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Highlights

What are the main findings?

The UAV-based inspection enabled highly precise 3D reconstruction of the inaccessible
rock wall above the La Hoya Hall, overcoming severe geometric, lighting and safety
constraints that prevent conventional geomatics surveys.

This study reports the first documented deployment of a LIDAR-SLAM confined-space
UAV inside a Paleolithic World Heritage cave for structural monitoring, revealing
active fractures, unstable blocks and sediment accumulations inaccessible to conven-
tional methods.

What are the implications of the main findings?

The integration of LIDAR-SLAM, videogrammetry, and deep learning-based crack
detection demonstrates the potential of an integrated geomatics workflow to support
the identification and assessment of geological instabilities in fragile subterranean
environments under severe operational constraints.

The incorporation of these datasets into a Digital Twin framework provides a struc-
tured basis for multitemporal analysis, expert-driven annotation, and informed
decision-making, contributing to the development of long-term preventive conserva-
tion and monitoring strategies.

Abstract

The Cave of Altamira (Spain), a UNESCO World Heritage site, contains one of the most
fragile and inaccessible Paleolithic rock-art environments in Europe, where geomatics

documentation is constrained not only by severe spatial, lighting and safety limitations

but also by conservation-driven restrictions on time, access and operational procedures.
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This study applies a confined-space UAV equipped with LiDAR-based SLAM navigation
to document and assess the stability of the vertical rock wall leading to “La Hoya” Hall,
a structurally sensitive sector of the cave. Twelve autonomous and assisted flights were
conducted, generating dense LiDAR point clouds and video sequences processed through
videogrammetry to produce high-resolution 3D meshes. A Mask R-CNN deep learning
model was trained on manually segmented images to explore automated crack detection
under variable illumination and viewing conditions. The results reveal active fractures,
overhanging blocks and sediment accumulations located on inaccessible ledges, demon-
strating the capacity of UAV-SLAM workflows to overcome the limitations of traditional
surveys in confined subterranean environments. All datasets were integrated into the
DiGHER digital twin platform, enabling traceable storage, multitemporal comparison, and
collaborative annotation. Overall, the study demonstrates the feasibility of combining UAV-
based SLAM mapping, videogrammetry and deep learning segmentation as a reproducible
baseline workflow to inform preventive conservation and future multitemporal monitoring
in Paleolithic caves and similarly constrained cultural heritage contexts.

Keywords: confined-space UAV; LiDAR SLAM; videogrammetry; structural monitoring;
digital twin; rock wall stability in Paleolithic caves; cultural heritage conservation; Cave of
Altamira; deep learning crack detection

1. Introduction

The Cave of Altamira (Santillana del Mar, Cantabria, Spain) (Figures 1 and 2) con-
tains one of the most remarkable ensembles of Paleolithic rock art in Europe, featuring
representations of horses, deer, polychrome bisons and hand stencils [1-8]. The site was
inscribed on the UNESCO World Heritage List in 1985 for its Outstanding Universal Value.
Its significance lies not only in the exceptional artistic quality of the paintings, among the
earliest recognized as Paleolithic in Europe, but also in the remarkable preservation of the
karstic environment in which they are embedded.

The inherent vulnerability of rock art makes structural monitoring a key tool for
preventive conservation and long-term heritage management [9-13]. This is particularly
critical in subterranean contexts, where confined and environmentally sensitive conditions
amplify the challenges associated with documentation, monitoring and conservation efforts.
Decorated caves are highly stable but sensitive micro-ecosystems that can be disrupted by
variations in microclimate, ventilation patterns, CO, concentration, humidity or anthro-
pogenic presence [14]. Such alterations favour microbial colonization, condensation pro-
cesses and the physical degradation of pigments and rock surfaces. In caves with rock art,
studies have shown that imbalance in environmental conditions facilitates microbial growth
and biodeterioration, while the geological dynamics of karstic systems (such as collapses,
structural instability or ground movement) further complicate preservation strategies. In
the Cave of Altamira, these factors have historically required consolidation interventions
and strict environmental monitoring protocols to ensure long-term conservation.

In December 2024, the geomatics recording of the rock wall at the entrance to the La
Hoya Hall, located inside the Cave of Altamira, was carried out as part of the experimental
project for documentation and monitoring within the cave.

This intervention forms part of a methodological proposal for conservation that re-
lies on geomatics techniques, including videogrammetry, 3D laser scanning, and high-
resolution image acquisition. The action addresses a geological issue related to the need for
structural control and monitoring of this vertical surface. The wall exhibits a marked state
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of deterioration, evidenced by the presence of cracks of varying lengths and dimensions, as
well as by a substantial accumulation of sedimentary material along the different natural
ledges that define it. Furthermore, the height of the wall and the configuration of these
ledges constitute the main challenge for accurate documentation, as they hinder physical
access and prevent direct observation.

Figure 1. Location of the study area on the PNOA-IGN cartographic basemap. Topographic projection
of the cave plan adapted from the Spanish Ministry of Culture. Instituto Geografico Nacional (IGN).
(2025). PNOA orthophoto map. Centro Nacional de Informacién Geogréfica.

A

e) Orthoimage PNOA (2017) Orthoimage PNOA (2023)

Figure 2. Landscape evolution of the cave area (red circle) from the mid-20th century to the present,
derived from IGN base data. Instituto Geogréfico Nacional (IGN). (2025). PNOA orthophoto map.
Centro Nacional de Informacion Geogréfica.

To overcome these constraints, we adopted a secure and controlled inspection strategy
based on a UAV specifically designed for confined-space operations, originally developed
for industrial inspection. The platform combines 4K RGB imaging with onboard ranging
and SLAM-based positioning, enabling the acquisition of video sequences that can be
spatially referenced within a 3D reconstruction of the cave environment. In this setting, 3D
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videogrammetry has become a well-established approach for deriving metric 3D models
from image sequences, with successful applications reported in biomechanics [15], biomed-
ical engineering [16-18], sports performance monitoring [19], and the documentation of
architectural heritage in narrow spaces [20].

In cultural heritage research, integrated 3D modelling solutions combining videogram-
metry with V-SLAM or laser/spherical SLAM have been proposed for complex environ-
ments [21,22], and related workflows have demonstrated the potential of UAV video for
detailed urban modelling [23] and its integration into HBIM environments [24]. In this
study, the integration of videogrammetric outputs with SLAM-derived geometry supports
the metric characterization of the wall and provides a baseline for future structural moni-
toring. Building on this acquisition framework, the extracted imagery was subsequently
used to support automated crack mapping through a Mask R-CNN-based segmentation
model [25].

Mask R-CNN has emerged as one of the most influential deep learning frameworks
for instance segmentation and has seen growing adoption in crack detection across a
range of scientific and engineering domains [26-30]. Its capacity to generate pixel-level
segmentation masks while simultaneously performing object detection makes it particularly
well suited to challenging environments such as Paleolithic caves, where cracks are often
subtle, morphologically irregular, and embedded in noisy or textured backgrounds [31,32].
Building on the Faster R-CNN architecture, Mask R-CNN incorporates a dedicated mask
prediction branch and typically employs a deep convolutional backbone (e.g., ResNet)
combined with a Region Proposal Network, thereby enabling the precise localization and
delineation of fine surface discontinuities [29].

Beyond Mask R-CNN, crack segmentation research has been largely driven by
fully convolutional semantic segmentation architectures, particularly FCN-, U-Net- and
DeepLab-based models. These approaches, often combined with multi-scale feature aggre-
gation, deep supervision and enhanced feature reuse, have demonstrated strong perfor-
mance in controlled engineering contexts such as pavements, tunnel linings and concrete
infrastructures, where illumination conditions, imaging geometry and annotation pro-
tocols are comparatively homogeneous. Representative examples include DeepCrack,
CrackSegNet and U-CliqueNet, as well as more recent lightweight and real-time variants
designed to balance accuracy and computational efficiency [12,33-35]. In parallel, detection-
based and instance-aware pipelines, including YOLO-derived architectures and hybrid
detection—segmentation frameworks, have gained increasing attention due to their ability
to support real-time inference and to delineate individual crack instances [36]. Recent
developments also explore generative and data-augmentation-driven strategies, such as
GAN- and diffusion-based models, to mitigate data scarcity and domain shift in crack
segmentation tasks [37]. However, it is important to note that the performance reported
in these studies is typically obtained under domain-specific benchmark conditions that
differ substantially from subterranean cultural heritage environments. Paleolithic cave
surfaces present extreme challenges, including low and highly heterogeneous illumination,
irregular rock textures, complex relief and limited opportunities for systematic annotation,
which hinder the direct transferability of existing architectures and evaluation metrics [38].
Within this context, Mask R-CNN was selected for the present study due to its instance
segmentation capabilities, its flexibility under limited training data through transfer learn-
ing and its ability to localize individual fractures while preserving spatial coherence [19].
Accordingly, this work does not aim to compete quantitatively with state-of-the-art crack
segmentation benchmarks, but rather to explore the feasibility and limitations of applying
deep learning—based crack detection under the severe constraints imposed by a protected
subterranean heritage site.
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Therefore, we present the results of applying a confined-space drone equipped with
LiDAR-SLAM, integrating videogrammetry and automated crack segmentation to assess
rock-surface stability and to put forward a new preventive-conservation approach. All the
collected information was subsequently integrated into a digital twin of the cave through
the DiGHER platform, in order to facilitate collaborative analysis.

2. Materials and Methodology
2.1. Study Area

The Cave of Altamira is located on the western flank of a small karstic valley developed
in Cretaceous limestones. Extending for approximately 290 m, the cave comprises a main
gallery formed by dissolution processes typical of the Cantabrian karst system, from which
two major chambers branch off: the Polychrome Hall and La Hoya Hall, the latter situated
at approximately 200 m from the cave entrance. A stable interior microclimate within the
cave—characterized by low air circulation, high relative humidity, and limited thermal
variability—creates highly sensitive environmental conditions that directly influence the
preservation of both geological structures and Paleolithic parietal art [39].

