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Abstract. This study features a cohesive modelling approach
of human-caused wildfire ignitions applied to a set of repre-
sentative regions in terms of fire activity across Europe (pilot
sites, PS). Our main goal was to develop a common approach
to model human-caused ignition probability at a fine-grained
spatial resolution (100 m) and identify the main drivers of ig-
nitions. Specifically, we (i) ascertain which factors influence
ignitions in each PS; (ii) deliver a spatial-explicit represen-
tation of ignition probability, and (iii) provide a framework
for comparison with regional-scale models among PS. To do
so, we calibrated Random Forest models from historical fire
records compiled by local fire agencies, and geospatial lay-
ers of land cover, accessibility, population density and dead
fine-fuel moisture content (DFMC). Models were built in-
dividually for each PS, comparing them with a full model
constructed from all PS. Furthermore, special attention was
given to the effect of spatial autocorrelation in model per-
formance. All models achieved sufficient predictive perfor-
mance (Areas Under the Receiver Operating Characteristic
Curve (AUCs) from 0.70 to 0.89). For all PS models, the
yearly anomaly in DFMC was the most influential variable.
Among human-related factors, distance to the Wildland Ur-

ban Interface emerged as the most relevant variable, fol-
lowed by proximity to roads, population density, and the
fraction of wildland coverage. The performance of the full
model achieved an AUC value of 0.81, with mean DFMC
and anomaly being the main ignition factors, modulated by
distance to roads and population density. The local perfor-
mance of the full model dropped by 0.10 for AUC in both
Southern Sweden and Attica (Greece) regions. The wildfire
occurrence models developed in this study are essential for
understanding wildfire ignition hazard and may help imple-
ment integrated wildfire risk management strategies and mit-
igation policies in fire-prone EU landscapes.

1 Introduction

Wildfires are a common hazard that affect natural environ-
ments and human communities, especially in Mediterranean
regions where fire risk is expected to increase in the forth-
coming decades (Hetzer et al., 2024), linked to land aban-
donment, urban expansion on wildlands and climate change
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(Colantoni et al., 2020; Dupuy et al., 2020; Salis et al., 2022).
Knowing when, where and how the fires are likely to start is
crucial to guide integrated fire management towards risk re-
duction. Wildfire ignition is a key component of wildfire risk
assessment frameworks (Chuvieco et al., 2023), with human-
caused fires playing a leading role in the human-dominated
landscapes of Europe (Camia et al., 2013). The tendency of
humans to initiate wildfires, especially during the high fire
risk season when they can evolve to extreme wildfire events,
has drawn considerable attention, research and funding over
the years, with manifold approaches emerging as fire infor-
mation increased, and modelling techniques and processing
capacity improved (Costafreda-Aumedes et al., 2017).

Several human-related drivers of wildfires have been iden-
tified. The prevalent role of the wildland-urban interface
(WUI) as one of the main fire triggering spatial agent,
has been extensively documented in several studies and re-
gions across the world (Badia et al., 2011; Bar-Massada
et al.,, 2023; Calvifio-Cancela et al., 2017; Chuvieco et
al., 2023; Schug et al., 2023; Syphard et al., 2007). On
the other hand, agricultural activities are also a noteworthy
source of ignition, followed by a large fraction of negli-
gent and accidental fires linked to different land management
practices (e.g., use of machinery or disposal of residues),
especially in Central-Northern Portugal (Meira Castro et
al.,, 2020) and Spain (Martin et al., 2018; Rodrigues et
al., 2014; Tedim et al., 2022). Accessibility is also a key
factor fostering ignition likelihood in proximity to roads and
pathways (Chicas and @stergaard Nielsen, 2022; Costafreda-
Aumedes et al., 2017; Oliveira et al., 2012).

In Europe, a multifaceted socio-economic trend has been
driving the abandonment of traditional land activities (Las-
anta and Vicente-Serrano, 2012). Land abandonment pri-
marily results in woodland encroachment in formerly non-
forested areas (Gelabert et al., 2021), which enhances the
continuity and increases the availability of burnable mate-
rial, among other effects. From a socio-demographic per-
spective, the massive migration from rural areas to urban re-
gions led to the abandonment of agricultural lands, thereby
increasing the population density in metropolitan and agri-
culturally intensive areas (Perpifia Castillo et al., 2024). This
shift in land use has not only promoted changes in land
cover, but also modified the likelihood of human-caused ig-
nitions in forested areas nearby to these highly populated
zones (D’Este et al., 2020; Sjostrom and Granstrom, 2023).
On the other hand, unprecedented fire weather and climate
factors modulate fire-prone conditions at the spatial and tem-
poral level. The changing spatial patterns of fire regimes are
largely a response to the newly emerged extreme climatic
conditions and their influence on the arrangement and con-
dition of fuels, affecting the potential for new ignitions and
causing spread patterns that can hardly be confronted by the
established fire suppression techniques (Galizia et al., 2021,
2023; Kelly et al., 2023; Pais et al., 2023). Well-known fire
danger rating indices like the NFDRS (Schlobohm and Brain,
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2002) or the FWI (Stocks et al., 1989) have become es-
sential for daily planning and resource allocation (Resco de
Dios et al., 2022; Copernicus Emergency Management Ser-
vice (CEMS), 2019). These indices are often used as a proxy
for understanding the expected fuel moisture conditions and
fire spread potential (Boer et al., 2017; Resco de Dios et
al., 2022; Rodrigues et al., 2023). In turn, seasonal patterns
and climate anomalies influence the potential for extreme
fire occurrence (Coogan et al., 2020; Rodrigues et al., 2018,
2020).

