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Abstract: In the present work, we adopt the comparative logic and methodologies used by Fejfar and colleagues, embedding
Spanish faunal assemblages into continental frameworks through the evolutionary history of arvicoline rodents. Over the past
three decades in Spain, extensive new collections have been made and existing materials have been re-evaluated. The present
work honors the intellectual legacy of Oldfich Fejfar, whose fundamental contributions have shaped Spanish Quaternary small
mammal biochronology. Fejfar’s work, focused on refining arvicoline systematics, developing interregional correlation sche-
mes, and demonstrating the biochronological power of small mammals, provides the essential framework upon which our re-
search is built. This study applies his intellectual legacy to Iberian faunas, highlighting their continued significance for
Quaternary stratigraphy and paleoecology. In the present work, the geological time selected is the Piacenzian, Gelasian,
Calabrian (around 3.1-0.7 Ma), which shows a likely correlation between Central Europe and Spain, using Arvicolinae mammals
during the latest Pliocene and Early Pleistocene interval.
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Introduction

The late Cenozoic was a period of rapid faunal turnover
events and climatic oscillation that reshaped Eurasian
mammal communities. A major source of information
about the period comes from the study of small mammals,
particularly arvicoline rodents, whose rapid evolutionary
rates and distinctive dental morphology make them potent
biostratigraphic markers, and produced high-resolution op-
portunities for continental correlation. The work of Oldfich
Fejfar (1931-2023) substantially shaped the conceptual and
practical tools used to correlate Plio-Pleistocene sequences
across Eurasia, and his work remains a cornerstone for
Iberian Quaternary biochronology. Fejfar’s pan-Eurasian
syntheses established a framework for aligning regional and
interregional faunal successions into a coherent temporal
scheme. The influential synthesis by Fejfar et al. (1997)
brought together late Cenozoic site-sequences from various
regions throughout Eurasia, producing an updated correlation
that enabled researchers to place local assemblages within
a continental sequence. For Spanish Quaternary studies,
where local faunal lists must be compared to an increasingly
refined continental reference frame, this integrative approach
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provided essential chronological leverage, enabling Iberian
faunas to be situated relative to climatic and evolutionary
events documented elsewhere in Eurasia.

Complementing these correlative efforts, Fejfar’s work
on Arvicolinae (Cricetidae, Rodentia) origins and the
evolution of its dental characters provided the taxonomic
and morphological resolution needed for high-precision
biochronology. The detailed study of Early Pliocene
arvicolines (Fejfar and Repenning 1998) clarified the
ancestry of the Lemmini and illuminated the tempo of
arvicoline diversification at the Pliocene-Pleistocene
transition. Later syntheses (Fejfar et al. 2011) examining
“microtoid” cricetids and early arvicolines refined the
knowledge of dental innovations that mark key evolutionary
stages. Recent works, using different technologies like DNA
(i.e., Abramson et al. 2021, Alfaro-Ibafiez et al. 2024a, b,
¢, among others) refine and confirm Fejfar’s proposals on
Arvicolinae evolution and diversification. Together, these
studies articulated the understanding of character change
that underpins the stage-based correlations widely used in
Plio-Pleistocene chronologies.

In Spain, the application of Arvicolinae biochronology
has been decisive in establishing high-resolution frameworks
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for major Quaternary sites. That is a new point from the
current database. Major aspects of investigation into the
Atapuerca karst system, central to understanding human
evolution in Europe, have relied on small vertebrates,
mainly arvicoline successions and stage nomenclature to
construct a finely resolved chronological, environmental,
and paleoclimatic model (Cuenca-Bescos et al. 2003, 2005,
2010a, b, 2013, 2015, 2016, Moya-Costa et al. 2023, Alfaro-
Ibafiez et al. 2024b, ¢, Dominguez-Garcia et al. 2024). In
Almenara-Casablanca, and in the Guadix-Baza Basin,
Arvicolinae-based correlations provide the scaffolding for
interpreting faunal and environmental change during the
Early Pleistocene (Agusti et al. 2011, 2015), while at Quibas,
rodent assemblages anchor the chronology of Mediterranean
faunal turnover (Pifiero et al. 2020, Agusti and Pifiero 2023).
At Atapuerca, Vallparadis and other Spanish sites (Duval et
al. 2011), evolutionary stages of Mimomys and Arvicola are
similarly used to refine correlations (Cuenca-Bescds et al.
1995, 2010a, b, Lozano-Fernandez et al. 2013, 2019). In all
these cases, the methodological tools we employ — dental
character analysis, lincage-based stage assignments and
cross-referencing with Eurasian sequences — are directly
indebted to the taxonomic concepts and interregional
frameworks established by Fejfar.

