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Today, our data is not only stored on personal computers, but is managed by many devices, from cell phones
or watches to smart TVs, and stored in remote repositories (usually referred to as “the cloud”). In this new
context, defining what exactly “data deletion” is becomes a challenge, especially considering the many different
scenarios in which it is becoming more increasingly important. This is the case, for example, of the “right to
be forgotten” established by regulations such as the European General Data Protection Regulation (GDPR) or
the deletion of data used as a source to feed machine learning processes, the long-term effects of which are
very difficult to estimate. This work reviews the various terminology used when dealing with data deletion
and analyzes the different fields and technologies to which it is related. We conclude by offering a structured
discussion of key takeaways, lessons learned, and future research directions.
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computing;
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1 Introduction
Any system, any computer application, has to take a stance on the concept of deletion. By far, the
most common is that deletion is an allowed option. For example, any operating system includes
an option to delete files and/or folders. In operating systems with textual interface (via console),
there is always a command (such as DEL in MS-DOS, or rm in UNIX-like systems) with different
deletion options. In the graphical interfaces of this type of systems, the garbage can metaphor is
normally used under different names (Trash in MacOS, Recycle Bin in Windows, etc.). A first notion
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of “two-step deletion” appears in this metaphor: the first step is to send some content to the garbage
can; the second, more “definitive” (see Section 3), is to empty the garbage can.1 From there, any
other file management protocol or application (FTP, WebDAV, Google Drive, Dropbox, to name
just a few) also has a more or less sophisticated (or more or less directly linked to the underlying
operating system) deletion method.

Thinking in terms of technical computer languages, most of them have some notion of deletion.
Examples abound: the remove() library function in the C programming language (used to delete a
file), the remove() methods used for example in the Java programming language (to remove items
from List and ArrayList objects), the Delete From statement in the SQL language (used to delete
rows in a relational table and “replicated” in the data languages of other data management systems),
and so on. The more than well-known acronym CRUD that compiles the four basic operations in
any data management procedure has deletion as its last constitutive element.

Raising the level of abstraction, it seems clear that any computer application has procedures
allowing different types of deletion, from the most basic –through the Backspace and Delete keys of
any keyboard–, to the most sophisticated embedded in complex programs such as spreadsheets,
going through operations that all of us (as computer users) assume to be natural, such as the Cut
option (together with its “sisters” Copy and Paste) or the Undo option. We can affirm that the
availability of deletion is a characteristic element of computing itself, and that a significant part of
the software engineering discipline is built around deletion management.

Nowadays, data deletion has become much more complex. We are even facing new computing
paradigms in which, contrary to what we stated at the beginning of this introduction, erasing is not
an option. This is the case of blockchain technology (more information about blockchain is given in
Section 5), one of whose fundamental principles is based on the fact that the data it contains cannot
be altered (in particular, it cannot be deleted), so the construction can be used as an unforgeable
ledger [118]. Another technological example where deletion of information is not considered is the
Occurrence-centric approach [28, 29]. In this proposal, the concept of Occurrence Base (OcBase) is
defined, in which “the removal of any occurrence is prohibited. Even if an occurrence was registered
by mistake, the occurrence must be stored in the base. In this case, the occurrence is marked by
the user as “not valid” and the corresponding incidence is registered.” This approach bears some
resemblance to the notion of valid time included in temporal databases [142] (see Section 5).

In any case, the fact is that today data and files are distributed in a multitude of devices of a
very diverse nature: cars and other motor vehicles, smart TVs and watches, mobile phones, tablets,
laptops, personal computers, removable hard drives, IoT devices, remote data servers, and so on.
The responsibilities regarding the information stored (and therefore, eventually erasable) in all these
devices are different (and sometimes they are not even unambiguously assigned). To give an (appar-
ently) simple example, the creation of a user account on any online platform can lead to the spread
of data on a multitude of servers and devices. The fact that the account works correctly is proof of its
successful creation, but, how can a user be sure that his/her data has been completely deleted if he
or she requests the cancellation of the account? Who is responsible for guaranteeing the secure and
definitive deletion of this information? And above all, who guarantees that such information can not
be used in the future for unauthorized purposes? This kind of questions have led to the appearance
in recent years of different regulations that, to a greater or lesser extent, try to provide users
with more rights over the information they generate, being the European General Data Protection
Regulation (GDPR) [33] and its “right to be forgotten” as the most relevant example of this type
of legislation. In this new context, data deletion can no longer be considered only as an exclusively
technical-computing operation, but something with ethical, social, and legal repercussions.

1This “two-step” notion is common to other user interface operations. For instance, they are named as remove and delete in
https://adnanpuzic.medium.com/the-difference-between-remove-and-delete-7f6c1771e40f. (Last visited on December, 2025).
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The objectives of this article are twofold. First, we intend to compile the multiple implications
and repercussions of the notion of data deletion in a single source, through a three-dimensional
analysis. The first dimension analyzed is the terminological one, reviewing the different terms used
in the literature concerning deletion. As a second dimension, different fields of application and their
particularities with respect to deletion operations are analyzed. The third and last dimension is the
technological one, reviewing how different specific technologies approach data deletion. The second
objective of this article is to help both researchers and practitioners to recognize that, in any data
management task, deletion must be considered an essential function. To this end, we emphasize
the importance of considering the three dimensions discussed (terminological, field of application,
and technological), and provide a structured reflection —through a dedicated discussion section—
summarizing key insights from our analysis, highlighting practical takeaways, and outlining future
research directions to foster deeper awareness around data deletion.

The article is structured as follows. Section 2 presents related work. In Section 3 we review the
complex terminology used to refer to the concept of deletion. Then we analyze in Section 4 how
this concept is approached from different fields such as legal, ethical, scientific, and so on. The
particularities of deletion with respect to different specific technologies are described Section 5.
Section 6 discusses key insights and outlines future research directions. Finally, we present some
conclusions in Section 7.

2 Related Work
Data deletion has attracted significant attention over the last decades, leading to a growing number
of works dedicated to the subject. This trend underscores its rising relevance and complexity within
contemporary information systems. This body of literature reflects a broad recognition that deletion
is not merely a technical operation, but a multifaceted concern that spans multiple layers of system
design, policy, and practice.

In this context, it is worth noting that much of this literature remains focused on isolated aspects,
addressing specific concerns without engaging with the broader landscape of data deletion. For
example, there are numerous resources (primarily web-based and often of a divulgative nature),
that provide overviews of data deletion, often clarifying terminology and highlighting distinctions
between commonly used concepts [14, 17, 61, 110, 145]. Among these resources, the BitRaser
Knowledge Series [14] stands out, which offers a structured, though non-academic, treatment of
data deletion, covering mainly terminology, standards, and compliance guidelines aimed at guiding
practitioners and organizations. While these resources are useful for introductory understanding,
they generally do not go beyond this conceptual level to examine specific application domains
or analyze technical complexities involved in data deletion. On the other hand, there are specific
works that, although providing valuable reviews on data deletion, tend to focus on specific technical
environments or storage contexts rather than offering a broader, multi-domain perspective. For
example, Leom et al. [75] explore remote wiping and secure deletion on mobile devices, with
a particular emphasis on flash storage (or NAND flash memory). Their work is valuable for its
forensic perspective and real-device experimentation; however, their study remains narrowly
scoped to the domain of mobile device security. Similarly, Diesburg and Wang [27] conduct a
comprehensive survey on confidential data storage and deletion techniques on non-distributed,
single-user computing environments (such as laptops, thumb drives, or external hard drives). Their
study focuses on ensuring irrecoverability of deleted data, limiting itself to providing critical insight
into performance and usability trade-offs of secure deletion methods, especially in file systems
and local media. In addition to these, Ahmad and Afzal [2] conduct a focused review on assured
data deletion in cloud computing environments. Their work centers on the key requirements,
existing approaches, and inherent limitations associated with achieving complete and irreversible
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deletion in cloud infrastructures, particularly under scenarios where users lose direct control over
the physical location and replication of their data. While the article offers a useful overview of
existing approaches (including secure overwriting, disk scrubbing, and cryptographic techniques),
it is narrowly confined to cloud storage scenarios.

