

Análisis de prestaciones de un sistema de

control distribuido COSME

Autor

Julián Guillén Ros

Director

Carlos Catalán Cantero

Codirector

Félix Serna Fortea

Universidad de Zaragoza / Escuela Universitaria Politécnica de Teruel

 2015

 1

Análisis de prestaciones de un sistema de control

distribuido COSME

Resumen
El siguiente trabajo constituye un proyecto de análisis de prestaciones de un sistema

distribuido COSME.

COSME (COntrol System and Modeling Enviroment), es una plataforma software de control

industrial, basada en el estándar IEC 61499, que permite diseñar, construir y ejecutar

aplicaciones de control distribuido.

El objetivo es optimizar la parte referida a la comunicación de COSME en modo distribuido. En

la cual intervienen dos elementos, La Pasarela y la red. Para poder optimizar la Pasarela,

implementada en Java, es necesario realizar profiling sobre el código de la misma, conocer el

funcionamiento interno y las posibles configuraciones de la JVM (Java Virtual Machine). Para

poder optimizar la parte referida a la red se debe conocer que posibilidades ofrece en

términos de QoS (Quality of Service) el switch que la interconecta.

Las pruebas para determinar la configuración óptima tanto del switch como de la JVM se han

realizado sobre una plataforma de pruebas. Dicha plataforma está compuesta por cuatro

Raspberrys y un switch comunicados mediante una red Ethernet, donde cada Raspberry

ejecuta una aplicación COSME llamada Sumador Distribuido.

El estudio realizado en la plataforma de pruebas se ha enfocado a la JVM, al switch y al código

de la Pasarela. Las pruebas han consistido en la medición de los tiempos de ejecución y

profiling sobre COSME.

La JVM se ha ejecutado con diferentes configuraciones para determinar cuales ofrecen mejor

tiempo de ejecución. En cada configuración se ha elegido una política de recolección de

basura, un umbral de compilación y unos parámetros de rendimiento diferentes.

Se ha cambiado la política de recolección de basura en la JVM para determinar cómo afecta

cada una de ellas a la ͞función normal͟ de COSME ejecuta bajo restricciones de tiempo

real.

Se ha incrementado gradualmente la carga de trabajo en la ͞función normal͟, que se

ejecuta bajo tiempo real, para determinar cómo afecta al tiempo de ciclo de COSME

distribuido.

En la parte referida a la red, se ha configurado la QoS del switch para determinar cómo afecta

a la latencia de red. Las pruebas se han realizado con y sin carga de trabajo en el switch y

activando y desactivando la QoS en cada caso, dando más prioridad a los puertos dónde estén

conectadas las Raspberrys.

Con el progiling sobre el código de la Pasarela se ha determinado si existen cuellos de botella y

creación anómala de objetos, para a continuación aplicar las optimizaciones necesarias.

 2

Contenido
1. Introducción .. 4

1.1. Objetivos .. 4

1.2. Plataforma COSME ... 5

1.2.1 Runtime .. 6

1.2.2. Comunicación .. 6

1.3. Configuración de la ejecución de JVM ... 8

1.3.1. Gestión de la memoria en JVM ... 8

1.3.2. Parámetros relacionados con el GC .. 10

1.3.3. Parámetros relacionados con el rendimiento de la JVM .. 15

1.4. Configuración del switch .. 17

2. Plataforma de pruebas .. 18

2.1. Aplicación sintética .. 18

3. Análisis de prestaciones .. 20

3.1. Medidas de los tiempos de ejecución .. 20

3.1.1. Recolector de basura y umbral de compilación .. 21

3.1.2. Parámetros de rendimiento .. 27

3.1.3. Tamaño del heap ... 30

ϯ.Ϯ. Medidas de los tieŵpos de ejeĐuĐióŶ de la ͞función normal” 32

3.2.1 Pruebas ... 32

3.2.2 Análisis de los resultados ... 33

3.3. Medidas de los tiempos de ejecución de la secuencia distribuida COSME 33

3.3.1 Pruebas ... 33

3.3.2 Análisis de los resultados ... 34

3.4. Medidas de latencia de red .. 35

3.4.1. Pruebas .. 35

3.4.2. Análisis de los resultados .. 38

3.5 Profiling sobre la Pasarela ... 39

3.5.1 Memoria ... 39

3.5.2 CPU ... 41

3.5.3 Resultados de las optimizaciones... 43

4. Corrección de errores en la Pasarela .. 44

 3

5. Conclusiones.. 45

6. Agradecimientos ... 46

7. Bibliografía .. 47

Anexos ... 48

Anexo 1: Clase Java para medir tiempos ... 48

Anexo 2: Shell script para ejecutar COSME periódicamente .. 49

Anexo 3: Medidas de los tiempos de ejecución de COSME .. 50

AŶeǆo ϰ: Medidas de los tieŵpos de la ͞fuŶĐióŶ Ŷorŵal͟ ... 50

Anexo 5: Medidas del tiempo de ejecución de COSME Distribuido 50

Anexo 6: Medidas de latencia de red en COSME Distribuido. .. 50

Anexo 7: Medidas del profiling sobre COSME.. 50

 4

1. Introducción

1.1. Objetivos

Objetivo general:

Analizar y optimizar las diferentes partes de un sistema distribuido COSME, donde el

aspecto relevante es la comunicación.

Objetivos específicos:

1. Entender el funcionamiento de un sistema distribuido COSME.

2. Poner en marcha un sistema distribuido COSME.

3. Entender los diferentes tipos de recolectores de basura de la JVM de Java.

a. Diseñar y realizar las pruebas para determinar que recolector de basura es el

más óptimo.

4. Entender los diferentes tipos de parámetros de rendimiento de la JVM de Java.

a. Diseñar y realizar las pruebas para determinar que parámetros de rendimiento

son los más óptimos.

5. Determinar cómo los diferentes tipos de recolectores de basura afectan al tiempo de

ejecución de la ͞función normal͟ de COSME.

6. Determinar como el tiempo de ejecución de la ͞función normal͟ de COSME

afecta al tiempo de ejecución del ciclo distribuido.

7. Determinar la configuración óptima del switch para tener un tiempo de latencia de red

mínimo y estable.

8. Realizar profiling sobre COSME para detectar cuellos de botella y anomalías en la

creación de objetos.

 5

1.2. Plataforma COSME
COSME (COntrol System and Modeling Enviroment), es una plataforma software de

control industrial desarrollada en la EUPT, basada en el estándar IEC 61499, que permite

diseñar, construir y ejecutar aplicaciones de control distribuido.

COSME está basada en redes de bloques funcionales (FB), cada bloque representa un tipo de

componente tanto software como hardware.

Los FB permiten separar las diferentes partes de una aplicación y así poder reutilizarlos. En la

Figura 1, se puede apreciar la estructura de un bloque funcional.

Figura 1: Bloque Funcional (FB)

Los bloques se agrupan formando redes, y se ejecutan según la secuencia definida por el

diseñador, Figura 2.

Figura 2: Orden de ejecución de los FB

COSME se puede dividir en dos partes, la parte de runtime y la parte de comunicación.

 6

1.2.1 Runtime

 El runtime está implementado en C y se encarga de ejecutar de forma periódica las

funciones de cada FB.

Un FB está compuesto básicamente por n entradas, n salidas, y cuatro funciones; ͞función
normal, función normal NoRT, función inicializa y función

finaliza͟.

La ͞función normal” es una función periódica que se ejecuta bajo la restricción de tiempo

real, es decir, cuando esta función tenga el turno para ejecutarse tendrá prioridad sobre todas

las demás funciones. Hasta que la función no termine, el sistema operativo no podrá dedicar

tiempo a otros procesos. El ciclo de ejecución de esta función se especifica con la variable

SISTEMA.tiempo_ciclo_ms.

La ͞función normal NoRT” es también una función periódica pero no se ejecuta en

tiempo real por lo tanto tiene menos prioridad que la ͞función normal͟. El tiempo de

periodo se determina con la variable SISTEMA.tciclo_E_CYCLE.

La ͞función inicializa” se ejecutan un sola vez una al inicio de la aplicación y la

͞función finaliza” al final de la misma.

El runtime también se encarga de enviar a la Pasarela el valor de las variables que el diseñador

de aplicaciones COSME ha definido. Estas variables pueden ser agrupadas en lo que se

denomina Cestas, con un periodo de refresco determinado.

1.2.2. Comunicación
La comunicación en COSME se realiza a través de cadenas de texto, llamados Telegramas,

con una nomenclatura concreta. Para que COSME pueda trabajar de modo distribuido, se

necesitan dos Telegramas:

 Publish: es enviado por el runtime a la Pasarela para comunicarle que las variables

que lo componen son para la siguiente Raspberry.

 Exec_seq: es enviado por la Pasarela a la siguiente Raspberry con las variables del

Telegrama publish. Cuando la Raspberry recibe este telegrama comienza la

ejecución de la ͞función normal NoRT͟.

En la Figura 3, se puede observar una secuencia distribuida de COSME.

 7

Figura 3: Comunicación en COSME distribuido

En la comunicación de COSME intervienen dos elementos, la Pasarela y la red.

