which uniquely
characterizes the connectivity of a graph.
Approaching propagation of fluxes via a random
walk on a network, steady-state solutions of fluxes
were obtained via the Laplacian operator (similar
to the known advection-diffusion operations on a
porous medium). The present paper builds on the
results of spectral graph theory to define a number
of metrics that depict the topologic and dynamic
complexity of delta channel networks, a necessary
step in the quest of understanding how the
physical processes forming a delta relate to the
complex transport pathways they leave behind on
the landscape. The topologic complexity metrics
we proposed depict three topologic characteristics:
Loopiness, Structural Overlapping and Entropy-
based topologic complexity, while the dynamic
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complexity metrics are grouped to capture three
main  dynamic  features: Leakage, Flux
Overlapping and  Entropy-based  dynamic
complexity. We used entropy concepts to quantify
how the flux between links, constrained by the
organized patterns of splitting and re-joining,
partitions the total entropy into Mutual
Information (rigidity) and Conditional Entropy
(flexibility). Finally, we introduced the delta width
function that can be used to classify deltas
according to their spatially-explicit network
configuration. All metrics were implemented and
compared on seven diverse deltas.

The results have provided some valuable insights

with main conclusions being:

(1) Jointly, the topologic and dynamic complexity
of a river delta places it in a unique position in
a delta topo-dynamic space, revealing that as
topologic complexity decreases (e.g., fewer
loops and simpler subnetwork structures
connecting the apex to the shoreline outlets)
the dynamic complexity (flux exchanged
among subnetworks) increases. At the limit of
minimum (maximum) topologic (dynamic)
complexity is a purely bifurcating tree and we
see that the simpler and younger (e.g., Mossy
and Wax Lake) deltas are, in fact, closer to
such a bifurcating delta in the topo-dynamic
space. This is also observed in all other
metrics.

(2) A spatially-explicit interrogation of a delta in
terms of its normalized number of links versus
normalized distance from the apex (delta width
function) reveals that one can quantify easily
deltas that are mostly divergent, convergent or
geologically confined, as well as transitions
from one regime to another. This is apparent in
the mostly bifurcating (divergent) structure of
the Wax Lake and Mossy deltas, and depicts

the mostly confined structure of the Parana
delta.

(3) A tapestry plot that records the topologic (link
sharing between subnetworks) and dynamic
(flux sharing between subnetworks) structure
of a delta as a whole system, can be used to
identify coherent subunits of a delta and
provide a complementary representation of its
spatial topologic and dynamic structure.

(4) The topologic and dynamic complexity of
deltas seem to relate to its vulnerability to
change, i.e., to the way a delta responds in
propagating upstream disturbances to its
shoreline outlets. Specifically, we report an
inverse non-trivial  relationship  between
vulnerability and two indices of topologic
(Number of alternative paths) and dynamic
(Conditional Entropy) metrics.

This study is seen as the beginning of further
exploratory analysis of deltas to understand and
quantify how bio-physical processes, climate and
geologic constraints, as well as human actions,
change the topologic and dynamic connectivity of
deltaic surfaces and thus affect the way deltas will
respond to future perturbations. Two ideas for
future work are proposed herein:

(1) Although considerable satellite imagery for
deltas is available, automatic extraction of
delta channels from such images is not
possible hampering extensive analysis not only
of a much larger number of deltas, but also a
single delta under different seasonal flows or
as it has evolved over time. An interesting
question to address will be to examine how the
scale at which a delta is seen (detail of
mapping its channels) affects the metrics of
topologic and dynamic complexity and what
scale is necessary to achieve some robustness
on these metrics. Are there any scaling
relationships (akin to those in tributary channel
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networks and also in braided river networks,
e.g., see Sapozhnikov and Foufoula-Georgiou,
1997) that can relate properties of the system
at one scale to those at another scale? Is there
scale-invariance present in any of those
relationships? For example, do smaller in size
subnetworks leak out more flux in a way that
can be parameterized by size and complexity?