The study area corresponds to the vertical rock wall that provides access to the La
Hoya Hall, one of the deepest sectors of the cave (Figure 3). “Hoya” (like hoyo, joyo, or
juyo) is a linguistic variant used in Cantabria to refer to a depression, cavity, or hole. It
therefore indicates its position at a lower level than the rest of the cave. Even though it is
the deepest gallery in the system, it lies only 14 m from the outer hillside (Figures 3 and 4).
This wall is composed of stratified limestone exhibiting pronounced verticality and complex
fracture patterns, including open joints, exfoliation surfaces, and detached blocks. The mor-
phology of this sector promotes the accumulation of unconsolidated sediment on natural
ledges, while its inaccessibility and confined geometry complicate direct observation and
conventional surveying methods.

meters above mean sea level

157.5

1525

147.5

Access rock wall to
the "La Hoya" Hall

Hall VI
142.5

137.5
"La Hoya" Hall

132.5
-1 4 9 14 19 24 29 34 39

meters

Figure 3. Correlation of the A-B cross-section (Figure 4) with the schematic representation of the
terrain section of Hall VII and the rock-wall access to La Hoya Hall, generated through the integration
of cartographic data, the second PNOA-LiDAR coverage (CNIG-IGN), and the LiDAR-SLAM point
cloud collected by the confined-space UAV.
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R

Figure 4. Location of the study area on the PNOA cartographic base and marked A-B section of the
area corresponding to Hall VII and the wall above the access to the La Hoya Hall.

La Hoya Hall is classified as a critical zone within the conservation framework due
to its geological instability and restricted accessibility. The combination of structural
fragility, active cracking, and microenvironmental sensitivity necessitates non-invasive,
high-resolution documentation and monitoring strategies. These conditions make the
site particularly suitable for confined-space UAV operations integrating LIDAR SLAM
and videogrammetric techniques, enabling detailed analysis of rock-wall stability and
contributing to broader preventive conservation efforts within the cave.

2.2. Geological and Historical Background

The Cave of Altamira is located at the upper sector of the Santillana del Mar karst sys-
tem, at an elevation of 159 m above sea level, and developed within Cenomanian-Turonian
(Late Cretaceous) geological units. These units consist of well-stratified limestone and
calcarenite beds of metric thickness, separated by thin marl-clay layers. This lithostrati-
graphic arrangement exerts a primary control on the morphology of the cave, particularly
on the geometry of chambers and galleries and on the configuration of the ceilings, which
commonly form flat slabs affected by hydroplastic deformation. In addition to stratifi-
cation, the structural discontinuities of the rock mass constitute a second fundamental
factor governing the development of the cavity. Fractures and joints define preferential
water circulation pathways and play a key role in the mechanical behaviour and long-term
stability of the galleries. Together, stratification and discontinuity networks determine
both the internal morphology of the cave and its susceptibility to gravitational processes.
Altamira is situated within the upper sector of a Pliocene karst system characterized by
tabular limestone structures and fracture planes with a marked inclination. Under these
geological conditions, the evolution of the cavity is dominated by gravitational collapse
processes rather than by chemical dissolution. As a result, the karst system exhibits a pro-
gressive tendency toward structural degradation, representing a terminal geological state
in which destructive processes prevail over sedimentation. Historical documentation since
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the discovery of the cave confirms the persistent dynamics of this instability, with recorded
collapse events dating back to at least 1924 and 1935 and continuing into the present. In
response to this critical structural condition, corrective stabilization measures were im-
plemented during the 1940s and 1950s. These interventions included the construction of
artificial retaining walls to support ceiling strata threatened by collapse, the containment
of potentially detachable blocks, and the improvement of visitor safety. At the same time,
cracks and fractures were sealed using hydraulic mortar for superficial fissures and cement
injections for deeper discontinuities. While these measures were effective in stabilizing the
cavity from a structural standpoint, they also introduced significant microenvironmental
modifications. These included alterations to ventilation patterns and drainage pathways,
the isolation of previously interconnected sectors, disturbances to the microclimatic equilib-
rium, and the emergence of new water infiltration problems. Consequently, the present-day
structural behaviour of the cave reflects the combined influence of its geological framework,
long-term gravitational dynamics, and historical human interventions.

2.3. Evidence of Instability and Previous Monitoring at La Hoya Hall

To assess the condition of the rock mass hosting the cave galleries, a geological risk
study was conducted in 2014 using geomechanical monitoring stations [12]. This study
characterized the fracturing patterns and the state of discontinuities in La Hoya Hall,
identifying a high overall level of instability and a particularly high to very high risk in
the access zone (Figure 5). The rock mass exhibits a very high degree of fracturing, with
fracture apertures exceeding 1 cm [40], low to medium persistence, visible water circulation
along fracture planes, and clay-filled fissures. These discontinuities show a high degree
of interconnection, generating decimetric blocks above the visitor pathway and several
cantilevered blocks. According to the applied assessment system, this area was classified
within the maximum level of point-type risk, requiring systematic monitoring of potential
block movements. In response to this documented instability, two digital crackmeters with
continuous recording and micron-level resolution were installed to monitor potential dis-
placements. The sensors were mounted on metal supports fixed to the stairs leading to the
chamber, preventing the transmission of vibrations to unstable blocks during installation
(Figure 5). Each device incorporates an onboard data logger, enabling monthly data down-
loads with minimal intervention in the cave environment. Monitoring results revealed a
close relationship between rainfall events and block displacement [41]. When accumulated
rainfall exceeds approximately 250 mm, measurable movements are recorded after a delay
of about 24 h, corresponding to the time required for water to percolate through discon-
tinuities and reach clay-filled fractures. When rainfall remains below this threshold, the
response is delayed or no significant displacement is detected. Periods of sustained heavy
rainfall over several consecutive days result in continuous movements that cease only after
prolonged dry intervals. Additional investigations aimed at characterizing the internal
structural configuration of La Hoya Hall have been carried out using Ground Penetrating
Radar (GPR) [39]. These surveys identified a high concentration of vertical and sub-vertical
discontinuities, which can be grouped into three main categories: (i) deep developmental
structures exceeding 3.80 m in depth, establishing direct hydraulic connections between the
exokarst and endokarst; (ii) an interconnected system of joints forming a complex fracture
network; and (iii) zones corresponding to planes of structural weakness associated with
potential or incipient detachment processes. Taken together, these studies indicate that La
Hoya Hall is affected by active geological processes of gravitational, hydrogeological and
weathering origin. The documented instability, combined with ongoing deformation and
water-driven dynamics, underpins the current management strategy based on preventive
conservation principles, including continuous non-invasive monitoring, strict environmen-
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tal control, and systematic high-resolution documentation aimed at the early detection of
structural changes and volumetric evolution within the cave.

Figure 5. Top left: General view of the access area to the La Hoya Hall. Top right: detail of the
decimeter-sized blocks cantilevered over the access. Bottom left: diagram showing the installa-
tion system. Bottom right: Image of the support containing the sensor at the top resting on the
unstable blocks.

2.4. Description of the Study Wall and Site-Specific Constraints

La Hoya Hall was incorporated into the tourist route during the 1950s and 1960s,
when access was facilitated by the construction of a stairway to overcome the 6 m vertical
drop into the chamber (Figures 3 and 4). At the entrance, clear evidence of artificial
modification is visible, as controlled blasting was used to regularize the opening, leaving
characteristic fractures and blast marks on the surrounding rock surfaces. Above the lintel
of the access to La Hoya Hall rises a nearly vertical rock wall approximately 12 m high.
The application of this methodology allowed us to identify several previously unknown
charcoal remains located on this lintel. These remains, some point-shaped and others linear
in arrangement, of varying lengths, are currently under study and may correspond to
cave passages and even Paleolithic graphic activity. This wall corresponds structurally to
the overlying sector of the cave, within area VII, known as the “Great Hall”, one of the
largest chambers of the Altamira system. The wall documented in this study is a vertically
oriented rock surface approximately 14 m wide, reaching a maximum height of 11.74 m,
with a frontal extent of 7.96 m. Its morphology is strongly conditioned by lithostratigraphic
alternation, resulting in an irregular surface with numerous projections and overhangs of
variable dimensions, in some cases extending between 30 and 40 cm. These protrusions
favour the accumulation of unconsolidated sedimentary material derived from erosion
processes and previous rockfall events, constituting a significant risk factor due to the
potential mobilization of these materials. In addition to its complex morphology, the wall
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exhibits a high degree of fracturing, particularly in the sector corresponding to the direct
access to La Hoya Hall. Although the main fracture affecting this area has previously been
subjected to structural inspection, the micro-geological condition of the overlying zones
remains largely unknown. It is likely that fractured and potentially unstable blocks are
distributed across the entire vertical surface, but their identification through direct visual
observation is severely limited. The substantial height of the wall, its vertical orientation,
and the presence of the access infrastructure at its base impose significant constraints on
conventional documentation techniques. The morphology and spatial configuration of
the area hinder the application of standard terrestrial recording methods, such as digital-
camera photogrammetry or terrestrial laser scanning, preventing comprehensive coverage
and accurate assessment of the rock mass. These site-specific constraints highlight the need
for alternative, non-contact documentation strategies capable of capturing high-resolution
geometric and visual information in inaccessible and potentially hazardous conditions.
These constraints directly condition the methodological approach adopted in this study
and are explicitly addressed in the following section.

