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Abstract

The domination number γ(Cm2Pn) of the Cartesian product Cm2Pn of a cycle and
a path has been computed when m ≡ 0, 2 (mod 5). In the remaining cases m ≡ 1, 3, 4
(mod 5), exact formulae for γ(Cm2Pn) have been determined when either m ≤ 30 or
n ≤ 22. For the rest of the cases, only lower and upper bounds for γ(Cm2Pn) are known.
In this paper, we study γ(Cm2Pn) when m ≡ 1, 3, 4 (mod 5). In particular, we compute
γ(Cm2Pn) if m ≡ 1 (mod 5), m ≥ 30 and n ≥ 22, and we provide tighter lower and
upper bounds for γ(Cm2Pn) if m ≡ 3, 4 (mod 5).
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1 Introduction
Let G = (V,E) be a simple graph. A dominating set of G is a subset D ⊆ V such that
every vertex not in D is adjacent to at least one vertex in D. The domination number of G,
denoted by γ(G), is defined as the minimum cardinality of a dominating set. Due to a lot
of applications, domination in graphs has been widely studied in the literature. We refer
the reader to [8] for an excellent book on this topic.

In this paper, we focus on studying the domination number in cylindrical graphs, or
cylinders, Cm2Pn, that is, the Cartesian product of the cycle Cm and the path Pn. In con-
trast to grid graphs (the Cartesian product of two paths), where the domination number was
finally computed in [4] after almost thirty years of research, the problem of computing the
domination number in cylindrical graphs is still open, and only partial results are known. In
1996, Klavžar and Žerovnik [9] used the notions of fasciagraph and rotagraph to develop
a computational method that allows to obtain the domination number of such graphs in
some particular cases. By running their algorithm, they computed the values of the domi-
nation number of cylindrical graphs when 2 ≤ n ≤ 5 and 3 ≤ m ≤ 1000. Later, Nandi,
Parui and Adhikari [10] proposed a new method based on specific constructions to find the
domination numbers of cylinders when 2 ≤ n ≤ 4 and m ≥ 3. This approach of con-
sidering cylinders with paths or cycles of bounded size was addressed again by Pavlič and
Žerovnik [11], who computed the values of the domination number of cylinders Cm2Pn

with m ≤ 11 or n ≤ 7. Later, Crevals [3] obtained exact values for m ≤ 30 or n ≤ 22.
The first result that computes the domination number of a family of cylinders with paths

and cycles of unbounded size appeared in 2020. Carreño, Martı́nez and Puertas showed in
[2] that

γ(Cm2Pn) =
mn+ 2m

5

when m ≡ 0 (mod 5), m ≥ 30 and n ≥ 20. Recently, Guichard [6] proved that

γ(Cm2Pn) =

⌈
mn+ 2m

5
+

n− 13

10

⌉
when m ≡ 2 (mod 5), m ≥ 32 and n ≥ 27. For the remaining cases, m ≡ 1, 3, 4
(mod 5), only lower and upper bounds for γ(Cm2Pn) are known (see [5, 7, 11]).

Table 1 summarizes the best-known results up to date for m and n large enough. For
small values of m or n, Crevals determined formulae for γ(Cm2Pn) when m ≤ 30 or
n ≤ 22 are fixed parameters [3]. In this paper, we compute the exact value of γ(Cm2Pn)
when m ≡ 1 (mod 5) and we improve the known bounds when m ≡ 3, 4 (mod 5). The
results we have obtained are summarized in Table 2.

Note that we decrease the known upper bound by 4 for m ≡ 3 (mod 5), and by 3 for
m ≡ 4 (mod 5). In the case of the lower bounds, we increase them by some fractions
depending on n, roughly n

50 if m ≡ 3 (mod 5), and 12n
650 if m ≡ 4 (mod 5). The up-

per bounds are obtained by building dominating sets in Cm2Pn that provide such upper
bounds, while the lower bounds are obtained computationally following the ideas in [2, 7].

The paper is organized as follows. We present some definitions and terminology in Sec-
tion 2. Section 3 is devoted to exhibit a dominating set in Cm2Pn, when m ≡ 1 (mod 5),
m ≥ 11 and n ≥ 5. This dominating set provides an upper bound for γ(Cm2Pn). In Sec-
tion 4, we show that this upper bound is also a lower bound for γ(Cm2Pn), when m ≡ 1
(mod 5), m ≥ 30 and n ≥ 22. The bounds for the remaining cases are shown in Section 5.
Finally, some conclusions and conjectures are given in Section 6.
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γ(Cm2Pn)

m (mod 5) Exact value Lower bound [7] Upper bound [11]

m ≡ 0 mn+2m
5 [2] — —

m ≡ 1 ? mn+2m
5 + 6

5

⌊
n−20
10

⌋
mn+2m

5 + 7(n+2)
40

m ≡ 2
⌈
mn+2m

5 + n−13
10

⌉
[6] — —

m ≡ 3 ? mn+2m
5 + 9

5

⌊
n−20
10

⌋
mn+2m

5 + 2(n+2)
5

m ≡ 4 ? mn+2m
5 + 6

5

⌊
n−20
10

⌋
mn+2m

5 + n+2
5

Table 1: Known results about γ(Cm2Pn) for m and n large enough.

γ(Cm2Pn)

m (mod 5) Exact value Lower bound Upper bound

m ≡ 1
⌈
mn+2m

5 + 2n−26
15

⌉
— —

m ≡ 3 ? mn+2m
5 + n−19

5
mn+2m

5 + 2(n−8)
5

m ≡ 4 ? mn+2m
5 + 9n−152

65
mn+2m

5 + n−13
5

Table 2: Our results about γ(Cm2Pn) for m and n large enough.

2 Preliminaries
We first recall the definition of a cylindrical graph or cylinder. For integers m ≥ 3 and
n ≥ 2, the cylinder Cm2Pn is the Cartesian product of the cycle Cm and the path Pn,
whose vertex set is V (Cm2Pn) = {uij : i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}} and there is
an edge between two different vertices uij and ui′j′ if and only if one of the following
properties is satisfied:

• i = i′ and |j − j′| = 1;

• j = j′ and |i− i′| = 1;

• i = i′ and {j, j′} = {1,m}.

We will always refer to the cycles as the rows of the cylinder and the paths as the
columns of the cylinder. Hence, the cylinder Cm2Pn will consist of n rows (cycles) and
m columns (paths). For instance, Figure 1 shows the cylinder C112P3, which consists of
3 rows (cycles) and 11 columns (paths). In most of the figures, the set of colored vertices
in the cylinder defines a dominating set for that cylinder. Black vertices in Figure 1 form a
dominating set in C112P3.

Given a pattern with colored vertices in a cylinder, as the one illustrated in the gray
square of Figure 1, when saying that the pattern is replicated we mean that we enlarge the
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Figure 1: A pattern with colored vertices.

Figure 2: Replicating twice the pattern shown in the gray square of Figure 1.

C

G

C
G

H

C

Figure 3: Gluing a cylinder G to a cycle C in a cylinder H .

cylinder by inserting columns to the right of the pattern so that the pattern can be replicated.
Figure 2 illustrates the process of replicating twice the pattern in Figure 1: from the cylinder
C112P3 in Figure 1 and the set of colored vertices in that cylinder, we obtain the cylinder
C212P3 and a set of colored vertices. These colored vertices correspond with the initial
colored vertices and the colored vertices in each one of the replications of the pattern. Note
that the colored vertices in the last four columns of C112P3 are now the colored vertices
in the last four columns of C212P3.