There are several studies at global (Chuvieco et al., 2021),
European (Ochoa et al., 2024; Pettinari and Chuvieco, 2020),
regional (Jiménez-Ruano et al., 2022; Rodrigues et al., 2018;
Trucchia et al., 2023) or local scales (Vilar del Hoyo et
al., 2011) dealing with various aspects of fire danger, such
as ignition probability and fire spread. However, most of the
analyses carried out to date focus on specific and homoge-
nous regions, except for a few cross-regional studies. Like-
wise, most of them feature contrasting scales, methods, and
data that hamper the integration of findings into meaningful
conclusions (Costafreda-Aumedes et al., 2017). Hence, there
is a need to develop cohesive assessments using approaches
and techniques that offer comparable outcomes, covering the
diversity of bioregions, climates, and fire regimes, to achieve
an integrative strategy for fire risk assessment for broader ge-
ographic regions, i.e., pan-European (Oliveira et al., 2014).

We hypothesise that, despite the common body of drivers
of human-caused ignitions (Chicas and @stergaard Nielsen,
2022; Costafreda-Aumedes et al., 2017), there are sig-
nificant differences of their influence across the differ-
ent European landscapes. To elucidate this assumption, we
present an assessment of human-caused ignition probability
across five representative European regions (pilot sites, PS)
from FirEUrisk project, which encompass different wildfire
regimes, contrasting environmental and climate settings: PS1
— Kalmar Ian (South-East Sweden), PS2 — Southern Bran-
denburg and Eastern Saxony (Germany), North Bohemia
(Czechia), and Lower Silesia (Poland), PS3 — Central region
of Portugal, PS4 — Barcelona province (Spain) and PS5 —
Attica region (Greece). We aim (i) to create at the PS scale
human-caused fire probabilities spatial assessments to iden-
tify areas where new fires are most likely to ignite in the fu-
ture. These spatial datasets are critical for informing the wild-
fire spread simulators since they require an ignition probabil-
ity grid to allocate ignitions for stochastic simulations over
broad landscapes and understanding wildfire exposure that
can be caused from realistic and potential new fires (Alcasena
et al., 2021). In turn, we seek (ii) to provide further insight
into the role the drivers of wildfires are playing on ignitions,
focusing on unravelling their relative influence across PS and
support risk management. Finally, (iii) we explored the dif-
ferences between full and local models in terms of perfor-
mance and influence of the driving forces of ignition, provid-
ing a baseline for determining scale effects in ignition mod-
elling and mapping. For this purpose, we developed and val-

https://doi.org/10.5194/nhess-25-4713-2025



P. J. Gelabert et al.: Assessing human-caused wildfire ignition likelihood across Europe

idated Random Forest spatial models of ignition probability
(for each PS individually and pooling all PS together) based
on human, climate and territorial drivers.

2 Materials and methods
2.1 Research context and description of the pilot sites

The study is framed within the European H2020 project
FirEUrisk (Chuvieco et al., 2023). The project contemplates
different temporal and spatial scales, the latter being tackled
from a three-fold perspective upscaling from small demon-
stration sites (1 : 5000), through pilot sites (1 : 200000; the
scale showcased here), up to the entire European territory.

The five pilot sites (PS) that we analysed were selected
following different criteria representing various climatic and
socio-economic features across Europe (Fig. 1). In the case
of PS1 in South-Eastern Sweden, we investigate a region
with continental climate (Dfb, according to the Kdppen cli-
matic classification) with moderate fire activity that is likely
to increase under the influence of climate change (Bowman et
al., 2020). PS2 (also Dfb climate) encompasses four smaller
regions across three countries of Central Europe (Germany,
Czech Republic, and Poland) (Kottek et al., 2006); we fo-
cused on capturing the potential of ignitions that are highly
probable to produce a transboundary event, i.e. potential in-
coming fires from neighbouring countries that may require a
coordinated transnational intervention and management for
prevention. PS3 and PS4, located in the Central region of
Portugal and the Barcelona province (Eastern Spain), depict
Mediterranean-type climate conditions (Csb, Csa, Cfa and
Cfb) (Kottek et al., 2006). Both pilot sites focus on the influ-
ence of Wildland Urban Interfaces (WUI), depicting regions
with high fire frequency linked to human pressure on wild-
lands (Bar-Massada et al., 2023). Finally, PS5 (Attica Re-
gion, Greece) was selected to understand how the Mediter-
ranean subtropical dry climate (Csa) that its prevalent over
a densely populated region (the greater metropolitan area
of Athens), with highly flammable vegetation and dominant
seasonal high-speed winds, produce catastrophic peri-urban
wildfires that historically cause a high number of fatalities
from large-scale fire events (Kottek et al., 2006; Kotzamanis,
2024).

2.2 Wildfire data and response variable

Models were built from historical fire records of human-
related ignitions in the selected PS. We employed eight
datasets provided by national and local fire management
agencies (Table 1). The temporal coverage varied across re-
gions and/or countries, ranging from 1996 to 2022. We pro-
cessed and retrieved the coordinates of all fire records at-
tributed with a non-natural cause of ignition, selecting fire
events > 1 ha to prevent excessive bias and unbalance in sam-
ple sizes among regions that resulted from different criteria
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in fire size reporting or retrieval of the coordinates of the ig-
nition point (San-Miguel-Ayanz et al., 2012).