Other more recent contributions take a broader perspective on data deletion. Among them, the
work of Tebernum and Howar [148] merits particular attention here, also because their objective
aligns in part with the goals of our own study. In particular, they mainly investigate to what extent
data deletion is reflected in existing research, and present a structured taxonomy of data deletion,
organizing it along six key dimensions: what (what data is under consideration), why (why certain
data should or must be deleted), who (influence of or impact on human actors), when (time-based or
event-based deletion), where (physical or logical location), and how (methods, strategies, and level
of destruction). While both Tebernum and Howar’s work and ours aim at elevating the visibility
and structure of data deletion within the data management discourse, they differ significantly in
focus and scope. Their objective is to provide a foundational framework for understanding and
professionalizing deletion as part of the data life cycle. In contrast, our work adopts a broader
analytical perspective, aiming at consolidating the diverse implications and manifestations of data
deletion across three dimensions: terminological, field-specific, and technological. Our contribution
lies in emphasizing deletion as a cross-cutting and essential function in data management, and
in drawing attention to the diversity of meanings, contexts, and constraints that shape it across
different disciplines and technologies. On the other hand, Ramokapane and Rashid [123] propose
the paradigm of Explainable Deletion (ExD), which focuses on improving transparency and account-
ability in data deletion processes and on facilitating users’ understanding of such processes. To
support this proposal, they conduct a state-of-the-art review centered exclusively on aspects that
motivate the need for explainability —namely, the lack of clarity around nominal data deletion,
the limitations of assured deletion mechanisms, and users’ perceptions and practices regarding
how data is (or is not) deleted— rather than providing a general overview of the existing body of
literature concerning data deletion.

3 Terminology
There are many English words commonly used to refer to the action and effect of ‘deleting’ such
as remove, erase, clear, wipe out, eliminate, eradicate, obliterate, rub out, expunge, destroy, or (even)
vacuum, among others. The meaning of these words differs in small nuances (such as between
remove and delete, which are often considered synonyms2), which causes them to be often used
almost interchangeably in natural language.

When we limit the scope to Computer Science, and the purpose is to make a scientific use of
the terms related to data deletion, a greater precision would be expected. However, there is no
standardized or commonly accepted terminology. In the literature we can find similar or even the
same terms referring to different concepts (by different wemean here from “slightly” to “completely”
different), or the use of distinct terms referring to the same concept. Therefore, our intention is
to make a broad review of the disparate uses given to these terms and concepts. Some of the
terminological diversity that will be examined in this section is presented in Figure 1, which shows
the differences at a first level (supplemented with more details in Figure 2).

3.1 Recoverable vs. Unrecoverable
A first key distinction concerns the recoverability of deleted data. Bakke et al. state that data deletion
“refers to the assurance that deleted information is actually non-recoverable.” [7] Garg et al. [44]

2https://wikidiff.com/remove/delete. (Last visited on December, 2025).
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Fig. 1. Some of the diverse terms used regarding data deletion.
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Fig. 2. Details of the terms used regarding unrecoverable data deletion.

propose a formalization of the notion of data deletion in the context of the ‘right to be forgotten’
(see Section 4), context in which it seems natural to assume that the deleted data should not be
recoverable.

On the contrary, we can find sources in which the term deletion is linked to data that can be
recovered. For instance, several informal sources, such as [17, 110, 145] use data deletion in this
sense. In all of them, deletion (mainly concerning files within an operating system) is described as
an operation that marks the space as free, but the data still exist on the hard drive, being easily
recoverable by software. Another reference that shares this usage, although adding the adjective
logical is [6]. For its authors, “Logical data deletion […] does not guarantee purging of the data
under deletion within a definite time frame. Rather, the data is marked as invalid; essentially, not
accessible to external users. In practice, logically deleted entries are kept for arbitrarily long in the
system, since the time to definitively delete the data (termed persistent deletion) depends on the
state of the system.” Taking a similar approach, Ramokapane and Rashid [123], use the term nominal
data deletion to refer to the situations in which “the deleted item may no longer be visible, [but] it
is technically not fully deleted and can still be recovered.” Note how the (natural) idea emerges
that logical/nominal deletion requires a lower operational level than persistent/permanent deletion
(see also [70], that refers to a “given level of effort” in order to make data access infeasible). It is
important to be very aware of this difference, otherwise problems arise such as those highlighted
by Raquibuzzaman et al. [125]: “Although the state-of-the-art data deletion methods make the data
inaccessible through standard memory interfaces, recent research efforts demonstrate that data is
partially or fully recoverable.”

ACM Comput. Surv., Vol. 58, No. 7, Article 174. Publication date: January 2026.



174:6 I. Marco-Pérez et al.

There are other terms that do seem unequivocally linked to the idea that data are not recoverable.
Figure 2 presents a selection of these terms, along with the relationships among them —such as “is
a kind”, “is a particular technique”, or “synonyms”—as they appear in the literature (the figure also
includes, in brackets, references from which these relationships are inferred). One of these relevant
terms is data sanitization, defined as “the process of deliberately, permanently and irreversibly
removing or destroying the data stored on a memory device to make it unrecoverable.”[61]The term
data sanitization is also used in a very relevant reference, that of the definition of DoD 5220.22-M [25],
although with a slightly different meaning, that includes an idea of ‘data protection’: “Sanitization is
the process of removing the data from media before reusing the media in an environment that does
not provide an acceptable level of protection for the data that was in the media before sanitizing”
(note the use of the word removing in this definition: in [163], and referring to [25], data clearing is
defined almost identically to data sanitization, only replacing the word removing by eradicating).
Another standard that refers to (media) sanitization is the publication SP800-88 Rev.1 [70], in which
it is defined as “a process that renders access to target data on the media infeasible for a given level
of effort”, and mention should be made of the IEEE 2883-2022 standard for Sanitizing Storage [22].
In addition, there are several references ( [14, 86, 104, 110, 138, 147, 163]) that provide definitions
of data sanitization, either by referring to the above sources and/or using other expressions such as
data destruction, reliable remove, wiping or erasing.

The other terms usually tied to unrecoverability are secure data deletion and assured data deletion.
In these cases, the need to add an additional qualifier would seem to be an indication that for these
authors, data deletion -unqualified- is linked to recoverable deletion. For instance, Reardon et al.
[129] state that “secure data deletion is the task of deleting data from a physical medium […] so
that the data is irrecoverable. This irrecoverability distinguishes secure deletion from regular file
deletion, which deletes unneeded data only to reclaim resources.” In this regard, the book “Secure
Data Deletion” by Joel Reardon [128] offers a detailed analysis of the topic, including descriptions of
variousmathematical techniques (such as B-trees and graph theory) that illustrate both the relevance
and the complexity of the problem. In a similar line, Zheng et al. [175] states that “assured data
deletion means that the outsourced data are permanently inaccessible to anybody upon requests
of data deletion”, and Ahmad and Afza [2] claim that “in some condition user wants to delete
permanently his data. That should be unrecoverable in very reliable manner after a particular time.
Assured deletion is very important.”The disparity of terms used is expressed by Leom et al. [75], who
say that “Secure deletion is sometimes referred to as forgotten, erased, deleted, completely removed,
reliably removed, purged, self-destructed, sanitized, revoked, assuredly deleted, and destroyed
in the literature.” Even so, this list is not exhaustive. For instance, Gnatyuk et al. [48] uses the
term guaranteed data deletion to refer to the same concept, further illustrating the terminological
diversity surrounding this notion.

The term data erasure is also often related to unrecoverable deletion. It is defined in [145] as “the
process of overwriting data so that it can no longer be recovered.” In turn, in [110] it is said that “data
erasure is sometimes referred to as data clearing or data wiping”, and specifies it as a particular case
of data sanitization. This classification is shared by [17], and also by [61]. Another different term
is block erase, that is used as a synonym of data erasure in [61], as a particular case of data erasure
in [17], and as a specific technique of purge by Kissel et al. [70] (see next subsection for details).

3.2 Specific Cases of Unrecoverable
Several sources present classifications when referring to non-recoverable deletion. These sources
have in common that they specify three different types and usually include a notion of physical
destruction. However, the classifications are different in some aspects, both in the terms used and in
the definitions presented.
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As a first example, Kissel et al. [70] divide data sanitization into three categories: clear (“based
on overwriting […] using standard Read/Writing commands”), purge (“employs techniques such
as Overwriting, Block Erase and Cryptographic Erase that use specific commands”) and destroy
(with “several techniques, such as shredding, disintegration, melting, incineration, and so on.,
to destroy the storage media physically”). However, in [110] it is said that “data sanitization is
achieved through three major methods: physical destruction, degaussing, and data erasure”, while
in [61] it is stated that “there are three methods to achieve data sanitization: physical destruction,
cryptographic erasure, and data erasure”.

Ahmad and Afza [2] put forward three proposals for assured data deletion: secure overwriting,
disk scrubbing and cryptography. This last division is similar to the one proposed by Diesburg and
Wang [27] for their term Confidential data deletion, with the variation that they use the terms data
overwriting, physical destruction and encryption with key erasure, respectively. Finally, [17] classifies
three types of data erasure: overwriting, block erase and cryptographic erase.