Similarly, given a cylinder G with some colored vertices, as the one illustrated in the
middle of Figure 3, when saying that G is glued to a cycle C in a cylinder H with some
colored vertices (where the pattern of colored vertices in C must coincide with the pattern
of colored vertices in the first cycle in G), we mean that we insert G in H by identifying
the first cycle (and the color of the vertices in the cycle) of G with C. The right part of
Figure 3 shows the cylinder C62P5 with some colored vertices, obtained after gluing the
cylinder C62P3 in the middle of Figure 3 to the second cycle of the cylinder C62P3 in the
left part of Figure 3.

3 Upper bound when m ≡ 1 (mod 5)
Crevals studied the domination number in cylinders [3], giving formulae for γ(Cm2Pn)
when m ≤ 30 or n ≤ 22 are fixed parameters. In particular, for 1 ≤ k ≤ 5, Crevals
showed that if m = 1 + 5k, then:

• γ(C1+5·12Pn) =
⌈
4n+2

3

⌉
, for n ≥ 6;

• γ(C1+5·22Pn) =
⌈
7n+8

3

⌉
, for n ≥ 11;

• γ(C1+5·32Pn) =
⌈
10n+14

3

⌉
, for n ≥ 16;

• γ(C1+5·42Pn) =
⌈
13n+20

3

⌉
, for n ≥ 21;
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• γ(C1+5·52Pn) =
⌈
16n+26

3

⌉
, for n ≥ 26.

Previous values suggest the following closed formula, that we denote by f(k, n), for
the domination number of C1+5k2Pn, when 1 ≤ k and n is large enough

f(k, n) =

⌈
(1 + 3k)n+ (6k − 4)

3

⌉
·

Notice that f(k, n) = γ(C1+5·k2Pn), for k ∈ {1, 2, 3, 4, 5}. In this section, we show
that for every integer k ≥ 2, there exists a dominating set of size f(k, n) in Cm2Pn, for
m = 1 + 5k and n ≥ 5. After some algebraic manipulation, f(k, n) can be rewritten as⌈

mn+ 2m

5
+

2n− 26

15

⌉
·

Since the best known upper bound for γ(Cm2Pn) when m ≡ 1 (mod 5) [11] is

γ(Cm2Pn) ≤
mn+ 2m

5
+

7(n+ 2)

40

we are providing a better upper bound for γ(Cm2Pn) in this case.
From the definition of f(k, n), it is easy to check that f(k, n+3) = f(k, n)+(1+3k)

and f(k, n) = f(k − 1, n) + (n + 2). In terms of dominating sets, this means that if we
add three new rows to the cylinder C1+5k2Pn to build the cylinder C1+5k2Pn+3, then
we should add (1 + 3k) new vertices to a dominating set of size f(k, n) in C1+5k2Pn to
obtain a dominating set of size f(k, n+ 3) in C1+5k2Pn+3. Similarly, if we add five new
columns to the cylinder C1+5(k−1)2Pn to build the cylinder C1+5k2Pn, then we should
add (n+2) new vertices to a dominating set of size f(k−1, n) in C1+5(k−1)2Pn to obtain
a dominating set of size f(k, n) in C1+5k2Pn.

3.1 Case n = 5 + 3l

For integers k ≥ 2 and l ≥ 0, we show in this section how to build a dominating set of size
f(k, 5+3l) in C1+5k2P5+3l. Our starting point will be the dominating set D in C1+5·22P5

(so k = 2 and l = 0) defined by the 15 black vertices in the cylinder C1+5·22P5 shown in
Figure 4. Note that f(2, 5) is 15.

Consider the pattern P given in the gray square of Figure 4. It consists of 25 vertices,
seven of them black, in 5 consecutive columns of C1+5·22P5. The seven black vertices
dominate all vertices in the pattern except for the two crossed vertices.

From D, we can obtain dominating sets in C1+5k2P5 by replicating P . Figure 5
illustrates the cylinder C1+5k2P5 and the set D′ of f(2, 5) + 7(k − 2) black vertices
obtained after replicating (k−2) times the pattern P . From the definition of P , it is easy to
check that D′ is a dominating set in C1+5k2P5. Moreover, since f(k, 5) = f(k−1, 5)+7
(recall that f(k, n) = f(k − 1, n) + (n+ 2)), we have f(2, 5) + 7(k − 2) = f(k, 5).

So far, we have built dominating sets for k ≥ 2 and n = 5. Now, we show how to build
dominating sets for n = 5 + 3l and l > 0, by gluing cylinders to C1+5k2P5, for a fixed
k. We define the base cylinder shown in Figure 6. It consists of four rows, eleven columns,
three black vertices, and seven gray vertices. From this cylinder, we can get a cylinder G
with 4 rows and 1 + 5k columns, as the one depicted in Figure 7, by replicating (k − 2)
times the pattern P ′ in the gray square of Figure 6. In this new cylinder G, the number of
black and gray vertices is (k+1) and (1+3k), respectively. Note that the only vertices not
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Figure 4: Black vertices define a dominating set D of size 15 = f(2, 5) in C1+5·22P5.

Figure 5: Black vertices define a dominating set D′ in C1+5k2P5 of size f(2, 5) + 7(k −
2) = f(k, 5), obtained after replicating (k − 2) times the pattern in the gray square of
Figure 4.

Figure 6: The base cylinder.

Figure 7: The cylinder G built by replicating (k − 2) times the pattern shown in the gray
square of Figure 6.

dominated by this set of black and gray vertices are the crossed vertices in Figure 7. Also
note that the relative positions of the black vertices in the first cycle and the gray vertices
in the last cycle are the same (the distance between two consecutive black or gray vertices
is 5, except for two of them that are adjacent). We remark that if k = 2, then G coincides
with the base cylinder shown in Figure 6.

Observe now that the positions of the black vertices in the first cycle of G are the same
as the positions of the black vertices in the third cycle of the cylinder C1+5k2P5 shown in
Figure 5. Thus, we can glue G to the third cycle of C1+5k2P5, as illustrated in Figure 8.
After gluing the cylinder, we move cyclically all black vertices in the last two cycles of
C1+5k2P5 one position to the left. In this way, we ensure that all non-dominated vertices
in G (crossed vertices) are now dominated. From the definitions of D′ and G, it is clear that
the set D′′ of black and gray vertices in Figure 8 forms a dominating set in C1+5k2P5+3·1
of size f(k, 5) + (1 + 3k). Since f(k, n + 3) = f(k, n) + (1 + 3k), the size of D′′ is
f(k, 5 + 3 · 1).
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Figure 8: The set of black and gray vertices defines a dominating set in C1+5k2P5+3·1 of
size f(k, 8) = f(k, 5) + (1 + 3k).

Figure 9: Black vertices define a dominating set of size 17 = f(2, 6) in C1+5·22P6.

Figure 10: Black vertices define a dominating set in C1+5k2P6 of size f(2, 6)+8(k−2) =
f(k, 6), obtained after replicating (k − 2) the pattern in the gray square of Figure 9.

This process of gluing G can be done as many times as we want because the pattern of
black vertices in the third cycle of the resulting cylinder remains (the distance between two
consecutive black vertices is 5, except for two of them), regardless of the number of times
that G is glued. To ensure that we obtain a dominating set each time we glue G, we have
to move cyclically one position to the left all black and gray vertices in all rows below the
last copy of G that is glued. As a consequence, since each time we glue G we are adding
(1 + 3k) new vertices to a dominating set, for k ≥ 2 fixed and n = 5 + 3l, we can obtain
a dominating set of size f(k, 5) + l(1 + 3k) = f(k, 5 + 3l) in C1+5k2P5+3l, by gluing l
times the cylinder G from the cylinder C1+5k2P5 shown in Figure 5 (or Figure 4 if k = 2).