Pasarela

La Pasarela está implementada en Java, se encarga de comunicar el runtime con el

exterior y viceversa, a través de dos FIFOS, una de escritura y otra de lectura.

La Pasarela acepta y establece conexiones, a través de la librería Arcadio, bien con otras

instancias de COSME o bien con otros clientes Arcadio. Además de gestionar los Telegramas

entre ellos y el runtime.

La librería Arcadio se encarga del envío y la recepción de Telegramas, además de mantener

activa la conexión mediante el envío periódico de un Telegrama de tipo ping.

Las posibles optimizaciones a realizar pueden ir referidas al código en sí de la Pasarela o a la

JVM.

 Si son referidas al código de la Pasarela, se utilizará la herramienta Profiler de

NetBeans para detectar cuellos de botella o creación anómala de objetos.

 Si son referidas a la JVM, se deberá conocer el funcionamiento de la JVM (cómo está

distribuida la memoria, las diferentes políticas del recolector de basura y los

parámetros de JVM). Tal funcionamiento se explica en el apartado 1.4. Gestión de los

parámetros de la JVM.

Red

Se trata de una red Ethernet interconectada mediante un switch. Con el objetivo de

optimizar el funcionamiento del switch, se debe conocer que posibilidades ofrece en términos

de QoS (Quality of Service). En el apartado 1.4. Configuración del switch se explica más en

detalle esta característica.

 8

1.3. Configuración de la ejecución de JVM
La configuración de la JVM se gestiona a partir de los parámetros que se le indican al

ejecutarla. De estos parámetros dependerá el rendimiento final. Los parámetros pueden ir

relacionados con la asignación de memoria, con el garbage collector o con el rendimiento.

1.3.1. Gestión de la memoria en JVM

El heap es la zona de memoria dinámica que almacena los objetos que se crean, en un

principio tiene un tamaño fijo asignado por la JVM, pero según sea necesario se va añadiendo

más espacio. Está dividido en tres partes Young Generation, Old Generation y Permanent

Generation, como se puede apreciar en la Figura 4:

Figura 4: Estructura del heap en HotSpot

 Young Generation:

o Eden Space: Esta es el área inicial donde se inicializan la mayoría de los

objetos.

o Survivor Space: En esta área se almacenan los objetos que han sobrevivido a la

recolección de basura en el Eden. En general esta área está dividida en dos

partes From y To.

 Old Generation:

o Tenured Space: Contiene los objetos que han existido por un largo tiempo y

que han pasado por el Survivor Space.

 Permanent Generation: contiene metadatos requeridos por la JVM para describir las

clases y métodos utilizados en la aplicación. El espacio Permanent es rellenado por la

JVM en tiempo de ejecución basándose en las clases que hay en uso por la aplicación.

Cuando se crea un objeto nuevo en Java con la instrucción new, éste inicialmente se encuentra

en el espacio Eden. Conforme se van ejecutando varios ciclos de recolección de basura o se van

creando nuevos objetos, éstos van migrando a través de los espacios de supervivencia,

Survivor Spaces. Los objetos que sobreviven pasan al espacio Tenured Space.

 9

El espacio Tenured se utiliza para almacenar objetos que han sobrevivido durante un periodo

de tiempo largo. Eventualmente este espacio necesita ser recogido por el recolector de basura.

Parámetros de gestión de memoria en JVM

El tamaño de cada zona de memoria es configurable por el usuario, en la Figura 5, se

puede apreciar el parámetro específico para cada zona.

Figura 5: Parámetros de configuración de las zonas de memoria en JVM

Xms y Xmx:

Indican el tamaño mínimo y máximo del heap, ejemplo:

 -Xms1024M. Tamaño mínimo del heap en 1024 MB.

 -Xmx1800M. Tamaño máximo del heap en 1800MB.

NewSize y MaxNewSize

Indican el tamaño mínimo y máximo de la zona Young Generation, ejemplo:

 -XX:NewSize=128M. Tamaño mínimo de la zona Young Generation.

 -XX:MaxNewSize=256M. Tamaño máximo de la zona Young Generation.

PermSize y MaxPermSize

Indican el tamaño mínimo y máximo de la zona Permanent Generation, ejemplo:

 -XX:PermSize=128M. Tamaño mínimo de la zona Permanent Generation.

 -XX:MaxPermSize=256M. Tamaño máximo de la zona Permanent Generation.

SurvivorRatio

Indica el ratio entre Eden y Survivor, ejemplo:

 -XX:SurvivorRatio=3

TargetSurvivorRatio

Indica que porcentaje se puede llenar la zona Survivor antes de mover a Old Generation,

ejemplo:

 -XX:TargetSurvivorRatio=50

 10

1.3.2. Parámetros relacionados con el GC

El recolector de basura, del inglés garbage collector, es un proceso automático de baja

prioridad que se ejecuta dentro de la JVM. Se encarga de limpiar aquella memoria del heap

que ya no se utiliza y por tanto, podría ser utilizada por otros programas. Un objeto podrá ser

borrado cuando no sea referenciado por otro.

Desde una aplicación Java se puede invocar al recolector de basura con System.gc, pero

esto no es aconsejable porque cada recolector tiene su propia política y podría afectar al

rendimiento de la aplicación. Se puede deshabilitar las llamadas explicitas al recolector de

basura con el siguiente parámetro de JVM, -XX:-DisableExplicitGC.

Para saber cuándo se ejecuta el GC se debe utilizar el parámetro -Xloggc:gc.txt al

ejecutar la aplicación Java. Este parámetro guarda información sobre la ejecución del

recolector de basura en el fichero gc.txt.

Existen dos tipos de recolecciones de basura:

 Recolección de basura menor: se ejecuta cuando se llena la zona Eden o antes de

incrementar su espacio.

 Recolección de basura mayor o completa: se ejecuta cuando se llena la zona Tenured

o antes de incrementar su espacio.

Políticas de funcionamiento del garbage collector

Existen cuatro políticas de garbage collectors en Java 7.0:

 Serie

 Paralela

 Concurrente

 Garbage-First (G1)

Serie

La política serie está diseñada para aplicaciones que requieran un heap de hasta

100MB, en equipos con un solo procesador. Esta política es la que utiliza por defecto la JVM en

las Raspberrys.

Corre en un solo hilo y usa el algoritmo de Copia. Cuando se ejecuta para limpiar la

memoria la pausa que realiza es del tipo STW (Stop The World), es decir, toda la aplicación se

paraliza y no se reactiva hasta que el recolector acaba, como se puede ver en la Figura 6.

Esta política se habilita con la opción de la JVM, -XX:+UseSerialGC. Se puede utilizar

desde la versión de Java 5.0

 11

Figura 6: Política de recolección de basura serie

Paralela

La política paralela corre en múltiples hilos y las pausas que realiza son del tipo STW, es

decir, toda la aplicación se paraliza.

Esta política se habilita con la opción de la JVM -XX:+UseParallelGC.

En una máquina con N procesadores la política paralela utiliza N hilos para recolectar la

basura. Sin embargo, este número se puede ajustar con la opción

-XX:ParallelGCThreads=n.

Con el comando -XX:+UseParallelGC, la política de recolección no compacta la memoria

pero se puede activar con la opción -XX:+UseParallelOldGC. Esta opción está

disponible desde la versión: 1.4.1

 12

Figura 7: Política de recolección paralela

En la Figura 7, se puede observar cómo el recolector de basura corre en varios hilos y las

pausas que realiza son del tipo STW.

Concurrente

La política concurrente está diseñada para aplicaciones que precisen pausas más

cortas en la recolección de basura y que corren en máquinas con dos o más procesadores.

Esta política se habilita con la opción de la JVM, -XX:+UseConcMarkSweepGC, disponible

desde la versión: 1.4.1

Su funcionamiento es el siguiente:

1. Marcado inicial: En esta fase se produce una pequeña pausa del tipo STW, que paraliza

toda la aplicación, donde todos los objetos alcanzables (vivos) son marcados.

2. Marcado Concurrente: busca los objetos vivos mientras la aplicación se ejecuta en otro

hilo.

3. Remarcado: busca los objetos que no fueron encontrados durante la fase 2.

4. Barrido concurrente: elimina los objetos que son inalcanzables. Y no compacta los

objetos alcanzables.

5. Restablecimiento: se prepara para la siguiente ejecución limpiando las estructuras

usadas.

 13

Figura 8: Recolector de basura CMS

En la Figura 8, se puede observar el funcionamiento de la política de recolección concurrente.

Garbage-First G1

La política de recolección de basura de Garbage-First (G1) es la más reciente, diseñada

para reemplazar al recolector CMS. G1 es una política de estilo servidor, pensado para

máquinas multi-procesador con grandes cantidades de memoria.

Este recolector está disponible desde la versión 1.7.4 de Java.

G1 es un recolector compactador. Compactar es un proceso por el cual los objetos vivos se

mueven sobre la memoria libre hacia el final del heap de manera que se logra un área contigua

de memoria libre. Esto es importante para las aplicaciones que se ejecutan durante mucho

tiempo porque es inevitable que el heap se fragmente con el paso del tiempo. G1 evita los

potenciales problemas de la fragmentación.

