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Abstract

This paper addresses a generalized version of the facility location problem with customer
preferences which includes an additional constraint on the number of customers which can
be allocated to each facility. The model aims to minimize the total cost due to opening
facilities and allocating customers while taking into account both customer preferences for
the facilities and these cardinality constraints. First, two approaches to deal with this
problem are proposed, which extend the single level and bilevel formulations of the problem
in which customers are free to select their most preferred open facility. After analyzing
the implications of assuming any of the two approaches, in this research, we adopt the
approach based on the hierarchical character of the model which leads to the formulation of
a bilevel optimization problem. Then, taking advantage of the characteristics of the lower
level problem, a single level reformulation of the bilevel optimization model is developed
based on duality theory which does not require the inclusion of additional binary variables.
Finally, we develop a simple but effective matheuristic for solving the bilevel optimization
problem whose general framework follows that of an evolutionary algorithm and exploits the
bilevel structure of the model. The chromosome encoding pays attention to the upper level
variables and controls the facilities which are open. Then, an optimization model is solved
to allocate customers in accordance with their preferences and the availability of the open
facilities. A computational experiment shows the effectiveness of the matheuristic in terms
of the quality of the solutions yielded and the computing time.
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1. Introduction

Facility location problems are amongst the most widely studied in the literature of Oper-
ations Research. They have been applied to locate production plants, warehouses, schools,
fire stations, hospitals, etc., and thus play a central role in a great number of decision-making
problems in both the public and the private sectors. In a nutshell, facility location problems
are concerned with selecting the best placement for a number of facilities to serve a set of
customers, in accordance with the optimality criteria established. The criteria proposed in
the literature usually take into account costs and distances, as well as the service provided
to customers. As stated by ReVelle et al. [27]: ‘Even though the contexts in which these
models are situated may differ, their main features are always the same: a space includ-
ing a metric, customers whose locations in the given space are known, and facilities whose
locations have to be determined according to some objective function.” Many variants of
the problem have been proposed, which differ in the type of space considered (continuous,
discrete, or with network structure), the objectives, the facility features (uncapacitated or
capacitated), or the time horizon, amongst others. There is also a wide variety of solution
methods, ranging from the exact solution of the optimization model to the developing of
heuristic or metaheuristic procedures when the size of the problem or its complexity prevent
the use of exact methods. Without being exhaustive, [12, 14, 21, 22, 25, 26, 27] and the

references therein provide a comprehensive survey of the topic.

In this paper we focus on a generalized version of the simple plant location problem
with order (SPLPO) first proposed by Hanjoul and Peeters [17]. The SPLPO extends the
simple plant location problem (SPLP), a discrete facility location problem which consists of
selecting some facilities to be opened from a set of candidates and determining the allocation
of the customers to the open facilities, aiming to minimize the total cost due to opening

facilities and allocating customers. Although some previous papers [28, 33] had considered
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the reaction of customers if they are free to choose an open facility by introducing additional
constraints to assign customers to their closest facility, the idea of allowing the customers to
select the facility they will patronize is credited to Hanjoul and Peeters [17]. These authors
assumed that each customer had a preference ordering with respect to the facilities which
depended on his/her personal characteristics, as well as the features of the sites and the trips
to the sites. The authors proposed the SPLPO in which each customer chooses the open
facility which is his/her most preferred one. This model assumes that the decision-maker
in charge of selecting the facilities, the locator, knows the preference orderings of customers
and takes them into account when selecting the facilities to be opened. In the mathematical
model the preference orderings are written as a set of constraints which are added to the
formulation of the SPLP. For solving the SPLPO, the authors developed a heuristic algorithm
and solved small examples. Cénovas et al. [7] analyzed the SPLPO and strengthened the

formulation by introducing valid inequalities and applying several preprocessing rules.

Hanjoul and Peeters [17] in their pioneering work also recognized the existence of an
implicit hierarchical structure associated with the two interrelated subproblems involved in
the SPLPO: the location problem, which refers to the selection of facilities, at the upper level
of the hierarchy, and the allocation problem, which refers to the assignment of customers, at
the lower level. Based on the fact that bilevel optimization models [11, 13] provide a frame-
work to deal with decision processes involving a hierarchical structure, Hansen et al. [18],
Vasilyev and Klimentova [31] and Vasilyev et al. [32] formulated the SPLPO as a bilevel
model. The upper level decision maker, which selects the facilities, aims to minimize the
total cost. In the lower level problem, customers are allocated aiming to minimize the sum
of preferences (the smaller the value, the greater the preference). The authors assumed that
the preference ordering is strict, that is, for any pair of facilities, each customer prefers one
of them. Based on this assumption, the bilevel model can be rewritten as the single level
formulation proposed in [7, 17]. Then, Hansen et al. [18] proposed a reformulation of this
single level problem which dominated previous formulations from the point of view of their
linear programming relaxation. Vasilyev et al. [32] used a new family of valid inequalities
rather than increasing the number of variables. Based on the previous formulation, Vasi-
lyev and Klimentova [31] developed a branch and cut method to find an optimal solution.