2.5. Methodological Challenges and Contributions

Based on the geological and structural setting of the Cave of Altamira (Section 2.2),
the evidence of active instability at La Hoya Hall (Section 2.3), and the characteristics of
the rock wall above its access (Section 2.4), this study is conditioned by a set of interre-
lated methodological challenges that directly shaped the proposed workflow. The first
challenge is the acquisition of reliable and geometrically consistent 3D data in a confined
subterranean environment characterized by restricted accessibility, safety constraints, and
complex geometry. The considerable height and near-vertical orientation of the studied
wall, together with its irregular morphology, overhangs, and local sediment accumulations,
limit stable viewpoints and hinder the use of conventional terrestrial techniques. These
difficulties are compounded by the absence of GNSS signals and by the need to minimize
physical interaction and equipment footprint in a strictly protected heritage context. A
second challenge, closely linked to conservation requirements, concerns the practical limi-
tation of time and operational procedures inside the cave to reduce potential impacts on
the microclimate and on fragile rock-art environments; this constrains acquisition duration,
the possibility of repeated measurements, the use of illumination, and the overall com-
pleteness of coverage. A third challenge relates to the detection and characterization of
fractures on a highly heterogeneous rock surface under severe visual constraints. The high
degree of fracturing documented in the study area, combined with variable illumination,
complex textures, low-contrast discontinuities, and partial occlusions, makes direct visual
inspection and standard image-based approaches insufficient for systematic appraisal;
identifying potentially unstable blocks and crack networks therefore requires methods
capable of operating under visual noise and incomplete observations while preserving
traceability and geometric consistency. The methodological contribution of this work lies
in addressing these constraints through an integrated, non-contact workflow that com-
bines confined-space UAV deployment, LIDAR-SLAM-based geometric reconstruction,
close-range videogrammetry, and exploratory deep learning-based crack segmentation.
The fusion of LiDAR-derived geometry with high-resolution visual information enables
comprehensive documentation of inaccessible surfaces in GNSS-denied conditions, while
the use of instance-based segmentation is introduced as a methodological test to evaluate
the feasibility of semi-automated crack mapping under extreme subterranean imaging
conditions in support of expert-led assessment.

Beyond acquisition and analysis, the workflow incorporates a digital-twin-oriented
data organization strategy to facilitate access, traceability, and the systematic registra-
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tion of baseline datasets for future multitemporal updates. Accordingly, this work pro-
vides a baseline documentation and feasibility assessment rather than a fully operational
monitoring system: SLAM-derived products may be affected by trajectory-dependent
drift and therefore should not be interpreted as millimetric global accuracy. The crack-
segmentation results are presented as a proof-of-concept under limited site-specific training
data and domain shift, intended to support expert-led interpretation and guide future
model refinement.

2.6. Materials

Due to the spatial constraints and the specific characteristics of the wall (Section 2.5),
the documentation work was carried out using a drone specifically designed to operate in
confined environments. The system simultaneously records 4K RGB video and an onboard
LiDAR-SLAM point cloud; the imagery is time-synchronized with the estimated pose,
allowing frames to be spatially referenced within the SLAM reconstruction for inspection
and subsequent videogrammetric processing. The platform used was a Flyability Elios 3
(Figure 6), equipped with a 4K Ultra HD RGB camera (3840 x 2160 px at 30 fps), a thermal
camera, and an onboard LiDAR-SLAM module. The RGB camera is mounted on a support
allowing up to 180° rotation around the X-axis (Table 1). It should be noted that the primary
purpose of the camera is not to acquire individual photographs, but rather to continuously
record video during the flight, enabling real-time documentation of the entire surface
being surveyed.

Figure 6. Data acquisition and inspection workflow using the confined-space UAYV, integrating
LiDAR-SLAM navigation with simultaneous video capture for videogrammetry.

Its operational features also include the ability to regulate the four front LED lights
with which it is equipped, reaching up to 16,000 lumens. In addition, the drone allows
the alternate activation of the lateral lights, enabling the creation of different lighting
configurations to enhance micro-reliefs and surface details on the inspected rock face.

The system is complemented by an Ouster OS0-32 LiDAR sensor with 32 channels
(Ouster Inc., San Francisco, CA, USA) [42] which employs SLAM technology for mobile
mapping (Figure 7). This sensor enables the generation of a three-dimensional point cloud
during flight, with a ranging precision that varies between approximately £0.8 cm at
short distances and 44 cm at longer ranges, depending on target distance and reflectivity
(Figure 8). The Elios 3 platform was used to acquire LIDAR-SLAM data in confined
underground conditions. It is important to distinguish between the onboard 3D Live
Model, generated in real time for navigation, coverage verification and mission control,
and the post-processed point cloud, which is intended for measurement-oriented analysis
and downstream products (mesh generation, digital twin integration, etc.). In SLAM-based
mapping, accuracy is primarily affected by drift, i.e., the cumulative error that builds up
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along the trajectory, and therefore should be interpreted in terms of global accuracy rather
than as a fixed absolute value independent of travel distance and loop-closure conditions.
For each flight, the system-reported Mean LiDAR point validity (%) was recorded as a quality
indicator representing the average proportion of LiDAR returns classified as valid (i.e.,
retained after internal filtering of noise/outliers) during onboard processing [42]. The
device is particularly useful, as it allows the precise spatial location of each video frame
to be registered within the point cloud generated during the inspection. Another notable
feature is that it is an indoor drone equipped with anti-collision proximity sensors and a
protective cage made of highly resistant materials such as carbon fibre. This cage prevents
accidental impacts from compromising the stability of the drone or damaging critical
components such as the propellers. The design, inherited from its original functional use in
industrial inspection, is fundamental when operating in caves for heritage documentation.
Its protective structure ensures safe operation for both personnel and the cave environment,
making it exceptionally well suited for this type of application. During the inspection flights,
proximity sensing supported a nominal stand-off distance of 30 cm from the rock surface,
increasing operational safety and helping to maintain a more stable image acquisition

geometry, which benefited the subsequent photogrammetric workflow.

Figure 7. Confined-space UAV inspection with real-time, SLAM-based self-localization over the
LiDAR point cloud. (a) Crack captured by the UAV RGB camera, illustrating a point of interest (POI)
detected during the inspection and metrically assessed in real time. (b) Elios 3 UAV positioned above
the crack shown in (a). (c¢) UAV pose and viewing frustum displayed in Flyability’s point-cloud
viewer, indicating the RGB camera field of view (FOV) over the point cloud.

https://doi.org/10.3390/drones10010073


https://doi.org/10.3390/drones10010073

Drones 2026, 10, 73 12 of 35

10%
90%
|l —— Retro

N

w
T

N
T

Standard deviation (cm)

=

0 5 10 15 20 25 30 35

Target distance (m)
Figure 8. Range measurement precision (standard deviation, 10) of the Ouster OS0 Ultra-Wide
View High-Resolution Imaging LiDAR as a function of target distance. Precision is computed as the
standard deviation of 100 repeated range measurements on a static target, shown for Lambertian
targets with 10% and 90% reflectivity and for a retroreflective target (“Retro”). Across the plotted
range (0-35 m), typical 1o precision spans approximately 0.8—4.0 cm. Adapted from [42].

Table 1. Characteristics of Elios confined-space drone and sensors.

Elios 3
Manufacturer Flyability (SA, Paudex, Switzerland)
Weight (g) Approx. 1900 g includes battery, payload and protection
Max. payload (g) 2350 g
Power source 4350 mAh LiPo
Endurance (min) 9-12 min
Camera 2.71 mm focal length. Fixed focal
Thermal Camera Sensor Lepton 3.5 FLIR
LiDAR Sensors Ouster OS0-32 beams sensor !
IMU, magnetometer, barometer,
Flight control sensors LiDAR, 3 computer vision cameras

and a ToF distance sensor

! See Figure 8 for detailed specifications.

To ensure adequate working conditions and, in particular, to guarantee optimal illu-
mination during video capture in each flight, it was necessary to install auxiliary lighting
points strategically distributed throughout the area. These spotlights were placed along
the entire frontal zone facing the rock surface under study. In total, four light sources were
positioned, each oriented directly towards the area to be documented. Their purpose was
to uniformly illuminate the surface without oversaturating it, functioning exclusively as
ambient lighting and significantly improving visibility conditions during the flights.

2.7. Methodology and Workflow Overview

The proposed methodology was designed to provide a detailed geometric and visual
documentation of the access wall to the La Hoya Hall, establishing a baseline for monitoring
fracture evolution and identifying potentially unstable blocks (Figure 9). Another key
objective is the detailed observation and characterization of the material accumulated on
the ledges formed along the rock surface. The aim is to identify each fragment, record its
size, and analyze how it is arranged on its respective ledge, in order to better understand
the erosion and accumulation processes affecting the wall. The inspection of the fracture
network constitutes an additional fundamental aspect of the study, with priority given to
achieving an accurate representation of fracture continuity and aperture, particularly those
developing parallel to the rock surface. These fractures are of particular concern, as their
distribution across the entire wall may intersect with other discontinuities, leading to the
formation of detached rock blocks. In the context of a vertical wall, such blocks could be
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left almost cantilevered, suspended over the access to the La Hoya area, representing a
potential safety concern.
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Figure 9. End-to-end workflow for confined-space UAV inspection and digital-twin delivery. Yellow
blocks: mission planning and data capture (flights; LIDAR-SLAM and 4K RGB video). Purple
blocks: processing and 3D reconstruction (Inspector processing, video/POI extraction, preprocessing,
videogrammetry, and point-cloud merging). Blue blocks: web optimization and platform integration
(e.g., Potree/three.js; synchronized video, visualization and annotation). Beige block: Al-based
crack segmentation (Mask R-CNN) producing crack maps. Green blocks: POI interpretation and
final outputs.

These objectives required high-definition image acquisition and integration into a 3D
environment, which underpins the technical workflow developed in this study.

Although several documentation campaigns have been carried out to generate high-
resolution orthophotos (with ground sampling distances down to 2 mm/pixel), the natural
configuration of the rock surface and its considerable height limit the reliability of or-
thophoto generation (Figure 10). Orthophotos produced in previous campaigns are not
optimal for this case, as they do not provide the viewing geometry or effective resolution
necessary to reliably identify fissures or sediment accumulations on the ledges. This is
largely due to distortions and aberrations introduced during orthophoto generation when
they rely on automatic correlations derived from photogrammetric 3D models captured
from lower vantage points. This acquisition strategy was developed within the DIGHER
project, which provides a digital-twin web environment to integrate and explore multi-
scale datasets (LiDAR, videogrammetry, photogrammetry, historical imagery, IoT sensors,
etc.) for long-term monitoring and preventive conservation. Within this environment, 3D
point clouds, meshes, time-stamped image sequences and semantic annotations can be
jointly explored, compared over time and enriched by domain experts. The platform is
conceived as a tool for long-term monitoring and preventive conservation—facilitating the
early detection of structural or environmental changes—as well as for research and public
dissemination through web-based visualization interfaces. Its design follows the FAIR
(Findable, Accessible, Interoperable and Reusable) [43] data principles, so that datasets and
derived products can be systematically stored, shared and reused. In this context, the data
acquired during the monitoring of access to La Hoya Hall in the Cave of Altamira have
been deployed within the DiGHER platform, so that researchers at the Museo Nacional y
Centro de Investigacién de Altamira can easily access them and use them in monitoring and
research initiatives focusing on the cave itself.
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Flights 3 & 12
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&
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Figure 10. Orthophoto of the rock surface highlighting the sections inspected in each flight. Based on
the topographic survey conducted by the Museo Nacional y Centro de Investigacion de Altamira.