(2) In addition to the natural observatories of
deltas, where analysis is based on real data,
numerical observatories which can provide a
wealth of simulated deltas under controlled
physical conditions are expected to provide
considerable insight on the problem of how
physical processes building a deltaic surface
express themselves in the spatial and temporal
patterns of its channel structures. For example,
numerical simulations based on detailed
hydrodynamic models have shown that the
shape and the structure of deltas depend on the
cohesiveness of the soil [Caldwell and
Edmonds, 2014], forcings such as wind waves
and tides [Nardin and Fagherazzi, 2012;
Leonardi et al., 2013] etc. Also reduced
complexity models [Liang et al, 2015a,b]
offer a simpler way to experiment with semi-
physical rules and map their effect on the delta
channel structure. Such models also offer a
mechanism for studying the question as to how
the complexity of a single delta evolves over
time as the delta builds and its channels avulse
due to localized instabilities, propagating
laterally and downstream and reorganizing
portions of the deltaic surface.

Appendix A: Finding the Number of
Alternative Paths to an Outlet

Here we show how to compute the number of
alternative paths from a given node within a delta
to any given outlet using simple matrix operations

on the directed graph G that describes the delta.
Two paths are considered different if they differ
by at least one non-shared link.

Number of alternative paths: Consider a delta
system represented by an acyclic rooted directed
graph G with adjacency matrix A. Assume that the
system has k outlets indexed as i =1, ...,k. Consider
the matrix M = (I*-A"), where A" is the transpose
of the adjacency matrix, and I* is obtained from
the identity matrix by placing zero in the position

(uu) for each outlet u. Then

(i) The null space of M has dimension
(multiplicity of the eigenvalue zero) equal
to the number of outlets k;

(ii) There exists a unique basis y;, i=1,....k, of
this null space in R (ie., the basis
consists of k vectors each having N
components) with the property

1, i=j;

Yi(j)zéij: 0, i#]

for j=1I,..k
That is, the component of the vector ¥ is
unity at the outlet i (y(i)=1) and zero at all
other outlets (y(j)=0 for j#, j=1,...,k).

(iii)  The nonm-outlet vertex v belongs to the
contributing subnetwork S; if and only if
Yi(v) # 0.

(iv)  The value vi(v) equals the number of
alternative paths from vertex v to the outlet
i.

Proof:

(i) We observe that there exists at least one
indexing of the vertices of the rooted directed
acyclic graph G such that each offspring vertex
has a higher index than its parental vertex. In this
indexing, the internal vertices have indexes from 1
to (|V| - k) -- |V| being the number of the vertices
in G -- and the outlets have indexes from (|V| - k
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+1) to |V|. By construction, the matrix M is upper
triangular, with ones on the main diagonal for the
first (JV| - k) rows and with the last £ rows being
zero. Using the rank-nullity theorem [Meyer,
2000], dim(ker(M)) = k.

(i) Consider an eigenvector ¥ that corresponds to
the eigenvalue 0 of the matrix M=(/*-4"). By the
definition of the eigenvalue

(1%-A") y=1*y- A"y=0, (1)

which implies
ry=A"y )
In coordinate form, this becomes

y(v)= Zajvy(j) (for v that are not outlets.) (3)
j

In other words, y(v) is the sum of the components
¥ (u;) of all the offspring {u;} of v within G.

Next, we explicitly construct k& independent
eigenvectors that correspond to the zero
eigenvalue of M. Namely, the i-th eigenvector ¥
will correspond to the outlet i = 1,....k It is
constructed by letting (7)) = 1 and %(j) = 0 for all
the other outlets (that is for all j =1,...,k such that j
# i) and computing the other components using
Eq. (3). The linear independence of the vectors {7y}
follows from the above construction of the
components for the outlet indices: only one vector
has non-zero value at coordinate i = 1,...,k. The
characteristic property (ii) holds by construction.

The above procedure produces k independent
vectors. Since the dimension of the kernel of M is
k, we constructed a basis for this kernel.