Recent continental reference studies continue to
demonstrate the vitality of Dr. Fejfar’s legacy. One of my
latest works was the study of the rodent fauna of the Hasli
Formation of the Irchel Plateau, Switzerland (Thew et al.
2024). The paper provided an integrated biochronological
and magnetostratigraphic sequence for older Early
Pleistocene interglacial deposits in northern Switzerland;
such reference profiles are directly comparable to the
selected sites in United Kingdom, Spain, France, Germany,
Italy, Czechia, Poland, and other European sequences, when
using arvicoline-based tie-points. This work was inspired
by the early studies of the fossil rodents from the Hasli
Formation of Fejfar, among other authors (Thew et al. 2024,
and literature therein).

In the present work, we adopt the same comparative logic,
embedding Spanish faunal assemblages into continental
frameworks through the evolutionary history of mainly
arvicoline rodents. This allows us to refine biochronological
placement, test the concordance between arvicoline stages
and independent stratigraphic markers, and evaluate how
Iberian faunas fit into the broader narrative of Eurasian Plio-
Pleistocene evolution.

Over the past three decades in Spain, extensive new
collections have been established, and existing materials re-
evaluated. The present work honors the intellectual legacy
of Oldfich Fejfar, whose foundational contributions have
shaped Spanish Quaternary biochronology. Fejfar’s work —
focused on refining arvicoline systematics, developing
interregional correlation schemes, and demonstrating the
biochronological power of small mammals — provides the
essential framework upon which our research is built. That
is a new point from the current database.

Our aim was accomplished by an extensive review of the
selected literature (Supplementary material), which provided
terrestrial localities from across Europe that are probably
less known in synthetic Quaternary studies. This effort has
improved faunal lists and the biostratigraphy of the region.
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To test the strength of our biostratigraphic framework, we
focused on localities with independent dating. For ease of
reading, references are compiled in online Supplementary
material rather than being cited throughout the text, unless
a citation is essential for context or attribution.

Material and methods

The integration of the Spanish sites into the biochro-
nological framework of the late Cenozoic in Europe has
required the analysis of scientific works focused mainly
on studies of arvicoline rodents, because they are the best
tool for chronostratigraphic correlation (see references in
Supplementary material). Plus, there are papers solely on
the ages of sites. A compilation of the over 500 scientific
papers consulted has resulted in a schematic stratigraphic
distribution of Arvicolinae (and other rodent) sites. The
fossiliferous sites are located throughout some European
regions and span the Late Pliocene to Early Pleistocene. The
study’s focus was specifically on this time range (around 3.1
to 0.7 Ma). We use here the Calabrian MmQ zones MmQ1—
MmQ3 as defined by Agusti et al. (1987).

Literature selection

To ensure the relevance and scientific rigor of our synthe-
sis, we applied the following criteria for literature selection:
(1) inclusion of faunal lists derived from paleontological
analyses; (2) a well-defined chronological framework of
the site(s); (3) when available, a detailed geological and
paleontological context; and (4) high-quality stratigraphic
sections, with clear differentiation of fossiliferous layers.

Site selection

The selection of terrestrial localities was guided by
multiple criteria: geographic coverage of Central Europe
and the Iberian Peninsula; archacological and pale-
ontological significance; availability of reliable dating
methods; a wide stratigraphic range; the presence of well-
documented rodent assemblages. Localities based solely on
faunal lists without analytical (geology, radiometric data)
discussions were excluded to ensure the robustness of the
biostratigraphic framework. The list of fossiliferous layers
containing Arvicolinae rodent remains across the 3.1-0.7 Ma
interval in selected European regions is presented in Table
1. The stratigraphic ordering of sites is the result of the
chronological order given by the authors: biostratigraphic,
radiochronologic, and magnetostratigraphic order. The
sites are listed vertically, likely in chronological order from
youngest (top) to oldest (bottom). Each species is mapped
horizontally across the site list. The first occurrence of
a species in the stratigraphic column represents its FAD
in the European records. This allows for visual tracking of
evolutionary and dispersal patterns through time.

Data extraction

Over the past five years, we have systematically compiled
faunal lists and stratigraphic data from the literature.



This process involved manual review and data entry
using the FileMaker platform (File Maker Prol4), with
cross-referencing applied wherever possible to enhance
consistency and accuracy.

The database includes the following fields: locality
name, country, radiometric age, magnetostratigraphic age,
MN zone, age in Ma, latitude, longitude, age determined
by alternative methods. IUGS age, geological context,
and detailed species lists of small mammals (including
Eulipotyphla, Chiroptera, Rodentia, and Lagomorpha),
invertebrates, and large mammals. It also contains references
to relevant paleontological and geological/chronological
literature. A final field is reserved for observations, such as
the archaeological and paleoanthropological significance of
each site.

We intend to make this database available to the broader
scientific community —not only to specialists in paleontology.
In future stages, we aim to integrate our dataset into public
platforms such as the Paleobiology Database (PBDB) and
the Global Biodiversity Information Facility (GBIF). That is
a new point from the current database. See the complete list
of references in Supplementary material.