From these data we created a binary response variable that
consists of fire presence (coded as 1) and fire pseudo-absence
(coded as 0) locations. Ignition points were used as presence
locations, while pseudo-absence locations were spatialised
as random points across each PS. The placement region was
constrained to burnable land cover types according to the fuel
type map (Aragoneses et al., 2023) (Sect. 2.3.4), and outside
a buffered area of 500 m distance from fire ignitions records
and other pseudo-absence locations (i.e., absence points O
were placed within 500 m distance of a historical ignition or
another absence location). The number of pseudo-absence lo-
cations was set equal to the amount of fire ignitions in each
PS. To evaluate the potential influence of the pseudo-absence
sampling procedure in modelling outcomes, we built 1000
realisations, each conducing to a model realisation.

2.3 Explanatory variables

We collected a set of variables related to human pressure
on wildlands, presence of agricultural activities, accessibil-
ity, land cover types and transitions, fuel types and fire-
weather (Table S1 in the Supplement). Explanatory vari-
ables for the modelling of ignition probability were selected
based on literature review (Chicas and @stergaard Nielsen,
2022; Costafreda-Aumedes et al., 2017) and experience ac-
quired from working with regional and national scale human
ignition models (Chuvieco et al., 2014; Jiménez-Ruano et
al., 2022, 2023; Martin et al., 2018; Ochoa et al., 2024; Ro-
drigues et al., 2014, 2016, 2018; Rodrigues and De la Riva,
2014). Variables were created from data sources available for
all regions, hence enabling comparison among PS. We repro-
jected all data to the same coordinate system and converted
all explanatory variables into a set of 100 m resolution raster
layers to extract geospatial information at fire ignition and
pseudo-absence points.

2.3.1 Human pressure on wildlands and accessibility

In recent times, there has been an increasing trend in human
presence and pressure on wildlands, which can be attributed
to several factors. To analyse the human presence and pres-
sure on wildlands, we used population density, distance to
the WUI and distance to roads. The population density data
was retrieved from the Global Human Settlement GHS-POP
R2023A for the year 2020 (Schiavina et al., 2023), a 100 m
gridded product developed by the European Commission
Joint Research Centre, and it is expected to have a posi-
tive relationship with human-caused ignitions (Rodrigues et
al., 2022). On the other hand, distance to the WUI, which is
the Euclidean distance to the boundary layer between wild-
lands and urban settlements, is derived from the categorical
aggregated Corine Land Cover maps of 2018. Following the
literature, we anticipated a higher likelihood of human im-
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Figure 1. Locations of Pilot Sites (PS) across Europe with varying fire-regimes and climatic conditions where we modelled human-caused
wildfire occurrence.

Table 1. Summary of ignition data per pilot site, country and/or regions (in parenthesis), temporal coverage (first-last year) and total number
human-caused fires records.

Pilot site Country (region) Temporal ~ Number of Ignition density (ignitions
coverage ignitions per year per km?)
PS1 — Northern Europe ~ Southeast Sweden 1996-2020 619 0.0022
PS2 — Central Europe (;Zech Republic (Karlovy Vary, 2016-2020
Usti nad Labem and Liberec regions)
Poland (Lower Silesia) 20072017 1636 0.0038
Germany (Eastern Saxony) 2008-2021
Germany (Southern Brandenburg) 2010-2020
PS3 — Central Portugal ~ Portugal 2001-2020 1530 0.012
PS4 — Barcelona Spain 2008-2018 2133 0.028
PS5 — Attica region Greece 2017-2021 188 0.031

pact in built-up areas that are closer to the WUI (Costafreda-
Aumedes et al., 2017). As a proxy for accessibility, we cal-
culated the distance to roads, defined as the Euclidean dis-
tance from all types of roads retrieved from the Global Roads
Inventory Project (GRIP) by the GLOBIO model; a higher
probability of human impact is presumed closer to roads
(Leone et al., 2003).

Nat. Hazards Earth Syst. Sci., 25, 4713-4729, 2025

2.3.2 Agricultural related interfaces

Another key factor influencing human-caused fire ignitions
is the proximity to interfaces between wildlands and ar-
eas of traditional economic activities, specifically agricul-
ture and grasslands/pastures. The distance to the Wildland-
Agricultural Interface (WAI) and the Wildland-Grassland In-
terface (WGI) is crucial in understanding these dynamics
(Rodrigues et al., 2014). To delineate these interfaces, we
replicated the methodology used for defining the WUI but
instead targeted croplands and grasslands. These interfaces
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are areas where human agricultural activities meet wildlands,
creating zones with an elevated ignition risk due to agri-
cultural practices such as burning crop residues, machinery
use, and other land management activities. We expected the
risk patterns to replicate those observed for the WUI, where
closer proximity to the interface correlates with increased ig-
nition likelihood.

2.3.3 Land cover types and land cover transitions

Land cover, particularly the intermix of urban, agricultural,
and wildland areas, is also a significant indicator of poten-
tial fire ignition sources (Costafreda-Aumedes et al., 2017).
We calculated the percentage of land covered by urban, agri-
cultural, and wildland classes. Mixed-cover areas, where ur-
ban development encroach on wildlands or agricultural lands
transition into natural vegetation, are particularly vulnerable.
These zones often experience higher human activity levels
and potential conflicts, which can lead to accidental or inten-
tional ignitions. Furthermore, we calculated two land cover
transitions: urbanisation, i.e., any land cover change from
natural vegetation into urban areas; and forest expansion,
any transition into areas with natural vegetation (Probeck et
al., 2021).