Apart from these classifications, we also focus on a few other terms related to unrecoverability.
One of these terms (and one that has appeared previously) is data wiping. In [110] it is stated that it
is “one of erasure methods. It is often used to erase data on a large scale.” In [17] it is described as
an example of partial data sanitization (although the author does not define this term). Ölvecký and
Gabriska [104] point out that there are several data wiping techniques, such as the aforementioned
DoD 5220.22 M, or NCSC-TG-025, among others. Oh et al. [102] indicate, focusing on the type of
deleted information, that “the purpose of data wiping is secure deletion of undesired and classified
files.”

Another term is File shredding which is cited in [14], referring to [70], as a specific technique for
physically destroying the storage media. In turn, in [17] it is included (without giving an explicit
definition) as an example of partial data sanitization. In [110] File shredding is identified as a way
of data erase, at the same level of data wiping. Another technique already mentioned is degaussing,
which consists of exposing the media to a magnetic field, and is therefore included in [110] as one
of the three methods of data sanitization, and in [61] as a particular case of Physical destruction. The
terms formatting, reformatting or factory reset (this last one usually linked to mobile devices) are
related to different ways of physical deletion. For instance, they are considered in [17] as examples
of partial data sanitization.

To complete the overview of the different cases linked to unrecoverability, we give some details
about cryptographic erasure. According to [61] it is a term “used interchangeably” with crypto
erase (thus it is used in [110]), and it is a method of data sanitization consisting of “the process
of using encryption software […] on the entire data storage device, and erasing the key used to
decrypt the data.” In turn, in [17] it is stated that cryptographic erase is a kind of data erasure,
while Diesburg and Wang [27] call it Encryption with Key Erasure in their classification of ways
of Confidential data deletion. Finally, Politou et al. [119] mention cryptographic erasure in the
context of the ‘right to be forgotten’, although they specify that “this method actually deactivates
the personal data in question, rather than deleting it” (which would seem to go against the idea
put forward by other authors that cryptographic erasure does not allow data recovery). Due to
its inherently complex and mathematically rigorous nature, a detailed analysis of cryptographic
erasure falls outside the scope of this work, which cannot accommodate the depth of detail such a
topic requires. Nonetheless, it is worth briefly mentioning different solutions proposed in this field,
such as ErasuCrypto [76] (which integrates ‘erasure’ and ‘cryptographic’ methods, applying them
to solid state drives, SSDs), SADUS [169] (which tests its effectiveness through coercion attacks on
Android devices), STM Shredder [48] (which includes a pseudo-random sequence generator), and
KDE [164] (which is a new encryption algorithm used to build a secure deletion scheme referred to
as SDDK).
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3.3 Other Terms
There are a number of other terms that, without referring exactly to the concept of deletion, have
some relation to it. The first of these terms is data hygiene, described in [61] as “the process
of ensuring all incorrect, duplicate or unused data is properly classified and migrated into the
appropriate life cycle stage for storage, archival or destruction”. Data hygiene is also referred to as
data cleaning [59], data cleansing [57] or even data scrubbing [20], and it is recognized as a key
element of the machine learning success.

A very specific term is that of vacuuming. In the context of temporal databases, it is referred
to as “physical removal of data” by Skyt et al. [140]. As a curiosity, that work points out that “For
emphasis, we will use “delete” for logical deletion and “remove” for physical removal throughout
the article”.

Another important term is deduplication, that refers to “the automatic elimination of duplicate
data in a storage system.” [113] Deletion of duplicate data, in addition to the obvious advantages in
terms of recovering available space, includes a number of challenges of its own, depending on the
different storage media used.

Finally, a very relevant term regarding the management of personal data is anonymization [95].
One of the more used techniques for data anonymization is data masking, that following Winkler
[163] “is intended to remove all identifiable and distinguishing characteristics from data in order to
render it anonymous and yet still be operable.” This author also claims that other synonyms for
data masking are data obfuscation, de-identification and depersonalization. However, Kalaiselvi and
Yoga [64] state that “Data obfuscation (DO) is a form of data masking […] DO is also known as
data scrambling and privacy preservation”. In any case, what is clear is that everything related to
personal data protection and control [139] has important repercussions at the social level (ethical,
medical, environmental, etc.), which makes that scientific publications in fields such as law also
have to take into account seemingly technical terms as data anonymization or data masking [157].

4 Data Deletion Fields
Having introduced terms and definitions related to deletion, we will now analyze the various
issues and implications that arise in the different fields involved. When perspectives on different
areas are included, even contradictory aspects appear, such as the need to keep the data for the
reproducibility of the experiments and the ‘right to be forgotten’. As a consequence, there is no
single, definitive solution, but rather a compromise between different alternatives must be sought.
As graphical support for this section, Figure 3 provides an overview of the different fields involved
in data deletion, alongside the relevant technologies, which will be addressed in detail in Section 5.

4.1 Legal
Legal regulations of different countries establish, under certain circumstances, the right of individ-
uals to request personal data deletion for preserving their privacy. One of the most classic rights
is linked to an individual’s judicial or criminal past, and establishes the right to oblivion of the
judicial past. “It is justified by faith in a human being’s capacity to change and improve as well
as on the conviction that a person should not be reduced to their past.” [24] As explained in [24],
when this right conflicts with the right to information (also related to freedom of the press), time
is often used as a key criterion to resolve the tension. In these cases, the right to information
usually prevails when judicial decisions are considered newsworthy. However, as time passes and
journalistic interest fades, the right to oblivion tends to prevail. In these cases, usually, the judicial
case can be mentioned, but without naming individuals. In any case, regardless of the time that has
elapsed, historical relevance and public interest can be considered so that the right to information
overwrites that of oblivion of the judicial past.
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Fig. 3. Some fields and technologies concerned by data deletion.

Other regulations, such as the right to be forgotten (in EU’s GDPR [33]), right to delete (in
California’s CCPA [60] and CPRA [149]), or deletion right (in Virginia’s VCDPA [156]), are not
restricted to judicial information but cover any personal data. These laws regulate persistent
deletion of user data on-demand and in a timely manner [6]. Two key aspects of these laws, that
pose significant technological challenges are their retroactive nature and the requirement that
personal data be erased “from every data controller” who is processing the data and not only from
the one who processed the data in the first place [117]. As a consequence, companies are forced
to provide processes and mechanisms to be able to fulfill users’ data deletion requests promptly
and effectively [123]. The goal is to provide individuals with control over their personal data
counteracting the public and easy availability of data through the Internet. It must be noted that
the right to be forgotten (as well as the right to oblivion of the judicial past) conflicts with other
laws, so it is necessary to carry out a case-by-case analysis. On the one hand, a balance must be
struck between privacy and freedom of expression [73, 158]. On the other hand, reliability, integrity,
and transparency principles must be followed by institutions (for instance, financial) so that data
records may have to be kept in non-volatile storage [117].

Another type of oblivion right, related to Internet search engines, is the right to delisting (also
called right to delinking or the right to de-indexing) [158] according to which “people, under certain
conditions, have the right to have search results for their name delisted” [73], removing the links
and not the information itself [117]. As noted by [117], the information is still retained, but access
to it is more difficult since users have to know where to look for it. As a consequence, since the
disputed information is not censored, “the decision was ultimately not about the fundamental
balance between privacy rights and expression rights when dealing with personal information over
the web.” For example, since 2014, Google has received more than 7 million URLs delist requests
under European privacy law and has delisted around 52%.3

It is also worth mentioning the identification-related regulation, such as the European Digital
Identity Framework [35], also known as eIDAS2 (for being amodification of Electronic Identification,
Authentication and Trust Services Regulation -eIDAS). This framework aims to “provide people
with control over their online identity and data”, in line with the Digital Decade Policy Programme
2030 [34], that sets the objective of developing “a trusted, voluntary, user-controlled digital identity
that is recognised throughout the Union and allows every user to control their data in online
interactions”. Related to data deletion, eIDAS2 sets out that users should be empowered to “request
the erasure of their personal data in a user-friendly and convenient way, under the sole control of
the user, while enabling selective disclosure of personal data.” In particular, European Digital Identity

3https://transparencyreport.google.com/eu-privacy/, for (Last visited on December, 2025).
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Wallets (electronic identification means for secure management of person identification data) shall
enable the user to easily request the erasure of personal data pursuant to the right to be forgotten
of GDPR. Furthermore, selective disclosure empowers the user to disclose only such personal data
as is necessary for the provision of the requested service, reinforcing data minimization principle.
As a consequence, to the extend that the amount of data is reduced, deletion becomes easier.