3.2 Cases n = 6 + 3l and n = 7 + 3l

In this section, we describe how to build dominating sets of sizes f(k, 6+3l) and f(k, 7+
3l) in C1+5k2P6+3l and C1+5k2P7+3l, respectively, for integers k ≥ 2 and l ≥ 0. Since
the method for building the dominating sets is the same as the one explained in the previous
section, we will not enter into the details.
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Figure 11: Black vertices define a dominating set of size 19 = f(2, 7) in C1+5·22P7.

Figure 12: Black vertices define a dominating set in C1+5k2P7 of size f(2, 7)+9(k−2) =
f(k, 7), obtained after replicating (k − 2) the pattern in the gray square of Figure 11.

Figure 9 illustrates the base case when n = 6 + 3l. The set of 17 = f(2, 6) black
vertices in the figure forms a dominating set in C1+5·22P6. To obtain a dominating set in
C1+5k2P6, we replicate (k− 2) times the pattern shown in the gray square of Figure 9, as
illustrated in Figure 10. By construction, the set of black vertices is clearly a dominating
set in C1+5k2P6 of size f(2, 6) + 8(k − 2) = f(k, 6).

Now, observe that the pattern of the black vertices in the third cycle of the cylinder
C1+5k2P6 of Figure 10 (and also in Figure 9) is the same as the pattern of the black
vertices in the first cycle of the cylinder G (see Figures 6 and 7). Thus, using this third
cycle, for l ≥ 0 we can get a dominating set of size f(k, 6 + 3l) for C1+5k2P6+3l, by
gluing l times the cylinder G, as described in the previous section.

When n = 7 + 3l, Figures 11 and 12 show a dominating set of size 19 = f(2, 7)
in C1+5·22C7, the base case, and a dominating set of size f(2, 7) + 9(k − 2) = f(k, 7)
in C1+5k2C7, obtained after replicating (k − 2) times the pattern in the gray square of
Figure 11. Now, the black vertices in the fourth cycle of Figures 11 and 12 follow the
pattern of the black vertices in the first cycle of G. Therefore, for l ≥ 0, we can use this
cycle to glue l times the cylinder G and obtain a dominating set of size f(k, 7 + 3l) in
C1+5k2P7+3l.

From the discussion in the previous sections, the following theorem holds.

Theorem 3.1. If m ≡ 1 (mod 5), m ≥ 11 and n ≥ 5, then

γ(Cm2Pn) ≤
⌈
mn+ 2m

5
+

2n− 26

15

⌉
·

4 Lower bound when m ≡ 1 (mod 5)
In this section, we prove that the upper bound for γ(Cm2Pn) given in Theorem 3.1 is
also a lower bound for this parameter. As a consequence, that upper bound is the value of
γ(Cm2Pn), when m ≡ 1 (mod 5).
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Pn

Pn1

Pn2

Pnr

Cm

V1

V2

Vr

Figure 13: A partition of the vertex set of the cylinder Cm2Pn.

Our approach to computing the lower bound follows the ideas in [2, 7] and deepens the
technique of the so-called wasted domination [5]. It is known that a lower bound L for the
minimum wasted domination of Cm2Pn gives a lower bound for γ(Cm2Pn). Besides, the
larger L, the better the lower bound for γ(Cm2Pn). Hence, our main goal will be finding
the largest possible value of L. To this end, Cm2Pn is partitioned into a set of r small
cylinders, as described in [2, 7]. Every partition of Cm2Pn provides a lower bound L for
the minimum wasted domination of Cm2Pn. Therefore, our main task will be computing
the minimum wasted domination in small cylinders and finding a partition of Cm2Pn

maximizing L.
We start with the definition of wasted domination. Recall that the closed neighborhood

of a vertex set S consists of the vertices in S and all their neighbors.

Definition 4.1 ([5]). Let S ⊆ V (Cm2Pn) and denote by N [S] the closed neighborhood
of S. The wasted domination of S is ω(S) = 5|S| − |N [S]|.

The wasted domination provides a measure of how much the neighborhoods of the ver-
tices of a subset overlap. In particular, in the case of dominating sets, the wasted domination
provides the following lower bound for γ(Cm2Pn), that can be found in [2, 7].

Proposition 4.2 ([2, 7]). If L ≤ min{ω(D) : D is a dominating set of Cm2Pn} then,

mn+ L

5
≤ γ(Cm2Pn)·

This proposition implies that to provide a good lower bound for γ(Cm□Pn) we have
to find a value of L as large as possible. To find such L, we follow the strategy proposed
in [7], which consists of dividing the cylinder into several smaller cylinders and computing
the minimum wasted domination of these small cylinders.

Let V1, . . . , Vr be a partition of the set of vertices of Cm2Pn such that the subgraph in-
duced by Vi is a cylinder Cm2Pni

(see Figure 13). For any vertex subset S ⊆ V (Cm2Pn),
we denote Si = S ∩ Vi, for i = 1, . . . , r.

The wasted domination of a vertex subset S is related to the wasted domination of the
partition subsets, as the following lemma shows.

Lemma 4.3 ([2, 7]). Let S ⊆ V (Cm2Pn). Then, ω(S) ≥
r∑

i=1

ω(Si).

These kinds of partitions can be used to obtain a lower bound for the wasted domination
of dominating sets of the cylinder.
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Lemma 4.4. Let ω(i,m)= min{ω(Di) : Di = D∩Vi, D is a dominating set of Cm2Pn}.
Then,

r∑
i=1

ω(i,m) ≤ min{ω(D) : D is a dominating set of Cm2Pn}.

Proof. Let D be a dominating set of Cm2Pn. Then, ω(D) ≥
r∑

i=1

ω(Di) ≥
r∑

i=1

ω(i,m).

Therefore, min{ω(D) : D is a dominating set of Cm2Pn} ≥
r∑

i=1

ω(i,m).

Since every partition of the vertex set provides a lower bound for the wasted domination
of dominating sets, the challenge is to find the partition that gives the largest lower bound
for the wasted domination. To this end, we study how to compute ω(i,m) distinguishing
whether Cm2Pni

(the cylinder induced by Vi) is in the interior of Cm2Pn or not, that is,
whether Cm2Pni

contains or not the first or last row of Cm2Pn.

4.1 Interior subcylinders

Suppose that Vi induces an interior subcylinder Cm2Pt in Cm2Pn (see Figure 14a). Our
goal is to compute ω(i,m). Since this value depends only on the order of the cycle Cm and
the path Pt, we denote it by ωt(m).

In order to compute ωt(m), we adapt the algorithm given by Carreño, Martı́nez and
Puertas [2]. For the sake of completeness, we include a full description of the adapted
algorithm, although quite a few of the details are also described in [2].

We remark that Guichard [7] computed ωt(m) for interior cylinders with t ≤ 10 using
a dynamic programming algorithm. However, since these values of t are not enough for
our purposes, we propose a different approach.

The main tool used to formulate our algorithm is a theorem from [1], which we quote
from [9], related to the (min,+) matrix product. Let P = (R∪{∞},min,+,∞, 0) be the
semiring of tropical numbers in the min convention (see for instance [12]), so-called a path
algebra in [9]. The (min,+) matrix multiplication of two matrices A and B, denoted by
A⊠B, is a matrix C = A⊠B, where cij = min

k
(aik + bkj), for all i, j.