 14

Figura 9: Distribución del heap con G1

El heap se divide en un conjunto de regiones de igual tamaño, cada una en un intervalo

contiguo de memoria virtual. Estos conjuntos de regiones usan el mismo sistema de

Generaciones que las anteriores políticas de recolección, pero no hay un tamaño fijo para

ellas. Esto proporciona una mayor flexibilidad en el uso de memoria. En la Figura 9, se puede

ver un ejemplo de la distribución de las Generaciones con el recolector G1.

 15

1.3.3. Parámetros relacionados con el rendimiento de la JVM

Server y Client

La JVM HotSpot incluye dos modos de ejecución, cliente y servidor. Las dos soluciones

comparten el código base de ejecución, pero utilizan diferentes compiladores que se adaptan a

las características de rendimiento de los clientes y servidores.

Aunque el modo servidor y el modo cliente son similares, cada uno es específico para un

propósito.

El modo servidor está diseñado para maximizar la velocidad de operación y destinado a la

ejecución de aplicaciones de servidor de larga duración. El compilador de este modo aplica al

código optimizaciones complejas, por eso la puesta en marcha de aplicaciones en modo

servidor requieren más tiempos y memoria.

Pero el parámetro –server no está disponible para la arquitectura ARMv6 que es la que está

implementada en las Raspberrys utilizadas para este proyecto. Solo está disponible para

versiones ARMv7+ por lo tanto no se puede hacer uso de él.

El modo cliente, al compilar el código no ejecuta optimizaciones complejas, por lo tanto se

requiere menos tiempo para analizar y compilar el código. Esto significa que la aplicación

cliente se puede poner en marcha más rápido y requiere un menor consumo de memoria.

El modo cliente es el que se ejecuta por defecto en las Raspberrys.

CompileThresHold

Java es independiente de la plataforma, significa que programas escritos en Java

pueden ejecutarse igualmente en cualquier tipo de hardware. De ahí proviene el famoso

eslogan write once, run anywhere.

En las versiones actuales de la JVM se ejecutan los programas combinando la interpretación de

bytecodes y la compilación JIT (Just-In-Time).

La JVM analiza bytecodes a medida que se van interpretando e identifica los bytecodes que se

ejecutan con más frecuencia. Estos bytecodes son traducidos a lenguaje máquina

correspondiente por el compilador JIT. Cuando la JVM encuentre de nuevo estos puntos

activos, ejecutará directamente el código máquina disminuyendo el tiempo de ejecución del

programa y aumentando el rendimiento.

En la JVM HotSpot, se puede definir el número de invocaciones antes de que un trozo de

código se compile al lenguaje máquina correspondiente. Ese número se define con el

parámetro CompileThreshold. Por defecto en aplicaciones cliente este parámetro tiene

un valor de 1500.

Ejemplo: java -XX:CompileThreshold=10000 –jar programa.java

http://en.wikipedia.org/wiki/en:Write_once,_run_anywhere

 16

AggressiveOpts

El parámetro AggressiveOpts, aplica las mejoras que se esperan sean por defecto

en siguientes versiones de la JVM. Introducido en la versión 5.0.

Ejemplo: java -XX:+AggressiveOpts –jar programa.java

UseFastAccessorMethods

El parámetro UseFastAccessorMethods, utiliza versiones optimizadas del

método get().

Ejemplo: java -XX:+UseFastAccessorMethods –jar programa.java

UseStringCache

El parámetro UseStringCache, permite el almacenamiento en caché de las

cadenas más usadas.

Ejemplo: java -XX:+UseStringCache –jar programa.java

UseCompressedStrings

El parámetro UseCompressedStrings, utiliza vectores de bytes, byte[], cuando

una cadena de texto, String, puede representarse como ASCII puro. Introducido en Java 6

update 21. Pero fue eliminado en la versión de Java 7.0, por lo tanto no se puede hacer uso de

él.

Ejemplo: java -XX:+UseCompressedStrings –jar programa.java

 17

1.4. Configuración del switch
 Una de las partes que intervienen en la comunicación de COSME es el switch. Con el

objetivo de optimizar este elemento hay que conocer que opciones ofrece el switch Cisco SLM

2008 en términos de QoS (Quality of Service). A continuación se describen las posibilidades de

configuración que presta.

La configuración de la QoS en el switch, consta de tres modos, basada en los puertos, en el

estándar 802.1p y en DSCP (Differentiated Services Code Point).

 Basada en los puertos: permite establecer cuatro niveles de prioridad, low, normal,

médium y high, para cada puerto. Siendo low la prioridad más baja y high la más alta.

 Estándar 802.1p: proporciona priorización de tráfico, por medio de 3 bits en el campo

prioridad de usuario (user_priority) de la cabecera IEEE 802.1Q, asignando a cada

paquete un nivel de prioridad entre 0 y 7. Solo puede ser soportado por una red LAN.

 DSCP: hace referencia al segundo byte en la cabecera de los paquetes IP que se utiliza

para diferenciar el nivel de servicio de cada paquete.

El modo de encolar los paquetes, es decir, la manera con la que le switch reparte los paquetes

por los diferentes puertos puede configurarse como Prioridad Estricta (Strict Priority) o WRR

(Weighted Round-Robin).

 Prioridad Estricta: transmite primero los paquetes de las colas con prioridad más alta

antes que las colas con prioridad menor.

 WRR: comparte le ancho de banda de los puertos de salida, usando varios pesos 1, 2, 4

y 8 asignados a 4 colas (low, normal, médium, high).

Este planificador envía paquetes de cada cola en turnos, siendo la cantidad en función

de los pesos configurados.

WRR previene de la inanición a la que podría dar lugar la Prioridad Estricta en los casos

en que a la cola de mayor prioridad llegara una gran cantidad de tráfico. Mediante este

planificador no existe el concepto de que una cola sea de mayor prioridad que otra,

todas las colas tienen ocasión de enviar paquetes aunque tengan un peso pequeño.

Para realizar las pruebas se ha elegido la QoS basada en los puertos, ya que en los demás

casos se requieren cabeceras adicionales en los datagramas.

 18

2. Plataforma de pruebas
El análisis de prestaciones se ha realizado sobre un entorno distribuido, consta de

cuatro ordenadores de placa reducida Raspberry Pi, de ahora en adelante Raspberry,

comunicados por una red Ethernet mediante un switch Cisco SLM2008.

El switch permanecerá conectado a un router, por donde se accederá a las Raspberrys desde el

ordenador con el que se supervisará el trabajo.

Figura 10: Plataforma de pruebas

En la Figura 10 se puede apreciar la plataforma compuesta del switch y las cuatro Raspberrys.

Se ha trabajado con el sistema operativo Raspbian, instalado en cada Raspberry, y parcheado

con Xenomai, para dotarle de características de tiempo real.

A su vez, sobre COSME se ha ejecutado una aplicación sintética, llamada Sumador Distribuido,

diseñada especialmente para este proyecto.

La versión de Java utiliza ha sido la 1.7.0_40 con la JVM HotSpot.

2.1. Aplicación sintética
La funcionalidad de la aplicación sintética, Sumador Distribuido, consistirá en que cada

Raspberry pase a la siguiente un valor numérico. Cada una tendrá que actualizar una posición

de ese valor.

La Raspberry1 actualizará las unidades de millar, la Raspberry2 las centenas, la Raspberry3 las

decenas y la Raspberry4 las unidades. Como se puede apreciar en la siguiente figura.

 19

Figura 11: Esquema de funcionamiento de Sumador Distribuido

En la Figura 11, se puede apreciar un ejemplo del funcionamiento de la aplicación sintética

Sumador Distribuido.

Raspi 1
Raspi 2 Raspi 3 Raspi 4

1000 1100 1110

1111

Raspi 1 Raspi 2 Raspi 3 Raspi 4
2111 2211 2221

2222

Primer ciclo:

Segundo ciclo:

 20

3. Análisis de prestaciones

3.1. Medidas de los tiempos de ejecución
El análisis de los tiempos de ejecución de la plataforma COSME, se ha llevado a cabo

midiendo los tiempos de ejecución de la Pasarela, cambiando los parámetros de la JVM en

cada ejecución.

Tales parámetros van referidos a la máquina virtual de Java, por lo tanto solo afectan a la

Pasarela, y han sido los siguientes:

 Referidos al recolector de basura

 Referidos al rendimiento

 Referidos a la memoria

Figura 12: Esquema de tiempos a medir

Más concretamente como se puede apreciar en la Figura 12, los tiempos que se han medido

han sido t1, tiempo de ejecución desde que llega el telegrama exec_seq a la Pasarela, hasta

que lo mete en la FIFO para enviárselo al runtime, y t2, tiempo empleado desde que la

Pasarela recibe el telegrama publish desde el runtime hasta que envía el telegrama

exec_seq a la siguiente Raspberry.

Para realizar las mediciones se ha creado una clase específica en Java, ver Anexo 1. Y un shell

script, ver Anexo 2, para poner en funcionamiento COSME cada cierto tiempo con diferentes

parámetros de la JVM al ejecutar la Pasarela.

 21

3.1.1. Recolector de basura y umbral de compilación

En esta sección se muestran los tiempos de ejecución obtenidos, combinando las

diferentes tipos de políticas de recolección de basura y el umbral de compilación.

