Universidad
Zaragoza

(L1101)]
Jr
_—

1542

Trabajo Fin de Grado

Analisis de prestaciones de un sistema de
control distribuido COSME

Autor

Julian Guillén Ros

Director

Carlos Catalan Cantero

Codirector

Félix Serna Fortea

Universidad de Zaragoza / Escuela Universitaria Politécnica de Teruel
2015

Analisis de prestaciones de un sistema de control
distribuido COSME

Resumen

El siguiente trabajo constituye un proyecto de analisis de prestaciones de un sistema
distribuido COSME.

COSME (COntrol System and Modeling Enviroment), es una plataforma software de control
industrial, basada en el estdndar IEC 61499, que permite disefiar, construir y ejecutar
aplicaciones de control distribuido.

El objetivo es optimizar la parte referida a la comunicacion de COSME en modo distribuido. En
la cual intervienen dos elementos, La Pasarela y la red. Para poder optimizar la Pasarela,
implementada en Java, es necesario realizar profiling sobre el cddigo de la misma, conocer el
funcionamiento interno y las posibles configuraciones de la JVM (Java Virtual Machine). Para
poder optimizar la parte referida a la red se debe conocer que posibilidades ofrece en
términos de QoS (Quality of Service) el switch que la interconecta.

Las pruebas para determinar la configuraciéon dptima tanto del switch como de la JVM se han
realizado sobre una plataforma de pruebas. Dicha plataforma estd compuesta por cuatro
Raspberrys y un switch comunicados mediante una red Ethernet, donde cada Raspberry
ejecuta una aplicacion COSME llamada Sumador Distribuido.

El estudio realizado en la plataforma de pruebas se ha enfocado a la JVM, al switch y al codigo
de la Pasarela. Las pruebas han consistido en la medicidon de los tiempos de ejecucién y
profiling sobre COSME.

La JVM se ha ejecutado con diferentes configuraciones para determinar cuales ofrecen mejor
tiempo de ejecucion. En cada configuracion se ha elegido una politica de recoleccién de
basura, un umbral de compilaciéon y unos parametros de rendimiento diferentes.

Se ha cambiado la politica de recoleccidon de basura en la JVM para determinar cémo afecta
cada una de ellas a la “funcién normal” de COSME ejecuta bajo restricciones de tiempo
real.

Se ha incrementado gradualmente la carga de trabajo en la “funcién normal”, que se
ejecuta bajo tiempo real, para determinar cémo afecta al tiempo de ciclo de COSME
distribuido.

En la parte referida a la red, se ha configurado la QoS del switch para determinar como afecta
a la latencia de red. Las pruebas se han realizado con y sin carga de trabajo en el switch y
activando y desactivando la QoS en cada caso, dando mas prioridad a los puertos dénde estén
conectadas las Raspberrys.

Con el progiling sobre el codigo de la Pasarela se ha determinado si existen cuellos de botella'y
creaciéon andmala de objetos, para a continuacion aplicar las optimizaciones necesarias.

Contenido

L. INEFOTUCCION ..ttt et sttt e st esab e e s bt e s bteesabeessabeesabeesneeesabeeenneeenn 4
00 O] 111 4 Yo TP 4
1.2, PlIataforma COSMEoouiiiieeeee ettt st st st e e s 5

1.2 1 RUNTIME (ot ettt e s sra e e e s srae e e s nans 6
1.2.2. COMUNICACION ...eetieiieiie ettt ettt ettt st sttt b e sbe e s st e st e et e e beesaeesaeesane 6
1.3. Configuracion de la €Jecucion de JVMoeiiiiiiiiiiciee ettt 8
1.3.1. Gestion de la memoria €N JVMcoiiiiiiiie et 8
1.3.2. Parametros relacionados CON €l GCcovuiriieiiiiieeniienie ettt 10
1.3.3. Parametros relacionados con el rendimiento de [a JVMcccooiieiiinininiiniienene 15
1.4. Configuracion Al SWITLCHcccuveee ettt et e e bae e e e e e e e naes 17

2. Plataforma de PruEbas...... ..o ae e e ares 18
R o] ot ol o] TEY 01 =1 [PSSR 18

3. ANAliSiS dE PreSTACIONESvviiiciiie ettt e e e e e e st e e e st ee e e s sabeeeesnreeesenarees 20
3.1. Medidas de l0s tiempos de EJECUCIONccccviieeiciiieecciiee ettt e et e e e eraee e e 20

3.1.1. Recolector de basura y umbral de compilacion..........cccceeeeeciieiecciee e, 21
3.1.2. Pardmetros de rendimientococuieiuieiieeiieieenee et 27
N I T =T o g T N (=Y I = o PSPPSR 30
3.2. Medidas de los tiempos de ejecucidn de la “funcidén normal”ercieennnn. 32
32,1 PrUEDAS ettt et b e sh e st sttt et e b e reenaeas 32
3.2.2 Analisis de [0S reSUItadosc.cueeveriirciiiiieeeree st 33
3.3. Medidas de los tiempos de ejecucion de la secuencia distribuida COSME 33
3.3L L PrUEDAS e e s 33
3.3.2 Analisis de [0S reSUItadoscc.ueiiiiiieiieeieeee ettt 34
3.4. Medidas de 1atencia de red........coceeiieiierieeeeeeeeee et 35
Bl L. PrUEDAS ettt sttt b e b naeas 35
3.4.2. Analisis de 10S reSUITadOScc.eeeeeriieiieeeeeree e 38
3.5 Profiling sobre 1a Pasarela......c..ueiicuiiei ittt ettt et e e tre e e e e e e ebaa e e e eaes 39
R TR A 1V [T o T o T TP 39
35,2 CPU ittt e et e et e e e e be et e e e e e e e e e anrae e e e e e e e e nnrateeeeeeans 41
3.5.3 Resultados de 1as OptimizacCiones.......cuuieeiecciiiiiieie e e e e 43

4, Correccion de errores €N 1a PASArla oo 44

I O00] s Tol [V T Y s [T PR 45

LAY = Yo L= 0 0T =T oL o LSRR 46
= 11 o] Lo T4 - TSP 47
AANEXOS .ttt st e ettt e e a e e e s et e e s e e e e e s srraeessan 48
Anexo 1: Clase Java para Medir ti@MPOS......cuiviuiiiiiiieee et ertee e ree e e sree e s abee e s snres 48
Anexo 2: Shell script para ejecutar COSME periodicamentecccceeeeeeeeciiieeeeeeececcciieeeee e, 49
Anexo 3: Medidas de los tiempos de ejecucion de COSME.........ccccccuieeeeiiieeeecieee e 50
Anexo 4: Medidas de los tiempos de la “funcidon normal”cccceecvieeeciiiee e, 50
Anexo 5: Medidas del tiempo de ejecucién de COSME Distribuidoccceeeeciiveeeeiiieeeennen. 50
Anexo 6: Medidas de latencia de red en COSME Distribuido.c.cccooeeriiriiininneeneenieneee 50

Anexo 7: Medidas del profiling sobre COSME.........ccuiiiiiiiiiiiiiiieecciee e 50

1. Introduccion

1.1. Objetivos

Objetivo general:

Analizar y optimizar las diferentes partes de un sistema distribuido COSME, donde el

aspecto relevante es la comunicacién.

Objetivos especificos:

1.
2.

Entender el funcionamiento de un sistema distribuido COSME.
Poner en marcha un sistema distribuido COSME.
Entender los diferentes tipos de recolectores de basura de la JVM de Java.
a. Disefar y realizar las pruebas para determinar que recolector de basura es el
mas optimo.
Entender los diferentes tipos de pardmetros de rendimiento de la JVM de Java.
a. Disefar y realizar las pruebas para determinar que parametros de rendimiento
son los mds éptimos.
Determinar cémo los diferentes tipos de recolectores de basura afectan al tiempo de
ejecucién de la “funcién normal” de COSME.
Determinar como el tiempo de ejecucion de la “funcién normal” de COSME
afecta al tiempo de ejecucidn del ciclo distribuido.
Determinar la configuracién dptima del switch para tener un tiempo de latencia de red
minimo y estable.
Realizar profiling sobre COSME para detectar cuellos de botella y anomalias en la

creacion de objetos.

1.2. Plataforma COSME

COSME (COntrol System and Modeling Enviroment), es una plataforma software de
control industrial desarrollada en la EUPT, basada en el estdandar IEC 61499, que permite
disefar, construir y ejecutar aplicaciones de control distribuido.

COSME esta basada en redes de bloques funcionales (FB), cada blogue representa un tipo de
componente tanto software como hardware.

Los FB permiten separar las diferentes partes de una aplicacion y asi poder reutilizarlos. En la
Figura 1, se puede apreciar la estructura de un bloque funcional.

1
1 Ercn\'.ﬁ\d_‘\d_ﬂ_ S

'l praniadad_2a-

—: I praniadado2d-,
:: Propiedad 1 1

| P (e E‘un.r'_w'.c'\n_l_______l_'

Ew;m_ibn_i______J_l

! Funcién 1 1
1

Salidas

Entradas

Funcidén normal

Funcidén inicializar

Funcidén finalizar

Figura 1: Bloque Funcional (FB)

Los bloques se agrupan formando redes, y se ejecutan segun la secuencia definida por el
disefiador, Figura 2.

e 0 ®

Bloque 1

Bloque 4

Figura 2: Orden de ejecucion de los FB

COSME se puede dividir en dos partes, la parte de runtime y la parte de comunicacion.

1.2.1 Runtime
El runtime estd implementado en C y se encarga de ejecutar de forma periddica las
funciones de cada FB.

Un FB estd compuesto basicamente por n entradas, n salidas, y cuatro funciones; “funcién
normal, funcién normal NoRT, funcidén inicializa y funcidn

finaliza”.

La “funcidén normal” es una funcidn periddica que se ejecuta bajo la restriccién de tiempo
real, es decir, cuando esta funcién tenga el turno para ejecutarse tendrd prioridad sobre todas
las demas funciones. Hasta que la funcién no termine, el sistema operativo no podra dedicar
tiempo a otros procesos. El ciclo de ejecucién de esta funcién se especifica con la variable
SISTEMA.tiempo ciclo ms.

La “funcidén normal NoRT” es también una funcion periédica pero no se ejecuta en
tiempo real por lo tanto tiene menos prioridad que la “funcién normal”. El tiempo de
periodo se determina con la variable SISTEMA.tciclo E CYCLE.