Let H be a directed graph with vertex set V (H) = {v1, v2, . . . , vz} and with a weight
function ℓ that assigns an element of the semiring P to every arc of H. A path of length
k is a sequence of k consecutive arcs Q = (vi0 , vi1)(vi1 , vi2) . . . (vik−1

, vik) and the path
Q is closed if vi0 = vik . The arc weight function ℓ can be easily extended to paths:
ℓ(Q) = ℓ(vi0 , vi1) + ℓ(vi1 , vi2) + · · ·+ ℓ(vik−1

, vik).

Theorem 4.5 ([1, 9]). Let Pk
ij be the set of all paths of length k from vi to vj in H and let

A(H) be the matrix defined by

A(H)ij =

{
ℓ(vi, vj) if (vi, vj) is an arc ofH,
∞ otherwise.

If A(H)k is the k-th (min,+)-power of A(H) then, (A(H)k)ij = min{ℓ(Q) : Q ∈ Pk
ij}·

Our purpose is to define a weighted digraph to compute wt(m) applying Theorem 4.5.
To this end, we first define the following concept.
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C42P3

(a) A dominating set of
C42Pr and the subgraph
C42P3.

(b) Black ver-
tices define an
internal almost
dominating set
of C42P3.

1

1

0

0

1

1

1

2

2

0

0

1

(c) Labeling corresponding to
the black vertices of (b).

Figure 14: Black vertices dominate the cylinder.

Definition 4.6. A vertex subset B ⊆ V (Cm2Pt) is an internal almost dominating set if B
dominates all vertices in V (Cm2Pt), except possibly the vertices in the first row and the
last row (see Figure 14b).

Observe that if D is a dominating set for Cm2Pn, then B = D ∩ V (Cm2Pt) is an
internal almost dominating set. As a consequence, when partitioning Cm2Pn into a set of
smaller cylinders, D induces a set of internal almost dominating sets (for different values
of t). Besides, to compute

ωt(m) = min{ω(Di) : Di = D ∩ V (Cm2Pt), D is a dominating set of Cm2Pn}

it is enough to focus on sets Di that are internal almost dominating sets, so

ωt(m) = min{ω(B) : B is a internal almost dominating set of Cm2Pt}·

We can label the vertices in Cm2Pt as follows.

Definition 4.7. Let V = V (Cm2Pt) and B ⊆ V . The label of v ∈ V associated to B is:

(i) 0 if v ∈ B;

(ii) 1 if v ∈ V \ B and v has at least one neighbor in its column or in the previous one,
that belongs to B;

(iii) 2 if v ∈ V \ B and v has no neighbors in its column or in the previous one, that
belongs to B.

Thus, given any B ⊆ V , the vertex set V (Cm2Pt) can be identified as a sequence of
m columns (words) p1, . . . ,pm of length t, each of them having entries in {0, 1, 2} (see
Figure 14c).

In the particular case that B is an internal almost dominating set, the sequence of words
satisfies some special properties, for which the following definitions are needed.



Acc
ep

te
d m

an
usc

rip
t

12 Ars Math. Contemp.

Definition 4.8. A word p = p1 . . . pt of length t in the alphabet {0, 1, 2} is called suitable
if it does not contain the sequences 02 or 20.

Definition 4.9. We say that a suitable word p = p1 . . . pt of length t can follow another
suitable word q = q1 . . . qt if the following conditions hold.

(i) for i ∈ {1, . . . , t}: if qi = 0 then, pi ̸= 2;

(ii) for i ∈ {2, . . . , t− 1}: if qi = 1, pi = 1 then pi−1 = 0 or pi+1 = 0; if qi = 2 then,
pi = 0;

(iii) for i = 1: if qi ∈ {1, 2}, pi = 1 then, pi+1 = 0;

(iv) for i = t: if qi ∈ {1, 2}, pi = 1 then, pi−1 = 0.

With the above definitions, it is not difficult to check that there is a one-to-one corre-
spondence between internal almost dominating sets B of Cm2Pt and sequences p1 . . .pm

of m suitable words of length t such that pi+1 can follow pi, for i ∈ {1, . . . ,m} (indices
are taken module m).

We use this fact to construct the following digraph H, which relates internal almost
dominating sets and closed paths of length m.

Definition 4.10. H is the digraph whose vertex set is the set of all suitable words of length
t in the alphabet {0, 1, 2} and there is an arc from q to p if p can follow q.

Proposition 4.11. There is a bijective correspondence between the internal almost domi-
nating sets of Cm2Pt and the closed paths of length m in the digraphH.

Proof. Let B be an internal almost dominating set of Cm2Pt. By construction, we know
that B can be identified with a sequence p1 . . .pm of m suitable words of length t, such
that pi+1 can follow pi, for i ∈ {1, . . .m} (module m). So p1 . . .pm is a closed path of
length m inH.

Conversely, let Q = p1p2 . . .pm be a closed path of length m in H. So each pi is
a suitable word of length t, and pi+1 can follow pi, for i ∈ {1, . . . ,m} (module m). As
the word pi can be seen as the i− th column of Cm2Pt, we define the vertex subset B as
those vertices with label 0. By using that words are suitable and the condition that every
word can follow the previous one, B is an internal almost dominating set of Cm2Pt.

Since we want to compute the minimum wasted domination among the internal almost
dominating sets, the weight function of H must be related to that parameter. In particular,
we have to compute the number of vertices in the closed neighborhood of internal almost
dominating sets.

Algorithm 1 provides a way of computing it. If p1 . . .pm is the sequence of suitable
words associated with an internal almost dominating set B, the algorithm computes the
contribution n(pi−1pi) of a column pi to N [B], in relation to the previous column pi−1

(mod m). Using the labels of pi and pi−1, the algorithm adds all vertices of column i
in Cm2Pt to N [B] (line 1), adds vertices outside Cm2Pt that are dominated by the first
or the last vertex of the column (lines 2-7) and removes vertices in column i − 1 that are
not dominated (lines 8-13). Clearly, the addition of all contributions gives the number of
vertices in N [B], because N [B] consists of the vertices of V (Cm2Pt), minus the vertices
with label 2 having no neighbor in B (if any, they must be in the first or the last row of
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Algorithm 1 Computation of the number of vertices in the closed neighborhood, for each
column
Require: t > 0 an integer, q = q1 . . . qt, p = p1 . . . pt, suitable words of length t such

that p can follow q
Ensure: n(qp)

1: n(qp)← t;
2: if p1 == 0 then
3: n(qp)← n(qp) + 1;
4: end if
5: if pt == 0 then
6: n(qp)← n(qp) + 1;
7: end if
8: if q1 == 2 and p1 ̸= 0 then
9: n(qp)← n(qp)− 1;

10: end if
11: if qt == 2 and pt ̸= 0 then
12: n(qp)← n(qp)− 1;
13: end if

Cm2Pt

(a) Black vertices are in B
and black and gray vertices
are in its closed neighbor-
hood.

1

1

0

0

1

1

1

2

2

0

0

1

(b) The sequence p1 . . .pm.

Figure 15: Illustrating Algorithm 1. For i = 1, . . . 4, the contributions n(pi−1pi) are 4, 4, 3
and 3. The addition of the contributions gives the number of vertices in N [B].

Cm2Pt), plus the number of vertices with label 0 in the first and the last row (each of these
vertices add an extra neighbor which is in Cm2Pn but outside Cm2Pt). See Figure 15.

Using the previous contributions, we can now define the appropriate weight function
for H, which allows us to compute the wasted domination of an internal almost dominat-
ing set (Proposition 4.13) and the internal almost dominating set minimizing the wasted
domination (Lemma 4.14).