Cada configuración de JVM se ha ejecutado durante 5 minutos con un tiempo de ciclo,

SISTEMA.tciclo_E_CYCLE, de 50 ms. Con lo que se han obtenido 5900 muestras de t1 y

t2. Los cuales se han sumado para obtener el tiempo global de ejecución de la Pasarela y a

continuación calcular la media, la desviación típica y el valor menos desfavorable al 95% y el

valor al 100%.

El objetivo de esta prueba es hallar que política de recolección de basura y que valor de

Compilethreshold obtienen el menor valor para la media, la desviación típica y el valor

menos desfavorable al 95% y al 100%.

El criterio de clasificación para determinar la configuración óptima, se establecido en primer

lugar por el menor valor al 95%, en segundo lugar por el menor valor de la media y en tercer

lugar por el menor valor de la desviación típica.

Estos datos se corresponden al archivo del Anexo 3: TiemposDiferentesGCyCompilacion.txt

Recolector de basura concurrente y umbral de compilación

En este apartado se comparan los tiempos obtenidos entre una ejecución de COSME

con el recolector de basura concurrente, parámetro ConcMarkSweepGC, y el umbral de

compilación, parámetro CompileThreshold, con los valores 1, 100, 1000, 10000 y 100000.

Configuraciones de JVM:

1. UseConcMarkSweepGC, CompileThreshold=1

2. UseConcMarkSweepGC, CompileThreshold=100

3. UseConcMarkSweepGC, CompileThreshold=1000

4. UseConcMarkSweepGC, CompileThreshold=10000

5. UseConcMarkSweepGC, CompileThreshold=100000

Configuraciones JVM Media Desviación Típica 95% 100%

1 15,11 23,84 49,04 659,96

2 8,49 8,24 20,48 337,81

3 7,66 6,74 12,10 140,66

4 9,4 4,37 14,26 188,13

5 17,53 12,37 45,03 207,81

Tabla 1: Tiempos de ejecución GC concurrente (valores en ms)

En la Tabla 1, se puede apreciar que la configuración más óptima, es decir, la que ha dado un

tiempo de ejecución menos desfavorable al 95% es la política de recolección concurrente y el

umbral de compilación (CompileThreshold) a 1000 con valor de 12,10 ms. La media, la

 22

desviación típica y el 100% de dicha configuración también son los valores más pequeños de

esta prueba.

La configuración que peores resultados ha obtenido, es decir, que ha dado un tiempo de

ejecución más desfavorable al 95% es la política de recolección concurrente y el umbral de

compilación (CompileThreshold) con un valor de 100000.

Recolector de basura paralelo y umbral de compilación

En este apartado se comparan los tiempos obtenidos, entre una ejecución de COSME

con el recolector de basura paralelo, parámetro ParallelGC, y el umbral de compilación,

parámetro CompileThreshold con los valores 1, 100, 1000, 10000 y 100000.

Configuraciones de JVM:

6. UseParallelGC, CompileThreshold=1

7. UseParallelGC, CompileThreshold=100

8. UseParallelGC, CompileThreshold=1000

9. UseParallelGC, CompileThreshold=10000

10. UseParallelGC, CompileThreshold=100000

Configuraciones JVM Media Desviación Típica 95% 100%

6 8,44 11,28 16,20 304,08

7 8,16 8,18 16,75 199,64

8 9,9 12,16 21,58 359,95

9 13,18 10,81 25,42 195,79

10 22,31 15,19 37,06 214,26

Tabla 2: Tiempos de ejecución GC paralelo (valores en ms)

En la Tabla 2, se puede apreciar que la configuración más óptima, es decir, la que ha dado un

tiempo de ejecución menos desfavorable al 95% es la política de recolección paralela y el

umbral de compilación (CompileThreshold) a 1 con valor de 16,2 ms.

La configuración que peores resultados ha obtenido, es decir, que ha dado un tiempo de

ejecución más desfavorable al 95% es la política de recolección paralela y el umbral de

compilación (CompileThreshold) con un valor de 100000.

 23

Recolector de basura paralelo compactador y umbral de compilación

En este apartado se comparan los tiempos obtenidos, entre una ejecución de COSME

con el recolector de basura paralelo compactador, parámetro ParallelOld, y el umbral de

compilación, parámetro CompileThreshold con los valores 1, 100, 1000, 10000 y 100000.

Configuraciones de JVM:

11. UseParallelOldGC, CompileThreshold=1

12. UseParallelOldGC, CompileThreshold=100

13. UseParallelOldGC, CompileThreshold=1000

14. UseParallelOldGC, CompileThreshold=10000

15. UseParallelOldGC, CompileThreshold=100000

Configuraciones JVM Media Desviación Típica 95% 100%

11 7,91 9,59 14,39 303,74

12 7,94 7,47 15,85 197,01

13 9,44 9,76 20,63 289,26

14 12,99 14,68 24,77 503,38

15 21,58 16,21 36,77 352,05

Tabla 3: Tiempos de ejecución GC paralelo compactador (valores en ms)

En la Tabla 3, se puede apreciar que la configuración más óptima, es decir, la que ha dado un

tiempo de ejecución menos desfavorable al 95% es la política de recolección paralela

compactadora y el umbral de compilación (CompileThreshold) a 1 con valor de 14,39 ms.

La configuración que peores resultados ha obtenido, es decir, que ha dado un tiempo de

ejecución más desfavorable al 95% es la política de recolección paralela compactadora y el

umbral de compilación (CompileThreshold) con un valor de 100000.

 24

Recolector de basura serie y umbral de compilación

En este apartado se comparan los tiempos obtenidos, entre una ejecución de COSME

con el recolector de basura serie, parámetro SerialGC y el umbral de compilación,

parámetro CompileThreshold con los valores 1, 100, 1000, 10000 y 100000.

Configuraciones de JVM:

16. UseSerialGC, CompileThreshold=1

17. UseSerialGC, CompileThreshold=100

18. UseSerialGC, CompileThreshold=1000

19. UseSerialGC, CompileThreshold=10000

20. UseSerialGC, CompileThreshold=100000

Configuraciones JVM Media Desviación Típica 95% 100%

16 8,41 9,38 16,32 313,47

17 7,31 6,5 13,2 337,97

18 9,61 12,74 19,91 639,29

19 9,91 5,79 17,71 199,85

20 14,46 8,64 28,96 188,02

Tabla 4: Tiempos de ejecución GC serie (valores en ms)

En la Tabla 4, se puede apreciar que la configuración más óptima, es decir, la que ha dado un

tiempo de ejecución menos desfavorable al 95% es la política de recolección serie y el umbral

de compilación (CompileThreshold) a 100 con valor de 13,2 ms.

La configuración que peores resultados ha obtenido, es decir, que ha dado un tiempo de

ejecución más desfavorable al 95% es la política de recolección serie y el umbral de

compilación (CompileThreshold) con un valor de 100000.

 25

Recolector de basura G1GC y umbral de compilación

En este apartado se comparan los tiempos obtenidos, entre una ejecución de COSME

con el recolector de basura G1, parámetro UseG1GC y el umbral de compilación, parámetro

CompileThreshold con los valores 1, 100, 1000, 10000 y 100000.

Configuraciones de JVM:

21. UseG1GC, CompileThreshold=1

22. UseG1GC, CompileThreshold=100

23. UseG1GC, CompileThreshold=1000

24. UseG1GC, CompileThreshold=10000

25. UseG1GC, CompileThreshold=100000

Configuraciones JVM Media Desviación Típica 95% 100%

21 8,44 9,02 15,55 294,09

22 7,35 4,4 13,6 180,71

23 10,35 11,28 25,01 200,91

24 18,79 13,82 41,62 228,3

25 16 10,96 32,98 323,04

Tabla 5: Tiempos de ejecución GC G1 (valores en ms)

En la Tabla 5, se puede apreciar que la configuración más óptima, es decir, la que ha dado un

tiempo de ejecución menos desfavorable al 95% es la política de recolección G1 y el umbral de

compilación (CompileThreshold) a 100 con valor de 13,6 ms. La media, la desviación

típica y el 100% de dicha configuración también son los valores más pequeños de esta prueba.

La configuración que peores resultados ha obtenido, es decir, que ha dado un tiempo de

ejecución más desfavorable al 95% es la política de recolección G1 y el umbral de compilación

(CompileThreshold) con un valor de 10000.

 26

Análisis de los resultados

En este apartado se comparan los tiempos obtenidos, entre la configuración por

defecto y la configuración más óptima de cada uno de los apartados anteriores.

Configuraciones JVM Media Desv.Típica 95% 100%

Por defecto 7,76 12,27 19,18 725,19

Concurrente, CompileThreshold = 1000 7,66 6,74 12,10 140,66

Paralelo, CompileThreshold = 1 8,44 11,28 16,20 304,08

Paralelo Compactador, CompileThreshold = 1 7,91 9,59 14,39 303,74

Serie, CompileThreshold = 100 7,31 6,5 13,2 337,97

G1, CompileThreshold = 100 7,35 4,4 13,6 180,71

Tabla 6: Comparativa tiempos de ejecución Pasarela (valores en ms)

En la Tabla 6, se puede observar que el mejor resultado al 95% ha sido para el recolector de

basura concurrente y el umbral de compilación, CompileThreshold=1000, con un

tiempo de 12,10 ms, seguido del recolector de basura serie con un tiempo de 13,2 ms.