2.3.4 Fuel types

The availability and type of fuels are fundamental in de-
termining wildfire behaviour and ignition likelihood. We
adapted the procedure proposed by Aragoneses et al. (2023)
to create a spatial approximation of fuel types (Table S2) by
integrating several high-resolution datasets. These included
the Corine Land Cover 2018 (CLC; European Environment
Agency, 2019) and CLC+ Backbone resampled to 100 m
(Probeck et al., 2021) using majority vote as aggregation
criteria, Tree Cover Density (TCD; European Environment
Agency, 2020) at 100m from the European Environment
Agency, Global Forest Canopy Height resampled to 100 m
(Potapov et al., 2021), and the burned areas from 2018 to
2022 retrieved from the European Forest Fire Information
System (EFFIS). It should be noted that the TCD and GFCH
products have a native spatial resolution of 30 m; we first ag-
gregated the values to 90 m by mean value and then resam-
pled them into 100 m using the nearest-neighbour interpola-
tion. By reclassifying and merging these datasets, we devel-
oped a detailed map of fuel types across each study area, as
shown in Table S3, which outlines the correspondence be-
tween FirEUrisk defined fuel types and the reclassification
criteria used to transform land use classes into fuel types.

2.3.5 Fire weather

Weather conditions influence the probability of ignition
mainly by modulating the moisture content of the dead frac-
tion of fine fuels (Rodrigues et al., 2023; Van Wagner, 1987).
We calculated the dead fine-fuel moisture content (DFMC)
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following the method by Rodrigues et al. (2024). The method
is based on empirical relationships between Vapor Pressure
Deficit (VPD) and DFMC. We calculated daily DFMC from
temperature and relative humidity acquired from reanaly-
sis data from the ERAS5 Land product (Copernicus Climate
Change Service, 2019). We aggregated daily DFMC into an-
nual products using data inside the wildfire season (March to
September). We calculated the yearly DFMC anomaly (ex-
pressed as Z-Scores), in the period 1991-2021.

2.4 Modelling approach

Random Forest (RF, Breiman, 2001) binary classification
models were calibrated from historical fire records and ig-
nition drivers. The effectiveness of machine learning al-
gorithms is widely recognised in fire modelling (Kim et
al., 2019; Milanovi¢ et al., 2021; Oliveira et al., 2012;
Sebastian-Lépez et al., 2008). Among the wide range of
algorithms available, RF stands out as a trade-off between
efficiency, simplicity in its calibration and optimisation,
and versatility in its application (Chicas and @stergaard
Nielsen, 2022; Rodrigues and De la Riva, 2014; Trucchia
et al., 2022b). RF is a tree-based ensemble regression and
classification algorithm that uses a bagging strategy to create
and merge a set of decision trees. The modelling approach to
assess ignition probability is three-fold: first, we calibrated
individual models for each PS. Then, we calibrated the so-
called full model, pooling all PS data together to mimic a
region-wide model. Finally, we compared individual mod-
els with the full model to delve into potential differences in
model performance and the influence of ignition drivers.

2.4.1 Model calibration

We fitted 1000 RF model realisations (one per pseudo-
absence sample) per PS, using the RF implementation in
the ranger R package (Wright and Ziegler, 2017). We im-
plemented a bootstrapping procedure (1000 model realisa-
tions) retaining 80 % of observations to train a model and the
remaining 20 % for testing their performance. RF hyperpa-
rameters were optimised; to do so we tested a set of values
for each hyperparameter over a initial model by means of re-
peated cross validation with 10 partitions and five repetitions
for each pilotsite. Concretely, for mtry (number of predictors
used at each branch split of a decision tree) we tested values
from three predictors to number of predictors —1; for min
node size (a stop rule based on the minimum number of ob-
servations in a terminal node that controls tree depth) values
ranging from 5 % to 90 % of observations were tested; and
the splitrule (the criteria to select a value of mtry) was the
Gini index used as a rule of thumb in classification assess-
ments. The criteria to define the best hyper-parametrisation
was the highest mean Area Under the Receiver Operating
Characteristic Curve (AUC) across the different repeats. To
account for spatial autocorrelation, we added an Autocorrela-
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tion Control (AC) term calculating Euclidean Distance Fea-
tures (EDF), defined as the distance to the center and to the
four corners of the study region, and also x, y coordinates of
each point in the adopted CRS (Mila et al., 2024).

Additionally, we calibrated the full model. This model in-
corporates a dummy variable, i.e., the PS code, and AC term
using the northernmost point of PS1 (Northern Europe), the
easternmost point of PS5 (East Attica), and the southernmost
and westernmost points of PS3 (Central Portugal) as bound-
ing box to define EDF, to control potential effects from the
geographical origin of the observations. On top of AC term,
we implemented a semivariogram to estimate the minimum
distance between observations during the sampling proce-
dure. The full model provides a baseline for further compar-
ison with PS models, acting as proxy of a regional model.
Specifically, we compared the rank in importance of model
covariates with PS models and evaluated the differences in
the accuracy of the predictions between the full model and
each PS model by comparing performance metrics.

2.4.2 Model validation and performance of the
explanatory variables

The predictive accuracy of the models was assessed by calcu-
lating the AUC using the test samples from each model real-
ization (Turner, 2020). The AUC is a threshold-independent
metric based on plotting the true positive rate against the false
positive rate along the continuum of probability values (0-1).
An AUC above 0.70 is deemed as moderately good, while
0.80 marks the threshold of sufficiently performance (Metz,
1978). The influence of the predictors in the probability of
ignition was measured in terms of variable importance (in-
crease in node impurity), expressing it as a relative value be-
tween 0 % to 100 %. Dependence plots relate the predicted
response (probability of ignition) with the range of values
of a predictor. The shape of the profiles informs about the
type of relationship (linear/non-linear, positive/negative). Fi-
nally, to ensure model reliability, we analysed model residu-
als’ spatial autocorrelation using the Moran’s I index (Moran,
1950).