Definition 4.12. Let qp an arc of H and consider the parameter n(qp) computed by Al-
gorithm 1. We define ℓ(qp) = 5|{j : pj = 0 and 1 ≤ j ≤ t}| − n(qp).

Proposition 4.13. Let B be an internal almost dominating set of Cm2Pt and denote by
Q = p1p2 . . .pm its associated closed path of length m inH. Then, ω(B) = ℓ(Q), where
ℓ(Q) =

∑m
i=1 ℓ(p

ipi+1).
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Proof. On the one hand, if Q = p1p2 . . .pm is the closed path in H associated with B
then, by Proposition 4.11, it is clear that

∑m
i=1 |{j : pi

j = 0 and 1 ≤ j ≤ t}| = |B|.
On the other hand, since B is an internal almost dominating set, we have |N [B]| =∑m

i=1 n(p
ipi+1) (indices are taken module m). Hence,

ℓ(Q) =

m∑
i=1

ℓ(pipi+1) =

m∑
i=1

(
5|{j : pi

j = 0, 1 ≤ j ≤ t}| − n(pipi+1)
)

= 5|B| − |N [B]| = ω(B).

Lemma 4.14. Let H be the digraph with the weight function ℓ that we have constructed
above. Define the matrix

A(H)qp =

{
ℓ(qp) if (qp) is an arc ofH,
∞ otherwise.

Then, minp∈V (H)(A(H)m)pp = min{ω(B) : B internal dominating set of Cm2Pt}.

Proof. Theorem 4.5 and Proposition 4.13 give that

(A(H)m)pp =min{ℓ(Q) : Q closed path in H, with length m, from p to p}
=min{ω(B) : B internal almost almost dominating set with first column p}.

Therefore,

min
p∈V (H)

(A(H)m)pp =min
p

{ω(B) : B internal almost almost dominating set with first column p}

=min{ω(B) : B internal almost dominating set of Cm2Pt} = ωt(m).

For a fixed value of t and m, it is enough to apply Lemma 4.14 to find ωt(m). But, to
simplify the computations when m is large, we will use the following well-known property
of the (min,+) matrix product.

Lemma 4.15. Let A be a square matrix. Suppose that there exist natural numbers m0, a, b
such that Am0+a = b⊠Am0 . Then, Am+a = b⊠Am, for every m ≥ m0.

As a consequence of the previous lemma, we have the following result.

Lemma 4.16. If there exist natural numbers m0, a, b such that A(H)m0+a = b⊠A(H)m0 ,
then ωt(m+ a)− ωt(m) = b, for every m ≥ m0.

Proof. By Lemma 4.15, we obtain that A(H)m+a = b ⊠ A(H)m, for every m ≥ m0.
Therefore, by Lemma 4.14,

ωt(m+ a) =min
p

(A(H)m+a)pp = min
p

(b⊠A(H)m)pp

=b+min
p

(A(H)m)pp = b+ ωt(m)·
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Algorithm 2 Computation of the matrix A(H) and its powers

Require: t > 0 an integer
Ensure: A(H)k and minp∈V (H)(A(H)k)pp for k large enough

1: Compute the suitable words of length t ▷ Definition 4.8
2: Compute the matrix A(H) ▷ Definitions 4.10 and 4.12, and Lemma 4.14
3: Compute A(H)k, for k large enough ▷ (min,+) matrix product
4: Compute minp(A(H)k)pp, for each k

To find the parameters a, b,m0 needed to pose the finite difference equation appearing
in Lemma 4.16, we run Algorithm 2.

In Step 1 of Algorithm 2, we first obtain the set of suitable words by computing the
t-element variations with repetition of the elements in the alphabet {0, 1, 2} and keeping
those of them that satisfy the conditions given in Definition 4.8.

In Step 2, we compute H using Definition 4.10, the weights of the arcs of H using
Definition 4.12, and the matrix A(H) as described in Lemma 4.14.

In Step 3, we compute successive (min,+) powers of the matrix A(H). We compare
them to each other until we obtain A(H)m0+a = b ⊠ A(H)m0 . The results we have
obtained, for different values of t, are in Table 3.

t suitable words m0 a b
5 99 17 5 0
6 239 18 5 0
7 577 18 5 0
8 1393 20 5 0
9 3363 23 5 0

10 8128 24 5 0
11 19616 26 5 0
12 47321 28 5 0
13 114243 30 5 0

Table 3: Values obtained by Algorithm 2.

In Step 4, the minimum of the main diagonal of some powers of A(H) is obtained. In
particular, we have computed ωt(m) = minp(A(H)m)pp for m0 ≤ m ≤ m0 + a − 1,
which are the boundary values of the finite difference equation given in Lemma 4.16

ωt(m+ a)− ωt(m) = b, for every m ≥ m0.

With these data, we have solved such an equation to obtain ωt(m) for the different
values of m. Table 4 shows such values, for different values of t, which are valid for
m ≥ 30 in all cases.

We have run Algorithm 2 on an NVIDIA Tesla V100, leveraging its advanced com-
putational capabilities. Less demanding parts of the algorithm (steps 1, 2, and 4) run se-
quentially, while the more intensive matrix tropical multiplication (step 3) utilizes the Tesla
V100’s architecture with 640 Tensor Cores and 5,120 CUDA Cores for parallel processing.
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ωt(m) (congruence module 5), for m ≥ 30

t m ≡ 0 m ≡ 1 m ≡ 2 m ≡ 3 m ≡ 4
5 0 2 2 2 1
6 0 2 3 4 2
7 0 4 3 6 3
8 0 4 4 6 4
9 0 6 4 7 5

10 0 6 5 9 6
11 0 6 5 10 7
12 0 8 6 11 8
13 0 8 6 13 9

Table 4: Values of ωt(m) for internal almost dominating sets.

The card’s 32 GB memory is efficiently utilized, significantly speeding up data process-
ing. This enhances efficiency, particularly for computationally intensive tasks like matrix
multiplication, critical for optimizing algorithm performance.

t Matrix Size (MB) Execution Time (seconds)

5 - -
6 0.393 0.229
7 2.217 0.253
8 11.895 0.528
9 69.033 2.769
10 396.387 24.816
11 2308.725 285.537
12 13439.637 3812.484
13 119764.667 56933.480

Table 5: Memory usage and execution times for Algorithm 2 indexed by t.

Table 5 shows memory usage and execution times for Algorithm 2. As t increases
from 5 to 13, both matrix size and execution time grow significantly. For instance, at
t = 13, the matrix size reaches around 120 GB, and execution time peaks at 16 hours. This
exponential growth indicates increased demands on computational resources and time. In
CUDA programming, managing matrix memory efficiently, especially for operations like
matrix tropic multiplication, is crucial on the NVIDIA Tesla V100 card, limited to 32 GB
of memory. Case t = 13, which exceeds such size, employs a matrix multiplication method
dividing matrices into 8 submatrices due to this memory constraint. The source code, in
programming language C, of both Algorithm 1 and Algorithm 2 can be found online in the
repository https://github.com/hpcjmart/DominationCylinders.

4.2 Border subcylinders

When partitioning Cm2Pn into small cylinders, the subgraphs Cm2Pn1
and Cm2Pnr

are
located in both borders of Cm2Pn. The procedure to compute the minimum wasted dom-

https://github.com/hpcjmart/DominationCylinders
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ination in these cases, which uses similar techniques to the ones described in Section 4.1,
can be found in [2] and takes into account that there are no more vertices above the first
row of Cm2Pn and below the last row.