Camacho-Vallejo et al. [6] proposed an evolutionary algorithm to solve the bilevel model.

The key point in the above mentioned strategies developed to deal with the SPLPO
is the absence of a cardinality constraint associated with each facility which restricts the
number of customers that can be allocated to it. This fact guarantees that, once it has been

decided which facilities are to be opened, each customer can be allocated to his/her most
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preferred facility because there is enough room in each facility for them. This paper gen-
eralizes the SPLPO to include cardinality constraints, providing a more realistic approach,
while aiming to maintain that each customer should be served in accordance with his/her
preferences. This problem will be termed C-SPLPO. For this purpose, we assume the exis-
tence of an upper bound on the number of customers which can be allocated to each facility.
Therefore, it is no longer true that customers can freely choose their most preferred open
facility. As will be shown in Section 2, modeling this version of the SPLPO is not a trivial
matter since the preference ordering interacts with the cardinality constraint. When there
are several customers who want to be allocated to the same facility and this facility cannot
serve all those customers, a conflict arises. In fact, it may be possible that no selection of

facilities allows customers to be allocated to their most preferred open facility.

In this paper we analyze the implications of extending the two above mentioned ap-
proaches applied to deal with the SPLPO. As a result of this analysis, we propose to consider
the implicit hierarchical structure of the C-SPLPO and model it using a bilevel optimization
model. In the proposed model, the upper level decision maker selects the facilities to be
opened while taking into account the reaction of customers. This model extends that pro-
posed in [18] for the SPLPO. Typical examples of such cases are customers of public services
like health care services, emergency services, social services, etc. In all of these cases, in
general, the locator aims to minimize the total cost of locating facilities while bearing in
mind customer preferences globally. For instance, let us consider the allocation of students
to schools in a particular school district. For a given grade in elementary, middle or high
school, every school can have one or more modules or classes, each being able to accommo-
date a certain number of students. The public administration knows the cost of opening
a module in every school as well as the cost of transporting students from their homes to
school. It also knows the preferences of each student regarding the school to which he/she
would like to be allocated (obtained, for instance, from surveys). Then, the public adminis-
tration plans the allocation aiming to minimize the total cost, but taking into account the

students’ preferences.

To the best of our knowledge, there are only two papers dealing with bilevel capacitated
facility location problems. In Casas-Ramirez et al. [9] capacity is considered in the lower-
level problem when allocating customers to facilities based on the customers preferences.
The main difference with our problem, is that in [9] each customer has a demand and the
capacity of a facility refers to the amount of demand it can deal with. These facts convert
the lower level problem into the well-known generalized assignment problem, which is NP-

hard. Hence, the special structure exploited in our research cannot be considered in the
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problem with generalized demands. Additionally, due to the complexity that exists in the
lower-level in the problem presented in [9], semi-feasible bilevel solutions are proposed. In
contrast, the evolutionary algorithm developed in the current research only deals with bilevel
feasible solutions, thus guaranteeing the bilevel feasibility of the solution provided. Caramia
and Mari [8] consider that the capacity of the facilities is a decision variable. That is, the
leader decides the capacity of each located facility aiming to minimize costs. The lower-
level problem consists of allocating customers to located facilities respecting their capacity,
aiming to maximize the profit. In particular, their upper level problem has a constraint
that purely depends on followers variables (coupling constraint). This is a crucial part of
the decomposition approach proposed for solving the problem. The main difference with
our proposed problem relies in the manner in which capacity is considered. In other words,
they consider capacity as a decision while in our research capacity is a parameter. Moreover,

in [8] no customer preferences are taken into consideration.