We used the R language for statistical computing (R Core
Team, 2024) and its most widely used Integrated Developed
Environment RStudio, to carry out the entire process. Con-
cretely, we used functions from different packages such as
tidyverse (Wickham et al., 2019) for data management and
visualisation, caret (Kuhn, 2008) to optimise model hyper-
parameters, ranger (Wright and Ziegler, 2017) as a fast im-
plementation of RF model, sf and terra (Hijmans, 2024;
Pebesma, 2018) to manage spatial data (vectorial and raster),
pROC (Robin et al., 2011) for model evaluation and ape (Par-
adis and Schliep, 2019) for spatial autocorrelation analysis.

Nat. Hazards Earth Syst. Sci., 25, 4713-4729, 2025
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3 Results

3.1 Predictive performance and effects of spatial
autocorrelation

The capacity of the individual models to predict ignitions
varied across pilot sites (Fig. 2), with AUC values ranging
from 0.70 (East Attica) to 0.89 (Central Europe). The per-
formance of the full model stood close to the average of the
PS’s models (AUC =0.81). However, its capacity decreased
when evaluated at PS level, ranging from 0.61 to 0.85. Again,
East Attica attained the lowest accuracy and Central Europe
the highest, but it is remarkable that the only PS with AUC
above the 0.80 threshold was the latter, with Central Portugal
and Barcelona stepping down below 0.80 and East Attica and
Southern Sweden below 0.70. Moreover, East Attica shows
great variability in AUC values, which could indicate some
overfitting due to data scarcity (Fig. S1 in the Supplement).

Most models showed no spatial structure in the residuals
(Moran’s I non-significant p > 0.05; Fig. 3), meaning that
they can be further used to draw inference based on model
outcomes. The AC control successfully alleviated spatial au-
tocorrelation, ranking remarkably high in Central Europe and
Central Portugal (among top 5 predictors, Table 2). Disre-
garding the AC control in the full model led to spatially cor-
related residuals in all models.

3.2 Main explanatory factors of ignition and regional
differences

The spatial distribution of human-caused ignition probability
was modulated by the combination of different variables in
each PS (Table 2). The influence of the predictors in terms
of relative importance (i.e., the relevance of a given vari-
able in reaching a prediction) and type of relationship (i.e.,
whether it boosts or hinders the likelihood of ignition). Fires
in southern Sweden (PS1) tend to start under dry and warm
seasons (DFMC,s), which in the context of the Northern Eu-
rope climate correspond to its relatively warm and dry sum-
mer months, preferably in forest-dominated areas or natural
landscapes near human settlements such as the WUI, with a
greater emphasis on forestry and less on agriculture or open
grasslands (away from WAI and WGI). These regions com-
bine proximity to human activity (roads, WUI) and are sit-
uated in forested areas where agricultural activities are min-
imal, making them more prone to wildfires due to temper-
ature anomalies and human activity rather than agricultural
ignition sources. In Central Europe (PS2), fires started un-
der abnormally low DFMC with a significant fraction cover
of wildlands, such as forests or natural landscapes, that pro-
vide abundant fuel. The chance of ignition increases in zones
close to the WUI, where human settlements meet natural
areas. Additionally, proximity to roads further elevates the
probability of ignition. In the Central Portugal (PS3), densely
populated areas with abnormally low DFMC boosted igni-

https://doi.org/10.5194/nhess-25-4713-2025



P. J. Gelabert et al.: Assessing human-caused wildfire ignition likelihood across Europe

P&1-NORTHERN EUROPE

100

count

50

count

4719

P52 - CENTRAL EUROPE

MH
[

e
| I

Mean ALC: 0.83

P&3 - CENTRAL PORTUGAL

100

count

I

count

0.92

Mean AUC: 089

P54 - BARCELONA

MIHW

]
1T
0825

I | - S ! ==
T80 0.775 0.500 0.82 0.850 0.7e 081 084
AUC AUC
Mean ALC: 0.8 Mean AUC: 0.81
PS5 - EAST ATTICA Full model
100 100
E E
3 L =]
S 1 :
J] . L
1
A - - e 1 I | ]
0.4 1 0 a 08 0.4 0.78 0.80 .82 0.84
AUC AUC
Mean ALC: 0.7 Mean AUC: 0.81

Figure 2. Frequency distribution of performance in model predictions (n = 1000). Each model corresponds to a random sample of the ignition

absence locations.

tion probability. Higher probability was attributed to regions
located at a moderate distance away from WUI, where ru-
ral communities and forests intermingle. Lastly, proximity to
roads further increased ignition probability. In the Barcelona
region (PS4), wildfire ignition was boosted by proximity
to roads and the WUI. These areas become especially vul-
nerable with increased population density, which raises the
chances of successful fire ignition from human activities. A
DFMC anomaly further raised the fire danger. Additionally,
proximity to the WAI compounds the risk of ignition. In the
Attica region (PS5), areas particularly susceptible to wild-
fires were characterised by proximity to the WUI, where ur-
ban and suburban areas stand near moderate wildland pres-
ence, such as forests or scrublands (% wildlands). Again,
the proximity to WAI fosters the potential for ignitions from
farming activities or equipment. Lastly, population density
in these areas can exacerbate the risk of human-caused igni-
tions. The limited role of DFMC in PS4 and PS5 is largely
due to the frequent occurrence of low DFMC conditions
in the Mediterranean basin, which reduces its explanatory
power in the models. Moreover, in these regions, human-
related drivers exert a stronger influence on ignition pat-
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terns, in contrast to northern Europe where climatic variabil-
ity plays a more dominant role.