Comparative methods

We conducted cross-site comparisons of arvicoline
rodent assemblages, focusing on species turnover, first and
last appearance data (FADs and LADs), and evolutionary
lineages (Lozano-Fernandez et al. 2013, 2015, 2019,
Martin et al. 2018, Pifero et al. 2020, Fejfar et al. 1997,
Tesakov 2003, among others). This allowed us to identify
biostratigraphic markers and refine regional correlations
within the Late Pliocene — Early Pleistocene interval.

Statistical tools

Previous statistics and cluster analyses were performed
using FileMaker and Excel 2016. These analyses helped
quantify faunal similarities and dissimilarities among
sites, and detect potential chronological outliers. As it is an
ongoing project, the preliminary results are presented here
in tables and figures.

Chronological integration

Sites with independent dating (radiometric, magneto-
stratigraphic, or biostratigraphic) were prioritized to anchor
the framework. We cross-referenced MN zones and ITUGS
stages to ensure consistency across temporal scales. Where
available, we incorporated age models from published
stratigraphic charts.

This multi-method approach strengthens the reliability of
our biochronological framework and enhances its applicability
for future paleontological and archacological research.

Results

The compilation of the data base of fossil localities
containing rodent remains across Spain and Central Europe
yielded a total of 300 fossiliferous layers, each preserving
small vertebrates alongside other faunal elements.

To facilitate regional comparisons and biostratigraphic
synthesis, the selected fossil layers have been grouped
by country (Tab. 1). This organization allows for clearer
visualization of biostratigraphic patterns and temporal
distribution across the Late Pliocene to Early Pleistocene
interval. There are marked differences in the concentration
of these sites across Europe when presenting the results
by country. Nevertheless, when a comparison is made
between the Iberian Peninsula and Central Europe, these
differences are less marked. As a single country, Spain has
the largest number of fossiliferous layers (112), suggesting
a remarkable geological and paleontological richness during
the Plio-Pleistocene in Spain. Despite still incomplete
retrieval of fossil record from some countries (particularly
Czechia, see Horacek and Lozek 1988, Fejfar and Horacek
1990, Horacek 1990), the respective asymmetry seems to be
robustly supported (Tab. 1).

Table 1. Geographic distribution of fossiliferous layers con-
taining Arvicolinae rodent remains across 3.1-0.7 Ma interval
in selected European regions. Samples from Czechia still not
completely retrieved.

Country Fossiliferous layers

Czechia 15
Germany 38
Hungary 37
Poland 23
Slovakia 23
Spain 112
Switzerland 3

Total layers 251

The cross-site comparisons of arvicoline rodent
assemblages, focusing on species first and last appearance
data (FADs and LADs), allowed us to identify bio-
stratigraphic markers and refine regional correlations within
the Late Pliocene-Early Pleistocene interval. These results
are synthesized in Text-figs 1, 3, 4, and 5.

Text-fig. 1 provides a synthetic scheme of the
stratigraphic distribution of the Arvicolinae rodents from
the Plio-Pleistocene interval in the fossiliferous sites in
Spain (Lopez-Martinez et al. 1976, Gil and Sesé¢ 1984,
Agusti and Galobart 1986, Esteban and Lopez-Martinez
1990, Aguilar et al. 1993, Laplana 1999, Sesé et al. 2001,
Minwer-Barakat et al. 2004, 2011, Garcia-Alix et al. 2009,
Madurell-Malapeira et al. 2010, Agusti et al. 2011, 2013,
2015, Lopez-Garcia et al. 2012, Cuenca-Bescos et al. 2013,
2016, Walker et al. 2016, Pifiero et al. 2020, Agusti and
Pifiero 2023). This interval shows the first appearance (FAD)
of 40 species of Arvicolinae. Observe that an important
number of the arvicoline species appear for the first time
during the Late Pliocene-Early Pleistocene interval, in the
localities of Moreda 1, Alozaina, the Orce complex, other
localities of Guadix-Baza, in the south of Spain, and the
Bagur and Casablanca-Almenara karst complex in the
eastern Mediterranean part of Spain. The rest are the rich
fossiliferous layers of the Atapuerca karst complex in the
Central-North region (Burgos) of Spain. For the sake of
comparison, we include five of the 40 species that are drawn
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Text-fig. 1. Stratigraphic distribution of Arvicolinae rodents from Plio-Pleistocene interval in Spain. There are 40 species in total. Sima
del Elefante Lower Red Unit (TELRU, TE) and Gran Dolina (TD) are two of eight cave localities from Atapuerca karst complex. We
have included Middle Pleistocene level of upper red unit from Sima del Elefante (TEURU, TE) to observe FAD of modern species.

in the figure, of Middle Pleistocene age. In the figure, these
are represented by the Middle Pleistocene of the Upper Red
Unit from Sima del Elefante, in the Atapuerca karst complex
(TEURU, TE19).