La “funcidén inicializa” se ejecutan un sola vez una al inicio de la aplicacion y la

“funcidén finaliza” al final de la misma.

El runtime también se encarga de enviar a la Pasarela el valor de las variables que el disefiador
de aplicaciones COSME ha definido. Estas variables pueden ser agrupadas en lo que se
denomina Cestas, con un periodo de refresco determinado.

1.2.2. Comunicacion

La comunicaciéon en COSME se realiza a través de cadenas de texto, llamados Telegramas,
con una nomenclatura concreta. Para que COSME pueda trabajar de modo distribuido, se
necesitan dos Telegramas:

e Publish: es enviado por el runtime a la Pasarela para comunicarle que las variables
que lo componen son para la siguiente Raspberry.

e Exec_ seq: es enviado por la Pasarela a la siguiente Raspberry con las variables del

Telegrama publish. Cuando la Raspberry recibe este telegrama comienza la

ejecucion de la “funcién normal NoRT”.

En la Figura 3, se puede observar una secuencia distribuida de COSME.

COSME COSME COSME

Exec_sec Exec_sec
Pasarela ———— —— Pasarela ———— 1 Pasarela
[} K [} L ¥} U
a 2 a 2 4 2
| o) | Qo I e}
b > Y > b =
£ a Y a g a
w w w
Runtime Runtime Runtime

Figura 3: Comunicacién en COSME distribuido

En la comunicacidon de COSME intervienen dos elementos, la Pasarelay la red.

Pasarela

La Pasarela estd implementada en Java, se encarga de comunicar el runtime con el
exterior y viceversa, a través de dos FIFOS, una de escritura y otra de lectura.

La Pasarela acepta y establece conexiones, a través de la libreria Arcadio, bien con otras

instancias de COSME o bien con otros clientes Arcadio. Ademads de gestionar los Telegramas
entre ellos y el runtime.

La libreria Arcadio se encarga del envio y la recepcion de Telegramas, ademas de mantener
activa la conexidon mediante el envio periddico de un Telegrama de tipo ping.

Las posibles optimizaciones a realizar pueden ir referidas al codigo en si de la Pasarela o a la
JVM.

e Si son referidas al cddigo de la Pasarela, se utilizard la herramienta Profiler de
NetBeans para detectar cuellos de botella o creacidn anémala de objetos.

e Sison referidas a la JVM, se debera conocer el funcionamiento de la JVM (cdmo esta
distribuida la memoria, las diferentes politicas del recolector de basura y los
pardmetros de JVM). Tal funcionamiento se explica en el apartado 1.4. Gestidn de los
parametros de la JVM.

Red

Se trata de una red Ethernet interconectada mediante un switch. Con el objetivo de
optimizar el funcionamiento del switch, se debe conocer que posibilidades ofrece en términos

de QoS (Quality of Service). En el apartado 1.4. Configuracion del switch se explica mas en
detalle esta caracteristica.

1.3. Configuracion de la ejecucion de JVM

La configuracion de la JVM se gestiona a partir de los parametros que se le indican al
ejecutarla. De estos parametros dependera el rendimiento final. Los parametros pueden ir
relacionados con la asignacion de memoria, con el garbage collector o con el rendimiento.

1.3.1. Gestion de la memoria en JVM

El heap es la zona de memoria dinamica que almacena los objetos que se crean, en un
principio tiene un tamafio fijo asignado por la JVM, pero segun sea necesario se va afiadiendo
mas espacio. Estd dividido en tres partes Young Generation, Old Generation y Permanent
Generation, como se puede apreciar en la Figura 4:

Survivor Space

eden S0 51 Tenured Permanent
\ A r A
B Y ’
Young Genaration Old Generation Pearmanent Generation

Figura 4: Estructura del heap en HotSpot

e Young Generation:

o Eden Space: Esta es el area inicial donde se inicializan la mayoria de los
objetos.

o Survivor Space: En esta area se almacenan los objetos que han sobrevivido a la
recoleccidon de basura en el Eden. En general esta drea esta dividida en dos
partes Fromy To.

e 0Old Generation:

o Tenured Space: Contiene los objetos que han existido por un largo tiempo y
que han pasado por el Survivor Space.

e Permanent Generation: contiene metadatos requeridos por la JVM para describir las
clases y métodos utilizados en la aplicacidn. El espacio Permanent es rellenado por la
JVM en tiempo de ejecucidn basandose en las clases que hay en uso por la aplicacidn.

Cuando se crea un objeto nuevo en Java con la instruccidn new, éste inicialmente se encuentra
en el espacio Eden. Conforme se van ejecutando varios ciclos de recoleccion de basura o se van
creando nuevos objetos, éstos van migrando a través de los espacios de supervivencia,
Survivor Spaces. Los objetos que sobreviven pasan al espacio Tenured Space.

El espacio Tenured se utiliza para almacenar objetos que han sobrevivido durante un periodo
de tiempo largo. Eventualmente este espacio necesita ser recogido por el recolector de basura.

Parametros de gestion de memoria en JVM
El tamafio de cada zona de memoria es configurable por el usuario, en la Figura 5, se
puede apreciar el parametro especifico para cada zona.

& -Xm:
&> Xms <

€& -XX:MaxNewSize || -Xmne—> & -XX:MaxPermSize—>
&—— XX:NewSize—> & -XX:PermSize->

v

v

Virtual Old / Tenured Virtual Perm Virtual

~0<sS~c®
~0<sS~c®

&———— Youn NErAtIoN s— & Permanent ation=—
ung Cenered & Old / Tenured Generatior > oot Cenemion

-XX:SurvivorRatio=6
Allocate 6/8 to eden space and 1/8 1o each survivor space

Figura 5: Pardmetros de configuracién de las zonas de memoria en JVM

Xms y Xmx :
Indican el tamafio minimo y maximo del heap, ejemplo:
e -Xms1024M. Tamafio minimo del heap en 1024 MB.
e -Xmx1800M. Tamafio maximo del heap en 1800MB.

NewSize yMaxNewSize
Indican el tamafio minimo y maximo de la zona Young Generation, ejemplo:

e -XX:NewSize=128M. Tamafio minimo de la zona Young Generation.
e -XX:MaxNewSize=256M. Tamafio maximo de la zona Young Generation.

PermSize yMaxPermSize
Indican el tamafio minimo y maximo de la zona Permanent Generation, ejemplo:
e -XX:PermSize=128M. Tamafio minimo de la zona Permanent Generation.
e -XX:MaxPermSize=256M. Tamano maximo de la zona Permanent Generation.

SurvivorRatio
Indica el ratio entre Eden y Survivor, ejemplo:

e —XX:SurvivorRatio=3

TargetSurvivorRatio
Indica que porcentaje se puede llenar la zona Survivor antes de mover a Old Generation,

ejemplo:
e —XX:TargetSurvivorRatio=50

1.3.2. Parametros relacionados con el GC

El recolector de basura, del inglés garbage collector, es un proceso automatico de baja
prioridad que se ejecuta dentro de la JVM. Se encarga de limpiar aquella memoria del heap
que ya no se utiliza y por tanto, podria ser utilizada por otros programas. Un objeto podra ser
borrado cuando no sea referenciado por otro.

Desde una aplicacidn Java se puede invocar al recolector de basura con System. gc, pero
esto no es aconsejable porque cada recolector tiene su propia politica y podria afectar al
rendimiento de la aplicacién. Se puede deshabilitar las llamadas explicitas al recolector de
basura con el siguiente parametro de JVM, —-XX:-DisableExplicitGC.

Para saber cuando se ejecuta el GC se debe utilizar el parametro -XIoggc:gc. txt al
ejecutar la aplicacion Java. Este pardmetro guarda informacién sobre la ejecucion del
recolector de basura en el fichero gc . txt.

Existen dos tipos de recolecciones de basura:

e Recoleccion de basura menor: se ejecuta cuando se llena la zona Eden o antes de
incrementar su espacio.

e Recoleccién de basura mayor o completa: se ejecuta cuando se llena la zona Tenured
o antes de incrementar su espacio.

Politicas de funcionamiento del garbage collector

Existen cuatro politicas de garbage collectors en Java 7.0:
e Serie
Paralela

e Concurrente
Garbage-First (G1)

Serie

La politica serie esta disefiada para aplicaciones que requieran un heap de hasta
100MB, en equipos con un solo procesador. Esta politica es la que utiliza por defecto la JVM en
las Raspberrys.

Corre en un solo hilo y usa el algoritmo de Copia. Cuando se ejecuta para limpiar la
memoria la pausa que realiza es del tipo STW (Stop The World), es decir, toda la aplicacién se
paraliza y no se reactiva hasta que el recolector acaba, como se puede ver en la Figura 6.

Esta politica se habilita con la opcién de la JVM, -XX:+UseSerialGC. Se puede utilizar
desde la version de Java 5.0

10

Serial Collector

LAAAL

| e Stop the world

pause
Y

V Y V ¢ App Thread

' ¢ GC Thread

Figura 6: Politica de recoleccién de basura serie

Paralela
La politica paralela corre en multiples hilos y las pausas que realiza son del tipo STW, es
decir, toda la aplicacidn se paraliza.

Esta politica se habilita con la opcidn de la JVM -XX:+UseParallelGC.

En una maquina con N procesadores la politica paralela utiliza N hilos para recolectar la
basura.Sin embargo, este numero se puede ajustar con la opcidn
-XX:ParallelGCThreads=n.

Con el comando -XX:+UseParallelGC, la politica de recoleccidn no compacta la memoria
pero se puede activar con la opcidn -XX:+UseParallelO1dGC. Esta opcidon estd
disponible desde la version: 1.4.1

11

Parallel collector

\AAAAAALI

Stop the world —>‘\ 'Y ""
i i ¢ App Thread
\AAAARA; ‘ GC Thread

(AAAA

TTYTYTY

Figura 7: Politica de recoleccién paralela

En la Figura 7, se puede observar como el recolector de basura corre en varios hilos y las
pausas que realiza son del tipo STW.

Concurrente

La politica concurrente estd disefiada para aplicaciones que precisen pausas mas

cortas en la recoleccion de basura y que corren en maquinas con dos o mas procesadores.

Esta politica se habilita con la opcién de la JVM, -XX: +UseConcMarkSweepGC, disponible
desde la version: 1.4.1

Su funcionamiento es el siguiente:

1.