After selecting the hierarchical approach to model the C-SPLPO, a single level reformu-
lation of the bilevel model is developed based on the fact that the coefficient matrix of the
lower level problem is unimodular. Thus, the integrality condition on the lower level variables
can be relaxed, the lower level problem can be reformulated as a linear program, and the
complementary slackness conditions are necessary and sufficient for optimality. Unlike the
classical reformulation of bilevel optimization problems using Karush-Kuhn-Tucker (KKT)
conditions, the proposed reformulation avoids the inclusion of additional binary variables.
The paper also develops a matheuristic whose general framework follows that of an evolu-
tionary algorithm. The chromosome encoding concentrates on the upper level variables and
controls the facilities which are open. Then, customers are allocated to the corresponding
facilities by solving a biobjective transportation problem which takes into account the car-
dinality constraint of the open facilities and the optimistic approach assumed in the bilevel
formulation. This procedure allows us to associate a bilevel feasible solution to every chro-
mosome and thus evaluate its fitness as the upper level objective function of its associated
bilevel feasible solution. The remainder of the paper is organized as follows. Section 2 dis-
cusses alternative formulations for the C-SPLPO and presents the mathematical formulation
of the bilevel optimization model we propose. Section 3 goes on to transform the bilevel
problem into a single level mixed integer optimization model using duality theory and the
properties of the lower level problem. The matheuristic is developed in Section 4. Using a set
of instances which are variants of established synthetic benchmark instances, section 5
analyzes the computational performance of the matheuristic and gives an in-depth insight

into the differences of the above mentioned alternative formulations. Finally, Section 6 sets



out future research directions and some concluding remarks.

2. Problem formulation

Consider a set of potential facilities I = {1,...,n} and a set of customers J = {1, ..., m}.
Each facility ¢ € I has associated a nonnegative fixed cost f; which refers to opening/handling
the facility, and a parameter ¢; which indicates the maximum number of customers which
can be allocated to it, called capacity. There is also a nonnegative cost ¢;;, ¢ € I, j € J,
associated with allocating customer j to facility . Moreover, we assume that each customer
7 € J has ranked the facilities from best to worst, i.e. has a set of predefined nonnegative
preferences ¢;; € {1,...,n}, ¢ € I. We assume that the smaller the value, the greater the
preference. The goal of the C-SPLPO is to select a subset of the potential facilities in order
to minimize the total cost, bearing in mind their capacity and the reaction of customers in
terms of their preferred facilities. Notice that if ¢; > m, for all ¢ € I, the C-SPLPO reduces
to the SPLPO.

In order to formulate the C-SPLPO, the first issue we should notice is that there is not a
single way of considering the reaction of customers. We can include the individual customer
preferences as constraints, thus extending the classical formulation of the SPLPO by Hanjoul
and Peeters [17]. Or the preferences can be considered globally, aiming to minimize a function
of them. In this paper, we propose to consider the utilitarian approach in which the goal is
to minimize the sum of the utilities of the customers, where the utility or satisfaction level
is measured through the customers ranking of the facility. This formulation is appropriate
for public services in which instead of seeking to satisfy the preferences of each individual
customer, the utilitarian approach is taken to evaluate the satisfaction of customers as a
whole. This formulation would extend the bilevel formulation of Hansen et al. [18]. Unlike
the SPLPO case, the two approaches are not equivalent when there is an upper bound on
the number of customers which can be allocated to every facility. Therefore, to assume
one formulation or the other can provide very different results. Next, we consider both

formulations and analyze their impact on the feasible region and the optimal solution.

We define the variables:

1, if facility ¢ is selected to be open ]
Yi = 1€l
0, otherwise
1, if customer j is allocated to the facility ¢ _ ,
Tij = rel, jed
0, otherwise



When there is no need to explicitly identify the indices of the variables, we will denote by ¥y

and x the variables {y;}ie; and {x;; }ier jes, respectively.

2.1. C-SPLPO-1: Individual customer preferences as constraints

Model C-SPLPO-1 incorporates individual customer preferences as constraints. It can

be formulated as:
Iilin Z fzyz —|— Z Z Cijwij (1&)
v iel icl jeJ

subject to

ay=1, jelJ (1b)

el

{k:9i;291;}

JjeJ

ye {01}, iel (1e)
:cije{(),l}, iel, ]GJ (1f)

The objective function (1a) minimizes the total cost due to opening facilities and allocating
customers. Constraints (1b) guarantee that each customer is allocated to exactly one facility.
Constraints (1c) ensure that if the i-th facility is opened, then the customer j must be
allocated to a facility that is at least as good as i according to his/her preference ordering.
Cardinality constraints (1d) enforce that customers can only be allocated to open facilities
and, besides, they guarantee that as many customers can be allocated to each facility as its

capacity allows. Finally, constraints (1le) and (1f) impose that all variables are binary.