We just consider the case Cm2Pn1
(the other case is symmetrical) and we call this sub-

graph Cm2Ps, for simplicity. We have applied the techniques described in [2] to compute
the minimum wasted domination for several values of s, as we show in Table 6.

ωs(m) (congruence module 5), for m ≥ 30

s m ≡ 0 m ≡ 1 m ≡ 2 m ≡ 3 m ≡ 4
11 m m+ 3 m+ 2 m+ 3 m+ 3
12 m m+ 3 m+ 3 m+ 5 m+ 4
13 m m+ 5 m+ 3 m+ 5 m+ 6

Table 6: Values of ωs(m) for both borders.

As it can be seen in Tables 4 and 6, for a cylinder Cm2Pn the wasted domination in
the interior strips (ωt(m)) depends on the length of the path (t) and the parity of the length
of the cycle (m) module 5. Meanwhile, the wasted domination in both borders (ωs(m))
explicitly depends on the length of the path (s) and the length of the cycle (m).

The reason why this happens is that for a cylinder in the interior, the stacking of the
vertices, which is measured by the wasted domination, does not occur either in the first or
the last row of the cylinder, because those vertices can stay not dominated. However, on
the top border (symmetrically on the bottom border), the first row of the border cylinder
must be dominated and this forces the vertices to stack throughout that entire row.

4.3 Computation of the lower bound

In Section 3, we have obtained an upper bound for γ(Cm2Pn) when m ≡ 1 (mod 5). Our
target is to obtain a lower bound that equals the upper one, by choosing a suitable partition
of Cm2Pn. The following theorem shows how to find such a partition.

Theorem 4.17. If m ≡ 1 (mod 5), m ≥ 30 and n ≥ 22, then⌈
mn+ 2m

5
+

2n− 26

15

⌉
≤ γ(Cm2Pn)·

Proof. On the one hand, by Proposition 4.2,
mn+ L

5
≤ γ(Cm2Pn) for every value of L

such that L ≤ min{ω(D) : D dominating set of Cm2Pn}.
On the other hand, if V1, . . . , Vr is a partition of V (Cm2Pn) into subcylinders, we

know by Lemma 4.4 that

L =

r∑
i=1

ω(i,m) ≤ min{ω(D) : D dominating set of Cm2Pn}

where

ω(i,m) =min{ω(Di) : Di = S ∩ Vi, D dominating set of Cm2Pn}
=min{ω(B) : B is a internal almost dominating set of Cm2Pni

}
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Moreover, Lemma 4.16 gives that each ω(i,m), 2 ≤ i ≤ r−1 (interior), is the solution
of a finite difference equation, involving the parameters a, b,m0 given by Algorithm 2.
Such solutions can be found in Table 4, for 5 ≤ ni ≤ 13. The values of ω(1,m) and
ω(r,m) (borders), for n1, nr = 11, 12, 13, are in Table 6.

We denote the cycle length as m = 1 + 5k. We decompose the cylinder into r =
h + 2 parts, with both borders of length 11, that is, n = n1 + n2 + · · · + nr=h+2 with
n1 = nh+2 = 11. Regarding the interior part, we consider h parts of different lengths ni,
depending on the parity of (n − 22) module 9, so we have to analyze nine different cases
n = 22 + 9h + α, 0 ≤ α ≤ 8. We remark that the reason to choose module 9 is that
ni = 9 is the smallest size for the interior parts, for which the lower bound computed by
our method equals the upper bound. In the nine cases, we will show that

mn+ L

5
=

⌈
mn+ 2m

5
+

2n− 26

15

⌉
·

We show the first two cases in detail.

• n = 22+9h, h ≥ 0. In this case, we write n = 11+9h+11, that is, n1 = nh+2 = 11
(borders) and h = n−22

9 interior subgraphs with ni = 9. From Table 4, we know
that ω9(m) = 6 (interior), and from Table 6, we have that ω11(m) = m+3 (border).
Thus,

L = (m+ 3) + 6
n− 22

9
+ (m+ 3),

mn+ L

5
=

mn+ 2m

5
+

2n− 26

15
·

• n = 22 + 9h + 1, h ≥ 1. We rewrite n as n = 11 + 9(h − 1) + 10 + 11, that is,
n1 = nh+2 = 11 (borders), h − 1 = n−32

9 interior subgraphs with ni = 9, and one
interior subgraph with nh+1 = 10. In this case, we have (remember that m = 1+5k)

L = (m+ 3) + 6
n− 32

9
+ 6 + (m+ 3),

mn+ L

5
=

mn+ 2m

5
+

2n− 28

15
= 9kh+ 25k + 3h+

31

5
·

Moreover,
mn+ 2m

5
+

2n− 26

15
= 9kh+ 25k + 3h+

19

3
·

In this case, the expressions in terms of k and h show that⌈
mn+ L

5

⌉
=

⌈
mn+ 2m

5
+

2n− 26

15

⌉
·

In the two preceding cases, the values n = n1+ · · ·+nh+2 providing the partition that
gives the desired lower bound are:

• n = 22 + 9h = 11 + 9h+ 11, valid for h ≥ 0;

• n = 22 + 9h+ 1 = 11 + 9(h− 1) + 10 + 11, valid for h ≥ 1.

We have also found appropriate partitions n = n1 + n2 + · · · + nr=h+2 for the seven
remaining cases, n = 22 + 9h+ α, 2 ≤ α ≤ 8, which are the following:

• n = 22 + 9h+ 2 = 11 + 9(h− 1) + 11 + 11, valid for h ≥ 1;
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• n = 22 + 9h+ 3 = 11 + 9(h− 1) + 12 + 11, valid for h ≥ 1;

• n = 22 + 9h+ 4 = 11 + 9(h− 2) + 10 + 12 + 11, valid for h ≥ 2;

• n = 22 + 9h+ 5 = 11 + 9(h− 2) + 11 + 12 + 11, valid for h ≥ 2;

• n = 22 + 9h+ 6 = 11 + 9(h− 2) + 12 + 12 + 11, valid for h ≥ 2;

• n = 22 + 9h+ 7 = 11 + 9(h− 3) + 10 + 12 + 12 + 11, valid for h ≥ 3;

• n = 22 + 9h+ 8 = 11 + 9(h− 3) + 11 + 12 + 12 + 11, valid for h ≥ 3.

Using the partitions shown in the previous list, it can be proven in a completely analo-
gous way to that shown in the first two cases that⌈

mn+ L

5

⌉
=

⌈
mn+ 2m

5
+

2n− 26

15

⌉
in the seven remaining cases.

Note that except for α = 0, we have considered h > 0 for the rest of the cases, so
some values of n ≥ 22 have not been studied yet. Next, we give suitable partitions for such
values.

• n = 22 + 9h. No remaining cases.

• n = 22 + 9h + 1, h = 0. Then, n = 23 = n1 + n2 = 11 + 12, (borders n1 = 11
and n2 = 12). The detailed computations in this first case are (remember that m =
1 + 5k):

L = (m+ 3) + (m+ 3),
mn+ L

5
=

mn+ 2m

5
+

6

5
= 25k +

31

5
,

mn+ 2m

5
+

2n− 26

15
= 25k +

19

3
.

• n = 22 + 9h+ 2, h = 0. Then, n = 24 = n1 + n2 = 12 + 12.

• n = 22 + 9h+ 3, h = 0. Then, n = 25 = n1 + n2 = 12 + 13.

• n = 22 + 9h+ 4.