Marcado inicial: En esta fase se produce una pequefia pausa del tipo STW, que paraliza
toda la aplicacién, donde todos los objetos alcanzables (vivos) son marcados.

Marcado Concurrente: busca los objetos vivos mientras la aplicacién se ejecuta en otro
hilo.

Remarcado: busca los objetos que no fueron encontrados durante la fase 2.

Barrido concurrente: elimina los objetos que son inalcanzables. Y no compacta los

objetos alcanzables.

Restablecimiento: se prepara para la siguiente ejecucion limpiando las estructuras

usadas.

12

Concurrent Mark-Sweep collector

-
-

Initial Mark
Stop the world s ¥
pause
Concurrent Marking
AARARE
Remark
i Tm—
App Thread
Concurrent Sweeping

¢ GC Thread

Figura 8: Recolector de basura CMS

En la Figura 8, se puede observar el funcionamiento de la politica de recoleccién concurrente.

Garbage-First G1

La politica de recoleccion de basura de Garbage-First (G1) es la mas reciente, disefiada
para reemplazar al recolector CMS. G1 es una politica de estilo servidor, pensado para
maquinas multi-procesador con grandes cantidades de memoria.

Este recolector estd disponible desde la versién 1.7.4 de Java.

G1 es un recolector compactador. Compactar es un proceso por el cual los objetos vivos se
mueven sobre la memoria libre hacia el final del heap de manera que se logra un area contigua
de memoria libre. Esto es importante para las aplicaciones que se ejecutan durante mucho
tiempo porque es inevitable que el heap se fragmente con el paso del tiempo. G1 evita los
potenciales problemas de la fragmentacion.

13

Mon-Allocated Space

Young Generation

Oid Generation

Recently Copied in Young Generation
Recently Copied in Old Generation

Figura 9: Distribucion del heap con G1

El heap se divide en un conjunto de regiones de igual tamafio, cada una en un intervalo
contiguo de memoria virtual. Estos conjuntos de regiones usan el mismo sistema de
Generaciones que las anteriores politicas de recoleccidn, pero no hay un tamafio fijo para
ellas. Esto proporciona una mayor flexibilidad en el uso de memoria. En la Figura 9, se puede
ver un ejemplo de la distribucién de las Generaciones con el recolector G1.

14

1.3.3. Parametros relacionados con el rendimiento de la JVM

Servery Client

La JVM HotSpot incluye dos modos de ejecucion, cliente y servidor. Las dos soluciones
comparten el cédigo base de ejecucidn, pero utilizan diferentes compiladores que se adaptan a
las caracteristicas de rendimiento de los clientes y servidores.

Aunque el modo servidor y el modo cliente son similares, cada uno es especifico para un
propdsito.

El modo servidor esta disefiado para maximizar la velocidad de operacién y destinado a la
ejecucién de aplicaciones de servidor de larga duracidn. El compilador de este modo aplica al
codigo optimizaciones complejas, por eso la puesta en marcha de aplicaciones en modo
servidor requieren mas tiempos y memoria.

Pero el parametro —server no esta disponible para la arquitectura ARMv6 que es la que esta
implementada en las Raspberrys utilizadas para este proyecto. Solo estd disponible para
versiones ARMv7+ por lo tanto no se puede hacer uso de él.

El modo cliente, al compilar el cédigo no ejecuta optimizaciones complejas, por lo tanto se
requiere menos tiempo para analizar y compilar el cédigo. Esto significa que la aplicacion
cliente se puede poner en marcha mds rapido y requiere un menor consumo de memoria.

El modo cliente es el que se ejecuta por defecto en las Raspberrys.

CompileThresHold

Java es independiente de la plataforma, significa que programas escritos en Java
pueden ejecutarse igualmente en cualquier tipo de hardware. De ahi proviene el famoso
eslogan write once, run anywhere.

En las versiones actuales de la JVM se ejecutan los programas combinando la interpretacion de
bytecodes y la compilacion JIT (Just-In-Time).

La JVM analiza bytecodes a medida que se van interpretando e identifica los bytecodes que se
ejecutan con mas frecuencia. Estos bytecodes son traducidos a lenguaje maquina
correspondiente por el compilador JIT. Cuando la JVM encuentre de nuevo estos puntos
activos, ejecutara directamente el cédigo maquina disminuyendo el tiempo de ejecucién del
programa y aumentando el rendimiento.

En la JVM HotSpot, se puede definir el nimero de invocaciones antes de que un trozo de
codigo se compile al lenguaje maquina correspondiente. Ese numero se define con el
pardmetro CompileThreshold. Por defecto en aplicaciones cliente este pardametro tiene
un valor de 1500.

Ejemplo: java -XX:CompileThreshold=10000 -jar programa.java

15

http://en.wikipedia.org/wiki/en:Write_once,_run_anywhere

AggressiveOpts
El pardmetro AggressiveOpts, aplica las mejoras que se esperan sean por defecto
en siguientes versiones de la JVM. Introducido en la version 5.0.

Ejemplo: java -XX:+AggressiveOpts —-jar programa.java

UseFastAccessorMethods
El pardmetro UseFastAccessorMethods, utiliza versiones optimizadas del
método get().

Ejemplo: java -XX:+UseFastAccessorMethods —-jar programa.java

UseStringCache
El pardmetro UseStringCache, permite el almacenamiento en caché de las
cadenas mas usadas.

Ejemplo: java -XX:+UseStringCache -jar programa.java

UseCompressedStrings

El parametro UseCompressedStrings, utiliza vectores de bytes, byte[], cuando
una cadena de texto, String, puede representarse como ASCIl puro. Introducido en Java 6
update 21. Pero fue eliminado en la versidn de Java 7.0, por lo tanto no se puede hacer uso de
él.

Ejemplo: java -XX:+UseCompressedStrings —-jar programa.java

16

1.4. Configuracion del switch

Una de las partes que intervienen en la comunicacién de COSME es el switch. Con el
objetivo de optimizar este elemento hay que conocer que opciones ofrece el switch Cisco SLM
2008 en términos de QoS (Quality of Service). A continuacidn se describen las posibilidades de
configuracion que presta.

La configuracién de la QoS en el switch, consta de tres modos, basada en los puertos, en el
estandar 802.1p y en DSCP (Differentiated Services Code Point).

e Basada en los puertos: permite establecer cuatro niveles de prioridad, low, normal,
médium y high, para cada puerto. Siendo low la prioridad mas baja y high la mas alta.

e Estandar 802.1p: proporciona priorizacién de trafico, por medio de 3 bits en el campo
prioridad de usuario (user_priority) de la cabecera IEEE 802.1Q, asignando a cada
paquete un nivel de prioridad entre 0y 7. Solo puede ser soportado por una red LAN.

e DSCP: hace referencia al segundo byte en la cabecera de los paquetes IP que se utiliza
para diferenciar el nivel de servicio de cada paquete.

El modo de encolar los paquetes, es decir, la manera con la que le switch reparte los paquetes
por los diferentes puertos puede configurarse como Prioridad Estricta (Strict Priority) o WRR
(Weighted Round-Robin).

e Prioridad Estricta: transmite primero los paquetes de las colas con prioridad mas alta
antes que las colas con prioridad menor.

e WRR: comparte le ancho de banda de los puertos de salida, usando varios pesos 1, 2, 4
y 8 asignados a 4 colas (low, normal, médium, high).
Este planificador envia paquetes de cada cola en turnos, siendo la cantidad en funcién
de los pesos configurados.
WRR previene de la inanicion a la que podria dar lugar la Prioridad Estricta en los casos
en que a la cola de mayor prioridad llegara una gran cantidad de trafico. Mediante este
planificador no existe el concepto de que una cola sea de mayor prioridad que otra,
todas las colas tienen ocasién de enviar paquetes aunque tengan un peso pequefio.

Para realizar las pruebas se ha elegido la QoS basada en los puertos, ya que en los demas
casos se requieren cabeceras adicionales en los datagramas.

17

2. Plataforma de pruebas

El analisis de prestaciones se ha realizado sobre un entorno distribuido, consta de
cuatro ordenadores de placa reducida Raspberry Pi, de ahora en adelante Raspberry,
comunicados por una red Ethernet mediante un switch Cisco SLM2008.

El switch permanecera conectado a un router, por donde se accedera a las Raspberrys desde el
ordenador con el que se supervisara el trabajo.

Figura 10: Plataforma de pruebas
En la Figura 10 se puede apreciar la plataforma compuesta del switch y las cuatro Raspberrys.

Se ha trabajado con el sistema operativo Raspbian, instalado en cada Raspberry, y parcheado
con Xenomai, para dotarle de caracteristicas de tiempo real.

A su vez, sobre COSME se ha ejecutado una aplicacion sintética, llamada Sumador Distribuido,
disefada especialmente para este proyecto.

La version de Java utiliza ha sido la 1.7.0_40 con la JVM HotSpot.

2.1. Aplicacion sintética

La funcionalidad de la aplicacién sintética, Sumador Distribuido, consistird en que cada
Raspberry pase a la siguiente un valor numérico. Cada una tendra que actualizar una posicion
de ese valor.

La Raspberryl actualizard las unidades de millar, la Raspberry2 las centenas, la Raspberry3 las
decenas y la Raspberry4 las unidades. Como se puede apreciar en la siguiente figura.

18

Primer ciclo:

1000 1100 1110

1111

Segundo ciclo:

Raspi 2 Raspi 3

2221

2222

Figura 11: Esquema de funcionamiento de Sumador Distribuido

En la Figura 11, se puede apreciar un ejemplo del funcionamiento de la aplicacién sintética
Sumador Distribuido.

19

3. Analisis de prestaciones

3.1. Medidas de los tiempos de ejecucion

El andlisis de los tiempos de ejecucidén de la plataforma COSME, se ha llevado a cabo
midiendo los tiempos de ejecucidon de la Pasarela, cambiando los parametros de la JVM en
cada ejecucién.

Tales parametros van referidos a la mdaquina virtual de Java, por lo tanto solo afectan a la
Pasarela, y han sido los siguientes:

e Referidos al recolector de basura
e Referidos al rendimiento
e Referidos a la memoria

ey 6 & 556
—H —2
Pasarela
{} exeq_seq 1} publish
FIFOs
{}exeq_seq 1} publish
Runtime

Figura 12: Esquema de tiempos a medir

Mas concretamente como se puede apreciar en la Figura 12, los tiempos que se han medido
han sido t1, tiempo de ejecucion desde que llega el telegrama exec seq a la Pasarela, hasta
que lo mete en la FIFO para enviarselo al runtime, y t2, tiempo empleado desde que la
Pasarela recibe el telegrama publish desde el runtime hasta que envia el telegrama
exec seq a la siguiente Raspberry.