Legislators deliberately specify the deletion requirements in a technology-agnostic approach,
allowing their adjustment to future technical innovations [117]. As a consequence, the implementa-
tion of these laws, in the digital environment, is not a straightforward task, becoming burdensome
or even impossible in some scenarios [117]. For example, “the need for data to be deleted from all
possible sources in which they reside […]. It is evident that the enforcement of this right would
pose major technical issues due to the practicalities involved in knowing all the controllers who
are processing the personal data in question.” [117] Other implementation challenge described
by Mangini et al. [83] is the removing of personal data from archives or backups since it is an
arduous and difficult task. Cryptographic erasure is considered a suitable solution, but the problem
is that “we are not deleting data but rendering them unusable” and “an attack on the key storage
server will allow a malicious user to retrieve the keys and decrypt the data.” [83]

Furthermore, organizations can be fined for non–compliance with the data deletion regulations.
For this reason, deletion–compliant data systems, using different technological resources, have
been proposed. For example, an extended query language for timely persistent data deletion is
presented by Athanassoulis et al. [6], and a blockchain-based scheme for verifiable data deletion is
provided by Yang et al. [168]. In addition, one strategy that makes it easier for organizations to
comply with data deletion regulations is to minimize the amount of data collected. For example,
selective disclosure property of Verifiable Credentials (VCs) [122] enables users to reveal only partial
information extracted or derived from their credentials [63], thereby reducing the amount of data
shared.

Finally, as another legal issue related to the right to be forgotten, we must mention the field of
digital data forensics, which is often used as a result of a judicial or police intervention, and which
on many occasions pursues the recovery of deleted data. It is a field with a long history in the
relationship between law and computing, for which numerous challenges have been presented [66,
155], for instance in areas such as cloud [85], mobile [8] or IoT [68]. Regarding both smartphone and
IoT technologies, it is worth mentioning the framework DelSec, which is presented precisely as an
‘anti-forensics data deletion’ solution. The number and types of challenges related to data forensics
continue to grow as new technologies emerge: for example, Onik et al. [105] present a systematic
review of digital forensics in instant messaging applications (WhatsApp, Telegram, Signal, among
others), and Feng, with several authors in two separate works [37, 38], presents different artificial
intelligence techniques for detecting the deletion of video frames in forensic contexts.

4.2 Ethical
Very relevant ethical debates have been raised about the management of digital data, giving rise to
critical positions that, for example, claim that “machine learning models can reproduce or amplify
unwanted societal biases reflected in training datasets.” [45] The issue regarding deletion is that
even after this biased data has been deleted, it remains “as residues in algorithmic models, or as
data set derivatives.” [150]

Data deletion is also addressed from an ethical point of view in relation to death. Artefacts that
remain in social network services (SNS) after the death of users are considered as a significant
material instantiation of persons in [146]. In this sense, deletion of a person’s social media presence
is seen as a second death and it is claimed a corresponding reason not to delete the SNS profiles
of the deceased. Related to this, there is a burgeoning digital afterlife industry that raises difficult
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ethical concerns. As regards deletion, two questions are proposed by Öhman and Floridi [103]: (1)
“If not deleting [the digital remains], what would make the cost of storing billions of dead profiles
financially viable?” and (2) “if the choice will be to delete profiles, what would the selection process
look like?”

A large-scale, multi-platform analysis of end-of-life support is performed in [31], concluding that
“most platforms offer minimal functional support and that many end-of-life needs are impossible
to meet or rely on unsanctioned workarounds.” The platform policies for post-mortem data man-
agement analyzed in this study are varied, for example, Twitter (now X) allows bereaved to request
the removal of the decedent’s X account, however, on the opposite side, LINE (Japanese freeware
social network) has no method to delete the account of a deceased, even if login information is
known. As other examples, Facebook’s Legacy Contact allows account holders to choose someone
to manage their profile after they have died [42], and Google’s Inactive Account Manager deletes
inactive accounts after a set time [46].

These ethical aspects about digital remains of dead people has as a counterpart the right to
be forgotten by protecting data privacy, mentioned in the legal field. Therefore, arguments from
different fields of reference must be taken into account, showing that “deleting [information]
generally requires careful consideration and a compelling reason, and the permissibility of some
kinds of deletion are often complex or unclear.” [55]

4.3 Ecological
Computing has to address the planet-scale limits and cannot assume that ever-increasing production
and consumption will continue [98]. Stored data has been growing every year, and thus they
consume increasing natural resources. Specifically, it has been estimated that worldwide enterprise
data storage will continue to grow at a 27% compound annual growth rate [3], which will result
in a great need for resources and energy. We will soon be facing limits to storage [55], so that
we shift from the problem of what to save to the problem of what to erase, needing a better
understanding of which data are worth preserving [40]. Thereby, although deletion has a broadly
negative perception in comparison to preservation, there is a growing necessity of data deletion for
the sake of environmental sustainability [55].

Environmental and sustainable issues about the previously mentioned digital remains of deceased
users have also to be stated. According to Welsh [161], life is inherently ephemeral, and, with the
goal of providing a sustainable model, digital traces might find a way to replicate that, allowing
for and even encouraging decomposition and disappearance. In this way, this new perspective, in
addition to those mentioned above, must be taken into account when making decisions about the
maintenance or deletion of stored data.

Another aspect related to this field is the electronic waste (e-waste) generated by the physical
destruction mentioned in Section 3. E-waste is growing every year, with a dangerous environmental
impact if it is not treated safely. For example, incineration (mentioned previously as a type of
physical destruction) “releases harmful chemicals in the atmosphere due to burning, and the
residues left can be hazardous. It also contributes to global warming.” [65]

Due to the negative environmental impact of data storage —such as carbon footprint and e-waste
generation— the IT industry has implemented several strategies to mitigate these effects. For
example, Amazon Web Services is committed to reducing carbon emissions “using clean, renewable
energy sources to power its data centers.” [127] Similarly, Google “prioritizes the reduction of e-
waste through initiatives like product refurbishment and recycling programs, emphasizing a circular
economy approach.” [127] Despite these initiatives, data centers still consume significant energy to
store large volumes of unstructured and inert content (commonly referred to as “dark data”), which
will most likely never be used. In such cases, the most sustainable option would be to delete it [3].
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4.4 Scientific
Accountability and transparency must be achieved in all scientific research results. One way is to
be able to support method reproducibility providing enough detail about study procedures and
data so that the same analysis and results could be repeated. That is, a researcher could duplicate
the results using the same materials [49]. The problem is that, at the same time, the privacy of
individuals must be preserved and their consent must be respected [32]. Therefore, “the difficulty is
in finding a compromise between the conflicting needs of anonymity and of preserving data for
audit or further analysis.” [89]

For example, clinical trial datasets contain very detailed information on each participant. Risk to
patient privacy can be mitigated by data reduction techniques. One recommendation is generating
de-identified datasets removing or recording potential indirect identifiers [152]. However, de-
identification has two problems. On the one hand, “an excessive application of such techniques may
pose a public health risk if misleading results are produced.” [152] On the other hand, there is a
wide spectrum of human characteristics that enable re-identification, and powerful re-identification
algorithms have been proposed [97].

In addition, although consent for scientific research studies has been given by users, they can
later revoke their consent. In this situation, consent for past studies is still valid, so that, in order
to reach a certain degree of method reproducibility, “minimum necessary meta-information must
be kept in the provenance module for past studies that were conducted and based on now deleted
information.” [32]

As an alternative, “using synthetic data can help to avoid ethical and legal issues, in particular
breaching the privacy of real users and the need for institutions to adhere to strict data protection
regulations.” [11]

4.5 Educational
Educational institutions store and manage personal data of their students. Taking into account
that at some point the students will leave the institution, “there should be transparent policies
about how long data can be held for and what the process is for handling requests for deletion of
data.” [141] However, as in other fields, there are different aspects that need to be analyzed. “The
guarantee that personally identifiable data are deleted when a student leaves an institution may also
have a positive impact on student trust, but at the same time, keeping student data will be helpful
for the university to refine its analytics models, track the development of student performance over
multiple years and cohorts or simply for internal or external quality assurance processes.” [109]

For example, the data protection policy at Uppsala University4 stated that students “have the
right to have [their] personal data erased from Uppsala University’s systems as long as they are
not an official document”. Specifically, “the right to erasure is severely limited by the regulations
on official documents and by the requirements of research or study documentation.”