(iii) Follows from construction of the vector
components using Eq. (3), as described in the

proof of (ii) above.

(iv) We prove the statement by induction. The
induction base is given by the observation that (7)
=1 for the outlet i of the subnetwork S;, which can
be interpreted as the existence of a unique path
from the outlet to itself. For induction step we
consider an interval vertex v and assume that for
all its offspring u; the number of alternate paths
from u; to the outlet i is given by y(u;). We have

viW=a,yu)+. . +a,y,@)=y@)+. . +y,@u),

which is indeed the number of paths from v to i.
This completes the proof.

Remark: We notice that the above result is very
similar to our statements on finding contributing
and nourishing subnetworks in the companion
paper [Tejedor et al., 2015]. However, this result,
unlike those in [Tejedor et al., 2015], does not
follow from the work of Caughman and Veerman
[2006], since it involves the matrix M that cannot
be represented as D(/-S), with D being a non-
negative diagonal and S — stochastic.

Appendix B: Resistance Distance

A schematic representation of two subnetworks is
shown in Figure Al: Subnetwork 1 (top)
connecting the Apex to the Outlet 1 (O1), and
Subnetwork 2 (bottom) joining the Apex to Outlet
2 (02). Both subnetworks have the same number
of links equal to 6 and the shortest path from the
apex to the outlet consisting of 3 links. Here, we
want to introduce with more detail concepts
related with Resistance Distance (RD) described in
section 3.1.2, and show differences in the way it
quantifies the complexity of a subnetwork with
respect to the Number of alternative paths (Nap).
Following Klein and Randic [1993], we can define
Resistance Distance between the apex and the
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outlet, as the effective resistance between them
when each link of the graph is replaced by a 1-
ohm resistor. In the theory of electrical circuits,
the effective resistance is computed based on the
arrangement of the resistors:

(1) Resistors in series: The connected resistors
only share one junction (black square), so the
current flows through one resistor after the
other (e.g., Resistors 1-2-3 and 4-5-6, see top
panel of Figure Al). The effective resistance
of resistors in series is equal to the sum of the
values of the individual resistors,

Ripios = ERi

(A1)

(2) Resistors in parallel: The connected resistors
share two junctions, so the current flows at the
same time to both resistors (e.g., Resistors 1
and 4, 2 and 5, 3 and 4; see bottom panel of
Figure Al). The effective resistance of
resistors in parallel can be computed as:

-1
1
RPamllel = (z F \J

(A2)

Therefore, the equivalent resistance from Apex to
Outlet 1 and Outlet 2 are as follows:

-1 -1 -1

I
Note that both subnetworks have the same
Resistance Distance. Resistance Distance can be
interpreted as the ‘“effective distance”, in the
sense that if multiple routes connect two vertices
of a graph, these vertices are closer to each other
than if they are connected only by one route. Thus,
the apex is three links apart from both outlets 1
and 2, but the Resistance Distance is half of that
number implying the existence of alternative
routes between them. On the other hand, the
Number of alternative paths between the apex and
outlet Ol is 2 (Paths: 1-2-3, and 4-5-6) while the
Number of alternative paths between the apex and
outlet O2 is 2°=8 (Paths: 1-2-3, 1-2-6, 1-5-3, 1-5-
6,4-2-3,4-2-6, 4-5-3 and 4-5-6).