Para realizar las mediciones se ha creado una clase especifica en Java, ver Anexo 1. Y un shell
script, ver Anexo 2, para poner en funcionamiento COSME cada cierto tiempo con diferentes
parametros de la JVM al ejecutar la Pasarela.

20

3.1.1. Recolector de basura y umbral de compilacion
En esta seccidn se muestran los tiempos de ejecucion obtenidos, combinando las
diferentes tipos de politicas de recoleccion de basura y el umbral de compilacidn.

Cada configuracion de JVM se ha ejecutado durante 5 minutos con un tiempo de ciclo,
SISTEMA.tciclo E CYCLE, de 50 ms. Con lo que se han obtenido 5900 muestras de tl1y
t2. Los cuales se han sumado para obtener el tiempo global de ejecucién de la Pasarelay a
continuacién calcular la media, la desviacién tipica y el valor menos desfavorable al 95% vy el
valor al 100%.

El objetivo de esta prueba es hallar que politica de recoleccion de basura y que valor de
Compilethreshold obtienen el menor valor para la media, la desviacion tipica y el valor
menos desfavorable al 95% y al 100%.

El criterio de clasificacidn para determinar la configuracién éptima, se establecido en primer
lugar por el menor valor al 95%, en segundo lugar por el menor valor de la media y en tercer
lugar por el menor valor de la desviacidn tipica.

Estos datos se corresponden al archivo del Anexo 3: TiemposDiferentesGCyCompilacion.txt

Recolector de basura concurrente y umbral de compilacion

En este apartado se comparan los tiempos obtenidos entre una ejecucion de COSME
con el recolector de basura concurrente, pardmetro ConcMarkSweepGC, y el umbral de
compilacién, pardmetro CompileThreshold, con los valores 1, 100, 1000, 10000 y 100000.

Configuraciones de JVM:

. UseConcMarkSweepGC, CompileThreshold=1

. UseConcMarkSweepGC, CompileThreshold=100

. UseConcMarkSweepGC, CompileThreshold=1000

. UseConcMarkSweepGC, CompileThreshold=10000
. UseConcMarkSweepGC, CompileThreshold=100000

g b w N

Configuraciones JVM Media Desviacidn Tipica 95% 100%
1 15,11 23,84 49,04 659,96
2 8,49 8,24 20,48 337,81
3 7,66 6,74 12,10 140,66
4 9,4 4,37 14,26 188,13
5 17,53 12,37 45,03 207,81

Tabla 1: Tiempos de ejecucion GC concurrente (valores en ms)

En la Tabla 1, se puede apreciar que la configuracién mas dptima, es decir, la que ha dado un
tiempo de ejecucion menos desfavorable al 95% es la politica de recoleccién concurrente y el
umbral de compilacién (CompileThreshold) a 1000 con valor de 12,10 ms. La media, la

21

desviacidn tipica y el 100% de dicha configuracién también son los valores mas pequefios de
esta prueba.

La configuracién que peores resultados ha obtenido, es decir, que ha dado un tiempo de
ejecucién mas desfavorable al 95% es la politica de recoleccidon concurrente y el umbral de
compilacién (CompileThreshold) con un valor de 100000.

Recolector de basura paralelo y umbral de compilacion

En este apartado se comparan los tiempos obtenidos, entre una ejecucion de COSME
con el recolector de basura paralelo, parametro ParallelGC, y el umbral de compilacién,
pardmetro CompileThreshold con los valores 1, 100, 1000, 10000 y 100000.

Configuraciones de JVM:

6. UseParallelGC, CompileThreshold=1

7. UseParallelGC, CompileThreshold=100

8. UseParallelGC, CompileThreshold=1000

9. UseParallelGC, CompileThreshold=10000
10. UseParallelGC, CompileThreshold=100000

Configuraciones JVM Media Desviacidn Tipica 95% 100%
6 8,44 11,28 16,20 304,08
7 8,16 8,18 16,75 199,64
8 9,9 12,16 21,58 359,95
9 13,18 10,81 25,42 195,79
10 22,31 15,19 37,06 214,26

Tabla 2: Tiempos de ejecucion GC paralelo (valores en ms)

En la Tabla 2, se puede apreciar que la configuracién mas dptima, es decir, la que ha dado un
tiempo de ejecucién menos desfavorable al 95% es la politica de recoleccidn paralela y el
umbral de compilacién (CompileThreshold)a 1 con valor de 16,2 ms.

La configuracién que peores resultados ha obtenido, es decir, que ha dado un tiempo de
ejecuciéon mds desfavorable al 95% es la politica de recoleccidon paralela y el umbral de
compilacién (CompileThreshold) con un valor de 100000.

22

Recolector de basura paralelo compactador y umbral de compilacion

En este apartado se comparan los tiempos obtenidos, entre una ejecucion de COSME
con el recolector de basura paralelo compactador, pardmetro ParallelO1ld, y el umbral de
compilacién, pardmetro CompileThreshold con los valores 1, 100, 1000, 10000 y 100000.

Configuraciones de JVM:

11. UseParallel0ldGC, CompileThreshold=1

12. UseParallel01ldGC, CompileThreshold=100
13. UseParallel01ldGC, CompileThreshold=1000
14. UseParallel0ldGC, CompileThreshold=10000
15. UseParallel01ldGC, CompileThreshold=100000

Configuraciones JVM Media Desviacidn Tipica 95% 100%
11 7,91 9,59 14,39 303,74
12 7,94 7,47 15,85 197,01
13 9,44 9,76 20,63 289,26
14 12,99 14,68 24,77 503,38
15 21,58 16,21 36,77 352,05

Tabla 3: Tiempos de ejecucion GC paralelo compactador (valores en ms)

En la Tabla 3, se puede apreciar que la configuracién mas dptima, es decir, la que ha dado un
tiempo de ejecucidn menos desfavorable al 95% es la politica de recoleccién paralela
compactadora y el umbral de compilacién (CompileThreshold)a 1 con valor de 14,39 ms.

La configuracion que peores resultados ha obtenido, es decir, que ha dado un tiempo de
ejecucién mads desfavorable al 95% es la politica de recoleccion paralela compactadora y el
umbral de compilacién (CompileThreshold) con un valor de 100000.

23

Recolector de basura serie y umbral de compilacion

En este apartado se comparan los tiempos obtenidos, entre una ejecucién de COSME
con el recolector de basura serie, parametro SerialGC y el umbral de compilacidn,
pardmetro CompileThreshold con los valores 1, 100, 1000, 10000 y 100000.

Configuraciones de JVM:

16. UseSerialGC, CompileThreshold=1

17. UseSerialGC, CompileThreshold=100
18. UseSerialGC, CompileThreshold=1000
19. UseSerialGC, CompileThreshold=10000
20. UseSerialGC, CompileThreshold=100000

Configuraciones JVM Media Desviacion Tipica 95% 100%
16 8,41 9,38 16,32 313,47
17 7,31 6,5 13,2 337,97
18 9,61 12,74 19,91 639,29
19 9,91 5,79 17,71 199,85
20 14,46 8,64 28,96 188,02

Tabla 4: Tiempos de ejecucion GC serie (valores en ms)

En la Tabla 4, se puede apreciar que la configuracién mas dptima, es decir, la que ha dado un
tiempo de ejecucién menos desfavorable al 95% es la politica de recoleccidn serie y el umbral
de compilacién (CompileThreshold)a 100 con valor de 13,2 ms.

La configuracion que peores resultados ha obtenido, es decir, que ha dado un tiempo de
ejecucidon mds desfavorable al 95% es la politica de recoleccion serie y el umbral de
compilacién (CompileThreshold) con un valor de 100000.

24

Recolector de basura G1GC y umbral de compilacién

En este apartado se comparan los tiempos obtenidos, entre una ejecucién de COSME
con el recolector de basura G1, pardmetro UseG1GC y el umbral de compilacién, parametro
CompileThreshold con los valores 1, 100, 1000, 10000 y 100000.

Configuraciones de JVM:

21. UseG1lGC, CompileThreshold=1
22.UseGlGC, CompileThreshold=100
23. UseGlGC, CompileThreshold=1000
24. UseGlGC, CompileThreshold=10000
25. UseGlGC, CompileThreshold=100000

Configuraciones JVM Media Desviacidn Tipica 95% 100%
21 8,44 9,02 15,55 294,09
22 7,35 4,4 13,6 180,71
23 10,35 11,28 25,01 200,91
24 18,79 13,82 41,62 228,3
25 16 10,96 32,98 323,04

Tabla 5: Tiempos de ejecucion GC G1 (valores en ms)

En la Tabla 5, se puede apreciar que la configuracién mds dptima, es decir, la que ha dado un
tiempo de ejecucidn menos desfavorable al 95% es la politica de recolecciéon G1y el umbral de
compilacién (CompileThreshold) a 100 con valor de 13,6 ms. La media, la desviacion
tipica y el 100% de dicha configuracién también son los valores mas pequefos de esta prueba.

La configuracién que peores resultados ha obtenido, es decir, que ha dado un tiempo de
ejecucion mas desfavorable al 95% es la politica de recoleccion G1 y el umbral de compilacién
(CompileThreshold) con un valor de 10000.

Analisis de los resultados
En este apartado se comparan los tiempos obtenidos, entre la configuracidon por
defecto y la configuracidn mas éptima de cada uno de los apartados anteriores.

Configuraciones JVM Media Desv.Tipica 95% 100%
Por defecto 7,76 12,27 19,18 725,19
Concurrente, CompileThreshold = 1000 7,66 6,74 12,10 140,66
Paralelo, CompileThreshold = 1 8,44 11,28 16,20 304,08
Paralelo Compactador, CompileThreshold = 1 7,91 9,59 14,39 303,74
Serie, CompileThreshold = 100 7,31 6,5 13,2 337,97
G1, CompileThreshold = 100 7,35 4,4 13,6 180,71

Tabla 6: Comparativa tiempos de ejecucién Pasarela (valores en ms)

En la Tabla 6, se puede observar que el mejor resultado al 95% ha sido para el recolector de
basura concurrente y el umbral de compilaciéon, CompileThreshold=1000, con un
tiempo de 12,10 ms, seguido del recolector de basura serie con un tiempo de 13,2 ms.

