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ABSTRACT 

Well textured Bi2.02Sr2.02Ca0.98Cu1.99Ox /2.9 wt.% Ag composite samples have been 

grown by the laser floating zone at very low rates (1, 3, and 5 mm/h). The as grown 

samples present superconducting behavior, as a result of being composed by long and 

well textured Bi-2212 grains as major phase. After annealing the samples do not 

increase dramatically their JC. This effect has been associated with the presence of long 

cracks between superconducting grains along their ab planes. Even after annealing, the 

cracks have not been totally removed and, as consequence, the critical current of the 

samples after the thermal treatment has only been improved in around 50%, compared 

with the as grown samples. 
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1. INTRODUCTION 

The development of commercial applications based on high temperature 

superconductors requires the use of texturing techniques in order to obtain bulk 

materials with high critical current density (JC) values [1]. These techniques must be 

reliable enough in order to assure the high JC in long-lengths [2]. Although 

(Bi,Pb)2Sr2Ca2Cu3O10+δ  (Bi-2223) superconductors have a high critical temperature, TC, 

of ~110 K, Bi2Sr2CaCu2O8+δ (Bi-2212) superconductors, with lower TC ~90-95 K, 



requires less complex reaction and texturing processes. Therefore Bi-2212 

superconductors have demonstrated that they are suitable for many applications when 

properly processed, as for example by the laser floating zone (LFZ), where well 

textured bulk materials are obtained [3,4]. Recently, this technique has also been 

successfully used with other plate-like grain ceramic materials [5,6]. 

The superconducting materials textured by the LFZ technique have very well aligned 

crystals, with their c-axis perpendicular to the current flow direction and strong grain 

boundaries. Bulk Bi-2212 LFZ textured materials show JC values higher than 5000 

A/cm2 for ~ 1mm diameter rods [6]. This method can be improved by an electrical 

current crossing the melt, called electrical assisted laser floating zone (EALFZ), which 

is able to obtain Bi-2212 samples with improved texture [7] when compared with the 

classical LFZ technique. In any case, the interesting transport properties obtained in 

these bulk Bi-2212 textured materials allow developing practical applications, as current 

leads [8] or fault current limiters [9]. One of the main advantages of this method is that 

the materials can be rapidly grown due to the large thermal gradient at the solid-liquid 

interface [10,11]. A second additional advantage is the absence of crucible, avoiding 

external contamination of textured samples during the processing. However, the poor 

mechanical characteristics of this kind of materials [12,13] due to their ceramic nature, 

imposes some limitations for practical applications. Some attempts to improve their 

mechanical behavior have been performed by means of Ag addition on BSCCO 

compounds [9,14] and other plate like grain ceramics [15]. The aim of this work is to 

study well textured Bi-2212/Ag composites, with Ag content fixed in ~3 wt. %, when 

the texturing process is performed by means of the LFZ technique at very low rates (≤5 

mm/h), in order to stabilize the solidification front. The changes on the microstructure 

are related with the superconducting properties of the samples. 

 

2. EXPERIMENTAL 

Green ceramic cylindrical precursors,120 mm long and 3 mm diameter, have been 

prepared from commercial Bi2.02Sr2.02Ca0.98Cu1.99Ox /2.9 wt.% Ag composite powder 

precursors (Nexans SuperConductors GmbH) by cold isostatic pressing with an applied 

pressure of 200 MPa during 1 minute. The obtained green cylinders were subsequently 

used as feed in a directional solidification process performed in a LFZ installation 

described elsewhere [16]. These bars have been processed using a continuous power 

Nd:YAG laser (λ = 1064 nm), under air, at growth rates of 1, 3, and 5 mm/h. In the 



process, the seed has been rotated clockwise at 3 rpm in order to maintain the 

cylindrical geometry while the feed has been rotated anticlockwise at 15 rpm to 

homogenize the molten zone. Finally, after the growth process, the textured bars, about 