Both metrics can be used to characterize the
complexity of the topologic structure, but they are
not equivalent. While the Number of alternative
paths is able to account for all the possible
combinations of paths, Resistance Distance looks
at the alternative routes; penalizing some
combinations that do not really add disjoint paths.
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Notations

zZ =

Nap,i
Pi
Pij
Puv

adjacency matrix

symmetrized adjacency matrix

element of A

number of subnetworks link (vu) belongs to
Conditional Entropy in subnetwork i

depth of the binary tree

elements of the degree matrix D

Dynamic Pairwise Dependence between subnetworks i and j
in-degree matrix

out-degree matrix

Dynamic Conditional Entropy in subnetwork i
Dynamic Mutual Information in subnetwork i
total flux in the links of subnetwork i

steady flux at vertex u

steady flux at link (vu)

Flux Sharing Index of subnetwork i

measure of uncertainty of state i

total uncertainty

identity matrix with zeros in the elements corresponding to the outlets
in-degree directed graph Laplacian
out-degree directed graph Laplacian

weighted out-degree directed graph Laplacian

Leakage Index in subnetwork i

Link Sharing Index among subnetworks i

Mutual Information in subnetwork i

number of subnetworks to which a given link belongs to
number of outlets

number of links/vertices in subnetwork i

Number of alternative paths in subnetwork i
probability that state i occurs

probability of transition from state j to state i
probability that the package of flux is travelling from vertex v to vertex u
probability of a package of flux arriving at vertex u
probability of a package of flux leaving vertex v

probability of transition from j to i given that the initial state is j

Resistance Distance in subnetwork i
subnetwork i
intersection of links/vertices in subnetworks i and j
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TPD;; Topologic Pairwise Dependence between subnetworks i and j

TCE; Topologic Conditional Entropy in subnetwork i
T™I; Topologic Mutual Information in subnetwork i

u vertex

v, global vulnerability of outlet subnetwork i

Wy element of W

w weighted adjacency matrix

vi(v) proportion of flux at vertex v that arrives at outlet i
r Moore-Penrose pseudoinverse of the Laplacian
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TABLES

Table 1. Location and summary of physical characteristics for each delta.

Apex to shoreline

Delta Location 3{:3?) (l;fse) average distance Dl;);:iclil:;t References
(km)
1. Niger Nigeria 24,508 Late Cretaceous 160 Wave/Tide " Goudie, 2005
(80-35 Million BP) " Syvitski et al,, 2005
2. Parana Argentina 15,463 Middle Holocene+ 213 River/Geology* " politis et al., 2011;
(6,000 BP) " Syvitski et al, 2005
3. Yukon Alaska, 8313 Middle Holocene 80 Wave " Nelson and Creager,
USA (5,000 BP) 1977; *Syvitski etal,
2005
4. Trrawaddy Myanmar 6,438 Middle Holocene 117 Tide* +Hedley et al., 2010;
(8,000-7,000 BP) " Syvitski et al, 2005
5. Colville Alaska, 240 Middle Holocene 22.5 River ¥ Jorgenson et al,
Usa (4,000 BP) 1998 Walker, 1998
6. Wax Lake  Louisiana, 100 75" 11.5 River* " Roberts et al., 1997;
USA " Edmonds et al., 2011
7. Mossy Canada 17 140+ 4.7 River* +Smizh et al., 1998;

*
Edmonds et al., 2011
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Table 2. Summary of simple topologic characteristics of each delta channel network. The recombination factor introduced

by Smart and Moruzzi [1971] is computed based on rudimentary graph theory. Note that the values reported here for Niger,

Parana, Yukon, Irrawaddy and Colville have been obtained from the analysis of the images by Smart and Moruzzi [1971];

values for Wax Lake were obtained from the analysis of the network extracted by Edmonds et al. [2011]; and values for

Mossy were obtained from the analysis of the network extracted from Google Earth.

Delta NL Ny No Njy Nr Recombination
# of links # of # of # of # of fork factor
vertices outlets junction vertices o=N;/Ng
vertices

1. Niger 181 130 15 50 65 0.769
2. Parana 86 69 18 18 33 0.545
3. Yukon 169 126 24 37 65 0.569
4. Irrawaddy 100 71 6 30 35 0.857
5. Colville 140 107 20 34 53 0.642
6. Wax Lake 59 56 24 5 27 0.185
7. Mossy 67 61 23 10 28 0.357
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Table 3. Summary of metrics.