5 Related Technologies
After examining the various fields in which data deletion plays a critical role, we now turn to
the technological dimension (see Figure 3). This section analyzes how specific computer science
technologies relate to the concept of deletion. In some cases, the relationship is of an intrinsic
nature, in the sense that the technology itself has certain characteristics that link it directly to
deletion (or to the unfeasibility of deletion): temporal databases, data provenance, or blockchain are
examples of such technologies. In other cases, the relationship of technologies with deletion has

4https://www.uu.se/en/about-uu/data-protection-policy. (Last visited on December, 2025).
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Create Store Process Use Delete

Fig. 4. Basic data lifecycle management.

more to do with the repercussions surrounding their use, with artificial intelligence and machine
learning being the most prominent cases.

Given that data deletion encompasses various requirements and context-dependent approaches,
the metrics used to evaluate the effectiveness of data deletion often vary according to the underlying
technologies. Some approaches to this issue are framed within the aforementioned domain of data
forensics [53], using as a metric the number of data points recovered by specific recovery algorithms.
At the same time, a significant body of literature focuses on providing verifiability guarantees,
as defined in each study, often designed based on cryptographic knowledge. For instance, Xu
et al. [166] propose a verifiable scheme for secure data deletion in cloud storage, which incorporates
an efficient verification algorithm as a core component of the model.

Before analyzing particular technologies, it is worth referring the concept of data lifecycle and its
management, since it is a feature that is to some extent transversal to any specific technology or term
(for example, data lifecycle management is described in the context of data sanitization, and also
when defining data hygiene, in [61]). There are countless versions of the data lifecycle concept, with
variations in both the name and the number of phases included in it. Similarly, there are numerous
articles in the literature that have highlighted the importance of data lifecycle management analysis.
Among many others, we can cite Ofner et al. [101], who work on the specific concept of master
data lifecycle, Polyzotis et al. [120] with a survey on the challenges of lifecycle management in
machine learning, or Rahul and Banyal [121], dealing with the lifecycle management in big data
analytics. In Figure 4, we have reproduced a basic version of the lifecycle, including five phases,
with Deletion being the last one. However, to consider deletion as “the last game” is described as
one of the most frequent data lifecycle management mistakes, since “Already-disposed data might
contain information that may be significant later”,5 which in a way brings us back to the previous
discussion on recoverability or irrecoverability of deleted data.

5.1 Temporal Databases
One of the first technologies in which the concept of deletion took on a new meaning was in
temporal databases [142]. Through the notions of valid time and transaction time, certain data that
in a non-temporal database would simply be deleted (because it is considered that they should
no longer be stored), are still retained in a temporal database (accompanied by the corresponding
validity time stamps).

As is evident, this type of database could be ever-growing, and in addition to the (environmental)
problem already mentioned in the previous section concerning the limits of storage, it was already
recognized thirty years ago that indefinite retention of data could lead to both legal andmanagement
issues, which led to the use of the notion of vacuuming in temporal databases [140].

Muchmore recently, it has again become clear that the relationship of time to the storage (and thus
deletion) of data is relevant. Thus, in [137], “Storing Data Forever” is enunciated as one of the “seven
GDPR sins.” Specifically, that reference notes that “all personal data must have a time-to-live (TTL)”
and that “while conceptually clear, timely and guaranteed removal of data is challenging in practice.”

5https://spanning.com/blog/4-data-lifecycle-management-mistakes-businesses-should-avoid/. (Last visited on December,
2025).
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5.2 Data Versioning
Data evolve over time, and several reasons, such as to support the reproducibility of scientific
experiments, make it necessary to track the different versions of data over time [13]. Whereas
temporal databases restrict validity of each tuple to a time range, data versioning has a higher
granularity, tracking the history of whole tables [67] and giving support for a branched network of
versions [58, 134]. As a consequence, when data is deleted in a version, that information does not
really disappear since it remains in previous versions.

Furthermore, since many versions can be similar to each other, with the goal of eliminating
redundant storage, several versions are stored jointly enriching the data with versioning information.
For example, Bhardwaj et al. [13] propose to extend each record with a deleted bit to track whether
the record is active in a particular version. Similarly, the proposal of Schüle et al. [134] is that
each branch maintains a bitmap for every table, denoting each tuple’s visibility. Besides, a garbage
collection to remove versions that are no longer contained in a branch is proposed in [134].

5.3 Data Provenance
Following the W3C perspective, data provenance is “information about entities, activities, and
people involved in producing a piece of data or thing, which can be used to form assessments
about its quality, reliability or trustworthiness.” [92] The implications of deletion in relation to data
provenance are clear, in at least two ways.

On the one hand, provenance information is metadata, and therefore data, which raises the issue
that it is susceptible to deletion. Therefore, the need arises to establish policies that define under
what circumstances the deletion of the provenance information must be carried out [15]. On the
other hand, since the purpose of provenance is to trace the “existence of a piece of data”, should
provenance information be preserved even if such data is deleted? In [93] we can find a possible
answer to this question, since its author states that “in some cases, provenance must persist even
after the data it describes has been removed.”

In the current contexts of personal data protection, one evidence of the relevance of provenance
information management is the intense research that is recently being carried out on this topic [107,
108, 130, 153].

5.4 Blockchain
One of the key features (probably the most distinctive of all) that guarantees the integrity of
blockchain technology is its immutability. Transaction data stored in a blockchain are not modifiable
and cannot be deleted. However, this technology is still under development, so it is natural for
alternative proposals to appear.

Thus, a very recent comprehensive review of the different challenges and solutions that exist
in the literature around the concept of blockchain mutability is presented in [118]. The first con-
crete proposal around the idea of a blockchain that can be modified is the notion of redactable
blockchain [5]. According to its authors, there are several main reasons for the need for this concept:
first, there are blockchains such as Bitcoin that “contain child pornography, improper content, and
material that infringes on intellectual rights” (while it may seem shocking to consider that Bitcoin
could host content that is far away from its primary purpose as a decentralized payment system,
this fact has been reliably proven through both quantitative and qualitative analysis [52, 87]);
second, there may be performance or scale problems when using smart contracts and overlay
applications; and third, there is a conflict between the use of blockchain to store personal data and
the “right to be forgotten”. Naturally, this last reason has been explored by other authors, such as
Koscina et al. [10] in the context of the use of blockchain in the healthcare industry, or Zyskind
et al. [178], who precisely propose the use of blockchain as a method of protecting personal data
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(in fact, Politou et al. [117] point out that the solution proposed in [178] is a “very good candidate
for implementing the “right to be forgotten” requirement specified in the GDPR”).

There are other relationships between blockchain and the concept of deletion. For example, a
deletion scheme for the cloud that considers the repercussions of such deletion on blockchain
systems is presented by Khanboubi et al. [69]. In an almost opposite sense, Yang et al. [168] propose
a method that uses blockchain to certify that deletion in the cloud has indeed been performed.
More in general, Zou et al. [177] analyze the relationships between blockchain and cloud, as well as
their associated challenges around data integrity and privacy protection (which as we have already
discussed are intimately connected to deletion).

5.5 Cloud and Backups
The references to “the cloud” at the end of the previous section make it appropriate to expressly
mention the impact of deletion with respect to this “technology”. Ahmad and Afza [2] state that once
a cloud user decides to delete his/her data, it must be ensured that the data is actually deleted from
all cloud storage sources, and that no copies remain in any part of the cloud storage infrastructure.
The authors also suggest making a review of the mechanism of assured data deletion in this context.
The importance of the cloud deletion process is recognized by companies such as Google itself. Note
how several of the terms we have described in Section 3 are used in the official documentation on
Data deletion on Google Cloud [50] and Google’s statement on deletion and retention [51]: “When you
delete your Customer Data, Google’s deletion pipeline begins by confirming the deletion request
and eliminating the data iteratively from application and storage layers, from both active and
backup storage systems. […] Logical deletion occurs in phases, beginning with marking the data
for deletion in active storage systems […] Successive compaction and mark-and-sweep deletion
cycles […] serve to overwrite the deleted data over time. […] Cryptographic erasure is also used to
render the deleted data unrecoverable.” We must also refer to the duration of the deletion process
(in the particular case of the Google cloud): “Deletion from active systems typically completes
within about two months of the deletion request. Finally, Customer Data is removed from Google’s
long-term backup systems, which preserve snapshots of Google systems for up to six months.”