When modelling all PS together, regions at heightened
probability of ignition were characterised by DFMC anoma-
lies accompanied by their yearly average. Locations near
roads and the WUI were especially prone to ignition. Further-
more, population density was a critical factor, followed by
the proximity to agricultural activities (WAI). The full model
seemed to provide an averaged version of PS models with
reinforced importance of fire weather factors, being the only
model that promoted mean DFMC among the top tier drivers.
Moreover, the full model disregarded certain drivers like the
fraction covered by wildlands, which played a contrasting
role in some PS. On the other hand, neither land cover-related
features such as the fraction of urban and agricultural lands
or dominant fuel types, nor the land cover transitions like ur-
banisation and forest expansion, played a determinant role or
contributed significantly in any model.

Nat. Hazards Earth Syst. Sci., 25, 4713-4729, 2025
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Figure 3. Frequency distribution (n = 1000) of Moran’s I index calculated from the residuals in each model realisation. The dashed vertical
line indicates the p < 0.05 threshold, below which residuals can be considered as correlated with 95 % confidence.

3.3 Spatial patterns of ignition probability

The unique combination of driving factors at the PS level
produced a singular spatial pattern of ignition probability in
each of them (Fig. 4). The backbone of each pattern lay in
human factors, with DFMC set as the average conditions to
ensure the production of comparable maps, complemented
by quintile map representation (Trucchia et al., 2022a). For
example, in south-eastern Sweden we can observe two main
clusters of high probability (Quantile 5 — Q5) in the mid sec-
tor, with a decreasing gradient towards the south. In Cen-
tral Europe, the German part of the region displayed higher
probability (Q4-Q5), slightly spreading across the centre in
the border between countries (Q2—Q1). In central Portugal,
the high ignition probabilities (Q4-Q5) were clustered in
densely populated zones, like Barcelona, which higher like-
lihood in the WUI areas around the metropolitan region of
the capital city. In Attica (PS5), the driving forces behind the
spatial distribution of probability showed the strongest link
with human activities, with probability mirroring the distri-
bution of urban and agricultural lands coalescing with wild-
lands (Q4 and Q5 values).
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When applying the full model to map the probability of
ignition, the general pattern appears to prevail, although dif-
ferences were observed. The distribution becomes more dif-
fused, with higher probabilities attributed to a larger number
of pixels. Overall, the predicted probability was higher when
the full model was used. However, some small enclaves were
underestimated. Therefore, the fine-grained pattern becomes
less accurate, as we already established when validating the
full model at the PS level. Looking specifically at the dif-
ferent Pilot Sites, PS1 and PS2 showed minimal differences
between PS model and full model, as both were highly in-
fluenced by DFMC. In contrast, PS3 and PS4, located in
Mediterranean regions, highlighted the importance of human
factors like population density (PS3) and distance to WUI
(PS4), which made local models more overpredict compared
to the full model. PS5, with limited data, showed a tendency
for the local model to predict higher ignition probabilities,
reflecting the dominance of site-specific patterns.
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Table 2. Relative importance of the predictors. Numbers indicate the rank in importance. Symbols between parenthesis relate to the explana-
tory sense (when applicable): (4) positive relationship, (—) negative relationship, and (o) flat profile/non-meaningful. The top 5 variables in
importance for each Pilot Site are highlighted in bold.

Factor Variable All PS1 PS2 PS3 PS4 PS5
' DFMCys 1(=) 1(=) 1(=) 2(=) 4(=) 909
Fire weather DFMCayg 2(=) T7(=) 6(=) 9(=) 9 10 (o)
Wildland interfaces Dist. WUI 5(=) 2(-) 4(-) 3+ 1(-) 1(-)
Dist. WAI 6(=) 4(+) 7(=) T 5(=) 4(-)
Dist. WGI 7 (0) 5(+) 8(o) 6(0) 6(+) 3(+)
o Dist. roads 3(-) 3(-) 5(-) 4(=) 2(-) 6()
Human pressure and accessibility Pop. density 4(+) 110) 11(0) 1(+) 3(+) 5(+)
%Wildlands  9(+) 8(+) 2(+) 8(—) 80  2(-)
Land cover JAgriculture  10(0)  9(o) 9(—) 10(+) 11(0) 7(+)
%Urban 12(0) 12(+) 12(+) 12(0) 10(—=) 11(+)
Fuel types Fuel type 11 10 10 11 12 12
. Urbanisation 14(=) 13(o0) 14(—=) 13(o) 13 (o) 13(+)
LC transition Forestexp.  15(+) 14(0) 13(0) 14(0) 14(4) 14(0)

PS identifier 13 - -

Dummy variables
y Autoc. Contr.

4 Discussion

This ignition probability assessment of anthropogenic wild-
fires was built with a set of predictive models in five distinct
study sites across Europe. The ultimate drivers of human-
caused fires are known to vary by country and even locally by
region (Oliveira et al., 2014), resulting in diverse modelling
schemes and strategies that hinder our ability to draw joint
conclusions (Costafreda-Aumedes et al., 2017). The differ-
ences in comparable models may offer enhanced information
about each pilot site, thus better guiding management strate-
gies across larger regions.