Comparando la configuracion del recolector de basura concurrente vy
CompileThreshold=100 con el modo por defecto, 12,10 ms y 19,18 ms respectivamente,
se obtiene una mejora del 36,91%.

Por lo tanto, la configuracion mds éptima de la JVM para ejecutar la Pasarela es usando la
politica de recoleccién de basura concurrente y el umbral de compilaciéon con un valor de
1000.

De ahora en adelante se llamara Configuracién 1 a los parametros UseConcMarkSweepGC y
CompileThresHold=1000.

26

3.1.2. Parametros de rendimiento

Las siguientes tablas muestran los tiempos de ejecucién obtenidos, combinando la
Configuracion 1, parametros SerialGC y CompileThreshold=1000, con otros
pardmetros de rendimiento.

Cada configuracion de JVM se ha ejecutado durante 5 minutos con un tiempo de ciclo,
SISTEMA.tciclo E CYCLE, de 50 ms. Con lo que se han obtenido 5900 muestras de tl1y
t2. Los cuales se han sumado para obtener el tiempo global de ejecucién de la Pasarela y
calcular la media, la desviacién tipica y el valor menos desfavorable al 95% y al 100%.

El objetivo de esta prueba es hallar si la Configuraciéon 1 junto con algin pardmetro de
rendimiento mejora los tiempos de ejecucion de la Pasarela.

El criterio de clasificacidon para determinar la configuraciéon dptima, se establecido en primer
lugar por el menor valor del 95%, en segundo lugar por el menor valor de la media y en tercer
lugar por el menor valor de la desviacion tipica.

Estos datos se corresponden al archivo del Anexo 3: TiemposParametrosRendimiento.txt

Configuracion 1 y AggressiveOpts
En el siguiente tabla se comparan los tiempos obtenidos, entre una ejecucién de
COSME por defecto, con la Configuracién 1 y con la Configuracion 1 con el pardmetro

AgressiveOpts.

Configuraciones de JVM:
1. Pordefecto
2. UseConcMarkSweepGC CompileThreshold=1000
3. UseConcMarkSweepGC, CompileThreshold=1000 y AggressiveOpts

Configuraciones JVM Media Desviacion Tipica 95% 100%
1 7,76 12,27 19,18 725,19
2 7,66 6,74 12,10 140,66
3 9,70 9,29 24,26 200,16

Tabla 7: Comparativa tiempos de ejecucidn Pasarela (valores en ms)

En el Tabla 7 se puede observar que la ejecucién con el pardmetro AggressiveOpts ha
dado una media, una desviacion tipica, un valor al 95% y al 100% peor que la Configuracion 1.
Por lo tanto la configuracion dptima de la Pasarela seguird siendo con los parametros
UseConcMarkSweepGC y CompileThreshold=1000.

27

Configuracion 1 y UseStringCache

En el siguiente apartado se comparan los tiempos obtenidos, entre una ejecucién de
COSME por defecto, con la Configuracién 1 y con la Configuracién 1 con el pardmetro
UseStringCache.

Configuraciones de JVM:
1. Valor por defecto
2. UseConcMarkSweepGC, CompileThreshold=1000
3. UseConcMarkSweepGC, CompileThreshold=1000 y UseStringCache

Configuraciones JVM Media Desviacion Tipica 95% 100%
1 7,76 12,27 19,18 725,19
2 7,66 6,74 12,10 140,66
3 8,53 6,23 15,97 194,49

Tabla 8: Comparativa tiempos de ejecucidn Pasarela (valores en ms)

En el Tabla 8 se puede observar que la ejecucidn con el pardmetro UseStringCache ha
dado una media, un valor al 95% y al 100% peor que la Configuracién 1. Por lo tanto la
configuracion Optima de la Pasarela seguird siendo con los parametros
UseConcMarkSweepGC y CompileThreshold=1000.

Configuracion 1 y UseStringCache, AggressiveOpts, UseFastAccessorMethods
En el siguiente grafico se comparan los tiempos obtenidos, entre una ejecucién de

COSME sin pardmetros, la Configuracion 1 y la Configuracién 1 con los pardmetros

UseStringCache, AggressiveOptsy UseFastAccessorMethods.

Configuraciones de JVM:

1. Valor por defecto

2. UseConcMarkSweepGC, CompileThreshold=100

3. UseConcMarkSweepGC, CompileThreshold=1000,
UseFastAccessorMethods

4., UseConcMarkSweepGC, CompileThreshold=1000, UseStringCache,
UseFastAccessorMethods

5. UseConcMarkSweepGC, CompileThreshold=1000, UseStringCache,
UseFastAccessorMethods, AggressiveOpts

28

Configuraciones JVM Media Desviacion tipica 95% 100%

1 7,76 12,27 19,18 725,19
2 7,66 6,74 12,10 140,66
4 8,84 7,21 15,39 201,90
5 7,83 4,62 15,72 163,24
6 8,79 7,95 17,29 335,97

Tabla 9: Comparativa tiempos de ejecucidn Pasarela (valores en ms)

En el Tabla 9 se puede observar que la ejecucidon con la combinacidon de los parametros
UseStringCache, UseFastAccessorMethods, AggressiveOpts ha dado una
media, un valor al 95% y al 100% peor que la Configuracidn 1. Por lo tanto la configuracion
Optima de la Pasarela seguird siendo con los parametros UseConcMarkSweepGC y
CompileThreshold=1000.

Analisis de los resultados

Los resultados con los pardmetros de rendimiento anteriores ha dado peores
resultados que con la Configuracién 1, por lo tanto, la configuracién 6ptima para ejecutar la
Pasarela sera con la politica de recoleccién basura concurrente y el umbral de compilacién a
1000, parametros UseConcMarkSweepGC y CompileThreshold=1000.

29

3.1.3. Tamaiio del heap
El propdsito de estas medidas es observar cuantas ejecuciones realiza y el tiempo que
dedica a cada una de ellas el recolector de basura, variado el tamafio del heap.

Estos datos se corresponden al archivo del Anexo 3: TrazasGC.txt

Pruebas

Heap de 32 Mb

Con un tamano de heap de 32 megabytes y con los pardmetros mas éptimos del
apartado anterior CompileThreshold=1000, UseConcMarkSweepGC. Se ha obtenido
las siguientes trazas del recolector de basura durante 60 minutos de ejecucion de COSME,
como se puede apreciar en la Tabla 10.

Memoria ocupada antes del Memoria ocupada después Tiempo dedicado a la
GC (Kb) del GC (Kb) recoleccion (s)
8832 833 0,0827640
9665 795 0,0719320
9627 793 0,0433940
9625 793 0,0230970
9625 794 0,0205180

Tabla 10: Trazas GC

Se ha elegido 32 Mb por aumentar el tamafo del heap, ya por defecto la JVM le asigna 6,75
Mb.

Heap de 6,75 Mb

Con un tamafio de heap de 6,75 megabytes, que es que la JVM asigna por defecto en
la Raspberry, y con los pardmetros mds Optimos para ejecutar la Pasarela
CompileThreshold=100, UseSerialGC. Se ha obtenido un nimero elevado de trazas
que en el apartado anterior por lo que se ha decido colocarlas en el Anexo 3 en el fichero
TrazasGC.txt.

Analisis de los resultados

Comparando las trazas del recolector de basura entre una ejecucidn con el tamaiio del
heap por defecto, 6,75 megabytes, y otra con 32 megabytes, se puede observar que el
recolector de basura se ejecuta obviamente menos veces con un tamano de heap mayor pero
tarda mas tiempo en cada recogida.

Con el tamafo de heap por defecto, 6,75 megabytes, el tiempo medio de cada entrada del
recolector de basura es de 21,56 ms. Entrando en 30 minutos 48 veces.

30

Con el tamano del heap de 32 megabytes, el tiempo medio de cada ejecucién del recolector de
basura es de 41,45 ms. Ejecutdndose en 30 minutos 5 veces. Como se puede apreciar en la
Tabla 11.

Tamanio del heap (Mb) Ejecuciones del GC Tiempo medio por
entrada (ms)
6,75 48 21,56
32 5 41,45

Tabla 11: Ejecuciones del GC segun tamafio del geap

En este proyecto hay requisitos de tiempo real, por lo que lo mds éptimo es que el recolector
de basura entre mas veces pero poco tiempo. Por lo tanto, el tamafo del heap conviene que
sea ajustado al requerimiento de memoria de la Pasarela.

31

3.2. Medidas de los tiempos de ejecucion de la “funcién
normal”

El propodsito de estas medidas es probar si los diferentes tipos de recolectores de
basura afectan al tiempo de ejecucion de la “funcidén normal”. Para ello se ha ejecutado
durante 60 minutos con cada recolector.

Los datos se corresponden al archivo del Anexo 4: Prueba con diferentes GC el RT.txt

3.2.1 Pruebas

Las pruebas se han realizado ejecutando COSME, con la aplicacién sintética Sumador
Distribuido, durante 60 minutos con cada politica de recoleccion de basura y utilizando la
aplicaciéon MiniBlas para obtener el tiempo méaximo y minimo de ejecucién de la “funcién
normal”.

MiniBlas es una aplicacion que permite consultar y modificar el valor de las variables de la
aplicacion que se ejecuta en COSME.

Los tiempos de ciclo se han configurado de la siguiente manera:

10 ms
50 ms

e SISTEMA.tiempo ciclo ms
e SISTEMA.tciclo E CYCLE

Para generar cargaen la “funcién normal” se haintroducido un bucle que calcula n senos
de una variable. Las iteraciones de este bucle se controlan con la Vvariable:
sumador.num_senos_ RT.

A continuaciéon en el siguiente grafico se puede observar el tiempo maximo y minimo de la
“funcién normal” para cada politica de recoleccién de basura.

12

10

Tiempo (ms)
o))

B tmax
4 .
H tmin
2
0
Serie Concurrente Paralelo Paralelo
compactador

Politica de recoleccion de basura

Gréfico 1: Tiempos de ejecucion “funcién normal”

32

3.2.2 Analisis de los resultados
En el Grafico 1, se puede ver que los resultados son practicamente iguales, esto quiere
decir que el tipo de recolector de basura no afecta al tiempo de ejecucion de la “funcidn

normal”.