As can be deduced from the statements presented, the idea of cloud is strongly linked to the idea
of backup (since in order to ensure data availability and quality of service in the cloud it is necessary
to have different replicas of such data). When it comes to deletion, the existence of backups is an
added difficulty, since for the deletion of some data to be definitive, it must be guaranteed that all
existing copies of the data are deleted [83]. Note also that contrary to the possible preconceived
notion that a backup is performed on large volumes of data, the fact that very specific data needs
to be erased on backups makes it necessary to implement fine-grained operational techniques. This
is reflected in the existence of studies comparing the behavior of different databases when deleting
information from backup copies [74]. As expected, some authors have also observed that there is
an uneasy relationship between backups and the “right to be forgotten” [119].

5.6 Artificial Intelligence and Machine Learning
There is also a substantial body of work addressing the relationship between Artificial Intelligence
(AI) and the “right to be forgotten”, and consequently, the association between AI and data deletion,
particularly concerning the application of Machine Learning (ML) techniques. In this context, as
proposed by Ginart et al. [47], data deletion applied to ML is defined as the “goal that after a
specified datapoint, 𝑥, is deleted, the resulting model is updated to be indistinguishable from a
model that was trained from scratch on the dataset sans 𝑥.” Achieving this objective is often quite
challenging. For example, Fosch-Villaronga et. al [41] state, referring to data deletion, that “this
seemingly simple issue poses many practical problems in actual machine learning environments. In
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fact, “data deletion” requirements can be considered to actually border on the edge of impossibility.”
In their analysis, Dam et al. [23] underscore how challenging it is to achieve this goal, stating that
“the impact on ML classification performance highly depends on the number of deleted records,
the specific characteristics of the dataset and which attribute values are most important for the
classification.” Most of the works focus on finding technical and specific solutions to the problem
that “for many standard ML [machine learning] models, the only way to completely remove an
individual’s data is to retrain the entire model from scratch with the remaining data, which is often
computationally impractical” [47]. For instance, Malle et al. [82] address the problem by applying
machine learning on perturbed knowledge bases, Schelter [133] performs a decremental update
on already existing ML models to forget a user’s data, and Izzo et al. [62] propose an approximate
deletion method for linear and logistic models whose computational cost is also linear.

Everything surrounding data deletion in relation to ML has proven to be of enormous relevance,
since the termmachine unlearning (MU ) has recently been coined to refer to mechanisms that allow
the removal of data from a model without having to retrain it in its entirety. In fact, several com-
prehensive studies on this new sub-discipline are already publicly available [99, 136, 165, 172]. One
example is the work by Rawat et al. [126], who delve into the application of Bayesian unlearning
using estimation techniques.They tackle the task of determining new parameter values in neural net-
works following data deletion. Similarly, Cao et al. [16] introduce a method based on the projection
residual method using Newton iteration. This approach is effectively employed in linear regression
models and neural networks, providing an additional perspective on the implementation of MU.

While attention is typically focused on variations in model accuracy and recall following unlearn-
ing, the assessment of data deletion effectiveness —usually focused on contrasting the results with
the retrained model— remains an underexplored issue [160]. The manner in which the trade-off
between these two aspects is addressed is highly context-dependent, and various approaches have
been proposed. For example, Wang et al. [160] propose a model difference simulation scheme based
on influence function theory to generate the unlearning model difference. Vidal et al. [154] explore
the use of Explainable AI (XAI) techniques to verify data removal, introducing novel metrics such
as Heatmap Coverage and Attention Shift. Building on this, Membership Inference Attacks (MIAs)
—which aim at determining whether a specific data point was used during the training of a target
machine learning model [56]— have become a standard tool for evaluating MU techniques, often
conceptualized as backdoors. A common approach involves introducing perturbations to input data
in both the original and unlearned models and analyzing output discrepancies to detect deleted
instances. This technique has shown that even MU models that output only labels (excluding
prediction probabilities) remain vulnerable to MIAs [18, 79, 80]. Several studies investigate these
emerging vulnerabilities and propose new defenses against such attacks, even for models explicitly
designed to support data deletion [18, 30]. Some unlearning strategies explicitly seek to overcome
these techniques. For instance, Di et al. [26] propose a game-theoretic framework that incorporates
MIAs into the design of unlearning algorithms. Similarly, Hatua et al. [54] leverage the relationship
between MU and MIAs to develop a novel approach based on Generative Adversarial Network (GAN)
models.

Building on MU, a specialized subfield that has recently gained attention is federated unlearning
(FU), which addresses the unique challenges of data deletion in federated learning (FL) environments.
In such settings, the right to be forgotten introduces additional technical obstacles due to the
decentralized and heterogeneous nature of these systems [77, 131].

In recent years, the popularity of generative AI, especially in the context of text and image
generation models, has been steadily increasing. The widespread adoption of such technologies has
prompted the consideration of social and ethical risks that extend beyond existing concerns like
biases and liability identification. For instance, Knott et al. [71] argue for the necessity of methods
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“that allow users to query, for an arbitrary item of content, whether the item was generated (wholly
or partly) by the model” as a means to address risks related to fraud and deception. The surge
in the volume of data used to train these models (for instance, DALL-E was trained with over
400 million images) has made it increasingly challenging to trace their origins, underscoring the
importance of considering data deletion in these models. In this context, Kong and Alfred [72]
propose a density-ratio-based framework for efficient deletion applied to GANs.

In the context of generative AI, data inference attacks —related to the previously mentioned
MIAs— have emerged as a significant concern for data deletion. In essence, research has demon-
strated, through the design of various attack strategies [174, 176], that certain models retain
sufficient information from the training dataset to allow the recovery of that information at a later
stage. If such techniques were to become widespread, it could even be possible to recover data that
was meant to be deleted. This represents a significant privacy risk and highlights a key motivation
for addressing data deletion more rigorously. Several authors have tackled this issue from different
angles. For instance, Galende et al. [43] highlight the lack of theoretical foundations in this area and
propose an evaluation metric to assess the problem. In contrast, Zhang et al. [173] have successfully
implemented data forgetting in deep models for image retrieval.

Finally, it is important to emphasize that we must consider the impact of data deletion on models’
metrics. Weng [162] highlights the “hiding data problem” as one of the two main misconducts
related to Deep Learning. This issue, which involves obtaining altered results due to the selective
removal of training data, can occur even unintentionally. This becomes particularly relevant when
the deletion is related to one of the model objectives.

5.7 Datasets in Artificial Intelligence
As is well known (and as we have just reviewed in the previous discussions), a key element for
the development of any AI and ML activity is a correct use of datasets. However, as acknowledged
by Gebru et al. [45] “documenting the creation and use of datasets has received even less attention”
(referring to the fact that the notion of data provenance, already discussed in this article, has
very recently started to be considered in the field of ML [78]). For instance, Tchanjou et al. [100]
emphasize the absence of integration of version control platforms to support ML projects. In this
context, they propose a framework aimed at enhancing data traceability and versioning (in line with
what we have stated in previous sections), thereby providing certain assurances in data deletion.
However, this approach may be insufficient, as it does not consider the use of unlearning techniques.

To the best of our knowledge, one of the few articles that specifically addresses the problem of
dataset management in ML and its relation with deletion is that of Paullada et al. [112]. In this
work we can find several statements that are worrying to say the least: “Even when these datasets
are flagged for removal by the creators, researchers will still attempt to make use of that now
illicit information through derivative versions and backchannels […] Another concerning example
of data reuse occurs when derivative versions of an original dataset are distributed—beyond the
control of its curators—without any actionable recourse for removal.” Note that this quote includes
the notion of derivative dataset (also pointed out by Thylstrup [150] from an ethical point of view),
which is obviously related to the concept of deletion (since a version of a dataset will be generated
by any of the usual operations of addition, modification or deletion of data). Of course, this notion,
and in general everything that has to do with dataset management, is not exclusive to ML, but can
affect many other branches of computer science [13, 114].

5.8 Other Technologies
There are other technologies that maintain some specific relationships with the notion of deletion
that are worth mentioning. First, we can highlight data mining and process mining. They are
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technologies with a shared goal, the discovery of a priori hidden information patterns, which may
have to do with deletion in at least two directions. On the one hand, it may make sense to analyze
the results of mining procedures when data sources are known to have been removed (How are
mining procedures affected by deletion? Are they still able to detect these hidden patterns?). On the
other hand, these mining procedures can also be used when privacy issues need to be addressed.
Let us discuss several examples.