4.1 Driving forces across regions

Our results suggest that fire weather conditions (Keeping
et al., 2024; Resco de Dios et al.,, 2022), accessibility
(Costafreda-Aumedes et al., 2017; Guo et al., 2016; Vac-
chiano et al., 2018) and human pressure on wildlands (San-
Miguel-Ayanz et al., 2012) were the leading influencing fac-
tors in most models (Table 2). The full model revealed a sys-
tematic pattern of human-caused fires linked to abnormally
low DFMC, starting in densely populated areas close to ac-
cessible urban settlements, or in intensive agricultural lands.
However, the importance of these drivers varied across sites,
and nuances between the analysed regions were manifold.
In the case of Southern Sweden (PS1) and Central Eu-
rope (PS2), fires occurred noticeably during abnormally dry
years. Several studies conducted in Sweden revealed that a
remarkable percentage of the burned area (40 %) originated
from ignitions sparked by the forestry machinery (Sjostrom
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et al., 2019). Road density was also positively related to
human-caused ignitions for all Sweden (Pinto et al., 2020),
even though these authors found that the population density
was the most relevant factor in contrast to our findings, which
favours the proximity to the WUL In Central Europe, other
studies have pointed to the confluence of wildland urban in-
terface, and road density (Ciesielski et al., 2022; Kolanek et
al., 2021; Mozny et al., 2021). In fact, in this area of Europe,
concretely in Silesia (Poland), the majority of human caused
wildfires is related to the burning of stubble by farmers (Gan-
teaume et al., 2013).

Barcelona and Central Portugal (PS3 and PS4) feature a
similar pattern dominated by the joint influence of accessi-
bility and presence of people, a behaviour also evidenced by
other authors (Martin et al., 2018; Parente et al., 2018). How-
ever, ignitions in Portugal seem to be more associated with
rural enclaves located at moderate distances from the WUI,
while fires in Barcelona and the other pilot sites tend to start
in the vicinity of the WUI and road networks, such as along
the north-to-south axis of the C-16 highway. These PS were
less influenced by DFMC variations, especially Barcelona,
given their geographical distribution within Mediterranean-
type conditions.

Finally, in the Attica region (PS5), fires were strongly tied
to a mix of human-related factors, with a modest climate con-
tribution dues to its Mediterranean climate. Results pointed
at the proximity to the WUI as the main factor followed
by accessibility by road, especially in combination with de-
graded or recently abandoned wildlands linked to livestock
decline (Colantoni et al., 2020). Fires were also linked to
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agricultural activities, whereas densely populated enclaves
boosted ignition potential as well, including the two major
fires in the past 3 years, each exceeding 8000 ha, sparked by
powerline.

Implementing effective fire ignition prevention policies is
crucial for reducing human-caused wildfires. Particularly im-
pactful strategies include public education to promote re-
sponsible behaviours, fire use restrictions during high-risk
periods, strict enforcement of regulations to deter negligence,
and vegetation management along high-traffic corridors and
in WUI areas to reduce hazardous fuels. Anticipating fire-
prone weather conditions is key to identifying temporal win-
dows during which to restrict the use of fire or reinforce pub-
lic risk awareness in all regions. In northern and central Eu-
rope, focusing on managing vegetation near WUI zones and
roads is essential, and proactive measures such as early warn-
ing systems and public advisories during high-risk periods
can significantly reduce accidental ignitions. In the western
Mediterranean, reinforcing territorial planning to regulate ur-
ban and rural expansion into forestlands is crucial. Imple-
menting land-use policies that prevent uncontrolled develop-
ment in fire-prone areas can mitigate ignition risks and en-
hance landscape resilience. In highly fire-prone regions like
Attica, promoting responsible recreational use of forests is
necessary to prevent fire occurrences. Likewise, advocating
responsible land-use practices and enhancing community en-
gagement in fire prevention efforts can address the human
activities contributing to ignition risks.

4.2 Profiles and type of relationships

All drivers displayed distinct non-linear profiles in their re-
lationship with the probability of human-caused fire igni-
tion. The variables that demonstrate the greatest variability
in probability values were the distances to roads, the WUI,
and the WAL There is a notable sharp decrease in probability
values, leading to higher probabilities observed near roads,
urban discontinuous areas, and crop patches near wildland.
This effect occurs because roads offer accessibility and serve
as sources of ignition, alongside agricultural and discontinu-
ous urban areas (Ganteaume et al., 2013).

It is important to keep in mind that socioeconomic and de-
mographic variables depend on external factors such as cul-
tural differences and can have complex relationships which
can be masked in global models. For instance, the negative
relationship between fire ignitions and distance to roads iden-
tified in previous studies likely reflects human accessibility
to easily ignitable fuels and vegetation close to roads (Chi-
cas and @stergaard Nielsen, 2022; Costafreda-Aumedes et
al., 2017; Guo et al., 2016; Vacchiano et al., 2018). Many
roads pass through degraded landscapes where natural veg-
etation, especially trees, has been removed for road con-
struction and maintenance. This removal leaves flammable
grasses and small shrubs that can easily ignite regardless of
their potential for propagation into a large fire event. Since
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most fires in our research were small (< 100 ha), the posi-
tive impact of roads on ignition outweighs its negative effect
on fire spread, which only becomes significant when focus-
ing on large fires as presented by Ochoa et al., (2024). These
differences stress the importance of tailored preventive fuel
management around key hot spots along the road network.