Metrics

Description

A. Metrics of Topologic Complexity

1. Loopiness
1.1. Number of alternative paths
1.2. Resistance Distance

2. Structural Overlapping
2.1. Link Sharing Index
2.2. Subnetwork to Subnetwork Topologic
Pairwise Dependence

3. Entropy-based Topologic Complexity
3.1. Topologic Mutual Information
3.2. Topologic Conditional Entropy

B. Metrics of Dynamic Complexity

4. Subnetwork Leakage

5. Flux Overlapping
5.1. Flux Sharing Index
5.2. Subnetwork to Subnetwork Dynamic
Pairwise Dependence

6. Entropy-based Dynamic Complexity
6.1. Dynamic Mutual Information
6.2. Dynamic Conditional Entropy

Quantifies the loopiness of each subnetwork via (1.1) the

intuitive notion of the Number of alternative paths from
the apex to the outlet and (1.2) the notion of equivalent
resistance in the theory of electrical circuits.

Quantifies the degree to which the network links are
shared among (2.1) different outlet subnetworks and
(2.2) pairs of subnetworks.

Quantifies the (3.1) rigidity and (3.2) flexibility in the
system imposed by the underlying topologic
connectivity.

Leakage Index measures the proportion of flux leaking
from a subnetwork before the flux is delivered to the
outlet.

Quantifies the degree to which the network fluxes are
shared among (5.1) different outlet subnetworks and
(5.2) pairs of subnetworks.

Quantifies the (6.1) rigidity and (6.2) flexibility in the
system taking into account physical processes that
control the partition of fluxes.
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Figure 1. Qualitative illustration of topologic and dynamic complexity of delta channel networks.

&%1@

Panels (a,b): topologic complexity of subnetworks within a delta system ranging from a single path to a
collection of splitting and rejoining paths connecting the apex to the outlet. Panels (c,d): shared links
among subnetworks that drain to different outlets — a link might be part of only one subnetwork (n=1)
or a number of subnetworks 7 depending on the overall topologic structure of the delta system. Panels
(e,f): flux interaction among subnetworks -- bifurcation of channels within a subnetwork that led their
fluxes to another subnetwork characterize the dynamic exchange of fluxes and depends both on the

topology of the network and also the flux distribution.
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Figure 2. Location of seven deltas and their corresponding channel networks numbered according to

size (largest to smallest area). We used the Smart and Moruzzi [1971] networks for (1) Niger, (2)
Parana, (3) Yukon, (4) Irrawaddy, and (5) Colville Deltas. For (6) Wax Lake we used the network
extracted by Edmonds et al. [2011]. We have extracted the network of (7) Mossy from Google Earth.

Satellite images are copyrighted by Digital Globe Inc. 2014.
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Mossy Parana

13
12 18

2
Figure 3. Structural Overlapping. (Left panel) Three different outlet subnetworks have been
highlighted for the Mossy delta. Black links represent the common part to the 3 subnetworks, and blue
channels the common part to subnetworks 12 and 13, but not to 19. (Right panel) Outlet subnetworks

2 and 18 of Parana delta are highlighted. Black links represent the common part to both subnetworks.
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Figure 4. Asymmetric Flux distribution. Caricatures (a) and (b) illustrate two deltas with the same
underlying topology (channel network structure) but different flux distribution. The amount of flux in
each channel is illustrated by the width of the blue lines. Thus, (a) shows a delta where fluxes are
evenly distributed among the different channels, while (b) presents a delta with a clear preferential path
by which the main portion of flux is delivered from the apex to the shoreline. As expected, these deltas
cannot be differentiated based on their topologic complexity, but only based on their dynamic

complexity, which is significantly different.
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Figure 5. Summary of topologic (a, cl-el) and dynamic (b, c2-e2) complexity metrics for the seven
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deltas (NI = Niger, PR = Parana, YK = Yukon, IW = Irrawaddy, CV = Colville, WL = Wax Lake, MO

= Mossy). We note that for a binary tree (for depth d =10) the topologic metrics are equal to: Ny, =1,