We present a selection of Arvicolinae rodent species from
Spain in Text-fig. 2. They are primarily represented by their
lower first molars (m1), except for Trilophomys vandeweerdi
from Tollo de Chiclana 1, which depicts a second lower
molar (m2).

Text-fig. 3 shows that the fossiliferous layers of Czechia,
Poland, Hungary, and Slovakia present higher taxonomic
diversity than in Spain. They are the arvicoline rodents
identified across multiple fossil localities in Czechia, Poland,
Hungary, and Slovakia, spanning the Late Pliocene to Early
Pleistocene. The assemblage includes representatives from
12 key genera shared with localities from Spain: Allophaiomys,
Arvicola, Clethrionomys, Kislangia, Microtus, Mimomys,
Pliomys, Stenocranius, Terricola, Ungaromys, Prolagurus,
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and Trilophomys (see Tab. 2). In general, these taxa reflect
a range of ecological adaptations and biochronological
significance, offering insights into faunal turnover and
climatic shifts, which may be analyzed in the future. In the
present work, we analyze only the importance of the species
in the correlation in the European biostratigraphy (see Tab. 2).

There are 79 distinct arvicoline species listed across the
regions of Czechia (Cz), Poland (Pl), Hungary (Hu) and
Slovakia (Slk). These species belong to 28 genera, reflecting
the well-known rich diversity of Quaternary arvicoline fauna
in Central Europe. This interval sees the appearance (FAD)
of several species. It is interesting to note that the species are
grouped by 18 genera in Spain and by 28 in Cz-P1-Hu-SIk,
half again as many in almost the same time span.

The localities — ranging from Podlesice to Rebielice
Krolewskie in Poland, Osztramos and Beremend in
Hungary, and Stranska Skala in Czechia — provide a robust
framework for comparative analysis. The presence of trans-



Text-fig. 2. Selected Arvicolinae rodent species from Spain. They are represented by their lower first molars (m1) except for 2e, which is
am2. a: Kislangia capettai de Balaruc I1. b: Ungaromys nanus from Sima del Elefante, Atapuerca TELRU TE9c. c: Mimomys savini from
Gran Dolina, Atapuerca, TD6. d: Blancomys meini from Tollo de ChiclanalB. e: m2 of Trilophomys vandeweerdi from Tollo de Chiclana
1B. f: Allophaiomys lavocati from Sima del Elefante, Atapuerca TELRU TE9Db. g: Orcemys giberti from Barranco de los Conejos. h: Pro-
lagurus (= Lagurus) pannonicus Siitt6 21 (it is present in Bagur 2). i: Manchenomys (= Tcharinomys) oswaldoreigi from Barranco de los
Conejos. j: Victoriamys chalinei from Gran Dolina TD4-6. k: Pliomys sp. Gran Dolina TD10. 1: Tibericola vandermeuleni from Barranco
de los Conejos. m: Arvicola sp. Gran Dolina TD10. o: Iberomys cabrerae, extant. p: Terricola atapuerquensis from Trinchera Galeria TG,
Atapuerca. q: Microtus agrestis from Gran Dolina TD10, Atapuerca. r: Clethrionomys acrorhiza from Sima de los Huesos, Atapuerca.
s: Chionomys nivalis from the Late Pleistocene from Aguilén, Zaragoza. Figures taken from Cuenca-Bescés and Morcillo-Amo (2022),
except Text-fig. 2g, i from Agusti and Piiiero (2023), 2h from Pazonyi et al. (2023) and 2r from Arsuaga et al. (2014).
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Text-fig. 3. Stratigraphic distribution of Arvicolinae rodents from Plio-Pleistocene interval in Czechia, Poland, Hungary and Slovakia.



Table 2. Arvicolinae genera by region: 12 genera shared in both
regions (excluding Austria). In the right column to the genera,
there are the numbers of species per genus.

Spain Central Europe (Cz-Pl-Hu-SIk)
Genus Numb.er of Genus Numb.er of
species species
Allophaiomys 5 Allophaiomys 3
Arvicola 2 Arvicola 1
Clethrionomys 1 Clethrionomys 5
Kislangia 2 Kislangia 1
Microtus 4 Microtus 13
Mimomys 12 Mimomys 19
Pliomys 2 Pliomys 4
Stenocranius 1 Stenocranius 1
Terricola 1 Terricola 1
Ungaromys 1 Ungaromys 2
Prolagurus 1 Prolagurus 2
Trilophomys 1 Trilophomys 1
Tibericola 1 Chionomys 1
Blancomys 1 Dicrostonyx 2
Orcemys 1 Dolomys 2
Iberomys 2 Germanomys 2
Manchenomys 1 Lagurodon 2
Victoriamys 1 Lagurus 1
Total genera 18 TS 40 Borsodia 5
Lemmus 2
Bjornkurtenia 1
Baranomys 1
Pitymimomys 1
Predicrostonyx 1
Promimomys 2
Propliomys 1
Synaptomys 1
Villanyia 1
Total genera 28 TS 79

regional (e.g., Mimomys savini) forms and endemic taxa (e.g.,
Borsodia fejervaryi, Lagurodon praepannonicus) underscores
the complexity of evolutionary dynamics in Central Europe
during this interval (Tabs 2, 3). The references in this section,
too extensive to be listed here, are provided in Thew et al.
(2024) as well as in Supplementary material.