– h = 0. Then, n = 26 = n1 + n2 = 13 + 13.
– h = 1. Then, n = 35 = n1 + n2 + n3 = 12+ 11+ 12 (borders n1 = n3 = 12

and one interior n2 = 11).

• n = 22 + 9h+ 5.

– h = 0. Then, n = 27 = 11 + 5 + 11.
– h = 1. Then, n = 36 = 12 + 12 + 12.

• n = 22 + 9h+ 6.

– h = 0. Then, n = 28 = 11 + 6 + 11.
– h = 1. Then, n = 37 = 12 + 13 + 12.

• n = 22 + 9h+ 7.



Acc
ep

te
d m

an
usc

rip
t

20 Ars Math. Contemp.

– h = 0. Then, n = 29 = 11 + 7 + 11.
– h = 1. Then, n = 38 = 11 + 7 + 9 + 11, (borders n1 = n4 = 11 and two

interior n2 = 7, n3 = 9).
– h = 2. Then, n = 47 = 11+ 7+ 9+ 9+ 11 (borders n1 = n5 = 11 and three

interior n2 = 7, n3 = n4 = 9).

• n = 22 + 9h+ 8.

– h = 0. Then, n = 30 = 11 + 8 + 11.
– h = 1. Then, n = 39 = 11 + 8 + 9 + 11.
– h = 2. Then, n = 48 = 11 + 8 + 9 + 9 + 11.

For all values of n and h in the previous list, basic algebraic manipulations give⌈
mn+ L

5

⌉
=

⌈
mn+ 2m

5
+

2n− 26

15

⌉
·

This concludes the proof of the theorem.

As a consequence of both Theorem 3.1 and Theorem 4.17, we obtain the desired exact
value.

Theorem 4.18. If m ≡ 1 (mod 5), m ≥ 30 and n ≥ 22, then

γ(Cm2Pn) =

⌈
mn+ 2m

5
+

2n− 26

15

⌉
·

5 Bounds when m ≡ 3,4 (mod 5)
We provide in this section new upper and lower bounds for γ(Cm2Pn) when m ≡ 3, 4
(mod 5), that improve the bounds given in [7, 11].

5.1 Bounds when m ≡ 3 (mod 5)

Theorem 5.1. If m ≡ 3 (mod 5), m ≥ 30 and n ≥ 22, then

mn+ 2m

5
+

n− 19

5
≤ γ(Cm2Pn) ≤

mn+ 2m

5
+

2(n− 8)

5
·

Proof. To give a lower bound for γ(Cm2Pn) when m ≡ 3 (mod 5), we argue as in Sec-
tion 4.3 and search for partitions of Cm2Pn, trying to maximize the lower bound L for the
wasted domination. We consider 26 ≤ n = 13h + α, with 0 ≤ α ≤ 12, and analyze 13
cases. If α = 0, we choose n1 = nr = 13 (the sizes of the border parts), and h− 2 internal
parts of size 13. For 1 ≤ α ≤ 9, we choose n1 = nr = 11, h− 2 internal parts of size 13,
and an internal part of size 4 + α. For α = 10, 11, 12, we increase the sizes of the border
parts to 12 or 13 and choose h − 1 internal parts of size 13. Using the values in Tables 4
and 6 to compute L, the worst case is α = 1, for which we obtain L = 2m+ n− 19.

For n = 22, 23, 24, 25, we only choose two parts, which are border parts, of sizes 11,
12, or 13. In any of the four cases, we have that L is greater than 2m+n−19. For instance,
if n = 22, we choose n1 = nr = 11, so L = m+3+m+3 = 2m+n−16 > 2m+n−19.
As a consequence, when n ≥ 22, we have the following lower bound for γ(Cm2Pn)
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Figure 16: A dominating set of size g(1, 2) = 4 for C3+5·12P2.

Figure 17: A dominating set of size g(1, 2) + (k − 1)4 = g(k, 2) in C3+5k2P2, obtained
after replicating (k − 1) times the pattern in the gray square in Figure 16 (and adding an
extra black vertex in the bottom rightmost corner of the pattern).

Figure 18: The base cylinder.

Figure 19: The cylinder G built by replicating (k − 1) times the pattern shown in the gray
square of Figure 18. G contains (1 + k) gray vertices.

mn+ 2m

5
+

n− 19

5
·

To give an upper bound for γ(Cm2Pn) if m ≡ 3 (mod 5), we will build a dominating
set of size g(k, n) in C3+5k2Pn, for k ≥ 1 and n ≥ 2, where g(k, n) is defined as

g(k, n) = (1 + k)n+ 2k − 2·

Note that if m = 3 + 5k, then g(k, n) can be rewritten as

mn+ 2m

5
+

2(n− 8)

5
·

From the definition of g(k, n), it is easy to check that g(k, n+ 1) = g(k, n) + (1 + k)
and that g(k, n) = g(k − 1, n) + (n + 2). This means that when adding a new row to
C3+5k2Pn, we have to add (1 + k) new vertices to a dominating set in C3+5k2Pn, and
when adding five columns to C3+5(k−1)2Pn, we have to add (n + 2) new vertices to a
dominating set in C3+5k2Pn.

The method to obtain dominating sets is the same as the one explained in Section 3.
For this reason, we only sketch the construction. The base case is shown in Figure 16. We
replicate (k−1) times the pattern in the gray square of Figure 16, assuming that the bottom
rightmost vertex in that square is also black. This way, the set of black vertices defines a
dominating set in C3+5k2P2 of size g(1, 2) + 4(k − 1) = g(k, 2) (see Figure 17).
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Figure 20: Black and gray vertices form a dominating set of size g(k, 2)+(1+k) = g(k, 3)
in C3+5k2P3, after gluing the cylinder G to the first cycle of the cylinder C3+5k2P2 of
Figure 17. Black vertices in the last row are moved cyclically two positions to the right.

Figure 21: Black and gray vertices form a dominating set of size g(k, 2) + 2(1 + k) =
g(k, 4) in C3+5k2P4, after gluing twice the cylinder G.

The base cylinder is depicted in Figure 18, and the cylinder G to be glued in Figure 19.
G is obtained by replicating (k − 1) times the pattern in the gray square of Figure 18,
and contains (1 + k) gray vertices. G is glued to the first cycle of the cylinder C3+5k2P2

shown in Figure 17. After gluing G, the black vertices in the last cycle are moved cyclically
two positions to the right (see Figure 20). G can be glued as many times as required,
always using the first cycle of the resulting cylinder, and moving cyclically all black/gray
vertices in the rows below G two positions to the right. Figure 21 shows a dominating set
in C3+5k2P4 of size g(k, 2) + 2(1 + k) = g(k, 4), after gluing twice G.

From the previous discussion, if m ≡ 3 (mod 5), m ≥ 30 and n ≥ 22, then

mn+ 2m

5
+

n− 19

5
≤ γ(Cm2Pn) ≤

mn+ 2m

5
+

2(n− 8)

5

and the theorem follows.

5.2 Bounds when m ≡ 4 (mod 5)

Theorem 5.2. If m ≡ 4 (mod 5), m ≥ 30 and n ≥ 22, then

mn+ 2m

5
+

9n− 152

65
≤ γ(Cm2Pn) ≤

mn+ 2m

5
+

n− 13

5
·

Proof. In this case, to give a lower bound for γ(Cm2Pn) if m ≡ 4 (mod 5) and 26 ≤ n =
13h + α, with 0 ≤ α ≤ 12, we choose the same partitions as described in Section 5.1: If
α = 0, we choose n1 = nr = 13 (the sizes of the border parts) and h− 2 internal parts of
size 13, for 1 ≤ α ≤ 9 we choose n1 = nr = 11, h − 2 internal parts of size 13 and an
internal part of size 4 + α, and for α = 10, 11, 12 we increase the sizes of the border parts
to 12 or 13 and choose h − 1 internal parts of size 13. For n = 22, 23, 24, 25, we choose
two border parts of size 11, 12, or 13.