Comparando la configuración del recolector de basura concurrente y

CompileThreshold=100 con el modo por defecto, 12,10 ms y 19,18 ms respectivamente,

se obtiene una mejora del 36,91%.

Por lo tanto, la configuración más óptima de la JVM para ejecutar la Pasarela es usando la

política de recolección de basura concurrente y el umbral de compilación con un valor de

1000.

De ahora en adelante se llamará Configuración 1 a los parámetros UseConcMarkSweepGC y

CompileThresHold=1000.

 27

3.1.2. Parámetros de rendimiento

Las siguientes tablas muestran los tiempos de ejecución obtenidos, combinando la

Configuración 1, parámetros SerialGC y CompileThreshold=1000, con otros

parámetros de rendimiento.

Cada configuración de JVM se ha ejecutado durante 5 minutos con un tiempo de ciclo,

SISTEMA.tciclo_E_CYCLE, de 50 ms. Con lo que se han obtenido 5900 muestras de t1 y

t2. Los cuales se han sumado para obtener el tiempo global de ejecución de la Pasarela y

calcular la media, la desviación típica y el valor menos desfavorable al 95% y al 100%.

El objetivo de esta prueba es hallar si la Configuración 1 junto con algún parámetro de

rendimiento mejora los tiempos de ejecución de la Pasarela.

El criterio de clasificación para determinar la configuración óptima, se establecido en primer

lugar por el menor valor del 95%, en segundo lugar por el menor valor de la media y en tercer

lugar por el menor valor de la desviación típica.

Estos datos se corresponden al archivo del Anexo 3: TiemposParametrosRendimiento.txt

Configuración 1 y AggressiveOpts

En el siguiente tabla se comparan los tiempos obtenidos, entre una ejecución de

COSME por defecto, con la Configuración 1 y con la Configuración 1 con el parámetro

AgressiveOpts.

Configuraciones de JVM:

1. Por defecto

2. UseConcMarkSweepGC CompileThreshold=1000

3. UseConcMarkSweepGC, CompileThreshold=1000 y AggressiveOpts

Configuraciones JVM Media Desviación Típica 95% 100%

1 7,76 12,27 19,18 725,19

2 7,66 6,74 12,10 140,66

3 9,70 9,29 24,26 200,16

Tabla 7: Comparativa tiempos de ejecución Pasarela (valores en ms)

En el Tabla 7 se puede observar que la ejecución con el parámetro AggressiveOpts ha

dado una media, una desviación típica, un valor al 95% y al 100% peor que la Configuración 1.

Por lo tanto la configuración óptima de la Pasarela seguirá siendo con los parámetros

UseConcMarkSweepGC y CompileThreshold=1000.

 28

Configuración 1 y UseStringCache

En el siguiente apartado se comparan los tiempos obtenidos, entre una ejecución de

COSME por defecto, con la Configuración 1 y con la Configuración 1 con el parámetro

UseStringCache.

Configuraciones de JVM:

1. Valor por defecto

2. UseConcMarkSweepGC, CompileThreshold=1000

3. UseConcMarkSweepGC, CompileThreshold=1000 y UseStringCache

Configuraciones JVM Media Desviación Típica 95% 100%

1 7,76 12,27 19,18 725,19

2 7,66 6,74 12,10 140,66

3 8,53 6,23 15,97 194,49

Tabla 8: Comparativa tiempos de ejecución Pasarela (valores en ms)

En el Tabla 8 se puede observar que la ejecución con el parámetro UseStringCache ha

dado una media, un valor al 95% y al 100% peor que la Configuración 1. Por lo tanto la

configuración óptima de la Pasarela seguirá siendo con los parámetros

UseConcMarkSweepGC y CompileThreshold=1000.

Configuración 1 y UseStringCache, AggressiveOpts, UseFastAccessorMethods

En el siguiente gráfico se comparan los tiempos obtenidos, entre una ejecución de

COSME sin parámetros, la Configuración 1 y la Configuración 1 con los parámetros

UseStringCache, AggressiveOpts y UseFastAccessorMethods.

Configuraciones de JVM:

1. Valor por defecto

2. UseConcMarkSweepGC, CompileThreshold=100

3. UseConcMarkSweepGC, CompileThreshold=1000,

UseFastAccessorMethods

4. UseConcMarkSweepGC, CompileThreshold=1000, UseStringCache,

UseFastAccessorMethods

5. UseConcMarkSweepGC, CompileThreshold=1000, UseStringCache,

UseFastAccessorMethods, AggressiveOpts

 29

Configuraciones JVM Media Desviación típica 95% 100%

1 7,76 12,27 19,18 725,19

2 7,66 6,74 12,10 140,66

4 8,84 7,21 15,39 201,90

5 7,83 4,62 15,72 163,24

6 8,79 7,95 17,29 335,97

Tabla 9: Comparativa tiempos de ejecución Pasarela (valores en ms)

En el Tabla 9 se puede observar que la ejecución con la combinación de los parámetros

UseStringCache, UseFastAccessorMethods, AggressiveOpts ha dado una

media, un valor al 95% y al 100% peor que la Configuración 1. Por lo tanto la configuración

óptima de la Pasarela seguirá siendo con los parámetros UseConcMarkSweepGC y

CompileThreshold=1000.

Análisis de los resultados

Los resultados con los parámetros de rendimiento anteriores ha dado peores

resultados que con la Configuración 1, por lo tanto, la configuración óptima para ejecutar la

Pasarela será con la política de recolección basura concurrente y el umbral de compilación a

1000, parámetros UseConcMarkSweepGC y CompileThreshold=1000.

 30

3.1.3. Tamaño del heap

 El propósito de estas medidas es observar cuantas ejecuciones realiza y el tiempo que

dedica a cada una de ellas el recolector de basura, variado el tamaño del heap.

Estos datos se corresponden al archivo del Anexo 3: TrazasGC.txt

Pruebas

Heap de 32 Mb

Con un tamaño de heap de 32 megabytes y con los parámetros más óptimos del

apartado anterior CompileThreshold=1000, UseConcMarkSweepGC. Se ha obtenido

las siguientes trazas del recolector de basura durante 60 minutos de ejecución de COSME,

como se puede apreciar en la Tabla 10.

Memoria ocupada antes del

GC (Kb)

Memoria ocupada después

del GC (Kb)

Tiempo dedicado a la
recolección (s)

8832 833 0,0827640
9665 795 0,0719320
9627 793 0,0433940
9625 793 0,0230970
9625 794 0,0205180

Tabla 10: Trazas GC

Se ha elegido 32 Mb por aumentar el tamaño del heap, ya por defecto la JVM le asigna 6,75

Mb.

Heap de 6,75 Mb

Con un tamaño de heap de 6,75 megabytes, que es que la JVM asigna por defecto en

la Raspberry, y con los parámetros más óptimos para ejecutar la Pasarela

CompileThreshold=100, UseSerialGC. Se ha obtenido un número elevado de trazas

que en el apartado anterior por lo que se ha decido colocarlas en el Anexo 3 en el fichero

TrazasGC.txt.

 .

Análisis de los resultados

Comparando las trazas del recolector de basura entre una ejecución con el tamaño del

heap por defecto, 6,75 megabytes, y otra con 32 megabytes, se puede observar que el

recolector de basura se ejecuta obviamente menos veces con un tamaño de heap mayor pero

tarda más tiempo en cada recogida.

Con el tamaño de heap por defecto, 6,75 megabytes, el tiempo medio de cada entrada del

recolector de basura es de 21,56 ms. Entrando en 30 minutos 48 veces.

 31

Con el tamaño del heap de 32 megabytes, el tiempo medio de cada ejecución del recolector de

basura es de 41,45 ms. Ejecutándose en 30 minutos 5 veces. Como se puede apreciar en la

Tabla 11.

Tamaño del heap (Mb) Ejecuciones del GC Tiempo medio por

entrada (ms)

6,75 48 21,56

32 5 41,45

Tabla 11: Ejecuciones del GC según tamaño del geap

En este proyecto hay requisitos de tiempo real, por lo que lo más óptimo es que el recolector

de basura entre más veces pero poco tiempo. Por lo tanto, el tamaño del heap conviene que

sea ajustado al requerimiento de memoria de la Pasarela.

 32

3.2. Medidas de los tiempos de ejecución de la función

normal”
 El propósito de estas medidas es probar si los diferentes tipos de recolectores de

basura afectan al tiempo de ejecución de la ͞función normal”. Para ello se ha ejecutado

durante 60 minutos con cada recolector.

Los datos se corresponden al archivo del Anexo 4: Prueba con diferentes GC el RT.txt

3.2.1 Pruebas
 Las pruebas se han realizado ejecutando COSME, con la aplicación sintética Sumador

Distribuido, durante 60 minutos con cada política de recolección de basura y utilizando la

aplicación MiniBlas para obtener el tiempo máximo y mínimo de ejecución de la ͞función
normal”.

MiniBlas es una aplicación que permite consultar y modificar el valor de las variables de la

aplicación que se ejecuta en COSME.