150 mm length and 2 mm diameter, have shown to be very homogeneous 

dimensionally. These rods were then cut into several pieces with the adequate 

dimensions (35 mm long) for their electrical characterization both, as grown and after 

annealing. This thermal process was performed under air, and consisted in two steps: 60 

h at 860 ºC to produce the maximum amount of Bi-2212 phase, followed by 12 h at 800 

ºC to adjust the oxygen content in the superconducting phase and, finally, quenched in 

air to room temperature. Moreover, four silver contacts were painted on these samples, 

two of about 5 mm at both ends of the bars for the current injection and two small ones 

in the center of the bar, with 1 cm between then, for the voltage measurements. 

Morphological and microstructural characterization, before and after annealing, was 

made on polished longitudinal cross-sections of the samples in a field emission 

scanning electron microscope (FESEM, Zeiss Merlin) equipped with an energy 

dispersive spectroscopy (EDX) system. Powder X-ray diffraction (XRD) patterns have 

also been recorded, with 2θ ranging between 5 and 40 degrees, in order to identify the 

different phases (Rigaku D/max-B X-ray powder diffractometer working with Cu Kα 

radiation). 

Electrical measurements were performed by the conventional four-point probe 

configuration in both, as grown and annealed samples. Resistivity as a function of 

temperature, from 77 to 300 K, was measured using a dc current of 1 mA. Critical 

current density (JC) values were determined at 77 K, from the I-V curves, using the 1 

µV/cm standard criterion. 

 

3. RESULTS AND DISCUSSION 

Fig.1 shows representative SEM images of as-grown samples grown at different rates. 

Although the heat treatment has not been performed in these samples, the major phase 

(grey contrast matrix) corresponds to the superconducting Bi-2212 one. It is also 

possible to find some Bi-free secondary phases (dark contrast, indicated by #1), which 

have been identified by EDX as Sr-Ca-Cu-O ones. The amount of these secondary 

phases is increasing when the growth rate is raised, due to the destabilization of the 

solidification front, as it can be observed when comparing Fig. 1a (1mm/h) and Fig. 1b 



(3 mm/h). In addition, it is also possible to find some scattered small CaO crystals in 

these as-grown samples, probably associated with local instabilities of the solidification 

front. Although it cannot be clearly seen on these micrographs, small intergrowths of 

Bi-2212 and Bi-2201 can be found close to the Bi-free secondary phases. In any case, as 

a result of the low growth rates used in this work, the major phase is always the Bi-2212 

one, that it is appearing as long grains (hundreds of microns), with their ab planes 

parallel to the growth direction. However, as a result of the strong thermal shock 

produced in these big size grains during the solidification, long cracks along the ab 

planes (marked as #2 in Fig. 1) appear. On the other hand, metallic Ag (light grey 

contrast, indicated by #3) is finely distributed inside the superconducting grains (see 

Fig. 1d). Furthermore, it can be also been found as elongated grains filling the gaps 

between superconducting grains (see Fig. 1c). When the samples are annealed, not 

noticeable changes have been detected. Cracks are still easily found between Bi-2212 

grains and only a small decrease in the amount of secondary phases is observed. 

This last feature is confirmed by the powder XRD patterns performed in the as-grown 

and annealed samples. In Fig. 2 representative patterns for the as-grown and annealed 

samples prepared at 3 mm/h, are presented. As it can be clearly seen in the figure, only 

small differences appear between both XRD patterns. At first sight, it is possible to see 

that the Bi-2212 is the major phase (peaks indicated by  in the figure [17]). On the 

other hand the identification of the main peak of Bi-2201 phase [17] at ~29.7º (marked 

with ) with very small intensity, clearly indicates the low content of this phase. This is 

in agreement with the microstructural features as discussed previously. Moreover, the 

peak appearing at around 38.2° corresponds to the (111) diffraction plane of metallic Ag 

(marked as #). Finally, the symbol * identifies the Bi-free secondary phase [18] which is 

decreasing after the thermal treatment. The main differences found in these patterns are 

due to the preferential orientation of the grains, as can be deduced from the variation 

observed in the relative intensities of the (00l) peaks. This effect can be associated to the 

samples preparation which can induce different preferential grain orientations in the 

powdered samples. 