Using the values in Tables 4 and 6 to compute L, the worst case is α = 1, for which we
obtain L = 2m+ 9n−152

13 . Therefore, if m ≡ 4 (mod 5), m ≥ 30 and n ≥ 22, we have the
following lower bound for γ(Cm2Pn)

mn+ 2m

5
+

9n− 152

65
·
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(a) A dominating set of size g′(2, 3) = 12 in
C4+5·22P3.

(b) The base cylinder.

Figure 22: Base cases for n odd.

Figure 23: A dominating set of size g′(2, 3) + (k− 2)5 = g′(k, 3) in C4+5k2P3, obtained
after replicating (k − 2) times the pattern in the gray square in Figure 22a (and adding an
extra black vertex in the top rightmost corner of the pattern).

Figure 24: The cylinder G built by replicating (k − 2) times the pattern shown in the gray
square of Figure 22b. G contains 2(k − 2) + 6 = 2(1 + k) gray vertices.

Figure 25: Black and gray vertices form a dominating set of size g′(k, 3) + 2(k + 1) =
g′(k, 5) in C4+5k2P5, after gluing the cylinder G to the second cycle in C4+5k2P3 of
Figure 23. Black vertices in the last row are moved cyclically one position to the right.

For an upper bound for γ(Cm2Pn) when m ≡ 4 (mod 5), we define g′(k, n) as

g′(k, n) = (k + 1)n+ 2k − 1

for k ≥ 1 and n ≥ 2, and we show how to build a dominating set of size g′(k, n) in
C4+5k2Pn when k ≥ 2 and n ≥ 3, if n is odd, and when k ≥ 2 and n ≥ 10, if n is
even. Note that g′(k, n) = g′(k− 1, n) + (n+ 2) and g′(k, n+ 2) = g′(k, n) + 2(1 + k),
so when adding two new rows to C4+5k2Pn, we have to add 2(1 + k) new vertices to a
dominating set in C4+5k2Pn, and when adding five columns to C4+5(k−1)2Pn, we have
to add (n+ 2) new vertices to a dominating set in . Besides, if m = 4 + 5k, then g′(k, n)
can be rewritten as

mn+ 2m

5
+

n− 13

5
·

Since the method to build dominating sets is the same as described in the rest of the sec-
tions, we only sketch the method using figures. Figures 22-25 summarize the construction
when n is odd, and Figures 26-29 when n is even.
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(a) A dominating set of size g′(2, 10) =
33 in C4+5·22P10.

(b) The base cylinder.

Figure 26: Base cases for n even.

Figure 27: A dominating set in C4+5k2P10 of size g′(2, 10) + 12(k − 2) = g′(k, 10),
obtained after replicating (k− 2) times the pattern shown in the gray square of Figure 26a.

Figure 28: The cylinder G, after replicating (k − 2) times the pattern shown in the gray
square of Figure 26b. The number of gray vertices is 6 + 2(k − 2) = 2(1 + k).

Therefore, if m ≡ 4 (mod 5), m ≥ 30 and n ≥ 22, we have
mn+ 2m

5
+

9n− 152

65
≤ γ(Cm2Pn) ≤

mn+ 2m

5
+

n− 13

5

and the theorem holds.

6 Conclusions
In this paper, we have computed γ(Cm2Pn) when m ≡ 1 (mod 5), m ≥ 30 and n ≥ 22,
and we have provided new lower and upper bounds for γ(Cm2Pn) when m ≡ 3, 4 (mod
5), m ≥ 30 and n ≥ 22, which are tighter than the ones known so far. The upper bounds
are obtained by building specific dominating sets, while the lower bounds are obtained
computationally.

Crevals proved in [3] that γ(C4+5·2□Pn) = 3n + 3, for n ≥ 14, γ(C4+5·3□Pn) =
4n+ 5, for n ≥ 19, γ(C4+5·4□Pn) = 5n+ 7, for n ≥ 24 and γ(C4+5·5□Pn) = 6n+ 9,
for n ≥ 29. Observe that g′(2, n) = 3n + 3, g′(3, n) = 4n + 5, g′(4, n) = 5n + 7 and
g′(5, n) = 6n + 9, so we conjecture that if m ≡ 4 (mod 5), the construction provided in
Theorem 5.2 to obtain the upper bound gives the exact value of Cm2Pn.
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Figure 29: Black and gray vertices form a dominating set in C4+5k2P12 of size g′(k, 10)+
2(1 + k) = g′(k, 12), after gluing G to the fifth cycle in the cylinder C4+5k2P10 of
Figure 27. Black vertices in the rows below G are moved cyclically one position to the left.

Conjecture 6.1. For k ≥ 2, m = 4 + 5k and n ≥ 14, then

γ(C4+5k2Pn) = g′(k, n) =
mn+ 2m

5
+

n− 13

5
·

To prove the conjecture using our approach, it would be necessary to increase the lower
bound

mn+ 2m

5
+

9n− 152

65
given in Theorem 5.2. To this end, if we want to use the same method implemented in
Algorithm 2, we should compute the wasted domination of internal almost dominating sets
of size t ≥ 14, because the best lower bound we can achieve using internal subgraphs of
size at most 13 is the previous one. From a computational point of view, the number of
suitable words in case t = 14 is 275808 and the matrix size is expected to increase sub-
stantially, possibly reaching around 1 TB or more. Execution time may also extend into
days or weeks, given the exponential growth trend observed from previous cases. This
reflects the escalating computational demands with increasing problem size, highlighting
the need for efficient resource management in CUDA programming on high-performance
GPUs like the NVIDIA Tesla V100. We should approach the problem using another paral-
lel programming method that uses multiple GPUs simultaneously, or even a heterogeneous
programming method that uses both GPUs and high-performance generic processors si-
multaneously.

Finally, Crevals also showed in [3] that

• γ(C3+5·1□Pn) = ⌈ 18n+10
10 ⌉, for n ≥ 8;

• γ(C3+5·2□Pn) = ⌈ 45n+29
16 ⌉, for n ≥ 13;

• γ(C3+5·3□Pn) = ⌈ 84n+92
22 ⌉, for n ≥ 18;

• γ(C3+5·4□Pn) = ⌈ 135n+171
28 ⌉, for n ≥ 23;

• γ(C3+5·5□Pn) = ⌈ 198n+274
34 ⌉, for n ≥ 28.

Depending on the parity of n, we have to add one unit to the previous formulae. From
them, a closed formula for γ(C3+5k2Pn) is unclear. The ratios 18

10 , 45
16 , 84

22 , 135
28 and 198

34
can be expressed as
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3 + 9k + 6k2

6k + 4
, 1 ≤ k ≤ 5.

However, we have not found any common expression for 10
10 , 29

16 , 92
22 , 117

28 and 274
34 . This

leads us to pose the following conjecture.

Conjecture 6.2. For k ≥ 2, m = 3 + 5k and n ≥ 13, then

γ(C3+5k2Pn) =

⌈
(3 + 9k + 6k2)n

6k + 4

⌉
+O(k)·
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Mercè Mora https://orcid.org/0000-0001-6923-0320
Marı́a Luz Puertas https://orcid.org/0000-0002-9093-5461
Javier Tejel https://orcid.org/0000-0002-9543-7170

References
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