Text-figs 4 and 5 show the fossiliferous layers of
Austria, Switzerland and Germany with fossil Arvicolinae.
They share taxa with localities in the Iberian Peninsula,
Czechia, Poland, Hungary and Slovakia. The fossil record
from Austria during the latest Pliocene to Early Pleistocene
reveals a rich assemblage of arvicoline taxa distributed across
multiple stratigraphic layers. Sites like Deutsch-Altenburg,
Krems and Stranzendorf contribute multiple fossiliferous
layers. Also note that in Austria, some taxa are exclusive
to a single fossil layer, indicating localized temporal
occurrences: Cseria carnutina, Dolomys milleri, Ungaromys
altenburgensis, Pusillomimus stenokorys, among others.
The same observations apply to Germany and Switzerland.

Table 3. Arvicolinae species shared in both regions, Spain and
Central Europe (Czechia, Poland, Hungary and Slovakia,
excluding Austria).

Arvicolinae species Spain Central Europe
(Cz-P1-Hu-SIk)
Mimomys hajnackensis + +
Mimomys reidi + +
Mimomys pusillus + +
Mimomys tornensis + +
Mimomys savini + +
Mimomys ostramosensis + +
Mimomys pliocaenicus + +
Allophaiomys pliocaenicus + +
Allophaiomys nutiensis + +
Microtus ratticepoides + +
Microtus arvalis + +
Microtus agrestis + +
Stenocranius gregaloides + +
Terricola arvalidens + +
Prolagurus pannonicus + +
Pliomys episcopalis + +
Clethrionomys glareolus + +
Ungaromys nanus + +
Discussion

The variation in the number of sites could be attributed to
several factors, including geology, research and exploration,
and preservation conditions. In Spain, the presence of
rock formations from the suitable lithological units
with karstification potential (such as the Mesozoic, well
represented in Spain) is a determining factor. The research
and exploration highlight the level of paleontological
activity and the number of excavations conducted in
each country. Funding trends are not negligible; the
Atapuerca localities are probably so well studied for the
implications for paleoenvironmental reconstructions and
human evolution studies. Another important issue is the
preservation conditions, that is, the taphonomy, in any of its
phases, the biostratinomic and fossildiagenetic processes.
In short, the distribution of localities in Europe reflects the
differences in paleontological potential of each European
country, providing a valuable resource for studying the
large-scale distribution of fossil remains. Another reason
may be the ecological and paleoclimatic conditions in which
the arvicoline rodents may thrive and survive.

To discuss the problem of correlation among the
Central Europe and the Spanish faunas, we have built
chronostratigraphic charts with the distribution of the
main localities in both regions. For the discussion on the
distribution and correlation of the localities in the charts, we
use the species distribution as well as other chronological
proxies.

Text-fig. 1 shows the steady FAD of the arvicoline species
in the 112 localities selected for the Late Pliocene to Early
Pleistocene age from Spain. The Sima del Elefante Lower
Red Unit (TELRU) and the Gran Dolina lower levels TD3-4
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Text-fig. 4. Stratigraphic distribution of Arvicolinae rodents from Plio-Pleistocene interval in Austria.

to the bottom of TD7 are Early Pleistocene in age (Berger
et al. 2008, Falgueres et al. 2013, Arnold et al. 2015). This
composite stratigraphic section is one of the most complete
records of the late Early Pleistocene transition in the terrestrial
record of Western Europe. There are magnetostratigraphic
markers: Gran Dolina layers TD3-4 and Gran Dolina
TD7 are located between the Jaramillo subchron and the
Brunhes-Matuyama boundary (0.99-0.78 Ma; Carbonell et
al. 1995, Cuenca-Bescos et al. 1995, Alvarez-Posada et al.
2018) in biostratigraphic and geochronological terms. The
other chronological anchor is the burial dating based on
terrestrial cosmogenic nuclides (TCN) Al-Be measured in
quartz grains that yielded an age of 1.22 + 0.16 Ma for level
TE9, and 1.13 + 0.18 Ma for level TE7 located a few meters
below. These two ages are internally consistent and cannot
be statistically differentiated. They are in good agreement