2.7.1. Crack Segmentation Workflow (Mask R-CNN)

Within this unified digital twin environment, the extracted image sequences served as
the input dataset for the Deep Learning-based crack detection model. The segmentation
workflow was based on the standard Mask R-CNN architecture [25] (Figure 11), consist-
ing of a Backbone ResNet50 + FPN that extracts multi-scale feature maps through lateral
1 x 1 convolutions and top-down fusion. These feature maps feed into the Region Proposal
Network (RPN), a fully convolutional module that predicts candidate object coordinates
and objectness scores. Rol Align then accurately samples features for each proposal, pre-
serving spatial alignment before forwarding them into two parallel heads: a classification
branch with FC layers that outputs the object category and refined bounding-box coordi-
nates, and a Fully Convolutional Network (FCN) branch that generates high-resolution
instance masks. Together, these three branches (RPN proposals, category prediction, and
pixel-level mask segmentation) enable end-to-end learning of detection and segmentation
across objects of different scales.

RPN Fully Convolution Nets

sofmax

— Proposals
ResNet50 + FPN
o8 bbox reg bbox reg _
Coordinates
Feature I[M_[: Output mask
Maps
M@—oCategory
i FC layers sofmax

Input image

[512x512x3] backbone Rol Align

Figure 11. Mask R-CNN architecture.

Training deep learning models typically requires large, high-quality annotated datasets.
In this study, we adopted a transfer-learning strategy by combining a photo-interpreted
crack dataset with pre-training on the COCO dataset [44]. Transfer learning is particularly
effective for specialized tasks such as crack detection, where annotated data are often lim-
ited. By initializing the Mask R-CNN model with weights learned from COCO, the network
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benefits from general visual features (such as edges, textures, and geometric structures)
thereby reducing computational cost and training time while improving convergence and
performance [45].

The COCO dataset contains over 300,000 images across 80 object categories. Our photo-
interpreted dataset consists of 1070 image tiles of size 512 x 512 pixels, each containing at
least one annotated crack (Figure 12). The training set was constructed from tiles extracted
from frames acquired during the first UAV flight (587 images), whereas the testing set
comprises tiles from the fifth flight (483 images). This split helps ensure that the evaluation
includes cracks captured under varying illumination conditions and different UAV-wall
distances. To further increase data variability and mitigate overfitting, we applied a simple
data augmentation strategy by horizontally flipping 50% of the training images.

Figure 12. Examples of crack masks generated under varying illumination and viewing conditions in
frames captured during the first flight.

Model performance was evaluated using the Intersection over Union (IoU) metric,
which quantifies the overlap between the predicted segmentation mask and the ground-
truth annotation. IoU (also known as the Jaccard Index) is defined as the ratio between the
area of intersection and the area of union of the two masks. This metric calculates the area
of the intersection between the prediction p and the ground-truth label I, and divides it by
the area of their union (Equation (1)).

_ Area(pnl)

IoU(p, 1) = Area(pU1)

@

Higher IoU values indicate more accurate localization and delineation of cracks. This
metric enables a consistent assessment of segmentation quality across varying illumination
and flight conditions, providing a reliable indicator of the ability of the model to gener-
alize. The IoU metric is rooted in the classical Jaccard similarity coefficient [46]. Model
performance was assessed using mean Average Precision at 50% Intersection-over-Union
(mAP@IoU = 50), a standard benchmark in instance segmentation. This metric computes
the area under the precision-recall curve after determining whether a predicted mask
sufficiently overlaps with a ground-truth annotation, where IoU > 0.50 is considered a
correct detection. By averaging precision scores across all classes and confidence thresholds,
mAP@IoU = 50 quantifies both localization accuracy and segmentation quality, providing a
standard summary of detection performance.
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2.7.2. Mask R-CNN in Crack Detection: Capabilities and Limitations

Across heritage, archaeological, and engineering applications, Mask R-CNN has
demonstrated high segmentation accuracy and robustness in the presence of complex vi-
sual clutter, outperforming or matching alternative approaches such as U-Net, YOLO-based
detectors, and conventional feature-based methods [47,48]. In cultural heritage conserva-
tion, the model has been used to map deterioration patterns and structural pathologies with
high precision, facilitating large-scale and automated condition assessments [32]. Similarly,
in structural monitoring of concrete, metal, and composite materials, Mask R-CNN has
been shown to improve crack detection rates and reduce false positives, particularly when
integrated with domain-specific preprocessing and augmentation strategies [28,30].

Despite its advantages, several limitations must be acknowledged. The two-stage
architecture is computationally intensive and requires substantial training data, often
demanding extensive manual annotation and domain adaptation to achieve optimal perfor-
mance [29,47]. Moreover, model effectiveness can be sensitive to hyperparameter choices,
including learning rate schedules and augmentation pipelines, and thus requires careful
tuning and validation [30].

Taken together, existing research indicates that Mask R-CNN provides a powerful
and adaptable framework for automated crack detection, delivering the precision required
for complex and delicate cultural heritage contexts, such as subterranean or rock-art
sites. These characteristics make it a promising candidate for application to Paleolithic
cave surfaces, where accurate, high-resolution mapping of crack networks is essential for
documentation, conservation, and long-term monitoring.

2.7.3. Automated Point Cloud Comparison and Structural Assessment Algorithm

To quantify the structural evolution of the cave, the DiGHER platform incorporates a
custom Cloud-to-Cloud (C2C) comparison module. A primary challenge in processing high-
density LiDAR data is the prohibitive computational cost of brute-force Euclidean distance
calculations (O(N"2)). To mitigate this bottleneck and keep processing feasible on standard
server infrastructure, the reference point cloud is indexed using a KD-tree (k-dimensional
tree). This spatial structure optimizes nearest-neighbour searches to an average complexity
of O(log N) per query, allowing the overall runtime to scale quasilinearly (O(N log N))
rather than quadratically.

Furthermore, to accommodate the memory constraints of web-based deployment
(see Section 3.3), the algorithm applies batch (chunk) processing. Instead of loading the
full dataset into memory simultaneously—which may compromise system stability—the
comparison iterates through the query cloud in bounded segments, maintaining stable
memory usage and ensuring scalability as point densities increase. From an implementation
perspective, the comparison module is built on an open-source Python (v3.10.12) ecosystem
designed for scientific reproducibility and seamless integration with the DiGHER backend.
The workflow relies on Laspy for the efficient ingestion and writing of standard ASPRS LAS
files, ensuring the preservation of original radiometric and spectral metadata throughout
the process. The core spatial optimization is powered by SciPy’s cKDTree, which provides
a high-performance C++ backend essential for executing the nearest-neighbour queries at
scale, while NumPy enables the vectorized computation of Euclidean distances and dis-
placement components without the overhead of explicit loops. Furthermore, the automated
generation of analytical deliverables is orchestrated through Matplotlib (v3.10.3), used for
rendering statistical distributions and vector plots, and ReportLab, which compiles these
assets into the standardized PDF reports. This reliance on standard, community-validated
scientific libraries not only ensures computational reliability but also facilitates future code
maintenance and technology transfer.
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Finally, the module addresses the interpretability gap often found in raw geomatics
outputs by automatically generating standardized deliverables, including false-colour
scalar-field point clouds (absolute displacement magnitude) and displacement vector
visualizations (directionality). These visual products are coupled with auto-generated
PDF reports containing statistical summaries (e.g., histograms and metrics) and processing
metadata, improving consistency and traceability across monitoring epochs and supporting
data-driven conservation decisions for the Cave of Altamira.

3. Results

This section presents the main outputs derived from the proposed workflow, focusing
on the geometric, visual, and analytical results obtained from the UAV-based survey and
subsequent processing.

3.1. Spatial Coverage, Geometric Completeness, and POI-Based Inspection

Two inspection sectors were defined on the target rock face (Figure 10) and are hereafter
referred to as Zone A and Zone B. Zone A was the primary target in Flights 5, 8, 9 and
11, whereas Zone B was covered in Flights 14, 6,7, 9, 10 and 12. The two sectors are not
mutually exclusive: several flight paths partially overlapped both zones (e.g., Flights 3, 9
and 12), as trajectories were adapted in situ to follow curatorial guidance and to maximize
coverage of the inspected rock face.

Zone A, located on the left portion of the rock surface and centred on a lower protrud-
ing area, covered approximately 1.5 x 7.0 m (10.5 m?). Zone B, positioned in the central
sector of the same rock face, encompassed a larger area of 10.0 x 2.0 m (20.0 m?) to ensure
complete documentation of the central panel. In total, 12 UAV flights were completed, with
a mean duration of 6 min 30 s, producing ~80 min of recorded 4K video (Table 2). Although
Zones A and B constituted the primary targets, the acquired video sequences also covered
most of the rock face, as flight trajectories were continuously adjusted in situ following the
instructions of the technical staff and curators of the Museo Nacional y Centro de Investigacion
de Altamira.

Table 2. Summary of flight duration and video-based frame extraction parameters used for
videogrammetric reconstruction. For each flight, we report the number of points of interest (POlIs),
the frame sampling rate (FPS), the total number of extracted frames (image size in pixels), and the
mean reprojection error obtained during photogrammetric processing.