3.3. Medidas de los tiempos de ejecucion de la secuencia
distribuida COSME

El propodsito de estas pruebas es ver como afecta el tiempo de ejecucidon de la
“funcidén normal” al tiempo de ejecucién de COSME distribuido en la plataforma de
pruebas. Teniendo en cuenta que la “funcidén normal” se ejecuta bajo la restriccidon de
tiempo real. Cada prueba se ha ejecutado durante 60 minutos.

Los datos se corresponden a los archivos del Anexo 5.

3.3.1 Pruebas

Las pruebas han consistido en ejecutar COSME en modo distribuido, para medir el
tiempo desde que el telegrama exec seq sale de la Raspberryl pasa por las Raspberry2, 3y
4 hasta que llega de nuevo a la Raspberryl. Aplicando diferentes niveles de carga en la
“funcién normal” de la Raspberry2 utilizando la variable sumador.num senos RT,
explicada en el apartado anterior. Con un tiempo SISTEMA.tciclo E CYCLE de 500 ms.

En el siguiente grafico se puede observar los tiempos obtenidos con los diferentes niveles de

carga.
90
80
70
. 60
(7]
E5
o
£ 40
o B tmedio
F 30
20
10
0
0 5000 10000 13000
Nivel de carga: nimero de senos

Grafico 2: Tiempos de ejecucion COSME distribuido

33

3.3.2 Analisis de los resultados

Se puede apreciar en el Grafico 2, que obviamente cuanta mds carga de trabajo hay en
la “funcidén normal” mas tarda en ejecutarse un ciclo completo de la aplicacion Sumador
Distribuido. Porque dicha funcién tienen mas prioridad, al ejecutarse bajo la restriccién de
tiempo real.

Si el tiempo de ejecucion de la “funcidén normal” fuera igual o superior al tiempo de ciclo
de la misma, el procesador solo podria dedicar tiempo a ejecutar esta funcidn. Ya que al ser
periddica la diferencia entre el tiempo de ejecucion y el tiempo de ciclo de la misma es el
tiempo que el procesador puede dedicar a otros procesos.

34

3.4. Medidas de latencia de red

El propésito de estas pruebas es sobrecargar el switch y configurar de manera
diferente la Calidad de Servicio para observar como varia la latencia de red entre las
Raspberrys.

Cada configuracidon del switch se ha ejecutado durante 5 minutos con un tiempo de ciclo,
SISTEMA.tciclo E CYCLE, de 50 ms. Con lo que se han obtenido unas 5900 muestras.

Los datos se corresponden a los archivos del Anexo 6:

3.4.1. Pruebas

Las pruebas se han realizado conectando al switch cuatro PCs para intercambiar dos
archivos entre ellos, de 20 GB cada uno, el PC1 se intercambia la informacién con el PC2 y el
PC3 con el PCA4.

A su vez la Raspberryl y la Raspberry4 ejecutan la aplicacién sintética, Sumador Distribuido,
para determinar la latencia entre las dos. La Raspberryl medira el tiempo desde que envia el
telegrama exec seq a la Raspberry4 hasta que la Raspberry4 le responda con el telegrama

escribir.

La Raspberry4 medird el tiempo que le cuesta ejecutarse desde que recibe el telegrama de la
Raspberryl hasta que le responde.

Posteriormente a los tiempos medidos por la Raspberryl se le restardn los tiempos medidos
por la Raspberry4, todo esto dividido entre 2, asi se obtendra la latencia de la red. De la cual
se calculard la media, desviacién tipica y el valor menos desfavorable al 95% y al 100%.

El criterio de clasificacién para determinar la configuracién éptima del switch, se establecido
en primer lugar por el menor valor del 95%, en segundo lugar por el menor valor de la mediay
en tercer lugar por el menor valor de la desviacion tipica.

A continuacion, en la Figura 13, se describe la conexiéon de los puertos del switch.

1 PC1
2 P2
3 PC3
PCa
5 Raspid me

] Transferencia de 20 GB

] Transferencia de 20 GB

Switch

6 Raspi3
7 Raspi2

MiniCosme

o

=

i

o

%]
B

g8 Raspil me

Figura 13: Esquema de conexiones del switch

35

Las siguientes pruebas se han realizado con la QoS basada en los puertos y con los modos de
encolar los paquetes, Prioridad Estricta y WRR.

Prioridad Estricta y QoS basada en los puertos, configuraciones:
QoS se ha configurado basada en los puertos y el modo de cola con prioridad estricta.

1. QoS desactivada y sin carga para el switch

Esta prueba, se ha realizado con la QoS desactivada y sin trafico de datos en los puertos 1, 2, 3
y 4 del switch.

2. QoS desactivada y con carga para el switch

Esta prueba, se ha realizado con la QoS desactivada y con trafico de datos en los puertos 1, 2, 3
y 4 para sobrecargar el switch.

3. QoS activada y con carga para el switch

Esta prueba, se ha realizado con la QoS activada dando prioridad high, la mas alta, a los
puertos conectados a las Raspberrys, y con trafico de datos en los puertos 1, 2, 3 y 4 para
sobrecargar el switch.

4. QoS activada y sin carga para el switch

Esta prueba, se ha realizado con la QoS activada dando prioridad high, la mas alta, a los
puertos conectados a las Raspberrys, y sin trafico de datos en los puertos 1, 2, 3 y 4.

Configuraciones Switch Media Desviacidén Tipica 95% 100%
1-QoS desactivada y sin carga 1,11 1,61 2,47 29,18
2-QoS desactivada y con carga 0,59 1,61 3,04 20,11
3-QoS activada y con carga 0,51 1,05 2,88 30,13
4-QoS activada y sin carga 1,07 1,45 2,36 25.18

Tabla 12: Latencias de red con Prioridad Estricta (valores en ms)

En la Tabla 12, se puede observar que comparando el valor al 95% de la configuracién con la
QoS activada y con carga en el switch con la configuracion con la QoS desactivada y con carga
en el switch, se obtiene un mejor resultado activando la QoS, 2,88 ms frente a los 3,04 ms
respectivamente. Esto supone una mejora del 5,26 %.

Comparando de nuevo el valor al 95% de la configuracidn con la QoS activada y sin carga en el
switch con la configuracidn con la QoS desactivada y sin carga en el switch, se obtiene también

36

un mejor resultado activando la QoS, 2,36 ms frente a los 2,47 ms respectivamente. Esto
supone una mejora del 4,45 %.

WRRy QoS basada en los puertos, configuraciones:

QoS se ha configurado basada en los puertos y el modo de cola con WRR. Asignando
los pesos 1, 1, 2 y 4 a las colas low, normal, médium y high respetivamente. Es decir, la cola
high estara cuatro veces mas tiempo transmitiendo paquetes que la cola low.

1. QoS desactivada y sin carga para el switch

Esta prueba, se ha realizado con la QoS desactivada y sin trafico de datos en los puertos 1, 2, 3
y 4 del switch.

2. QoS desactivada y con carga para el switch

Esta prueba, se ha realizado con la QoS desactivada y con tréfico de datos en los puertos 1, 2, 3
y 4 para sobrecargar el switch.

3. QoS activada y con carga para el switch

Esta prueba, se ha realizado con la QoS activada dando prioridad high, la mas alta, a los
puertos conectados a las Raspberrys, y con trafico de datos en los puertos 1, 2, 3 y 4 para
sobrecargar el switch.

4. QoS activada y sin carga para el switch

Esta prueba, se ha realizado con la QoS activada dando prioridad high, la mas alta, a los
puertos conectados a las Raspberrys, y sin trafico de datos en los puertos 1, 2, 3y 4.

Configuraciones Switch Media Desviacidon Tipica 95% 100%
1-QoS desactivada y sin carga 1,11 1,61 2,47 29,18
2-QoS desactivada y con carga 0,58 1,48 3,09 19,93
3-QoS activada y con carga 0,5 1,37 2,5 14,86
4-QoS activada y sin carga 0,97 1,10 1,73 17,07

Tabla 13: Latencias de red con WRR (valores en ms)

En la Tabla tal, se puede observar que comparando el valor al 95% de la configuracién con la
QoS activada y con carga en el switch con la configuracion con la QoS desactivada y con carga
en el switch, se obtiene un mejor resultado activando la QoS, 2,5 ms frente a los 3,09 ms
respectivamente. Esto supone una mejora del 19,09 %.

37

Comparando de nuevo el valor al 95% de la configuracién con la QoS activada y sin carga en el
switch con la configuracidn con la QoS desactivada y sin carga en el switch, se obtiene también
un mejor resultado activando la QoS, 1,73 ms frente a los 2,47 ms respectivamente. Esto
supone una mejora del 29,96 %.

3.4.2. Analisis de los resultados

El peor resultado al 95% se obtiene con la QoS desactivada y con carga, ya que el
switch tiene que dedicar mds tiempo a procesar los paquetes de los puertos con mayor trafico.
Activando la calidad de servicio se consigue un mejor resultado porque los puertos donde
estdn conectadas las Raspberrys tienen mas prioridad sobre los demas.

Comparando los dos modos de encolar los paquetes, Prioridad Estricta y WRR, se ha obtenido
un mejor resultado al 95% con WRR tanto con carga como sin carga en el switch. Ademas este
modo evita el problema de inanicién en los puertos.

Con la QoS activada y el modo de encolar los paquetes WRR se consigue una mejora del 19,09
con carga el switch y del 29,96 sin carga.

En conclusidn, la QoS se tendrd que activar y configurar con mas prioridad los puertos donde
estén conectadas las Raspberrys. El modo en el que se tratan las colas de paquetes se tendra
gue configurar a WRR.

38

3.5 Profiling sobre la Pasarela

El objetivo de esta prueba es usar la herramienta Profiler de Netbeans 8.0.1, para
detectar anomalias, como por ejemplo cuellos de botella, creacidén excesiva de objetos, etc. Y
llevar a cabo las pertinentes optimizaciones.

Esta prueba sea ha realizado durante 60 minutos sobre la ejecucién de la aplicacidn sintética
Sumador Distribuido con un tiempo de ciclo, SISTEMA.tciclo E CYCLE, de 1000 ms.

El profiling se ha llevado a cabo sobre dos pates; sobre la memoria y sobre la CPU de la
Pasarela.

Estos datos corresponden a los archivos del Anexo 7.