with the Matuyama chronology of the deposits, and might
suggest a pre-Jaramillo age for the deposits (Berger et al.
2008, Carbonell et al. 2008, Cuenca-Bescos et al. 2015).
The species’ appearance is faster and diverse during the
time interval represented in the localities of Moreda 1 to
Cafiada de Murcia 1. There are two to four FADs at each
fossiliferous layer. From this locality upwards, the number
of FADs decreases, having no FADs in several layers. The
next FAD is the one at the Chaparral and Gran Dolina TD3-4
layers, though its numbers are reduced. There are no more
FADs up to the Sima del Elefante Middle Pleistocene layer
TEURU TE19, when first extant genus begins to appear.
Text-fig. 3 shows that much more frequent and diverse
are the FADs in the Central European countries Czechia,
Poland, Hungary and Slovakia (CE). Some fossiliferous
layers such as Weze 1 show seven FADs. The frequency
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Text-fig. 5. Stratigraphic distribution of Arvicolinae rodents from Plio-Pleistocene interval in Switzerland and Germany.

of FADs is also steady during the time represented by
the 139 localities of Central Europe. Remarkable are the
25 FADs during the Gelasian Zone MN 17, characterized by
rodent assemblages in Zamkowa Dolna Cave A, Kadzielnia,
Villany 3, Osztramos 3, and Villany 5 (Early Pleistocene;
see Text-figs 6, 7). From these localities upward, the first
appearance of arvicoline speciesin  Central European coun-
tries is less relevant until the short interval of younger age
(Zones MmQ 1 to MmQ 3, Calabrian), represented by the
localities of Zalesiaki 1A, Chlum 6, Chlum 4, Hajnéczy and
Osztramos 8.

Our conclusions are graphically drawn in Text-figs 6,
7, showing the chronologic framework of the Spanish
sites. With the information given by the biostratigraphic
distribution of rodent species, magnetostratigraphic relative
position, and radiometric ages, we have built a robust
and novel chronostratigraphic chart, in which anchoring
of localities is robust, including age (in Ma), GSSP ages,
macro- and micromammal zones of Europe, geomagnetic
polarity, marine isotope stages and the localities. In Text-
fig. 6 of Spanish sites, for the sake of geographic situation
and chronologies, we have divided the column of localities
into two: one of older chronologies and majority in the
Guadix-Baza-Granada basins, and the other with younger
chronologies and from the North and Mediterranean regions
of Iberia.

Text-fig. 6 represents the temporal frame in which the
Spanish localities are situated according to the temporal
background, where the vertical axis represents geological
time from approximately 3.6 million years ago (Ma) to the
present. It is subdivided into epochs (Pliocene, Pleistocene,
Holocene), stages (e.g., Piacenzian, Gelasian, Calabrian,

Chibanian), and regional biochronological units (e.g.,
Villanyian, Biharian, Galerian, Aurelian). The chart includes
the magnetostratigraphic zones (magnetic polarity zones).

These are aligned with radiometric ages and marine
isotope stages (MIS), offering a multi-layered correlation.
The fossil Units (FU 1-7) are plotted vertically with their
estimated age ranges. The key rodent taxa are listed alongside
their temporal ranges, including the zones Mimomys savini,
Iberomys brecciensis, Victoriamys chalinei, Allophaiomys
lavocati and Arvicola mosbachensis. The zones are based on
the key taxa distributed across different fossil sites in Spain,
such as Atapuerca, Vallparadis, Guadix-Baza and Granada.
The correlation of sites is linked to specific fossil units and
taxa assemblages, allowing for regional biochronological
comparison. The dating methods are radiometric, magneto-
stratigraphic, biostratigraphic and combinations thereof.
This figure serves as a powerful integrative tool for
correlating Iberian small-mammal assemblages with global
chronostratigraphic markers.

Text-fig. 7 also presents a high-resolution biochronologi-
cal and magnetostratigraphic synthesis this time of rodent-
bearing sites across Central and Eastern Europe. As in
Text-fig. 6, the temporal (vertical) axis spans from 3.6 Ma
to the present, structured according to the International
Chronostratigraphic Chart, including the Piacenzian,
Gelasian, Calabrian. Magnetostratigraphic boundaries are
indicated by named polarity zones and reversals (e.g., Gauss,
Matuyama, Brunhes), calibrated against Global Boundary
Stratotype Sections and Points (GSSPs) and radiometric
age constraints. The figure organizes fossil localities by
geographic region — Germany, Switzerland, Hungary,
Czechia, Slovakia and Poland — grouped vertically and
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Text-fig. 6: Comprehensive biochronological and magnetostratigraphic chart synthesizes data from Iberian fossil sites, particularly

focusing on small mammals, mainly Rodentia, across Plio-Pleistocene.