Flight Duration (min:s) POIs (n) FPS (frames/s)  Extracted Frames (px) Mean Reprojection Error (px) !
1 5:20 12 3 796 (3840 x 2160) 0.21 (Pix4D)
2 6:21 7 3 807 (3840 x 2160) 1.32 (Metashape)
3 6:49 5 3 738 (3840 x 2160) 2.80 (Metashape)
4 8:00 5 3 921 (3840 x 2160) 0.21 (Pix4D)
5 6:43 8 3 920 (3840 x 2160) 1.23 (Metashape)
6 5:15 11 3 726 (3840 x 2160) 1.46 (Metashape)
7 6:22 13 2 765 (3840 x 2160) 1.34 (Metashape)
8 7:08 12 2 858 (3840 x 2160) 1.51 (Metashape)
9 7:21 11 2 885 (3840 x 2160) 0.21 (Pix4D)
10 6:35 3 2 649 (3840 x 2160) 0.21 (Pix4D)
11 7:35 3 2 807 (3840 x 2160) 1.49 (Metashape)
12 7:06 6 2 763 (3840 x 2160) 0.22 (Pix4D)

! Mean reprojection error reported by the photogrammetric software used for each flight (Pix4D 4.8.4 or Agisoft
Metashape 2.1).

For videogrammetric processing, frames were sampled at 2-3 fps, yielding 649-921 extracted
frames per flight (3840 x 2160 px) and flight-wise mean reprojection errors ranging
from 0.21 to 2.80 px depending on the software pipeline (Pix4Dmapper v4.8.4 or Ag-
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isoft Metashape v2.1; Table 2). In parallel, the integrated LIDAR-SLAM sensor generated
12 flight-wise point clouds with ~13.9-19.9 million retained points per flight, Mean LiDAR
point validity values of 34.81-81.36% (system quality indicator), and mapped surface areas
reported in Table 3. The exported 3D meshes (GLB) show flight-dependent complexity,
with equivalent mean mesh edge lengths spanning 1.41-3.53 mm (Table 3), reflecting varia-
tions in stand-off distance, viewpoint, and the extent of non-clipped contextual geometry
captured during each flight.

Table 3. Flight-wise LIDAR-SLAM and mesh summary. For each flight, we report the total number
of LiDAR points retained after preprocessing, the Mean LiDAR point validity as a system quality
indicator, the mapped surface area, and the resulting 3D mesh complexity (number of triangles in the
exported GLB) together with the equivalent mean mesh edge length (mm).

Flight Total Points Mean LiDAR Surface Area (m?) Number of Triangles Equivalent Mean

(LIiDAR)  Point Validity (%) * (3D GLB) Edge Length (mm)
1 14,455,526 81.36 30.238 12,170,988 2.40
2 17,098,313 46.95 11.426 10,837,834 1.56
3 17,306,464 34.81 6.498 3,625,552 2.03
4 19,442,588 53.22 23.384 4,825,395 3.35
5 17,301,812 73.66 8.247 9,507,768 1.41
6 13,879,239 67.41 22.208 9,321,681 2.35
7 17,767,492 70.95 13.440 4,701,385 2.60
8 19,139,884 65.31 21.900 6,570,000 2.40
9 18,831,330 43.15 18.826 4,847,764 2.99
10 17,057,076 50.95 23.997 4,877,966 3.37
11 19,868,249 35.04 16.129 6,198,498 2.45
12 16,673,922 40.16 15.514 4,939,250 2.69

! Mean LiDAR point validity (%) is a system quality indicator reporting the proportion of LIDAR returns classified
as valid (non-noise/outlier) by the onboard processing.

Geometric completeness and interpretability were further assessed through synchro-
nized exploration of all outputs in Inspector 5, which allows simultaneous visualization of
the 4K video together with the spatial position (pose) of the corresponding frames within
the LiDAR point cloud. This frame-to-geometry linkage supports the identification of
occlusions (e.g., behind ledges/overhangs) and helps interpret local gaps in sampling in
relation to viewpoint and illumination conditions.

A key outcome of this integrated inspection is the systematic registration of Points of
Interest (POls), recorded both in the video timeline and in the spatial model. Across the
12 flights, a total of 96 POIs were annotated (Table 2) to index and revisit relevant anomalies
(e.g., cracks, material displacements, sediment accumulations, potentially unstable ele-
ments, and anthropogenic marks) within a single, spatially coherent reference. Inspector’s
POI-linked measurement tools further enable rapid metric checks on selected frames and
point-cloud subsets. While such in-software measurements do not reach the precision of
high-resolution close-range photography or terrestrial laser scanning, their value lies in
providing actionable, spatially referenced observations that can be replicated in future
inspection campaigns, supporting early risk screening and the planning of preventive
conservation actions.

3.2. Videogrammetry Results: Flight-Wise Mesh Models

From the UAV video dataset, extracted frames were generated at 2-3 fps, yielding
flight-specific frame sequences used for videogrammetric reconstruction. This workflow
produced 12 textured mesh models (one per flight), providing a baseline 3D record of the
rock surface above the access to La Hoya Hall for subsequent comparison and monitoring.
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The resulting meshes translate close-range video observations into spatially coherent 3D sur-
faces, supporting interpretation of fine-scale features and documentation of areas that are
difficult to inspect directly. First, video segments with stable camera motion and favourable
illumination were retained, while segments affected by abrupt motion, motion blur, or LED
glare were excluded. Frames were then extracted at 2-3 fps (depending on flight duration
and speed), yielding a more uniform set of extracted frames across flights (Table 2). This
sampling was selected to maintain sufficient inter-frame overlap while limiting the overall
data volume. The extracted frames underwent basic preprocessing, including brightness
and contrast adjustment, white balance correction, and—when necessary—removal of re-
dundant frames or frames containing people or out-of-context artefacts. Each flight-specific
dataset was then processed independently in Agisoft Metashape v2.1 and Pix4Dmapper
v4.8.4 following a standardized Structure-from-Motion (5fM) and Multi-View Stereo (MVS)
workflow. For each flight, processing produced (i) a dense point cloud containing approxi-
mately 50-100 million points and (ii) a mesh with ~10 million faces, on average. Textured
surface meshes were generated by triangulation suitable for complex geometries, with the
aim of preserving micro-relief features related to cracks and the overall geomorphology of
the rock wall; textures were derived from the original extracted frames. Two photogram-
metric pipelines were used to compare outputs and assess the sensitivity of reconstruction
to the implemented SfM/MVS workflows. To enhance cross-model geometric consistency,
metric references extracted from the LIDAR-SLAM point cloud and clearly identifiable
structural features (edges, ledges, and major fractures) were employed as internal valida-
tion cues. The resulting checks support the quantitative assessment presented above and
motivate the limitations addressed in the next section. Heterogeneous illumination and
surface reflectance produced both overexposed and underexposed areas, which propagated
into texture inconsistencies in the reconstructed meshes. Finally, the videogrammetric
meshes were finely registered to the integrated LiDAR point cloud to mitigate local devia-
tions associated with imaging constraints, leveraging the geometric stability of the LIDAR
reference. The resulting integrated models combine LiDAR-based geometry with high-
detail textures, supporting detection and measurement of discontinuities, overhanging
blocks, and changes in sediment accumulation.

3.3. LIDAR-SLAM Point Clouds, Integrated Meshes, and Geometric Consistency Checks

Although the derived meshes provide very high geometric detail (i.e., dense trian-
gulation and small equivalent edge length) (Table 3), resolution should not be conflated
with accuracy. In LIDAR-SLAM mapping, global accuracy depends on drift accumulation
along the travelled path and on the effectiveness of loop closures; therefore, accuracy is
best described using global error metrics.

Flyability reports centimetre-level global-accuracy RMSE values when comparing
Elios 3 SLAM point clouds to a TLS control in a controlled test environment (e.g., ~18.3 cm
RMSE for FlyAware processing vs. ~3.5 cm RMSE for FARO Connect), highlighting that
different processing pipelines and trajectory length can significantly influence global ac-
curacy [49]. Therefore, in this study, the system-provided Mean LiDAR point validity is
interpreted as a data-quality indicator (proportion of retained valid returns) rather than
a direct measure of metric accuracy, while quantitative accuracy assessment should rely
on independent checks (e.g., control measurements, C2C and C2M comparisons). The
videogrammetric reconstruction was complemented with geometric data acquired by the
onboard LiDAR-SLAM sensor, resulting in 12 flight-wise point clouds and an integrated 3D
representation of the inspected volume. After basic cleaning to remove isolated points and
acquisition artefacts, the point clouds were retained without clipping to the immediate wall
vicinity, allowing the surveyed sector to be contextualized within Hall VII of the Cave of

https://doi.org/10.3390/drones10010073


https://doi.org/10.3390/drones10010073

Drones 2026, 10, 73

20 of 35

Altamira. Because all LIDAR-SLAM outputs were produced in a common local coordinate
system, the individual flight point clouds could be directly integrated into a coherent
combined model of the inspected volume (Figure 10). The resulting dataset provides the
geometric reference for subsequent analyses, including crack mapping and future multi-
temporal comparisons, and it was deployed in the DiGHER platform to support interactive
inspection and expert annotation by the conservation team. To evaluate the geometric
consistency of the derived 3D products and to detect potential discrepancies between data
sources, several checks were performed focusing on (i) the quality and internal coherence
of the LIDAR-SLAM point clouds in Zones A and B and (ii) the agreement between the
UAV point clouds and the videogrammetry-derived meshes. These verifications help
identify local deviations related to occlusions, variations in stand-off distance, illumination
conditions, and potential SLAM trajectory drift effects, and they provide a baseline for
future multi-temporal comparison in support of preventive conservation. To this end,
different inspection and geometric comparison procedures were applied using the Analysis
module of Cyclone 3DR (2024.0.2.45638) and, complementarily, using a tool integrated in
the DiGHER platform, based on the Open3D library. In Cyclone 3DR, Cloud-to-Cloud
(C2C) comparisons were carried out between selected flight point clouds and between the
integrated model and each individual cloud, in order to characterize spatial differences
and identify isolated points or systematic discrepancies. Likewise, Cloud-to-Mesh (C2M)
comparisons were performed between the LIDAR-SLAM geometry (considered as the
primary geometric reference frame) and the videogrammetric meshes, with the aim of
evaluating the consistency of the photogrammetric reconstructions and detecting local
deformations or biases. In parallel, the DIGHER tool enabled these checks to be reproduced
in a traceable manner within a collaborative working environment, through comparison
routines implemented on top of Open3D (e.g., point-cloud distance computation). This
facilitated interactive inspection by the technical team and the linkage of geometric discrep-
ancies to visual evidence (frames/POls). Overall, these checks provide a quality-control
framework oriented toward interpretation and monitoring, and they prepare the dataset
for more exhaustive future evaluations (e.g., zone-wise aggregated metrics, sector-based
analyses, and multitemporal comparison). Complementary to the overlap-zone C2C check-
point check between Flights 1 and 7 (Figure 13), we evaluated the consistency of the
videogrammetry-derived surface reconstructions by performing a Mesh-to-Mesh (M2M)
checkpoint comparison in Cyclone 3DR (Analysis module) (Figure 14; Table 4). This ad-
ditional control helps localize potential discrepancies attributable to occlusions, variable
stand-off distance, illumination-driven texture instability, and residual misregistration
between the two flight-wise videogrammetric meshes.