LSI=0.80, TMI =1.99 and TCE =0 and the Wax Lake and Mossy deltas are the closest to those values,

as expected.
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Figure 6. Resistance Distance. (a) Resistance Distance for each delta, and (b). Resistance Distance

vs. Number of alternative paths. Note that the two metrics relate to each other as expected (the larger

the Number of alternative paths the smaller the Resistance Distance, e.g., a clear relationship in Niger

and Yukon deltas) but this relationship is non-trivial for some deltas depicting pronounced differences

(e.g., different slopes). For a binary tree, the Resistance Distance is equal to 1 and the Number of

alternative paths is also 1 for all subnetworks. (Note: NI = Niger, PR = Parana, YK = Yukon, IW =

Irrawaddy, CV = Colville, WL = Wax Lake, MO = Mossy)
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Topologic Pairwise Dependence Dynamic Pairwise Dependence
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Figure 7. Subnetwork to Subnetwork Topologic (left panels) and Dynamic (center panels) Pairwise
Dependence. Outlets are indexed consecutively and counterclockwise starting with the leftmost one
where the delta is plotted with the apex on the figure’s top and outlets at the bottom. The cell (i,/) of
the topologic (dynamic) dependence represents the percentage of links (fluxes) shared by subnetworks
i and j with respect to the total number of links (fluxes) in subnetwork i. Red (blue) colors represent
high (low) values of sharing. Right panels illustrate the topologic and dynamic units at intermediate

scales that arise from the interpretation of the pairwise dependence.
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Figure 8. Topo-dynamic Complexity Space for deltas. We define a 2D space where the x-axis
corresponds to the dynamic exchange of the different subnetworks measured by the Leakage Index,
and the y-axis corresponds to the topologic complexity measured by the Number of alternative paths
from apex to outlet. Each colored cross corresponds to a different delta, and the orange dot
corresponds to a binary tree. The vertical (horizontal) component of each cross runs from the 25" until
the 75" percentile of the Number of alternative paths (Leakage Index). The filled dot for each delta
corresponds to the intersection point of the medians of both parameters: Number of alternative paths

and Leakage Index.
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Figure 9. Relation of Vulnerability to Topologic and Dynamic Complexity. Vulnerability Index vs.

Number of alternative paths (left) and vs. Dynamic Conditional Entropy (right). As expected, the more

complex a delta is the more “robust” it is to change. This is because alternative paths and equitable

flux distribution minimize the effects of a flux change in upstream links to the flux reaching the outlet.
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Figure 10. Spatially explicit metrics of complexity. (Right panels) Schematic representation of
contours radially scaled at normalized distances of 25%, 50%, 75% and 100% of the current shoreline.
The squares show the intersections at the different distances. (a) Delta width function for the seven
deltas examined. (b) Each line represents the smoothened trajectory in the topo-dynamic complexity
space (intersection of the mean of both Leakage Index and Number of alternative paths) for each
radially scaled delta from the apex to the shoreline. Note, that if actual data on shoreline and channel
network evolution existed this plot would capture the progression of the topo-dynamic complexity of

the evolving delta.
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Figure 11. Width function and delta network shape. Different trends can be observed in the delta
width function (normalized number of intersected links vs. normalized distance from apex): (i)
Divergent, illustrated by Delta A, for which the delta width function is an increasing function of the
distance from the apex, (ii) Convergent, illustrated in the lower portion of Delta B wherein the delta
width function is a decreasing function of the distance from the apex, and (iii) Confined, illustrated by
the middle portion of Delta C, for which the delta width function remains constant as the distance from

the apex increases.
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Figure Al. Illustration of two subnetworks. Subnetwork 1: Apex connects to the outlet 1 (O1) via two
paths, each composed of three links (note that the presence of vertices in the path implies for a delta
system that other links (dashed lines) initiate at each of those vertices but drain to another outlet).

Subnetwork 2: Apex drains to the outlet 2 (O2) via a more intricate structure.
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