Arefi’s doctoral thesis [4] uses data mining on Chinese social networks to discover factors evi-
dencing the deletion of posts on these networks (which has not only an ethical reading, described
in Section 4, but also a political one in this case). From a much more technical perspective regarding
data mining, Wang et al. [159] study the management and maintenance of sequential patterns (dis-
covered by mining) when records have been deleted. Regarding process mining, privacy challenges
have been studied in various contexts. For example, in human-centered industrial environments,
Mannhardt et al. [84] analyze how process mining approaches are affected by regulations such
as GDPR, and propose privacy guidelines in that particular setting. In general, the term privacy
preserving is frequently used in these fields. Since data and process mining can be used to uncover
hidden information (for instance, anonymized information), it is essential to ensure that these
technologies are respectful of privacy. Some studies in this regard are that of Toshniwal [151] and
Bhandari and Pahwa [12], both with reviews of different privacy-preserving techniques in data
mining; Batista et al. [9] who make a specific approach to privacy-preserving process mining; and
Pika et al. [116] that describe a privacy-preserving process mining framework in the sensitive
context of healthcare.

Within the framework of digital identity verification, the Verifiable Credentials (VCs) [122, 144]
represent a key technology—particularly due to their support for selective disclosure. Selective
disclosure of VCs “allows a holder to provide a verifier with precisely the information they need and
nothing more” [144], in line with the principles of proportionality and necessity. In particular, three
main approaches for achieving selective disclosure are identified in [122]: hash-based methods (such
as, hash lists andMerkle trees [39]), signature-based methods (such as, CL and BBS+ signatures [39]),
and Zero-Knowledge Proof (ZKP) methods. Verifiable credentials can use Decentralized Identifiers
(DIDs) [135] for expressing identifiers associated with entities and ZKP protocols to ensure tamper-
evident presentation of information [144]. By employing ZKP protocols, personal attributes are
proven without being revealed, so that confidentiality is preserved and personal data privacy is not
compromised [122]. For example, zkFaith protocol [96] safeguards individual identity attributes
while ensuring secure authentication. A recent survey [88] provides a detailed technical account of
the operational mechanisms of DIDs and VCs, including how selective disclosure is implemented
in practice. Specifically, real frameworks such as DIDKit or IOTA Identity implement it using
Selective Disclosure JSON Web Token (SD-JWT) and Zero-Knowledge Selective Disclosure (ZKSD).
As previously mentioned, to the extent that data is minimized, it is easier for organizations to
comply with data deletion regulations.

The last technological area that we will highlight is that of software dependency management [111].
It might seem that it is not related to the concept of data deletion, but the idea that code is data is not
new (metaprogramming, understood as the type of programming that uses other programs as data,
has been studied for more than thirty years [21]), and it is more relevant since the advent of tools
like Github Copilot6 (that has been “trained on billions of lines of code”). From this perspective, code
deletion can be considered analogous to data deletion. The serious repercussions of uncontrolled
code deletion, in terms of dependencies, are well known. The case of the removal of the left-pad
package from the npm repository is one of the most notorious, because of its ‘cascading’ effect on

6https://github.com/features/copilot. (Last visited on December, 2025).
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the unavailability of numerous software components (since many of them were unaware of the
existence of a dependency on left-pad) [19]. In general, deletion of code is one of the factors that
can aggravate the development of what is known as dependency hell [36], and there is a wealth of
literature investigating the problem of code breakage and how to avoid it (see, for instance, [81]).

6 Discussion
The preceding sections highlight the multifaceted complexity of data deletion, which cuts across
regulatory obligations, privacy guarantees, technical infrastructure, and data lifecycle practices. In
this section, we present a structured discussion of the results, summarizing core lessons learned,
offering key takeaways, and identifying future research directions of open challenges. Both the key
takeaways and the corresponding open research challenges are presented in Table 1.

The human side of deletion. A recurring pattern across the literature is the lack of transparency
and verifiability in deletion processes, a problem deeply tied to the human factor: it affects not only
individuals requesting deletion, who need assurance that their data has been permanently removed,
but also those responsible for executing deletions, who often lack clear mechanisms or feedback to
ensure their actions are effective [123, 148]. At this respect, Tebernum and Howar [148] distinguish
three distinct “who” roles in deletion: the person(s) that should delete the data (here referred to
as the user ), the executing instance responsible for carrying out deletion (here referred to as the
system administrator ), and the person responsible for the data itself —if different from the previous
one (here referred to as the data custodian).

These last two roles are typically assumed by entities and organizations (such as service providers,
IT teams, or cloud vendors) that develop technology or provide services to users. As highlighted
by Ramokapane and Rashid [123], these organizations are responsible for complying with data
deletion regulations, particularly the ‘right to be forgotten’ under GDPR [33], which requires
them to implement processes and mechanisms to ensure prompt and effective fulfillment of users’
data deletion requests. To operationalize such mandates, it is essential, as described in [170], to
have a comprehensive framework for auditing and monitoring data deletion and erasure practices.
Regular audits help identify gaps in current processes and highlight areas for improvement. These
evaluations should examine: the efficiency of deletion tools and techniques; adherence to applicable
legal and regulatory requirements; and the overall security of data management systems. By
defining clear metrics and performance indicators, organizations can continuously assess and
enhance their data deletion strategies [170]. Althoughmetrics are employed in various contexts —for
example, in data forensics by measuring the number of data points recovered with specific recovery
algorithms [53], or in AI and machine learning by using Explainable AI metrics, such as Heatmap
Coverage and Attention Shift [154]— evaluating these strategies remains difficult. To our knowledge,
there is no scientific consensus on standardized evaluation methods or benchmarks for comparison.

Users, for their part, are often left in the dark, encountering challenges such as opaque request
handling, insufficient feedback about deletion outcomes, and weak assurance that data has actually
been erased [90, 123, 124] —a perception that is well supported by empirical research. For example,
Ramokapane et al. [124] found that cloud users “consider information on cloud deletion scarce,
not useful, and that it is usually presented to them at the wrong time through a wrong channel”,
and Minaei et al. [90] reported that over 80% of the social media users surveyed have deleted
social media content, yet they reported that popular deletion mechanisms “are not very effective
in protecting the privacy of those deletions”, indicating a strong desire for clearer, more reliable
feedback on deletion outcomes.

As highlighted by Ramokapane and Rashid [123], providing transparent deletion mechanisms
not only supports legal compliance, but also builds trust and confidence among users, partners,
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Table 1. Key Takeaways and Open Challenges

Takeaway Open Challenge

The human side of deletion

• Especially from the users’ perspective, data deletion is
often opaque and unverifiable since they expect visibility
and assurance when data is deleted.

• Entities and organizations need to have a comprehensive
framework for auditing and monitoring data deletion and
erasure practices.

• There is no consensus on standardized metrics to assess
deletion success.

• Exploring the influence or impact of human factors in delet-
ing data.

• Implementing mechanisms that allow users to verify and
understand how their deletion requests are processed.

• Establishing clear contractual agreements with service
providers and a precise definition of responsibilities among
involved individuals for deletion implementation and moni-
toring are essential, yet remain unresolved in many settings.

• Defining standardized deletion effectiveness metrics.

The illusion of deletion

• Data deletion, traditionally framed as a terminal operation
in the data lifecycle, is increasingly revealed to be anything
but final.

• Infrastructure components —e.g., backup systems and
cloud platforms— should be designed with data deletion in
mind, incorporating features that facilitate compliance
with deletion requests (both by individuals or by a le-
gal/regulatory body).

• Developing tools and methods that enable efficient, compre-
hensive, and verifiable data deletion —particularly in cloud
infrastructures.

• Future systems should include deletion as a main design
concern, with support for traceability and verification.

It depends: deletion in context

• There is no universal standard for data deletion; data dele-
tion technologies must be tailored to the specific context.

• Different deletion techniques, such as logical deletion,
cryptographic erasure, and assured deletion, have varying
appropriateness depending on factors like data sensitivity
and legal requirements.

• Balancing diverse factors —such as data sensitivity, compli-
ance requirements, ethical implications, and practical oper-
ational needs— presents a significant challenge in selecting
effective data deletion strategies.

When context meets complexity

• Data deletion must be reframed not just as a technical task,
but as an ethical and societal responsibility —especially in
domains involving human data.

• Data deletion rights granted by frameworks like GDPR,
CCPA, CPRA, and VCDPA are often based on assumptions
that do not align with the realities of distributed, cloud-
based, or backup data systems.

• Many organizations still find it challenging to develop cohe-
sive data governance frameworks that adequately support
effective and compliant deletion.

Designed to remember, not to forget

• Infrastructures such as blockchain, temporal databases,
and provenance platforms are explicitly designed to retain
information —which inherently clashes with the objective
of deletion— making retrofitting deletion support ineffi-
cient or unreliable.

• Machine unlearning is conceptually crucial for rights like
GDPR’s ‘right to be forgotten,’ but current unlearning tech-
niques often fall short: they may not fully remove sensitive
data traces nor preserve model integrity.