Building on the local checkpoint-based checks, we further assessed the repeatability
of the UAV-based LiDAR-SLAM mapping—without external GNSS corrections—through
a systematic Cloud-to-Cloud (C2C) comparison using the automated workflow described
in Section 2.7.3. Distances were computed as Euclidean nearest-neighbour point-to-point
distances between a reference flight and repeated acquisitions within two main inspec-
tion sectors (Zone A and Zone B) (Figure 13). A conservative search radius of 5.0 m
(max_distance) was adopted to prevent premature rejection of correspondences in areas
affected by occlusions and incomplete overlap, ensuring that both fine-scale deviations
and gross outliers could be detected. To avoid over-interpreting extreme values driven
by non-overlapping regions or sparse geometry, we report not only the mean distance
and standard deviation, but also robust indicators (median and upper percentiles, e.g.,
P95) and an inlier ratio within practical tolerances (e.g., <0.05 m and <0.10 m), which
better reflect the dominant geometric consistency relevant for preventive conservation
workflows. For Zone A, Flight 8 was selected as the reference geometry due to its optimal
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coverage of the lower protruding sector. Comparisons were computed against Flights 5,
9, and 11. The results indicate a high degree of geometric coherence, with mean absolute
distances ranging from 3.8 cm to 5.1 cm. The comparison between Flight 8 and Flight
11 showed the highest consistency, with a mean deviation of 3.79 cm. Vector analysis
suggests that discrepancies are not systematic shifts, but rather distributed noise consistent
with SLAM drift in feature-poor environments, with mean displacement vectors along
X, Y, and Z remaining below 2 cm in most cases. In Zone B, encompassing the wider
central panel, Flight 1 served as the reference for comparisons against Flights 4, 6, 7, 9, 10,
and 12. The results highlight the variability of SLAM positioning over larger scan areas.
Flight 7 exhibited the closest agreement with the reference, achieving a mean distance of
2.25 cm and a standard deviation of 6.25 cm, demonstrating the system’s capability to
achieve high repeatability under favourable conditions. Other comparisons in this zone
generally remained within the 5-7 cm range for mean distance (e.g., Flight 12 vs. Flight 1:
5.9 cm mean). Overall, the zone-wise C2C results indicate centimetric repeatability across
repeated LIDAR-SLAM flights, with mean/median distances typically in the ~2-7 cm
range under favourable overlap and viewpoint conditions (Figure 13). Although this level
of consistency does not match the millimetric precision achievable with static terrestrial
laser scanning (TLS) under controlled surveying conditions, it provides a reliable geometric
baseline for rapid, non-contact documentation and for identifying conservation-relevant
changes at the scale of preventive conservation (e.g., decimetric block detachment or major
sediment displacement). In this sense, the proposed UAV workflow is best interpreted as a
baseline documentation and feasibility framework that prepares the dataset for more ex-
haustive future evaluations (e.g., denser control, zone-wise aggregation, and multitemporal
comparisons) rather than as a fully operational monitoring system.

X106 (a) Distance Distribution (Reference - Comparison) (b) Vector Components (Color = Az)

Zone A g,

Flight $vs Flight 11 §

000 025 050 075 1.00 125 150 175 2.00 -10 -05 00 o5 10 1s
Distance (m) Difference X (m)

(c) Distance Distribution (Reference - Comparison) (d) Vector Components (Color = Az)

800,000 o2

600,000 0.0

Zone B §
Flight 1 vs Flight 7~ §
400,000 -0.2

200,000 -04

00 02 04 06 08 10 -10 -08 -06 -04 02 00 02
Distance (m) Difference X (m)

Figure 13. Statistical analysis of geometric repeatability for the representative cloud-to-cloud (C2C)
comparisons described in the text. (a,b) Analysis of Zone A (Flight 8 vs. Flight 11). (c,d) Analysis
of Zone B (Flight 1 vs. Flight 7). The histograms (a,c) illustrate the frequency distribution of
Euclidean distances, showing a dominant alignment tendency in the sub-5 cm range (blue bars)
despite the presence of outliers. The scatter plots (b,d) display the displacement vector components
(Ax, Ay) coloured by vertical deviation (Az). The dispersed nature of these point clouds supports the
interpretation of discrepancies as non-systematic SLAM drift rather than rigid transformation errors.
Note that while the search radius was 5.0 m, the plots focus on the relevant distribution range.
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Figure 14. Mesh-to-Mesh (M2M) checkpoint comparison between the videogrammetry-derived
mesh from Flight 7 (Meas) and the videogrammetry-derived mesh from Flight 1 (Ref), performed
in the Analysis module of Cyclone 3DR (the non-overlapping surface is shown in red). View of the
compared meshes and checkpoint locations (checkpoints #30—#39). (Signed Dev 3D values measured
at checkpoints (8); absolute values (Dev 3D) are used to interpret deviation magnitudes.

Finally, an additional geometric-consistency check was performed by comparing the
Flight 1 textured mesh (generated by videogrammetry) with a set of checkpoints sampled
on the Flight 7 LIDAR-SLAM point cloud within the overlap area. This independent, point-
based control evaluates to what extent the higher visual detail provided by videogramme-
try (texture fidelity and apparent micro-relief) translates into metric agreement with the
SLAM-derived geometry. In practice, the observed discrepancies are mainly attributable
to (i) SLAM drift accumulation along the trajectory (and its sensitivity to loop-closure
performance and the effective path) and (ii) local point-cloud noise in sectors affected by
complex geometry, variations in stand-off distance, and less stable returns. Across the
selected checkpoints, the mean 3D deviation was 6.15 cm, providing a practical estimate
of repeatability at the local scale. Consequently, the improved visual “resolution” of the
videogrammetric model does not necessarily imply a corresponding increase in geometric
accuracy with respect to the LIDAR-SLAM representation.
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Table 4. Mesh-to-Mesh (M2M) comparison at checkpoints between the videogrammetry-derived
mesh from Flight 7 (Meas) and the videogrammetry-derived mesh from Flight 1 (Ref) (Cyclone 3DR,
Analysis module). For each checkpoint, the 3D coordinates measured on the inspected mesh (Meas)
are compared with those on the reference mesh (Ref). Dev X, Dev Y, and Dev Z report the signed
coordinate residuals (Meas — Ref), and Dev 3D is the resulting 3D deviation at each checkpoint.

Checkpoint Meas X (m) MeasY (m) MeasZ (m) RefX(m) RefY(m) RefZ(m) DevX(m) DevY(m) DevZ(m) Dev3D (m)

Label #31
Label #32
Label #33
Label #35
Label #36
Label #37
Label #38
Label #39

1.906
—1.337
0.846
—0.751
0.535
0.658
0.389
0.895

6.564 0.963 1911 6.539 1.012 —0.005 0.024 —0.049 —0.055
5.083 0.926 —1.335 5.082 0.923 —0.003 0.002 0.003 0.005
4.595 0.957 0.846 4.595 0.956 —0.000 0.000 0.001 0.001
1.297 1.092 —0.751 1.301 1.084 0.000 —0.004 0.008 0.009
1.240 1.116 0.534 1.236 1.128 0.001 0.004 —0.012 —-0.013
-0.797 0.732 0.664 —0.813 0.815 —0.006 0.016 —0.083 —0.085
0.602 1.444 0.389 0.603 1.446 0.000 —0.001 —0.002 —0.002
2.383 1.259 0.895 2.380 1.257 0.001 0.002 0.002 —0.003

3.4. Exploratory Al-Based Crack Detection Results Under Cave Conditions

This subsection presents the results of an exploratory application of deep learning-based
instance segmentation for crack detection under the extreme visual constraints of the cave
environment. The proposed model achieved a mAP@IoU = 50 of 20% when validated
against the flight 5 dataset. While the network successfully identifies the presence and
general location of cave-wall cracks, this relatively low score reflects systematic over-
segmentation: ground-truth annotations represent each digitized crack as a single con-
tinuous mask, whereas the model frequently predicts multiple smaller subcracks instead
of the complete structure. These fragmented detections reduce IoU with the annotated
region, lowering precision and thereby decreasing the overall mAP value, despite visually
plausible crack localization.

Large cracks are generally well predicted, with the model capturing most of their
spatial extent and overall morphology (Figure 15b). These major fractures present sub-
stantial depth, producing characteristic shadows that make them visually distinctive and
easier for the network to detect. However, the model also generates some false positives
by interpreting unrelated shadow patterns or lighting variations as cracks, as illustrated
in Figure 15a. Furthermore, due to the low resolution of certain image tiles and the high
density of fine fissures, many small cracks were not included during manual annotation. In
these cases, the model occasionally identifies subtle subcracks overlooked by the expert,
revealing both annotation limitations and the sensitivity of the model to minor structural
discontinuities (Figure 15).