The percentage of wildland plays a contrasting role de-
pending on the environment. In southern areas, it signif-
icantly contributes to human-caused ignition probability
when wildland proportions are lower. Conversely, in north-
ern areas, higher proportions of wildland lead to an increase
in ignition probability. This is correlated with fuel moisture
and the heightened ignition capacity of drier environments
(Jurdao et al., 2012). Several studies highlight population dis-
tribution as a critical variable in modelling human-caused
ignitions (Ciesielski et al., 2022; Costafreda-Aumedes et
al., 2017; Ganteaume et al., 2013; Martin et al., 2018), ex-
hibiting a sharp response curve that flattens abruptly beyond
a close breakpoint. This suggests that even a minor presence
of people may contribute to higher ignition likelihood.

Finally, despite other research, such as the findings by Ro-
drigues et al. (2019), establishing a strong relationship be-
tween fuel type and ignition probability, the present study
found that fuel type played a limited role in the probabil-
ity of human-caused ignitions. This low importance can be
partly constrained by the influence of other land cover related
factors such as percentage of wildland, agricultural or urban
areas, and the prominent role of DFMC. In other words, fuel
types might be redundant when land cover types or fuel mois-
ture content are already accounted for.

4.3 Implications for fire danger modelling

Beyond the differences in driving forces, several lessons can
be learnt from our modelling procedure: modelling at re-
gional scales limit the capacity to capture local patterns, fail-
ing to capture the fine-grained patterns of probability.

The full model was successful in terms of performance,
standing at an intermediate level compared to its PS coun-
terparts. However, when evaluated locally, performance
dropped in all PS, rendering its predictions unreliable in
south-east Sweden and the Attica region by decreasing AUC
by 0.10 down below 0.70 (Metz, 1978). This drop in per-
formance is likely due to differences in the contribution of
predictor variables among models, hindering specially those
situations more difficult to generalise because of data scarcity
(Harrell, 2015). As a side-effect, the patterns of probability
were different, with a tendency to overestimate the chances
of successful ignition and driving sharp changes in the local
patterns.

The effects of spatial autocorrelation in models are often
overlooked. Recent reviews in ignition model and wildfire
susceptibility summarising the efficacy of algorithms and/or
the driving factors behind wildfire incidence disregarded in
their evaluations whether modelling attempts explicitly ac-
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counted for spatial autocorrelation (Chicas and @stergaard
Nielsen, 2022; Costafreda-Aumedes et al., 2017). Spatial au-
tocorrelation refers to the phenomenon where the values of a
variable exhibit a correlation based on their geographic prox-
imity, meaning that sites located near each other tend to have
similar (or related) values for that variable (Tobler, 1970).
There is evidence that neglecting spatial autocorrelation af-
fects the precision of the estimates (Guélat and Kéry, 2018).
The spatially clustered structured of wildfires is long known
(Chou, 1992). Consequently, accounting for its potential in-
fluence is key to deem if the spatial pattern in the dependent
variable could be explained by the spatial pattern observed in
the predictors (Dormann et al., 2007; Oliveira et al., 2012).
We integrated spatial autocorrelation including an AC term
in the models (Behrens et al., 2018), which successfully con-
trolled the spatial structure in model residuals in 65 % of the
full model realizations and in 80 % of the PS models. The
AC term ranked high in Barcelona and Central Portugal, in-
dicating a particularly clustered pattern of ignition.

4.4 Limitations and further improvements

Despite the valuable outcomes we achieved, the study
presents limitations that should be mentioned. A key con-
straint is the potential overfitting in site-specific models, par-
ticularly in PS5, where sample size was limited and results
exhibited the lowest accuracy. The inclusion of EDFs to con-
trol for spatial autocorrelation may further increase overfit-
ting and prevents extrapolation to areas outside the EDFs
bounding boxes, limiting the generalisability of the models
(Mila et al., 2024). Moreover, the strong influence of sam-
ple size on model performance is particularly crucial in the
case of PS5, where results exhibited the lowest accuracy. The
present approach is based on static human factors, but further
research would be necessary to incorporate daily-scale (e.g.,
commuting) and seasonal (e.g., tourism and recreational ac-
tivities) dynamics of human behaviour into more sophisti-
cated models. However, we have reached a compromise be-
tween the accuracy of the models and the minimal and less
complex number of fire factors needed for modelling. Fi-
nally, the present analysis is a first step towards more ex-
trapolated prediction procedures to obtain general and com-
parable human ignition models for the rest of the European
territory, or even other similar regions of the globe with sim-
ilar intrinsic human factors.

5 Conclusions

In this study we developed predictive models to assess the
probability of human-caused fires across five European re-
gions, each characterised by its own ignition factors and fire
regimes. The results highlight the central role of weather con-
ditions, accessibility and human pressure on wildlands as
key factors, although the importance of these factors varies
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among regions. Proximity to roads, WUI and population
pressures were consistently influential. Fire-weather anoma-
lies were especially important in northern regions, while
human factors gain importance in the Mediterranean. Ran-
dom Forest has proven to be a powerful tool for predicting
wildfire ignition probability, achieving high accuracy with
AUCs above 0.80. In addition, spatial autocorrelation, often
overlooked in wildfire models, was successfully integrated,
controlling spatial patterns and improving model reliability.
These results underscore the need for regionally tailored ig-
nition prevention strategies and the importance of account-
ing for human-caused ignition patterns in landscape-scale
stochastic fire modelling.
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