Los tiempos de ciclo se han configurado de la siguiente manera:

 SISTEMA.tiempo_ciclo_ms = 10 ms

 SISTEMA.tciclo_E_CYCLE = 50 ms

Para generar carga en la ͞función normal” se ha introducido un bucle que calcula n senos

de una variable. Las iteraciones de este bucle se controlan con la variable:

sumador.num_senos_RT.

A continuación en el siguiente gráfico se puede observar el tiempo máximo y mínimo de la

͞función normal” para cada política de recolección de basura.

Gráfico 1: Tieŵpos de ejeĐuĐióŶ ͞función normal͟

0

2

4

6

8

10

12

Serie Concurrente Paralelo Paralelo

compactador

G1

T
ie

m
p

o
 (

m
s)

Política de recolección de basura

tmax

tmin

 33

3.2.2 Análisis de los resultados

En el Gráfico 1, se puede ver que los resultados son prácticamente iguales, esto quiere

decir que el tipo de recolector de basura no afecta al tiempo de ejecución de la ͞función
normal”.

3.3. Medidas de los tiempos de ejecución de la secuencia

distribuida COSME
 El propósito de estas pruebas es ver cómo afecta el tiempo de ejecución de la

͞función normal” al tiempo de ejecución de COSME distribuido en la plataforma de

pruebas. Teniendo en cuenta que la ͞función normal” se ejecuta bajo la restricción de

tiempo real. Cada prueba se ha ejecutado durante 60 minutos.

Los datos se corresponden a los archivos del Anexo 5.

3.3.1 Pruebas
Las pruebas han consistido en ejecutar COSME en modo distribuido, para medir el

tiempo desde que el telegrama exec_seq sale de la Raspberry1 pasa por las Raspberry2, 3 y

4 hasta que llega de nuevo a la Raspberry1. Aplicando diferentes niveles de carga en la

͞función normal” de la Raspberry2 utilizando la variable sumador.num_senos_RT,

explicada en el apartado anterior. Con un tiempo SISTEMA.tciclo_E_CYCLE de 500 ms.

En el siguiente gráfico se puede observar los tiempos obtenidos con los diferentes niveles de

carga.

Gráfico 2: Tiempos de ejecución COSME distribuido

0

10

20

30

40

50

60

70

80

90

0 5000 10000 13000

T
ie

m
p

o
 (

m
s)

Nivel de carga: número de senos

tmedio

 34

3.3.2 Análisis de los resultados

 Se puede apreciar en el Gráfico 2, que obviamente cuanta más carga de trabajo hay en

la ͞función normal” más tarda en ejecutarse un ciclo completo de la aplicación Sumador

Distribuido. Porque dicha función tienen más prioridad, al ejecutarse bajo la restricción de

tiempo real.

Si el tiempo de ejecución de la ͞función normal” fuera igual o superior al tiempo de ciclo

de la misma, el procesador solo podría dedicar tiempo a ejecutar esta función. Ya que al ser

periódica la diferencia entre el tiempo de ejecución y el tiempo de ciclo de la misma es el

tiempo que el procesador puede dedicar a otros procesos.

 35

3.4. Medidas de latencia de red
El propósito de estas pruebas es sobrecargar el switch y configurar de manera

diferente la Calidad de Servicio para observar como varia la latencia de red entre las

Raspberrys.

Cada configuración del switch se ha ejecutado durante 5 minutos con un tiempo de ciclo,

SISTEMA.tciclo_E_CYCLE, de 50 ms. Con lo que se han obtenido unas 5900 muestras.

Los datos se corresponden a los archivos del Anexo 6:

3.4.1. Pruebas
Las pruebas se han realizado conectando al switch cuatro PCs para intercambiar dos

archivos entre ellos, de 20 GB cada uno, el PC1 se intercambia la información con el PC2 y el

PC3 con el PC4.

A su vez la Raspberry1 y la Raspberry4 ejecutan la aplicación sintética, Sumador Distribuido,

para determinar la latencia entre las dos. La Raspberry1 medirá el tiempo desde que envía el

telegrama exec_seq a la Raspberry4 hasta que la Raspberry4 le responda con el telegrama

escribir.

La Raspberry4 medirá el tiempo que le cuesta ejecutarse desde que recibe el telegrama de la

Raspberry1 hasta que le responde.

Posteriormente a los tiempos medidos por la Raspberry1 se le restarán los tiempos medidos

por la Raspberry4, todo esto dividido entre 2, así se obtendrá la latencia de la red. De la cual

se calculará la media, desviación típica y el valor menos desfavorable al 95% y al 100%.

El criterio de clasificación para determinar la configuración óptima del switch, se establecido

en primer lugar por el menor valor del 95%, en segundo lugar por el menor valor de la media y

en tercer lugar por el menor valor de la desviación típica.

A continuación, en la Figura 13, se describe la conexión de los puertos del switch.

Figura 13: Esquema de conexiones del switch

 36

Las siguientes pruebas se han realizado con la QoS basada en los puertos y con los modos de

encolar los paquetes, Prioridad Estricta y WRR.

Prioridad Estricta y QoS basada en los puertos, configuraciones:

QoS se ha configurado basada en los puertos y el modo de cola con prioridad estricta.

1. QoS desactivada y sin carga para el switch

Esta prueba, se ha realizado con la QoS desactivada y sin tráfico de datos en los puertos 1, 2, 3

y 4 del switch.

2. QoS desactivada y con carga para el switch

Esta prueba, se ha realizado con la QoS desactivada y con tráfico de datos en los puertos 1, 2, 3

y 4 para sobrecargar el switch.

3. QoS activada y con carga para el switch

Esta prueba, se ha realizado con la QoS activada dando prioridad high, la más alta, a los

puertos conectados a las Raspberrys, y con tráfico de datos en los puertos 1, 2, 3 y 4 para

sobrecargar el switch.

4. QoS activada y sin carga para el switch

Esta prueba, se ha realizado con la QoS activada dando prioridad high, la más alta, a los

puertos conectados a las Raspberrys, y sin tráfico de datos en los puertos 1, 2, 3 y 4.

Configuraciones Switch Media Desviación Típica 95% 100%

1-QoS desactivada y sin carga 1,11 1,61 2,47 29,18

2-QoS desactivada y con carga 0,59 1,61 3,04 20,11

3-QoS activada y con carga 0,51 1,05 2,88 30,13

4-QoS activada y sin carga 1,07 1,45 2,36 25.18

Tabla 12: Latencias de red con Prioridad Estricta (valores en ms)

En la Tabla 12, se puede observar que comparando el valor al 95% de la configuración con la

QoS activada y con carga en el switch con la configuración con la QoS desactivada y con carga

en el switch, se obtiene un mejor resultado activando la QoS, 2,88 ms frente a los 3,04 ms

respectivamente. Esto supone una mejora del 5,26 %.

Comparando de nuevo el valor al 95% de la configuración con la QoS activada y sin carga en el

switch con la configuración con la QoS desactivada y sin carga en el switch, se obtiene también

 37

un mejor resultado activando la QoS, 2,36 ms frente a los 2,47 ms respectivamente. Esto

supone una mejora del 4,45 %.

WRR y QoS basada en los puertos, configuraciones:

QoS se ha configurado basada en los puertos y el modo de cola con WRR. Asignando

los pesos 1, 1, 2 y 4 a las colas low, normal, médium y high respetivamente. Es decir, la cola

high estará cuatro veces más tiempo transmitiendo paquetes que la cola low.

1. QoS desactivada y sin carga para el switch

Esta prueba, se ha realizado con la QoS desactivada y sin tráfico de datos en los puertos 1, 2, 3

y 4 del switch.

2. QoS desactivada y con carga para el switch

Esta prueba, se ha realizado con la QoS desactivada y con tráfico de datos en los puertos 1, 2, 3

y 4 para sobrecargar el switch.

3. QoS activada y con carga para el switch

Esta prueba, se ha realizado con la QoS activada dando prioridad high, la más alta, a los

puertos conectados a las Raspberrys, y con tráfico de datos en los puertos 1, 2, 3 y 4 para

sobrecargar el switch.

4. QoS activada y sin carga para el switch

Esta prueba, se ha realizado con la QoS activada dando prioridad high, la más alta, a los

puertos conectados a las Raspberrys, y sin tráfico de datos en los puertos 1, 2, 3 y 4.

Configuraciones Switch Media Desviación Típica 95% 100%

1-QoS desactivada y sin carga 1,11 1,61 2,47 29,18

2-QoS desactivada y con carga 0,58 1,48 3,09 19,93

3-QoS activada y con carga 0,5 1,37 2,5 14,86

4-QoS activada y sin carga 0,97 1,10 1,73 17,07

Tabla 13: Latencias de red con WRR (valores en ms)

En la Tabla tal, se puede observar que comparando el valor al 95% de la configuración con la

QoS activada y con carga en el switch con la configuración con la QoS desactivada y con carga

en el switch, se obtiene un mejor resultado activando la QoS, 2,5 ms frente a los 3,09 ms

respectivamente. Esto supone una mejora del 19,09 %.

 38

Comparando de nuevo el valor al 95% de la configuración con la QoS activada y sin carga en el

switch con la configuración con la QoS desactivada y sin carga en el switch, se obtiene también

un mejor resultado activando la QoS, 1,73 ms frente a los 2,47 ms respectivamente. Esto

supone una mejora del 29,96 %.