aligned with their respective chronostratigraphic positions.
Sites such as Karlich, Mosbach, Neuleiningen (Germany),
Beremend, Villany, Osztramos (Hungary) and Kielniki,
Rebielice, Zamkowa (Poland) are plotted according
to their inferred ages and associated fossil units. Each
locality is annotated with its dating method (radiometric,
magnetostratigraphic, biostratigraphic or combined), facili-
tating cross-validation of temporal assignments. The chart
serves as a comparative framework for correlating Spain
and Central Europe rodent successions and fossil units,
supporting broader interpretations of faunal turnover,
dispersal events, and paleoenvironmental transitions during
the Plio-Pleistocene. It complements Iberian sequences by
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extending the biostratigraphic resolution across continental
Europe, contributing to the refinement of small mammal-
based chronologies and their integration with global
stratigraphic standards.

Fossil sites during the late Piacenzian

From the Piacenzian, Spain has fossiliferous layers only
in the South of the country. The north lacks Piacenzian
arvicolines. In Granada and Murcia, there are rich strati-
graphic sequences such as Tollo de Chiclana, Zjar and
Huéscar, which reveal rich faunal assemblages, though less
rich in arvicolines in comparison with the Gelasian and
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Text-fig. 7: Comprehensive biochronological and magnetostratigraphic chart synthesizes data from Germany, Switzerland, Hungary,
Czechia, Slovakia and Poland fossil sites, particularly focusing on small mammals, mainly Rodentia, across Plio-Pleistocene.

Calabrian. In Central Europe, especially in Czechia, Slovakia,

Hungary and Poland, there are rich reference localities, such

as Hajnacka, Weze, Beremend. The Czech localities such
as Ménany 3, with Germanomys sp., Mimomys cf. gracilis,
Mimomys hassiacus, are older. One of the best stratigraphic
sequences with fossil arvicolines is Deutsch-Altenburg in
Austria, with rich and diverse faunal assemblages of other
mammals as well (Rabeder 1981, Déppes and Rabeder 1997).

Fossil sites during the Gelasian

During the Gelasian period, fossil sites are densely
concentrated in southeastern Spanish basins such as Granada,
Guadix-Baza and Orce, including key localities like Fonelas
P-1, Fuente Nueva 1, and several others in the Orce area.
In contrast, Gelasian fossil evidence across Central Europe
appears more scattered, distributed over much broader
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regions that include countries such as Germany, Switzerland,
Poland, Hungary, Slovakia, and Czechia. Interestingly, it
includes sites with early Allophaiomys and Mimomys taxa,
but fewer in number and density. Notable patterns indicate
that Spain presents a richer and more continuous fossil
record during the Gelasian, with numerous sites gathered
in two basins. In contrast, Central Europe lack the spatial
clustering observed in Spanish basins. Moreover, Spanish
sites tend to span broader biozones (MmQI1-MmQ?2) and
encompass a greater diversity of taxa relevant to Early
Pleistocene transitions.

Fossil sites during the Calabrian

As in the Gelasian, Spain has a notably high concentration
of Calabrian localities in southeastern basins like Guadix-
Baza, and Orce. The difference with the Gelasian is that fossil
Calabrian localities appear at the north of Spain, such as the
Atapuerca localities of Sima del Elefante Lower Red Unit
and Gran Dolina lower stratigraphic layers (Cuenca-Bescos
et al. 2016). Central Europe shows fewer sites, though they
are well-distributed across biostratigraphic zones. Notably,
the Spanish localities span a broader range of biozones and
often have more detailed magneto- and biostratigraphic data.

Conclusions

The integration of over 500 scientific publications into
a unified biochronological framework underscores the
enduring impact of Fejfar’s legacy in European Arvicolinae
research. His foundational work in rodent biostratigraphy
laid the groundwork for refined chronological correlations
across the continent, particularly during the critical Late
Pliocene-Early Pleistocene transition. By focusing on
well-documented Spanish and selected Central European
localities, and employing a multi-layered analytical
approach, encompassing stratigraphy, radiometric and mag-
netostratigraphic dating, and detailed faunal assessments,
this study reinforces the central role of arvicoline rodents as
biochronological markers.

The resulting database, systematically compiled and
cross-referenced, provides an essential tool for future
paleoenvironmental and paleoanthropological research.
It also opens new avenues for integrative studies within
broader platforms such as the Paleobiology Data Base
(PBDB) and GBIF. Ultimately, this synthesis not only
reflects the scientific rigor of contemporary research, but
also honors Fejfar’s pioneering contributions, by extending
his vision into a more connected and data-rich future for
Quaternary biostratigraphy.

The compilation of 300 fossiliferous layers from Spain
and Central Europe confirms the pivotal role of arvicoline
rodents as tools for biostratigraphic correlation across
the Late Pliocene and Early Pleistocene. As emphasized
in previous continental syntheses (Fejfar et al. 1997),
the comparison of geographically distant but temporally
overlapping assemblages reveals both asymmetries in
the density of the fossil record and common evolutionary
markers that anchor interregional chronologies.