The POI frames processed by the model indicate that it can delineate substantial
portions of the structural cracks on the inspected rock wall (Figure 16, Table 5). Because
the network was trained using polygon masks, predictions often include a narrow buffer
around the crack trace. Although smaller cracks (e.g., POI #2) can be detected, their
continuity is only partially recovered and some segments remain undetected. Under this
POl-based assessment, shadows and specular reflections did not systematically degrade
the predictions, and no widespread increase in illumination-driven false positives was
observed, although occasional shadow-related confusions may occur (e.g., Figure 15a).
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Reference

crack 0,915

Crack0.723

Prediction

Figure 15. Qualitative comparison between ground-truth and predicted crack segmentations. The
top row displays the manually annotated reference masks from the Flight 5 dataset, while the bottom
row shows the corresponding predictions generated by the proposed model. Column (a) illustrates
a shadow-induced false positive, where the network misinterprets illumination artefacts as cracks.
Column (b) presents a correctly segmented large crack, demonstrating accurate localization and shape
reconstruction. Column (c) shows a predicted crack that was not included in the expert annotations,
highlighting the ability of the model to detect subtle fissures overlooked during manual labelling.

Figure 16. Selection of POIs showing crack measurements and their spatial localization on the cave
wall within the 3D model of the documented zones. Segmentation model-predicted crack masks are
colour-coded by predicted crack probability (red: higher probability; orange: lower probability). Blue
overlays indicate the crack portions selected for length measurement (measured segments drawn on
top of the predicted masks).
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Table 5. Statistics aggregating crack probability for each of the masks composing the analyzed crack.
The trained Mask R-CNN model can generate multiple masks to represent a single crack, with each
mask associated with a probability value. The reported statistics are computed by aggregating all
crack segments associated with each measured crack.

POI Measurement (mm) ! Margin of Error Mean Prob. Q1 (25th) Q2 (Median) Max
(mm) Prob.

2 264 +9 0.77 0.76 0.79 0.91
3 599 +15 0.81 0.78 0.82 0.92
8 101 +5 0.84 0.78 0.85 0.96
31 479 +17 0.82 0.77 0.83 0.90
36 260 +7 0.85 0.84 0.88 0.93
37 110 +11 0.82 0.76 0.83 0.92

! Crack lengths were measured on POI frames in Inspector 5 using the “Add Measurement” tool, which uses the
distance-measurement sensor to perform pixel calibration and triangulation.

Overall, the obtained performance defines a feasibility baseline rather than an op-
erational automated solution, highlighting both the potential and the current limitations
of Al-based crack detection in subterranean heritage contexts. From a structural health
monitoring perspective, crack length/extent provides a necessary baseline; however, safety
assessment (e.g., defining “safe’ vs. ‘critical’) typically requires structural engineering inter-
pretation and temporal indicators, such as crack propagation rates derived from repeated
observations. Accordingly, the reported measurements should be interpreted as a feasibility
baseline for future longitudinal monitoring, rather than a definitive safety classification.

4. Discussion
4.1. Analysis of the AI Model for Automated Crack Detection

A key component of this study is the integration of a deep learning approach for
automated crack detection on high-resolution UAV imagery acquired within a confined
subterranean environment. The performance of the Mask R-CNN model demonstrated
clear potential but also highlighted important limitations primarily related to data quality
and annotation completeness.

Reported performance metrics of crack segmentation models in the literature, includ-
ing U-Net- and YOLO-based approaches, cannot be directly compared with the results
obtained in this study, as they rely on different datasets, annotation strategies, imaging ge-
ometries and illumination conditions [36]. In many benchmark scenarios, data are acquired
under controlled settings with homogeneous surfaces and extensive ground-truth annota-
tions, which contrasts sharply with the constraints of a protected subterranean heritage
environment [50]. Within this context, the relatively low mAP achieved in the present study
reflects the combined impact of limited training data, highly variable illumination and com-
plex rock textures, rather than deficiencies of the selected architecture alone [38]. Despite
the low IoU values contributing to this mAP score, the model is nevertheless able to detect
a large number of cracks and their approximate spatial extent. The reduced IoU mainly
results from missed reference annotations and fragmented predictions, which penalize
overlap-based metrics, even when the detected regions are visually plausible. At the same
time, the model shows a limited tendency to misclassify strong shadows or illumination
variations as cracks, indicating a degree of robustness to lighting-related artefacts. These
observations reinforce the exploratory nature of the proposed approach and highlight the
need for domain-specific datasets and tailored learning strategies to improve performance
in future developments.

As shown in the results, the model performance is strongly influenced by the quality
and completeness of the annotated dataset. Because many fine-scale cracks were not
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digitized during manual labelling, the network lacks sufficient examples to learn their visual
characteristics, leading to fragmented predictions and reduced mAP scores. Increasing
the number of annotated masks (particularly for thin, low-contrast cracks) would provide
a more representative training distribution and help the model better generalize across
varying wall textures, lighting conditions, and crack morphologies.

To achieve this, a larger digitization effort is required, ideally incorporating systematic
labelling of small fissures that are currently underrepresented. However, manually anno-
tating these structures is time-consuming, subjective, and prone to omission due to low
resolution and visual ambiguity. Future work may therefore benefit from semi-automatic
or fully automatic labelling strategies (such as weak supervision, active learning, or self-
training) to accelerate mask generation and reduce expert workload. Such approaches could
expand the training dataset, enhance crack boundary precision, and ultimately improve
both detection accuracy and segmentation consistency.

Despite these limitations, the Mask R-CNN architecture remains well suited for this
type of analysis due to its ability to jointly perform object detection and pixel-level seg-
mentation. Its region-proposal mechanism allows it to localize cracks of varying shapes
and scales, while the parallel mask-prediction branch provides detailed delineation of
crack boundaries even under heterogeneous imaging conditions. Moreover, Mask R-CNN
is highly modular and can be adapted through improved backbones, feature-pyramid
designs, and domain-specific augmentations, making it a robust foundation for future
enhancements. With a more comprehensive annotated dataset, the inherent strengths of the
model (particularly its capacity to capture fine structural details) could be fully leveraged
to achieve substantially higher detection and segmentation performance.

4.2. Integration of Geospatial Data into a Digital Twin Framework: Infrastructure and
Hierarchical Model

The architecture of the DiGHER platform was designed to address the challenge of
data fragmentation in cultural heritage. While traditional repositories often isolate ge-
ometric data from metadata, our approach integrates a relational database (PostgreSQL
(v14.19) [51]), with a hierarchical structure (municipalities-collections-items-visualizations).
This relational consistency is critical for long-term preservation, ensuring that geomet-
ric data remains contextually linked to its heritage significance rather than existing as
isolated files.

The choice of a client-server model based on Django (v5.1.1) [52] and a responsive
frontend allows for a centralized management workflow, which is essential for multi-user
environments like the Altamira research team. However, implementing such a structured
system introduces a complexity trade-off compared to simpler, ad hoc file storage solu-
tions. To mitigate this, user and permission management were tightly coupled with the
data hierarchy. This ensures that while the system remains scalable and collaborative, it
strictly adheres to the data security protocols required for sensitive heritage sites, balancing
accessibility with the necessary restrictions on non-public archaeological data.

4.3. Point Cloud Integration and Web-Based Visualization

The integration of large-scale 3D point cloud data represents a significant technical
challenge due to the massive volume of information involved. To enable efficient in-
browser rendering without the barriers of heavy client-side software, the platform uses a
system based on WebGL and JavaScript technologies (Figure 17). The core visualization
engine is derived from Potree (v1.8.2) [53], which relies heavily on foundational libraries
such as three.js for 3D rendering and proj4.js for geospatial coordinate transformations.
This approach was selected specifically for its ability to handle multi-resolution octree
structures, which allows for the dynamic streaming of billions of points. Unlike traditional
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methods that might require full dataset downloads, this web-optimized strategy ensures
that high-density datasets—such as the complex scans of Altamira—remain accessible
and responsive, effectively bridging the gap between massive geospatial data and remote
web accessibility.
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Figure 17. Schematic representation of the point cloud integration workflow in the DiGHER platform.
Point cloud files in E57, LAZ, and LAS formats are processed and aligned on the server side and
made accessible via an interactive visualization interface supporting measurement tools, semantic
enrichment, and collaborative analysis.

From an operational perspective, ensuring data uniformity is as critical as visualiza-
tion performance. Since heritage projects often generate data in heterogeneous formats
like E57, relying on manual conversion by users can lead to inconsistencies and work-
flow bottlenecks. To address this, an automated backend pipeline using the Point Data
Abstraction Library (PDAL (v2.3.0) [54] was established. By automatically standardizing
incoming files into the optimized LAS/LAZ format required for further processing, the
system significantly reduces the technical burden on researchers. This automation not only
streamlines the upload process but also guarantees that all datasets adhere to a consistent
internal structure essential for long-term digital preservation. Finally, the delivery mech-
anism required balancing high-speed data transfer with rigorous access control. Serving
massive static assets directly through a web application framework (like Django) would
introduce unacceptable latency, yet exposing them via a public web server would compro-
mise the confidentiality of the site. The solution adopted involves a hybrid architecture
using NGINX (v1.29.1) [55] as a reverse proxy coupled with an X-Accel-Redirect mechanism.
This design effectively decouples permission logic from file serving: while Django validates
user authority, NGINX handles the heavy lifting of streaming the binary data. This setup
ensures that sensitive archaeological content is protected by robust authentication protocols
while benefiting from the raw performance of an optimized static file server. Beyond
visualization, DiGHER is conceived to support long-term preservation, traceability, and
reuse of heterogeneous geomatics outputs by linking each 3D asset to its acquisition and
processing context (e.g., mission, sensor, processing version, and spatial reference). This
structured registration enables controlled updates of the digital twin while preserving
provenance and contextual integrity, and it aligns with FAIR data principles by improving
the findability, accessibility (under controlled access), interoperability, and reusability of
digital documentation. This is particularly relevant for sensitive subterranean heritage
sites where in situ access is constrained and remote expert review can support preventive
conservation planning.

4.4. Mesh Integration and Semantic Enrichment

Beyond point clouds, the DIGHER platform also handles meshed 3D models—typically
the outputs of photogrammetry or high-density laser scanning that have been processed
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into 3D surfaces (meshes) with textures. Integrating these models required evaluating
available technologies.

