000167999 001__ 167999
000167999 005__ 20260127151102.0
000167999 0248_ $$2sideral$$a61052
000167999 037__ $$aART-2009-61052
000167999 041__ $$aeng
000167999 100__ $$aBortolotti, Ana
000167999 245__ $$aCoenzyme binding and hydride transfer in Rhodobacter capsulatus ferredoxin/flavodoxin NADP(H) oxidoreductase.
000167999 260__ $$c2009
000167999 5060_ $$aAccess copy available to the general public$$fUnrestricted
000167999 5203_ $$aFerredoxin-NADP(H) reductases catalyse the reversible hydride/electron exchange between NADP(H) and ferredoxin/flavodoxin, comprising a structurally defined family of flavoenzymes with two distinct subclasses. Those present in Gram-negative bacteria (FPRs) display turnover numbers of 1–5 s−1 while the homologues of cyanobacteria and plants (FNRs) developed a 100-fold activity increase. We investigated nucleotide interactions and hydride transfer in Rhodobacter capsulatus FPR comparing them to those reported for FNRs. NADP(H) binding proceeds as in FNRs with stacking of the nicotinamide on the flavin, which resulted in formation of charge-transfer complexes prior to hydride exchange. The affinity of FPR for both NADP(H) and 2′-P-AMP was 100-fold lower than that of FNRs. The crystal structure of FPR in complex with 2′-P-AMP and NADP+ allowed modelling of the adenosine ring system bound to the protein, whereas the nicotinamide portion was either not visible or protruding toward solvent in different obtained crystals. Stabilising contacts with the active site residues are different in the two reductase classes. We conclude that evolution to higher activities in FNRs was partially favoured by modification of NADP(H) binding in the initial complexes through changes in the active site residues involved in stabilisation of the adenosine portion of the nucleotide and in the mobile C-terminus of FPR.
000167999 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000167999 590__ $$a2.48$$b2009
000167999 591__ $$aBIOPHYSICS$$b41 / 74 = 0.554$$c2009$$dQ3$$eT2
000167999 591__ $$aBIOCHEMISTRY & MOLECULAR BIOLOGY$$b153 / 281 = 0.544$$c2009$$dQ3$$eT2
000167999 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000167999 700__ $$aPérez-Dorado, Inmaculada
000167999 700__ $$0(orcid)0000-0003-4010-849X$$aGoñi, Guillermina
000167999 700__ $$0(orcid)0000-0001-8743-0182$$aMedina, Milagros$$uUniversidad de Zaragoza
000167999 700__ $$aHermoso, Juan A.
000167999 700__ $$aCarrillo, Néstor
000167999 700__ $$aCortez, Néstor
000167999 7102_ $$11002$$2060$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cÁrea Bioquímica y Biolog.Mole.
000167999 773__ $$g1794, 2 (2009), 199-210$$pBBA-Proteins Proteomics$$tBiochimica et Biophysica Acta - Proteins and Proteomics$$x1570-9639
000167999 8564_ $$s231676$$uhttps://zaguan.unizar.es/record/167999/files/texto_completo.pdf$$yPostprint
000167999 8564_ $$s1147232$$uhttps://zaguan.unizar.es/record/167999/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000167999 909CO $$ooai:zaguan.unizar.es:167999$$particulos$$pdriver
000167999 951__ $$a2026-01-27-15:07:29
000167999 980__ $$aARTICLE