3.4.2. Análisis de los resultados
 El peor resultado al 95% se obtiene con la QoS desactivada y con carga, ya que el

switch tiene que dedicar más tiempo a procesar los paquetes de los puertos con mayor tráfico.

Activando la calidad de servicio se consigue un mejor resultado porque los puertos donde

están conectadas las Raspberrys tienen más prioridad sobre los demás.

Comparando los dos modos de encolar los paquetes, Prioridad Estricta y WRR, se ha obtenido

un mejor resultado al 95% con WRR tanto con carga como sin carga en el switch. Además este

modo evita el problema de inanición en los puertos.

Con la QoS activada y el modo de encolar los paquetes WRR se consigue una mejora del 19,09

con carga el switch y del 29,96 sin carga.

En conclusión, la QoS se tendrá que activar y configurar con más prioridad los puertos donde

estén conectadas las Raspberrys. El modo en el que se tratan las colas de paquetes se tendrá

que configurar a WRR.

 39

3.5 Profiling sobre la Pasarela
El objetivo de esta prueba es usar la herramienta Profiler de Netbeans 8.0.1, para

detectar anomalías, como por ejemplo cuellos de botella, creación excesiva de objetos, etc. Y

llevar a cabo las pertinentes optimizaciones.

Esta prueba sea ha realizado durante 60 minutos sobre la ejecución de la aplicación sintética

Sumador Distribuido con un tiempo de ciclo, SISTEMA.tciclo_E_CYCLE, de 1000 ms.

El profiling se ha llevado a cabo sobre dos pates; sobre la memoria y sobre la CPU de la

Pasarela.

Estos datos corresponden a los archivos del Anexo 7.

3.5.1 Memoria

 Con el profiling de la memoria se desea obtener si el número de objetos creados es el

adecuado. En la siguiente tabla se pueden observar los resultados:

Tabla 11: Profiling sobre la memoria utilizada por la Pasarela

 40

En la Tabla 14 se puede ver que el número de objetos creados durante 60 minutos de

ejecución.

De la clase PasarelaAlta y de la clase RTPartner se crea un solo objeto, los cuales

concuerdan con el valor teórico.

Los objetos creados de la clase FIFOListener, 2 en total, también concuerdan. Uno para

la FIFO de escritura en el runtime de COSME y otro para la lectura.

De la clase GateraClient solo se crea un objeto porque solo hay una Raspberry

conectada.

De la clase Telegram se crean 16209 objetos. Este número de objetos no concuerda con

el valor teórico:

 La duración de la prueba es de 60 minutos.

 Se recibe un telegrama exec_seq cada segundo, es decir, se reciben 3600, más el

eco que genera el runtime de cada uno, 7200.

 De cada telegrama exec_seq el runtime manda a la Pasarela un telegrama

publish, en total 3600 telegramas.

 Del telegrama ping, se recibe uno cada dos segundos, 1800 telegramas, más el eco

que genera el runtime de cada uno, 3600.

 En total 7200 + 3600 + 3600 = 14400 valor teórico de objetos Telegram creados.

El valor teórico, 14400 objetos Telegram, no concuerda con el valor real medido 16209.

Por lo tanto, se están creando telegramas de más, en concreto 16209 – 14400 = 1809

telegramas.

Tras concluir que el valor teórico y el real no concuerdan, se procede a examinar el código

fuente para encontrar el error:

 El método GateraClient.escucharTelegrama() lee un String del Socket y

crea un objeto Telegram, como la duración de la prueba es de 60 minutos, se

crean 3600 para el telegrama exec_seq y 1800 para el ping.

 A continuación si es un telegrama para la Pasarela llama al método

PasarelaAlta.escribirTelegrama(String _txt)donde recibe un String

y vuelve a crear otro objeto telegrama, como la duración de la prueba es de 60

minutos se crean 1800 para el telegrama ping, para después invocar al método

PasarelaAlta.escribirTelegrama(Telegrama _tlg) que escribe el

telegrama en la FIFO. Por lo tanto cuando se recibe el telegrama ping se crean dos

telegramas del mismo String.

 Al leer de la FIFO con el método PasarelaALta.leerTelegrama(String

_txt)se crea otro objeto telegrama, como la duración de la prueba es de 60

minutos se crean 3600 objetos para el telegrama publish, 1800 para el eco del

telegrama ping y 3600 para el eco del telegrama exec_seq.

 41

Si se suman los telegramas creados 3600(exec_seq) + 1800(ping) + 1800(ping) +

3600(publish) + 1800(eco ping) + 3600(eco esec_seq) = 16200 objetos Telegram. Este

valor 16200 es muy cercano al valor real medido por el profiler 16209.

El error se produce porque se duplican los objetos telegrama de tipo ping, por lo tanto el

valor teórico y real no concuerda.

El error se corrige llamando al método PasarelaAlta.escribirTelegrama

(Telegrama _tlg) en vez de al método PasarelaAlta.escribirTelegrama

(String _txt) desde GateraClient.escucharTelegrama() cuando llega un

telegrama para la Pasarela.

Optimizaciones

Dado que en las clases Telegram y TelegramTokenizer se emplean numerosos

objetos de tipo String. Una optimización que se puede llevar a cabo es sustituir los objetos

String por StringBuffer. Porque a la hora concatenar dos String con el operador

suma, se crea un nuevo String resultante, con lo que constantemente se está creando

objetos nuevos. El objeto StringBuffer permite concatenar dos cadenas de texto sin tener

que crear otro objeto, por lo tanto el uso de StringBuffer es más eficiente.

3.5.2 CPU
 Con el profiling de la CPU se desea averiguar si existe algún cuello de botella en el

código. Detectar cuáles son los métodos que más veces se ejecutan para poder optimizarlos.

En la siguiente tabla se muestran los resultados obtenidos:

 42

Tabla 12: Profiling sobre la CPU utlizada por la Pasarela

Tabla 15:

 Self Time (CPU): tiempo esperando en todas las invocaciones del método, excluyendo

las llamadas a métodos internos.

Optimizaciones

Se puede observar en la Tabla 15, que los métodos que más tiempo han estado

ejecutándose son el constructor de la clase Telegram y el método run de la clase

RTPartner. Por lo tanto, estos dos métodos son los candidatos a optimizar.

Telegram.<init>(String)

El constructor de la clase Telegram se encarga de obtener la información del String pasado

como parámetro y es el objeto más utilizado en la Pasarela. Por lo tanto, su optimización

beneficiaría al rendimiento.

Las posibles optimizaciones son las siguientes:

 Sustituir las sentencias if/else anidadas por un switch:

 43

o Código sin optimizar:

if (comando.equals(cesta)){

}else if (comando.equals(publish)){

}else if (comando.equals(exec_seq)){

...

o Código optimizado:

switch (comando) {

case cesta:

case publish:

case exec_seq:

 Enviar el objeto entero Telegram para no tener que parsear Strings. Pero esto no es

recomendable ya que los Strings ofrecen más posibilidades de conexión entre

diferentes paradigmas de programación.

RTPartner.run()

Este método solo se ejecuta una vez para conectar con otra Raspberry, por lo que no es

necesario optimizarlo.

3.5.3 Resultados de las optimizaciones
Una vez aplicada la optimización en la concatenación de cadenas de texto con la clase

StringBuffer, corregida la duplicación del telegrama ping y aplicada la optimización a

los if/else anidados, los tiempos obtenidos son los siguientes:

Optimizaciones Media Desviación Típica 95% 100%

Sin optimizaciones 15,11 23,84 49,04 659,96

Con optimizaciones 15,13 23,86 49,03 650,82

Tabla 16: Tiempos de ejecución Pasarela (valores en ms)

Como se puede observar en la Tabla 16, la optimización en la concatenación de cadenas de

texto con la clase StringBuffer, la corrección en la duplicación del telegrama ping y la

optimización del constructor del método Telegram, no ha supuesto ninguna mejora en el

funcionamiento de la Pasarela. Esto puede ser debido a que el tiempo de parseo de un

telegrama es muy pequeño.

 44

4. Corrección de errores en la Pasarela
Se ha encontrado un error en el código de la Pasarela, concretamente en la clase

AppLoader en el método getNombreFromVariable(String_variableName).

Este error se ha producido al eliminar los RtPartners anteriores a cada Raspberry, es decir, en

un primer momento cada Raspberry conocía a todas las Raspberrys de la red distribuida, pero

se decidió que cada Raspberry solo conociera la existencia de la Raspberry a la que enviaba

algún dato. Por ejemplo, en la plataforma de pruebas destina a este proyecto, la Raspberry 1

solo tieŶe la direĐĐióŶ IP de la RaspďerrǇ Ϯ, la RaspďerrǇ Ϯ de la RaspďerrǇ ϯ…

 Este método se encarga de devolver el nombre del runtime a partir de una variable, pero

devuelve el nombre del runtime local si el nombre del runtime de la variable pasada como

parámetro no está en la hash de RTPartners (marcado en rojo en el código). Así mismo, como

en dicha hash no están todos los RTPartners se produce el error.