The suite of tools developed by the Smithsonian Institution [56], which are built on
top of widely adopted web technologies like three.js and WebGL (Figure 18), provides
rich interactivity, high-performance rendering, and extensible annotation functionalities
through open-source components, forming a solid basis for building customized 3D her-
itage viewers. This option presented significant advantages and shaped the direction of the
final implementation adopted in the DIGHER platform.

___________________
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Figure 18. Integration and annotation workflow for meshed models in the DIGHER platform.
Imported 3D assets (OB] and GLB formats) are processed and aligned on the server, after which they
are published in an interactive viewer that supports collaborative annotation, metadata structuring,
and multi-format interoperability.

The integration of textured 3D meshes into a web environment required addressing the
inherent trade-off between visual fidelity and network performance. Raw photogrammetric
outputs (often in OBJ format) are typically too heavy for real-time streaming, which neces-
sitates an optimization strategy. To resolve this, the platform implements an automated
pipeline that converts assets into the gITF/GLB [57] (open standard for 3D scenes that is
efficient for web delivery) using the Trimesh library (v4.6.6) [58]. A crucial architectural
decision in this workflow was the application of Draco [59] compression via gltf-transform
(v4.3.0) [60]. Although Draco introduces a lossy compression step, it reduces file sizes by
up to 95% with negligible visual impact. This optimization is fundamental for the Digital
Twin concept; it ensures that the high-resolution videogrammetric models of the Cave of
Altamira are not merely static archival files, but fluid, interactive assets accessible even
over standard network connections.

Furthermore, beyond mesh visualization (following the same general approach as
the point-cloud viewer described above), the platform was designed to bridge the “se-
mantic gap” that often limits the utility of 3D heritage data. Visualization alone allows
for observation, but not interpretation. To overcome this, we adapted components from
the Smithsonian Voyager suite, creating a customized viewer that prioritizes semantic
enrichment over complex configuration. The implementation of a specialized annotation
system allows researchers to link spatial coordinates directly to multimedia narratives.

A particularly innovative aspect of this semantic layer is the spatiotemporal linking
capability, which connects specific points on the 3D rock wall to precise timestamps in the
inspection videos. This feature transforms the 3D model from a passive representation
into an index for the raw video data, allowing users to verify the context of a crack or
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sediment accumulation instantly. By simplifying the interface for these annotations, the
system lowers the barrier to entry for non-technical experts, encouraging the continuous
enrichment of the Digital Twin with archaeological and geological knowledge.

4.5. Deployment Strategy and System Scalability

Deploying a complex platform like DiGHER that combines database, backend logic,
and specialized 3D processing tools can be challenging (Figure 19). Replicating this mix of
components across different environments becomes even more difficult. To mitigate this risk
and ensure scientific reproducibility, the DiIGHER platform adopts a full containerization
strategy using Docker (Engine v24.0+) [61]. Rather than treating the software environment
as a secondary concern, this approach encapsulates the entire runtime—including the
Ubuntu LTS base, Python dependencies, and compiled binaries—into a single, immutable
artefact. This decision moves the platform away from fragile, manual server configurations
toward a deterministic deployment model, where the computational environment is as
reproducible as the data itself.

Seleccionar textura:
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Figure 19. View of the processed platform displaying the meshed GLB models with annotations and
synchronized video keyframes over the 3D model. (a) Mesh model of flight 1. (b) Visualization of the
mesh model of flight 1 within the DIGHER interface. (c) Detail of the DiGHER mesh model viewer
showing the synchronized display of the mesh model with the video captured from flight 1.

From a maintenance and scalability perspective, containerization addresses the long-
term preservation challenges specific to digital heritage. Software obsolescence often
renders digital archives inaccessible within a few years. By freezing the toolchain (including
specific versions of processing libraries like PDAL or gltf-transform) within the container,
we ensure that the Digital Twin remains functional and the processing pipeline remains
verifiable in the future, regardless of updates to the underlying host operating system.
Furthermore, the orchestration of the Django backend behind an NGINX reverse proxy
within this containerized environment provides a production-ready architecture that creates
a portable solution. This ensures that the platform can be easily replicated across different
academic servers or collaborative research environments without requiring specialized
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DevOps intervention, allowing researchers to focus on the heritage content rather than on
resolving complex infrastructure constraints.

4.6. Owverall Interpretation

Taken together, UAV-based LiDAR-SLAM mapping, videogrammetric reconstruction,
automated crack segmentation, and digital-twin deployment provide an integrated frame-
work to support structural inspection and monitoring in highly constrained subterranean
environments. This workflow mitigates several practical limitations of conventional sur-
veying in confined settings and establishes a coherent basis for repeatable documentation
aimed at preventive conservation.

Regarding automated crack mapping, the current Mask R-CNN results—reported
through standard instance-segmentation metrics (IoU and mAP@IoU = 0.50)—should be
interpreted as a proof-of-concept, as performance is strongly influenced by the limited
size and representativeness of the annotated dataset and by the challenging imaging
conditions typical of rock-art caves (e.g., heterogeneous illumination and low-contrast
discontinuities). Future work should therefore prioritize expanding and diversifying the
annotations, improving model robustness, and increasing the temporal depth of the digital
twin through repeated inspections. These steps will strengthen multi-temporal comparison
and facilitate earlier identification of structural changes, contributing to the long-term
safeguarding of the Paleolithic heritage preserved in the Cave of Altamira.

5. Conclusions

The use of a confined-space UAV equipped with LIDAR-SLAM and high-resolution
imaging sensors provides a practical solution for documenting surfaces that are difficult
or unsafe to access using conventional geomatics approaches under similarly restrictive
conditions. Stable flight in complex geometries, together with 4K RGB imaging and onboard
LiDAR-SLAM, enabled detailed documentation of the rock wall at the entrance to La Hoya
Hall. To our knowledge, this study represents the first documented deployment of a
LiDAR-SLAM-equipped confined-space UAV for structural monitoring inside a Paleolithic
World Heritage cave. The results indicate that hybrid SLAM-videogrammetric workflows
can mitigate the physical, geometric, and safety constraints typical of subterranean heritage
settings and provide a repeatable baseline for future monitoring.

The synchronized analysis of videographic records with the LiDAR-derived point
cloud supported an initial technical appraisal of the inspected surface, enabling the identifi-
cation of elements relevant to stability assessment, including fractures, overhanging blocks,
and accumulations of unconsolidated sediment. These observations provide a basis for
future preventive conservation actions in the Cave of Altamira and are transferable to other
confined or high-risk heritage environments requiring comparable monitoring standards.

Furthermore, the identification of possible graphic and transit evidence on this lintel
demonstrates the potential application of this methodology for the prospecting, documen-
tation and study of archaeological evidence in places that are difficult to access or whose
conservation does not allow movement through them. However, this finding opens the
door to its application in the prospecting and documentation of archaeological heritage
not only in cave environments, but also in the open air, allowing for the optimization of
prospecting work in environments that are difficult to access.

Beyond crack mapping, this hybrid UAV-based workflow can also support non-contact
documentation and long-term monitoring of Paleolithic rock art, including both paintings
and engravings. With appropriate adaptations in acquisition strategy and illumination
control, it could likewise be transferred to open-air post-Paleolithic artistic contexts. High-
resolution, spatially referenced imagery integrated within a 3D digital-twin environment
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can facilitate repeatable visual inspection of motifs and surface condition (e.g., pigment
loss, flaking, micro-detachment, or surface alteration), providing complementary evidence
to inform conservation decisions in decorated cave settings.

Future campaigns should consolidate this hybrid methodology by prioritizing repeata-
bility and consistent acquisition geometry across surveys. Where feasible, complementary
high-density meshes in accessible areas could enrich both visual inspection and metric
analysis. Establishing a periodic documentation schedule would facilitate multi-temporal
tracking of fractures, sediment accumulations, and potentially unstable structural elements,
strengthening preventive conservation planning.

All generated datasets—including 3D models, point clouds, and synchronized video—
were integrated into the University of Zaragoza’s DiGHER platform, enabling interac-
tive web-based visualization, spatial synchronization between geometry and audiovisual
records, and functions for measurement, collaborative annotation, and temporal compar-
ison. This integration supports traceability, remote expert review, and long-term man-
agement of the digital twin as a shared baseline for decision-making. Therefore, this
documentation supports long-term digital preservation within a FAIR-aligned geomatics
framework and facilitates analysis, remote access, and the planning of future conservation
actions by the Museo Nacional y Centro de Investigacion de Altamira and other stakeholders.

Future work should focus on repeated UAV-based inspections to build multitemporal
datasets suitable for detecting structural evolution at the scale required for preventive
conservation. In parallel, expanding and refining annotated imagery is expected to improve
the robustness of deep-learning crack segmentation under heterogeneous illumination and
surface textures. Together, these steps will enhance early-warning capabilities and support
more informed, data-driven strategies for the preventive conservation of Paleolithic rock-art
caves, as well as for the systematic documentation and artistic analysis of the motifs.
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Abbreviations

The following abbreviations are used in this manuscript:

c2C Cloud-to-Cloud (point-cloud distance comparison)

M Cloud-to-Mesh (point-cloud to surface/mesh distance comparison)
CLI Command-Line Interface

CNIG Centro Nacional de Informacién Geografica

COCO  Common Objects in Context dataset
FAIR Findable, Accessible, Interoperable and Reusable
FCN Fully Convolutional Network

FPS Frames per Second

FPN Feature Pyramid Network
GLB Binary form of gITF

glTF GL Transmission Format
IGN Instituto Geografico Nacional
IMU Inertial Measurement Unit
TIoT Internet of Things

ToU Intersection over Union

JSON JavaScript Object Notation

KTX2 Khronos Texture 2.0

M2M Mesh-to-Mesh (surface-to-surface distance comparison)
MVS Multi-View Stereo

NGINX NGINX Web Server

PDAL  Point Data Abstraction Library

PNOA  Plan Nacional de Ortofotografia Aérea

POI Point Of Interest

R-CNN  Region-based Convolutional Neural Network

ResNet  Residual Network

Rol Region of Interest

RPN Region Proposal Network

SIM Structure from Motion

SLAM  Simultaneous Localization and Mapping
ToF Time-of-Flight

YOLO  You Only Look Once
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