Spain emerges as one of the richest European regions for
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this interval, with 112 fossiliferous layers documenting the
first appearances of arvicoline lineages, such as the small
sized unrooted arvicolines, the endemic taxa Victoriamys
chalinei, Orcemys giberti, Manchenomys oswaldoreigi,
Tibericola vandermeuleni, Allophaiomys lavocati, Arvicola
Jjacobaeus and Iberomys huescarensis (the origin of the
extant species Iberomys (= Microtus) cabrerae). These sites,
concentrated in the Guadix-Baza Basin, Atapuerca and the
Mediterranean karst complexes provide the Iberian record
of evolutionary events that are also traceable in Central
European localities with important shared taxa. In parallel,
the assemblages from Czechia, Poland, Hungary and
Slovakia display higher overall taxonomic diversity, with
79 species distributed across 28 genera, nearly twice that of
Spain. This contrast reflects both the exceptional richness of
Central Europe as a center of arvicoline diversification and
the differing depositional and paleogeographic histories of
these regions.

Despite these differences, the presence of twelve shared
genera, including Mimomys, Allophaiomys, Prolagurus,
Trilophomys and Terricola demonstrates a common
evolutionary and biogeographical foundation that enables
interregional correlation. Shared first and last appearance
data (FADs and LADs) for several of these genera underline
the value of arvicolines as continent-wide chronological
markers. The interplay of shared lineages and endemic forms
illustrates both the unity and the complexity of European
arvicoline evolution during the Plio-Pleistocene transition.

In line with Fejfar’s conclusions, the present synthesis
reinforces the need for integrated continental databases and
comparative analyses. The Iberian and Central European
records, while unequal in density and diversity, together
provide a powerful framework for understanding faunal
turnover, climatic shifts, and the tempo of arvicoline
evolution. These results highlight the continuing relevance
of cross-regional correlations for refining European
biochronology, and underscore the lasting influence of
Fejfar’s comparative vision in Quaternary paleontology.

Concluding remarks of Text-figs 6, 7

Text-figs 6, 7 together provide an integrated temporal
framework for the Plio-Pleistocene arvicoline record
in Spain and Central Europe. This is the most updated
scheme. The Spanish sequences are characterized by dense
clusters of localities, particularly in Guadix-Baza, Orce
and Atapuerca, with high-resolution correlations anchored
by magnetostratigraphy and radiometric ages. These
sites record key evolutionary events, including the first
appearances of Mimomys species, Allophaiomys species,
Pliomys species and Arvicola species, which serve as
benchmarks for European biochronology. Central Europe, in
contrast, preserves a broader taxonomic spectrum and a more
geographically even distribution of sites, especially during
the Chibanian, when the Galerian succession became well
established. Although Spanish localities are fewer in number
during the Middle Pleistocene, they often provide deeper
stratigraphic and chronological resolution. Conversely,
Central European records, while less densely clustered,
extend across wider regions and offer greater taxonomic
breadth. Together, the two regions complement one another:



Spain delivers continuity and chronological precision,
while Central Europe contributes diversity and broader
biogeographic coverage. This dual perspective refines the
European biochronological framework and reinforces the
pivotal role of arvicoline rodents in correlating regional
successions with global stratigraphic standards.

In synthesis, the present study is that, having different
assemblages of faunas, the Iberian and the Central European
regions can be correlated by means of their shared arvicoline
rodent fossil contents, notably, with the 12 shared genera,
Allophaiomys, Arvicola, Clethrionomys, Kislangia, Microtus,
Mimomys, Pliomys, Stenocranius, Terricola, Ungaromys,
Prolagurus and Trilophomys, shared by both regions (Tab. 2),
and the 18 shared species, Mimomys hajnackensis, Mimomys
reidi, Mimomys pusillus, Mimomys tornensis, Mimomys savini,
Pliomys episcopalis, Mimomys pliocaenicus, Allophaiomys
pliocaenicus, Ungaromys nanus, Prolagurus pannonicus,
Mimomys ostramosensis, Allophaiomys nutiensis, Terricola
arvalidens, Stenocranius gregaloides, Microtus ratticepoides,
Microtus arvalis, Microtus agrestis and Clethrionomys
glareolus (Tab. 3). Anchoring the arvicolinae sites, in good
stratigraphic successions, with reliable chronological proxies
helps in building the chronostratigraphic charts presented for
Spain and Central Europe.

The future of biostratigraphic studies in Europe

This synthesis contributes to ongoing efforts to refine
biochronological frameworks and supports the integration
of Spain and Central European data into broader Eurasian
paleontological models. This framework might support
future analysis, digitization, and Al-based pattern recognition
in biochronology.
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