The electrical characteristics of the samples, both as-grown and annealed are displayed 

in Table I. As it is reflected in these data, all the samples show a similar TC, indicating 

that as-grown and annealed samples possess, approximately, the same oxygen content in 

the Bi-2212 grains, indicating that the oxygenation thermal treatment is unnecessary in 

samples grown at these low rates. In all the cases the samples display a metallic 



behavior at temperatures well above the transition one, as it is expected for Bi-2212 

superconductors.  

When considering the critical current intensities, it can be observed that higher growth 

rates produce higher IC. This effect is related with the bigger grain sizes obtained with 

the lower growth speeds. These larger grain sizes promote the formation of higher 

thermal stresses and, as a consequence, the formation of bigger cracks. Moreover, after 

the thermal treatment, a slight raise in IC can be observed which is clearly indicating that 

the annealing process has been not able to totally remove the cracks. In spite of the 

presence of these remaining cracks, an IC raise of about 50% has been reached in all the 

cases. As can be regarded in Table I and in Fig. 3, JC is increasing with the growth 

speed. Moreover, annealing process lead to higher JC values compared with the as 

grown ones, but keeping the same trend (higher growth speed led to higher JC values), 

confirming the previous discussions about IC evolution. Finally, the obtained JC in these 

samples grown at low rates, even after the thermal treatments, are far lower than the 

obtained in previously reported data on Bi-2212/Ag composites grown at higher speeds 

[14] which avoid cracks formation. 

 

4. CONCLUSIONS 

Bi2.02Sr2.02Ca0.98Cu1.99Ox /2.9 wt.% Ag ceramics were successfully grown through a LFZ 

process at very low rates (1, 3, and 5 mm/h). After the growth processes all the samples 

are mainly composed by big and well aligned Bi-2212 grains. The Ag has been found as 

small precipitates inside the grains and, in some cases, as elongated particles between 

the Bi-2212 grains. As a result of the cracks formed between the superconducting 

grains, JC values are between 1000 (1 mm/h) and 1500 (5 mm/h) A/cm2. After 

annealing process, cracks were only partially removed, leading to an increase of about 

50% on the JC. In any case, these low growth rates can be used to obtain single grains in 

an easy and quick manner. 
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Table I. Superconducting properties (TC, IC and, JC) for the as grown and annealed 

samples as a function of the LFZ growth rate. The diameter of the samples is also 

displayed. 

 

 As grown After anneling 

Growth rate 1 mm/h 3 mm/h 5 mm/h 1 mm/h 3 mm/h 5 mm/h 

TC (K) 90.5 90.5 90.5 90.5 90.5 90.5 

IC (A) 32.3 36.5 51 49.5 53.6 74 

d (mm) 2.04 2.04 2.04 2.00 2.00 2.00 

JC (A/cm2) 988 1116 1651 1576 1707 2357 

 



Figure captions 

 

Figure 1. Representative SEM micrographs performed on transversal (a, b, and d) and 

longitudinal (c) polished samples grown at: (a) and (c) 1 mm/h, (b) and (d) 3 mm/h. 

Grey matrix is Bi-2212 phase. #1 indicates Bi-free secondary phases, #2 cracks, #3 

metallic Ag 

 

Figure 2. Representative powder XRD patterns of the Bi-2212/3 wt.%Ag obtained at 3 

mm/h on as as-grown (a) and annealed samples (b).  indicates the Bi-2212 peaks,  

Bi-2201, * Bi-free secondary phases, and # metallic Ag. 

 

Figure 3. JC values as a function of the growth rate for both, as grown samples and 

annealed ones. 
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