Código con error:

// A partir del nombre de una variable, devuelve el nombre del runtime
private String getNombreRTFromVariable (String _variableName){
 String runtimeName = ;
 int primerPunto = _variableName.indexOf('.');

if (primerPunto > 0){
 runtimeName=_variableName.substring(0, primerPunto);
 }

 // si ese nombre de runtime no está registrado en la hash, es
porque es una variable local. En ese caso el nombre que debe
devolverse es el del runtime local
 if (this.gatera.getRTPartners().get(runtimeName) == null){
 runtimeName = this.gatera.getAliasLocalRT();
 }

 return runtimeName;
}

Para corregir el error que se produce en la parte del código anterior marcado en rojo, basta

con eliminar el condicional, por lo tanto el código quedaría de la siguiente manera:

Código sin error:

// A partir del nombre de una variable, devuelve el nombre del runtime
private String getNombreRTFromVariable (String _variableName){
 String runtimeName = ;
 int primerPunto = _variableName.indexOf('.');

if (primerPunto > 0){
 runtimeName=_variableName.substring(0, primerPunto);
 }

 return runtimeName;
}

 45

5. Conclusiones
Tras haber analizado los resultado obtenidos con la aplicación sintética Sumador

Distribuido en la plataforma de pruebas. En la Pasarela se ha obtenido una mejora en el

tiempo de ejecución del 36,91% aplicando los parámetros UseConcMarkSweepGC,

CompileThreshold=1000 a la JVM en la ejecución de la Pasarela.

Se ha detectado que los diferentes tipos de recolectores de basura de Java no afectan a la

ejecución de la ͞función normal͟, función que se ejecuta bajo restricción de tiempo real.

Pero el tiempo real sí que afecta al tiempo de ejecución del ciclo distribuido, cuanto más

tiempo dura la ejecución de la ͞función normal͟ más tiempo tarda en ejecutarse un ciclo

distribuido.

En lo que se refiere a las latencias de red, activando la QoS en el switch, dando más prioridad a

los puertos donde se encuentran conectadas las Raspberrys y utlizando el modo de encolar los

paquetes WRR, se ha obtenido una mejora del 19,09 % cuando hay carga en el switch y del

29,96 % cuando no hay carga en el switch.

Con el profiling sobre la Pasarela se ha detectado una creación de objetos anómala con el

telegrama ping. También se ha intentado optimizar el método más usado, el constructor de

la clase Telegram y la concatenación de cadenas de caracteres cambiando los objetos de

tipo String por StringBuffer. Pero esto no ha supuesto ninguna mejora en el tiempo de

ejecución de la Pasarela debido a que el tiempo de parseo de un telegrama es muy pequeño.

Trabajo futuro

 Realizar las pruebas con una aplicación sintética que creara más carga de trabajo en

COSME.

 Realizar las pruebas con diferente topología.

 Sustituir las Raspberrys por servidores con mayor capacidad de cómputo.

 Sustituir la comunicación mediante cadenas de texto por el estándar OPC-UA.

 46

6. Agradecimientos

Quiero aprovechar estas líneas para agradecer a todas las personas que me han

ayudado y me han apoyado a lo largo de estos meses en mi proyecto fin de grado.

En primer lugar a mis directores de proyecto Carlos Catalán Cantero y Félix Serna Fortea a

quienes me gustaría expresar mi agradecimiento por su tiempo y dedicación para que este

proyecto saliese adelante.

En segundo lugar a mi familia y a mi novia por la confianza que han depositado en mí y su gran

apoyo día a día, que siempre han sabido aconsejarme en los perores momentos.

Y por último a mis compañeros de clase, de los cuales me llevo unos grandes amigos, que han

hecho que estos años se hicieran mucho más amenos.

 47

7. Bibliografía

1. Raspberry Pi:

http://es.wikipedia.org/wiki/Raspberry_Pi

2. Configuración IP en Raspberry Pi:

http://www.electroensaimada.com/ip-estaacutetica.html

3. Parámetros de la JVM HotSpot:

http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html

4. JVM HotSpot:

http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html

5. Memoria en la JVM HotSpot:

http://es.slideshare.net/luisdebello/administracin-de-memoria-en-java

http://www.slideshare.net/leonjchen/java-gc-javadeveloperdaytw

6. Memoria y recolectores de basura Java 7, tutorial de Oracle:

http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html

7. Java Ergonomics:

http://www.oracle.com/technetwork/java/ergo5-140223.html

8. Recolector de basura G1, video explicativo de Oracle:

https://www.youtube.com/watch?v=bhVzCIk3-Q4

9. Recolector de basura G1:

http://www.infoq.com/articles/G1-One-Garbage-Collector-To-Rule-Them-All

10. Explicación de las trazas del recolector de basura:

http://www.herongyang.com/JVM/Memory-PrintGCDetails-Garbage-Collection-

Logging.html

11. Manual switch Cisco SLM2008:

http://www.cisco.com/c/dam/en/us/td/docs/switches/lan/csbss/slm2005_slm2008/a

dministration/guide/SLM2008AG.pdf

http://es.wikipedia.org/wiki/Raspberry_Pi
http://www.electroensaimada.com/ip-estaacutetica.html
http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
http://es.slideshare.net/luisdebello/administracin-de-memoria-en-java
http://www.slideshare.net/leonjchen/java-gc-javadeveloperdaytw
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
http://www.oracle.com/technetwork/java/ergo5-140223.html
https://www.youtube.com/watch?v=bhVzCIk3-Q4
http://www.infoq.com/articles/G1-One-Garbage-Collector-To-Rule-Them-All
http://www.herongyang.com/JVM/Memory-PrintGCDetails-Garbage-Collection-Logging.html
http://www.herongyang.com/JVM/Memory-PrintGCDetails-Garbage-Collection-Logging.html
http://www.cisco.com/c/dam/en/us/td/docs/switches/lan/csbss/slm2005_slm2008/administration/guide/SLM2008AG.pdf
http://www.cisco.com/c/dam/en/us/td/docs/switches/lan/csbss/slm2005_slm2008/administration/guide/SLM2008AG.pdf

 48

Anexos

Anexo 1: Clase Java para medir tiempos
La siguiente clase se ha implementado para poder medir tiempos en nanosegundos y

volcar los datos en un fichero de texto.

package gta.util;

public class LatencyMeter {

 private String id;
 private long tInicio;
 private long tmax = 0;
 private long tmin = 2147000000;
 private long sumatorio = 0;
 private long numCiclos = 0;

 public LatencyMeter(String id) {
 this.id = id;
 }

 public void setStart(){
 tInicio = System.nanoTime();
 }

 public void setStop(){
 long t = System.nanoTime() - tInicio;
 sumatorio = sumatorio + t;
 numCiclos++;

 if (t > tmax) {
 tmax = t;
 } else if (t < tmin) {
 tmin = t;
 }
 }

 public String toString() {
 return id + \n + Tiempo min: + tmin + ns\n +
 Tiempo medio: + (sumatorio/numCiclos) + ns\n +
 Timepo max: + tmax + ns\n +
 Num de muestras: + numCiclos + \n +
 Tiempo total: + sumatorio + ns\n;

 }
}

 49

Anexo 2: Shell script para ejecutar COSME periódicamente
El siguiente shell script se ha implementado para ejecutar de manera automática

diferentes configuraciones de la JVM, especificadas en un fichero de texto, durante un periodo

de tiempo determinado.

#!/bin/bash
#Arranca COSME periódicamente con la configuración para la pasarela
determinada en el archivo configPasarelaJVM.txt

tiempoEnEjecucion=1800 #segundos

while read line
do

 #se introduce la configuración de la pasarela en el fichero
latencias.txt para saber cuál se ha usado
 echo $line >> ../runtime/latencias.txt

 #se elimina la última línea de launchPasarela.sh
 sed -i '$d' ../runtime/launchPasarela.sh

 #se añade la nueva línea con la configuración para ejecutar la
Psarela
 echo $line >> ../runtime/launchPasarela.sh

 cosme start -v
 sleep $tiempoEnEjecucion
 cosme stop -v
 sleep 10 #esperamos a que COSME termine
 cat ../runtime/gc.txt >> ../runtime/latencias.txt
done < configPasarelaJVMOptimize.txt

 50

Anexo 3: Medidas de los tiempos de ejecución de COSME
 Archivos con las medidas de los tiempos de ejecución de los distintos tipos de

recolectores de basura y el umbral de compilación, de los distintos tipos de parámetros de

rendimiento y de la variación del heap. Adjuntado en el CD.

- Directorio: Anexo 3.

Anexo 4: Medidas de los tiempos de la función normal
 Archivo con los tiempos de ejecución de la ͞función normal͟, adjunto en el CD.

 - Directorio: Anexo 4.

Anexo 5: Medidas del tiempo de ejecución de COSME

Distribuido
 Archivo con los tiempos de ejecución de COSME Distribuido con diferentes cargas de

trabajo en la ͞función normal”, adjunto en el CD.

 - Directorio: Anexo 5.

Anexo 6: Medidas de latencia de red en COSME Distribuido.
 Archivo con los tiempos de latencia de red, adjunto en el CD.

 -Directorio: Anexo 6.

Anexo 7: Medidas del profiling sobre COSME.
 Archivo con los resultados del profiling sobre COSME, adjunto en el CD.

 -Directorio: Anexo 7.