• Systems designs based on blockchain, temporal databases,
or provenance must explore deletion-aware architectures
to align with evolving privacy and legal requirements.

• Need for robust, verifiable unlearning frameworks, clear
metrics for verifying true data removal, and assurance that
unlearning does not compromise overall model performance
or leave privacy vulnerabilities.

and customers —offering clear business benefits. Additionally, by incorporating explainability
around deletion procedures and outcomes, organizations can further enhance accountability while
empowering users with a more comprehensive understanding of how deletion processes actually
function. To meet these expectations, they emphasize the need for explainable deletion underscoring
that the technical act of deletion is often opaque to users and difficult to verify, and aiming at making
these procedures more understandable. However, integrating such deletion explanations into
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existing systems remains an ongoing and complex challenge [123]. More broadly, future research
should investigate how to systematically integrate the human factor into deletion processes [148].

The illusion of deletion. Data deletion, traditionally framed as a conclusive endpoint in the data
lifecycle, is increasingly recognized as an incomplete process [170]. As we have shown throughout
the article, although diverse methods (ranging from basic logical deletion to full physical destruc-
tion) are available, it is recognized that deleted data frequently persist in cloud infrastructures,
backups, or even within machine learning models. As such, relying purely on assured deletion
requires infrastructure guarantees that are rarely met in practice [123]. For example, cloud storage
and backup systems present unique challenges for data deletion, particularly concerning the
‘right to be forgotten’ [119]. Cloud platforms routinely replicate and back up data across multiple
locations, to protect against data loss and meet compliance requirements. However, these same
practices can impede deletion by creating copies in places not governed by the same lifecycle rules
as primary storage. In this context, advanced techniques such as cryptographic erasure (guided
by NIST SP 800-88 standards [70]) have proven promising [2] even for regulatory compliance,
by rendering data inaccessible through secure deletion of encryption keys. However, they depend
on the implementation of fine-grained operational techniques for more precise and efficient
erasure (encryption keys must be careful managed and securely destroyed, data must be encrypted
consistently, backup and replication policies must support key destruction, etc.) [2, 70, 170].

It depends: deletion in context. Although data deletion encompasses a range of methods, from
basic logical deletion, cryptographic erasure, to assured deletion, the appropriateness of a method
is highly dependent on contextual factors, including data sensitivity (Personal Identifiable Data
such as medical or financial records, etc.), legal and regulatory constraints (GDPR [33], CCPA [60],
CPRA [149]), etc.), ethical concerns (post-mortem data management), ecological considerations
(environmental impact, energy use, storage costs), scientific reproducibility needs (validating
research using historical data), educational policies (student data retention vs. anonymization).Thus,
deletion methods should be carefully chosen based on the context. For instance, in administrative
systems, institutions may rely on logical deletion to maintain audit trails —for example, marking
records as “inactive” rather than removing them— to support accountability and reporting needs.
Additionally, Personal Identifiable Data typically demands sanitization methods (non-recoverable),
such as those guided by NIST SP 800-88 standards [70] —using clear for overwriting or purge for
cryptographic erasure, or destroy for physical destruction (when dealing, for example, with highly
sensitive data). Moreover, as advanced, cryptographic erasure is also commonly employed in cloud
platforms, as an efficient method for large-scale deletion.

When context meets complexity. All these contextual factors generate tensions across technological
systems and the human parties involved. That is, every constraint and requirement —whether legal,
ethical, environmental, or technical— introduces conflicts that affect both the design of data deletion
mechanisms and the responsibilities of those who request, implement, or oversee these processes
(users, system administrators, custodians). For example, as we have shown, legal frameworks such as
the GDPR [33], CCPA [60], CPRA [149] or VCDPA [156], grant individuals strong rights to request
data deletion. However, these rights often assume a simplistic model of data control and deletion,
which does not reflect the complexities of modern data infrastructures (such as distributed systems,
cloud environments, or backups). As highlighted in [170], case studies offer valuable insights
into the operational difficulties of implementing deletion in practice. In one notable instance, a
leading technology company incurred significant penalties due to its inability to comply with
data deletion requests. Upon examination, it was found that the company had an inadequate data
governance framework, which had led to fragmented data storage systems and ineffective deletion
processes. This case reinforces the importance of implementing a comprehensive data governance
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strategy that integrates data deletion and erasure as core components [170]. Another example
arises in the ecological context, and is related to “dark data” —a notion previously introduced—
that is, information and data that businesses collect but usually no longer actively use or analyze.
According to Capacity Media [91], the environmental impact of this unused data is staggering, with
around 6.4 million tonnes of 𝐶𝑂2 emitted annually into the atmosphere every year (equivalent to
the carbon footprint of 80 countries) simply to store it. This creates a clear tension between the
human drive to reduce carbon footprint and the technical complexity of implementing reliable
deletion mechanisms in modern infrastructures.

Designed to remember, not to forget. Delete processes are in tension with core requirements
such as reproducibility, accountability, or traceability. Many systems such as ledgers, temporal
databases, or provenance platforms, retain or preserve data by default, which directly conflicts with
deletion principles that aim at eliminating data. In the particular case of provenance-aware systems,
several approaches presented in the literature, such as UML2PROV [132] or PASS [94] (see also a
survey of such systems at [115]), have been designed to automatically capture provenance data on
applications. As a result, deletion is especially challenging in provenance-aware systems, which
are inherently built to record and preserve metadata rather than to support its removal. These
systems rarely include native support for purging provenance data once captured, which inherently
conflicts with deletion goals. Similarly, while the blockchain technology provides strong guarantees
of traceability and integrity, its core immutability makes deletion fundamentally incompatible.
Attempts to reconcile this —such as redactable blockchains— while showing potential, have yet to
see widespread adoption [143]. Perhaps in these cases (ledgers, temporal databases, or provenance
platforms), deletion would need to be architecturally embedded and not layered post hoc. Regarding
AI systems, particularly those based on Machine Learning, deletion is not only about removing
data but also erasing its influence on trained models. Approaches such as machine unlearning seek
to achieve this effect; however, current unlearning techniques may fail to guarantee complete
removal of sensitive data or even compromise model integrity, which poses fundamental threats
to the security and reliability of this technique [106, 167]. This underscores the need for reliable
verification methods to boost the credibility of machine unlearning; yet, verification frameworks
for unlearning remain fragmented and underdeveloped [106, 167, 171], lacking unified definitions,
systematic evaluation protocols, and robust mechanisms to validate whether unlearning has truly
occurred [167].

All in all, the highlighted aspects reveal that data deletion cannot be treated as a terminal technical
operation. Instead, deletion should be understood as an ongoing, core process, that aligns with
various considerations, including ethical standards, legal frameworks, or ecological impacts, and
integrates with technical aspects such as data provenance, blockchain, and AI system requirements.
All of this supports the conclusion that deletion should be treated as a first‑class concern, embedded
fundamentally in system architecture, user interactions, legal compliance, and lifecycle processes.

7 Conclusions
The need to delete data stored on computers and other devices is beyond any doubt. In this article
we have discussed this topic by means of a three-dimensional analysis. First of all, we have reviewed
the terminology related with data deletion and we have shown that there are very varied terms
without a standardized meaning. Second, we have addressed the different approaches that, from
several fields of reference, have been carried out on data deletion. Especially noteworthy is the
regulation on the “right to be forgotten” that has placed data deletion beyond the technical realm,
establishing it as a key concern from legal, ethical, and scientific perspectives. In addition, we have
described the distinct arguments that arise when a deletion decision is tackled from different fields,
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showing the difficulties in choosing a clear and safe option. Finally, the relationships between
different specific computer technologies and the concept of deletion have been analyzed.

Through this analysis, we have that data deletion encompasses three different dimensions that are
far from trivial. Researchers and practitioners should consider these aspects in any data management
effort. Specifically, we argue for the need to establish a holistic, structured framework that organizes
the various terms, techniques, and perspectives related to data deletion. The conceptual framework
of Data Governance [1] emerges as a promising candidate to address this challenge, although
significant research and development remain necessary to achieve a comprehensive solution.

Our contribution thus provides a comprehensive and integrated view of data deletion, connecting
its diverse terminology, application fields, and the underlying technologies shaping data deletion.
This holistic perspective allows us to foreground underexplored dimensions within existing sum-
maries —such as ecological concerns, educational contexts, and the tensions between privacy and
scientific reproducibility— while also addressing emerging challenges, including those posed by
blockchain persistence and AI-driven approaches like machine unlearning. With this work, we aim
at reaffirming deletion as a central, interdisciplinary concern for both researchers and practitioners.
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