3.5.1 Memoria
Con el profiling de la memoria se desea obtener si el nUumero de objetos creados es el
adecuado. En la siguiente tabla se pueden observar los resultados:

Class Mame - Live Allocated Ohjects Total Alloc. Obj. +

gta.cosme.common. ListaVariables 25.173
gta.cosme.gateway. Telegram 16,209
gta.cosme.gateway. TelegramTokenizer 16,209
gta.cosme.common. ItemVariable 12,597

[}
i

gta.cosme.gateway. TelegramTypes
gta.cosme.gateway. loader, ExecSeguencellame
gta.cosme.gateway. AccessLevels
gta.cosme.gateway. loader, TtemConnection
gta.cosme.gateway. loader. FontaneroXML
gta.cosme.gateway, FIFOListener
gta.cosme.gateway. TelegramTypes[]
gta.cosme.gateway. loader. AppInfo
gta.cosme.gateway.loader. ApplLoader
gta.cosme.gateway. loader, ExecSeguenceName[]
gta.cosme.gateway.loader, FBN_Info
gta.cosme.gateway. loader, TkemExecSequencelnfo
gta.cosme.gateway. loader. TtemInstance
gta.cosme.gateway. loader,. ItemProperty
gta.cosme.gateway. ExecseqController
gta.cosme.gateway. AccessLevels]]
gta.cosme.gateway. Gatera

gta.cosme.gateway. GateraClient
gta.cosme.gateway. PasarelaAlta
gta.cosme.gateway. PasarelaAltasi
gta.cosme.gateway. RTPartner

[i e e e e e e e el el e e et e B B % N N AT R 5}

gta.cosme.gateway. RemoteConnectionsLauncher

Tabla 11: Profiling sobre la memoria utilizada por la Pasarela

39

En la Tabla 14 se puede ver que el nimero de objetos creados durante 60 minutos de
ejecucion.

De la clase PasarelaAlta y de la clase RTPartner se crea un solo objeto, los cuales
concuerdan con el valor tedrico.

Los objetos creados de la clase FIFOListener, 2 en total, también concuerdan. Uno para
la FIFO de escritura en el runtime de COSME y otro para la lectura.

De la clase GateraClient solo se crea un objeto porque solo hay una Raspberry
conectada.

De la clase Telegram se crean 16209 objetos. Este nimero de objetos no concuerda con
el valor tedrico:

e Laduracién de la prueba es de 60 minutos.

e Serecibe un telegrama exec seq cada segundo, es decir, se reciben 3600, mas el
eco que genera el runtime de cada uno, 7200.

e De cada telegrama exec seq el runtime manda a la Pasarela un telegrama
publish, en total 3600 telegramas.

e Del telegrama ping, se recibe uno cada dos segundos, 1800 telegramas, mas el eco
que genera el runtime de cada uno, 3600.

e Entotal 7200 + 3600 + 3600 = 14400 valor tedrico de objetos Telegram creados.

El valor tedrico, 14400 objetos Telegram, no concuerda con el valor real medido 16209.
Por lo tanto, se estan creando telegramas de mas, en concreto 16209 - 14400 = 1809
telegramas.

Tras concluir que el valor tedrico y el real no concuerdan, se procede a examinar el codigo
fuente para encontrar el error:

e El método GateraClient.escucharTelegrama () lee un String del Socket y
crea un objeto Telegram, como la duracién de la prueba es de 60 minutos, se
crean 3600 para el telegrama exec_seqy 1800 para el ping.

e A continuaciéon si es un telegrama para la Pasarela llama al método
PasarelaAlta.escribirTelegrama (String txt)donde recibe un String
y vuelve a crear otro objeto telegrama, como la duracién de la prueba es de 60
minutos se crean 1800 para el telegrama ping, para después invocar al método
PasarelaAlta.escribirTelegrama (Telegrama tlg) que escribe el
telegrama en la FIFO. Por lo tanto cuando se recibe el telegrama ping se crean dos
telegramas del mismo String.

e Al leer de la FIFO con el método PasarelaAlLta.leerTelegrama (String
_txt)se crea otro objeto telegrama, como la duracién de la prueba es de 60
minutos se crean 3600 objetos para el telegrama publish, 1800 para el eco del
telegrama pingy 3600 para el eco del telegrama exec seq.

40

Si se suman los telegramas creados 3600(exec seq) + 1800(ping) + 1800(ping) +
3600(publish) + 1800(eco ping) + 3600(eco esec seq) = 16200 objetos Telegram. Este
valor 16200 es muy cercano al valor real medido por el profiler 16209.

El error se produce porque se duplican los objetos telegrama de tipo ping, por lo tanto el
valor tedrico y real no concuerda.

El error se corrige llamando al método PasarelaAlta.escribirTelegrama
(Telegrama _tlg) en vez de al método PasarelaAlta.escribirTelegrama
(String txt) desde GateraClient.escucharTelegrama () cuando llega un
telegrama para la Pasarela.

Optimizaciones

Dado que en las clases Telegramy TelegramTokenizer se emplean numerosos
objetos de tipo String. Una optimizacidon que se puede llevar a cabo es sustituir los objetos
String por StringBuffer. Porque a la hora concatenar dos String con el operador
suma, se crea un nuevo String resultante, con lo que constantemente se esta creando
objetos nuevos. El objeto StringBuf fer permite concatenar dos cadenas de texto sin tener
que crear otro objeto, por lo tanto el uso de StringBuf fer es mas eficiente.

3.5.2 CPU

Con el profiling de la CPU se desea averiguar si existe algun cuello de botella en el
codigo. Detectar cudles son los métodos que mas veces se ejecutan para poder optimizarlos.
En la siguiente tabla se muestran los resultados obtenidos:

41

Hot Spots - Method Self Time (CPU) +

gta.cosme. gateway. Telegram. <inits (String] 45,7 ms
gta.cosme.gateway . RTPartner. run 45,0 ms
gta.cosme. common, ListaVariables, <inits [26,6 ms
gta.cosme. gateway. Gatera. aceptarConexiones | 25,6 ms
gta.cosme.gateway.Gatera. arrancarProyecto 24,8 ms
gta.cosme.gateway.PasarelaAlta. escribirTelegrama (ota. e, v Telegram) 23,7 ms
gta.cosme.gateway.loader. Apploader. initApplication (String, String) 23,2 ms
gta.cosme.gateway.PasarelaAlta. leerTelegrama (String) 22,8 ms
gta.cosme.gateway. TelegramCreator. getTly__execSequence (gta.cosme.gateway. loader .E 20,5 ms
gta.cosme. gateway. TelegramTypes. <clinit> 16,5 ms
gta.cosme.gateway.loader. [temExecSequencelnfo. <inits [) 14,8 ms
gta.cosme.gateway . RTPartner. <imit> (gta.cosme.gateway. Gatera, String) 14,0 ms
gta.cosme.gateway.Gatera, <inits 12,9 ms
gta.cosme. gateway.loader. Apploader. loadRuntimePartners (String) 12,4 ms
gta.cosme. gateway.loader. [temInstance. setOrden (int) 10,2 ms
gta.cosme.gateway. TelegramTokenizer. nextToken [10,1 ms
gta.cosme. gateway. RemoteConnectionsLauncher. run) 8,52 ms
gta.cosme. common. Itemyariable. getlombre [8,27 ms
gta.cosme.gateway . RTPartner, publishOutputs (gta. cosme. gateway.loa 3 nceMal 7,95 ms
gta.cosme.common. ListaVariables. getlista [7,52 ms
gta.cosme. gateway.loader. AppLoader. initApplications | 7,29 ms
gta.cosme.gateway.GateraClient. <imits (gta.cosme.gateway.Gatera, java.io.BufferedReader, 5,93 ms
gta.cosme. common. ItemVarizble. getValor [5,46 ms
gta.cosme.gateway.loader. ExecSequenceMame. <clinit=> 4,41 ms
gta.cosme.gateway. TelegramTokenizer. <init> (String) 3,75 ms
gta.cosme. gateway . FIFOListener, run [2,37 ms
gta.cosme.gateway.Pasareladlta. escribirTelegrama (String 0,000 ms
nta.common. ¥ml XML CammanParser. boild Tees (nro. w30 dom . Mode! M1.000 ms

Tabla 12: Profiling sobre la CPU utlizada por la Pasarela

Tabla 15:

e Self Time (CPU): tiempo esperando en todas las invocaciones del método, excluyendo
las llamadas a métodos internos.

Optimizaciones

Se puede observar en la Tabla 15, que los métodos que mas tiempo han estado
ejecutdndose son el constructor de la clase Telegram y el método run de la clase
RTPartner. Por lo tanto, estos dos métodos son los candidatos a optimizar.

Telegram.<init> (String)

El constructor de la clase Telegram se encarga de obtener la informacién del String pasado
como parametro y es el objeto mas utilizado en la Pasarela. Por lo tanto, su optimizacion
beneficiaria al rendimiento.

Las posibles optimizaciones son las siguientes:

e Sustituir las sentencias if/else anidadas por un switch:

o Cddigo sin optimizar:

if (comando.equals (cesta)) {
}else if (comando.equals (publish)) {
}else if (comando.equals (exec seq)) {

o Cddigo optimizado:

switch (comando) {
case cesta:
case publish:
case exec_seq:

e Enviar el objeto entero Telegram para no tener que parsear Strings. Pero esto no es
recomendable ya que los Strings ofrecen mds posibilidades de conexidon entre
diferentes paradigmas de programacion.

RTPartner.run()

Este método solo se ejecuta una vez para conectar con otra Raspberry, por lo que no es
necesario optimizarlo.

3.5.3 Resultados de las optimizaciones

Una vez aplicada la optimizacién en la concatenacién de cadenas de texto con la clase
StringBuffer, corregida la duplicacion del telegrama ping y aplicada la optimizacién a
los if/else anidados, los tiempos obtenidos son los siguientes:

Optimizaciones Media Desviacidn Tipica 95% 100%
Sin optimizaciones 15,11 23,84 49,04 659,96
Con optimizaciones 15,13 23,86 49,03 650,82

Tabla 16: Tiempos de ejecucién Pasarela (valores en ms)

Como se puede observar en la Tabla 16, la optimizacién en la concatenacién de cadenas de
texto con la clase StringBuffer, la correccién en la duplicacién del telegrama ping vy la
optimizacion del constructor del método Telegram, no ha supuesto ninguna mejora en el
funcionamiento de la Pasarela. Esto puede ser debido a que el tiempo de parseo de un
telegrama es muy pequefio.

43

4. Correccion de errores en la Pasarela

Se ha encontrado un error en el cddigo de la Pasarela, concretamente en la clase
AppLoader en el método getNombreFromVariable (String variableName).

Este error se ha producido al eliminar los RtPartners anteriores a cada Raspberry, es decir, en
un primer momento cada Raspberry conocia a todas las Raspberrys de la red distribuida, pero
se decidié que cada Raspberry solo conociera la existencia de la Raspberry a la que enviaba
algun dato. Por ejemplo, en la plataforma de pruebas destina a este proyecto, la Raspberry 1
solo tiene la direccidon IP de la Raspberry 2, la Raspberry 2 de la Raspberry 3...

Este método se encarga de devolver el nombre del runtime a partir de una variable, pero
devuelve el nombre del runtime local si el nombre del runtime de la variable pasada como
pardmetro no esta en la hash de RTPartners (marcado en rojo en el cddigo). Asi mismo, como
en dicha hash no estdn todos los RTPartners se produce el error.

Cadigo con error:

// A partir del nombre de una variable, devuelve el nombre del runtime
private String getNombreRTFromVariable (String variableName) {

String runtimeName = ;

int primerPunto = variableName.indexOf('.'");

if (primerPunto > 0){
runtimeName= variableName.substring(0, primerPunto);

}

// si ese nombre de runtime no estd registrado en la hash, es
porque es una variable local. En ese caso el nombre que debe
devolverse es el del runtime local

if (this.gatera.getRTPartners() .get (runtimeName) == null) {

runtimeName = this.gatera.getAliasLocalRT()

}

return runtimeName;

Para corregir el error que se produce en la parte del cédigo anterior marcado en rojo, basta
con eliminar el condicional, por lo tanto el cédigo quedaria de la siguiente manera:

Cadigo sin error:

// A partir del nombre de una variable, devuelve el nombre del runtime
private String getNombreRTFromVariable (String variableName) {

String runtimeName = ;

int primerPunto = variableName.indexOf('.'");

if (primerPunto > 0){
runtimeName= variableName.substring(0, primerPunto);

}

return runtimeName;

44

5. Conclusiones

Tras haber analizado los resultado obtenidos con la aplicacién sintética Sumador
Distribuido en la plataforma de pruebas. En la Pasarela se ha obtenido una mejora en el
tiempo de ejecucion del 36,91% aplicando los parametros UseConcMarkSweepGC,
CompileThreshold=1000 alalJVM en la ejecucidn de la Pasarela.

Se ha detectado que los diferentes tipos de recolectores de basura de Java no afectan a la
ejecucién de la “funcidédn normal”, funcidn que se ejecuta bajo restriccion de tiempo real.
Pero el tiempo real si que afecta al tiempo de ejecucidn del ciclo distribuido, cuanto mas
tiempo dura la ejecucidn de la “funcién normal” mdas tiempo tarda en ejecutarse un ciclo
distribuido.

En lo que se refiere a las latencias de red, activando la QoS en el switch, dando mas prioridad a
los puertos donde se encuentran conectadas las Raspberrys y utlizando el modo de encolar los
paquetes WRR, se ha obtenido una mejora del 19,09 % cuando hay carga en el switch y del
29,96 % cuando no hay carga en el switch.

Con el profiling sobre la Pasarela se ha detectado una creacién de objetos andmala con el
telegrama ping. También se ha intentado optimizar el método mas usado, el constructor de
la clase Telegram y la concatenacion de cadenas de caracteres cambiando los objetos de
tipo String por StringBuffer. Pero esto no ha supuesto ninguna mejora en el tiempo de
ejecucioén de la Pasarela debido a que el tiempo de parseo de un telegrama es muy pequeiio.

Trabajo futuro

e Realizar las pruebas con una aplicacion sintética que creara mas carga de trabajo en
COSME.

e Realizar las pruebas con diferente topologia.
e Sustituir las Raspberrys por servidores con mayor capacidad de cémputo.

e Sustituir la comunicacién mediante cadenas de texto por el estdndar OPC-UA.

45

6. Agradecimientos

Quiero aprovechar estas lineas para agradecer a todas las personas que me han
ayudado y me han apoyado a lo largo de estos meses en mi proyecto fin de grado.

En primer lugar a mis directores de proyecto Carlos Cataldn Cantero y Félix Serna Fortea a
quienes me gustaria expresar mi agradecimiento por su tiempo y dedicacién para que este
proyecto saliese adelante.

En segundo lugar a mi familia y a mi novia por la confianza que han depositado en miy su gran
apoyo dia a dia, que siempre han sabido aconsejarme en los perores momentos.

Y por ultimo a mis companfieros de clase, de los cuales me llevo unos grandes amigos, que han
hecho que estos anos se hicieran mucho mas amenos.

46

7. Bibliografia

10.

11.

Raspberry Pi:

http://es.wikipedia.org/wiki/Raspberry Pi

Configuracion IP en Raspberry Pi:

http://www.electroensaimada.com/ip-estaacutetica.html

Parametros de la JVM HotSpot:

http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html

JVM HotSpot:

http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html

Memoria en la JVM HotSpot:

http://es.slideshare.net/luisdebello/administracin-de-memoria-en-java

http://www.slideshare.net/leonjchen/java-gc-javadeveloperdaytw

Memoria y recolectores de basura Java 7, tutorial de Oracle:

http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html

Java Ergonomics:

http://www.oracle.com/technetwork/java/ergo5-140223.html

Recolector de basura G1, video explicativo de Oracle:

https://www.youtube.com/watch?v=bhVzClk3-Q4

Recolector de basura G1:

http://www.infog.com/articles/G1-One-Garbage-Collector-To-Rule-Them-All

Explicacidn de las trazas del recolector de basura:

http://www.herongyang.com/JVM/Memory-PrintGCDetails-Garbage-Collection-
Logging.html

Manual switch Cisco SLM2008:

http://www.cisco.com/c/dam/en/us/td/docs/switches/lan/csbss/sIm2005 sIm2008/a

dministration/guide/SLM2008AG.pdf

47

http://es.wikipedia.org/wiki/Raspberry_Pi
http://www.electroensaimada.com/ip-estaacutetica.html
http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
http://es.slideshare.net/luisdebello/administracin-de-memoria-en-java
http://www.slideshare.net/leonjchen/java-gc-javadeveloperdaytw
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
http://www.oracle.com/technetwork/java/ergo5-140223.html
https://www.youtube.com/watch?v=bhVzCIk3-Q4
http://www.infoq.com/articles/G1-One-Garbage-Collector-To-Rule-Them-All
http://www.herongyang.com/JVM/Memory-PrintGCDetails-Garbage-Collection-Logging.html
http://www.herongyang.com/JVM/Memory-PrintGCDetails-Garbage-Collection-Logging.html
http://www.cisco.com/c/dam/en/us/td/docs/switches/lan/csbss/slm2005_slm2008/administration/guide/SLM2008AG.pdf
http://www.cisco.com/c/dam/en/us/td/docs/switches/lan/csbss/slm2005_slm2008/administration/guide/SLM2008AG.pdf

Anexos

Anexo 1: Clase Java para medir tiempos

La siguiente clase se ha implementado para poder medir tiempos en nanosegundos y
volcar los datos en un fichero de texto.

package gta.util;
public class LatencyMeter ({

private String id;
private long tInicio;

private long tmax = 0;

private long tmin = ;
private long sumatorio = 0;
private long numCiclos = 0;

public LatencyMeter (String id) {
this.id = id;
}

public void setStart(){
tInicio = System.nanoTime() ;

}

public void setStop () {
long t = System.nanoTime() - tInicio;
sumatorio = sumatorio + t;
numCiclos++;

if (t > tmax) {

tmax = t;
} else if (t < tmin) {
tmin = t;

}
}

public String toString() {
return id + \n + Tiempo min: + tmin + ns\n +
Tiempo medio: + (sumatorio/numCiclos) + ns\n +
Timepo max: + tmax + ns\n +
Num de muestras: <4+ numCiclos + \n +
Tiempo total: 4 sumatorio + ns\n;

Anexo 2: Shell script para ejecutar COSME periddicamente

El siguiente shell script se ha implementado para ejecutar de manera automatica
diferentes configuraciones de la JVM, especificadas en un fichero de texto, durante un periodo
de tiempo determinado.

#!/bin/bash
#Arranca COSME periddicamente con la configuracidén para la pasarela
determinada en el archivo configPasarelaJVM.txt

tiempoEnEjecucion=1800 f#segundos

while read line
do

#se introduce la configuracidén de la pasarela en el fichero
latencias.txt para saber cudl se ha usado
echo >> ../runtime/latencias.txt

#se elimina la Gltima linea de launchPasarela.sh
sed -1 'sd' ../runtime/launchPasarela.sh

#se aflade la nueva linea con la configuracidén para ejecutar la
Psarela
echo >> ../runtime/launchPasarela.sh

cosme start -v

sleep

cosme stop -v

sleep 10 #esperamos a que COSME termine

cat ../runtime/gc.txt >> ../runtime/latencias.txt
done < configPasarelaJVMOptimize.txt

49

Anexo 3: Medidas de los tiempos de ejecucion de COSME

Archivos con las medidas de los tiempos de ejecucién de los distintos tipos de
recolectores de basura y el umbral de compilacidn, de los distintos tipos de pardmetros de
rendimiento y de la variacidn del heap. Adjuntado en el CD.

- Directorio: Anexo 3.

Anexo 4: Medidas de los tiempos de la “funcion normal”

Archivo con los tiempos de ejecucién de la “funcién normal”, adjunto en el CD.

- Directorio: Anexo 4.

Anexo 5: Medidas del tiempo de ejecucion de COSME
Distribuido

Archivo con los tiempos de ejecucion de COSME Distribuido con diferentes cargas de

trabajoen la “funcién normal”, adjunto en el CD.

- Directorio: Anexo 5.

Anexo 6: Medidas de latencia de red en COSME Distribuido.

Archivo con los tiempos de latencia de red, adjunto en el CD.

-Directorio: Anexo 6.

Anexo 7: Medidas del profiling sobre COSME.

Archivo con los resultados del profiling sobre COSME, adjunto en el CD.

-Directorio: Anexo 7.

50