In this model, every customer must be allocated to his/her most preferred open facility,
i.e. if a particular facility is open, due to constraints (1c) every customer for which this
facility is the most preferred among all the open facilities should be allocated to it. However,
this may be impossible because of cardinality constraints (1d). Therefore, if none of the
ways in which facilities could be selected to be opened allows this allocation, the C-SPLPO-
1 would be infeasible. Thus, to be able to provide an optimal solution, this formulation
requires the existence of selections of the open facilities in such a way that every customer
can be allocated to his/her most preferred open facility. This will be reconsidered again in

section 2.3 with the help of an illustrative numerical example.



2.2. C-SPLPO-2: A bilevel approach

This formulation considers the underlying hierarchical structure of the problem. The
upper level decision maker decides on the open facilities, while the lower level decision
maker allocates customers to the open facilities. The goal of the former is to minimize total
cost; the goal of the latter is to minimize the total preference. Therefore, the C-SPLPO-2
can be formulated as the following binary bilevel optimization problem:

myin Z fivi + Z Zcijxij (2a)
iel iel jeJ

subject to
> qyi=m (2b)
iel

v, €{0,1}, el (2¢)

where, for every y fixed, x solves the problem:
min SN gy (2d)
iel jeJ

subject to

dwy=1, jelJ (2¢)

el
sz’j <aqy, 1€l (2f)
jeJ
xije{()?l}? el jelJ (2g)

The objective function (2a) minimizes the total cost due to opening facilities and allocating
customers. Constraint (2b) guarantees that open facilities provide enough room to allocate
all the customers and constraints (2c) ensure that variables y are binary. Constraints (2b)
and (2c) provide the constraint region of variables y, which will be denoted by S,. The
lower level problem is represented by (2d)-(2g). Note that the binary variables of the upper
level are parameters of the lower level problem. The objective function (2d) minimizes the
global preference of customers. Constraints (2e) ensure that each customer is allocated to
exactly one facility. Cardinality constraints (2f) enforce that customers can only be allocated
to open facilities and, besides, they guarantee that as many customers can be allocated to
each facility as its capacity allows. Finally, constraints (2g) guarantee that variables x are
binary. Constraint (2b) is redundant. Indeed, to be a bilevel feasible solution the point
(y,z) needs x to be an optimal solution of the lower level problem and constraints (2e)

of this problem require all customers to be allocated. Hence, the global capacity provided
8



by the open facilities needs to be at least m. However, we keep this constraint because
in the algorithm it allows us to reduce the set in which the upper level variables need to
be searched. All the values y which do not satisfy constraint (2b) are implicitly discarded
because the corresponding lower level problem is not feasible. Notice that, unlike C-SPLPO-
1, in C-SPLPO-2 individual preferences are not imposed as constraints. Instead, given the
values of the variables y, the lower level problem provides the allocation of customers which

minimizes the total preference.

For y € S, a feasible solution of the bilevel problem (2) is obtained by solving the lower
level problem (2d)-(2g). One main concern in bilevel optimization is the existence of multiple
optima for the lower level problem. This fact can result in an ill-posed bilevel optimization
model. To overcome this difficulty, several approaches have been proposed in the bilevel
optimization literature, the most common being the optimistic approach in which the upper
level decision maker is enabled to select the lower level optimal solution that suits him/her

best [11, 13].

Papers dealing with the bilevel approach of the SPLPO assume that for each customer j €
J, preferences are distinct, i.e. ¢;; # gy;, for all ¢,7" € I. This assumption guarantees that the
bilevel model is well-posed since there exists a unique optimal allocation of customers for any
arbitrary selection of the variables y [18]. However, that assumption no longer ensures the
uniqueness of the optimal solution of the lower level problem when the cardinality constraint
is added. In this paper we assume the optimistic approach to the bilevel formulation of the C-
SPLPO-2, which is equivalent to assuming that the objective function (2a) is minimized over
y and x. Under this assumption, for a given y € S, we need to choose the optimal solution
of the lower level problem (2d)-(2g) with the best value of the objective function (2a). This
can be done by solving the following modified lower level problem in which we lexicographic
optimize two objective functions. The first one refers to the preferences (as in problem (2d)-

(2g)) and the second one refers to the allocating cost:

lex min (Z > GiiTij, 2D Cz‘jffij)
z iel jeJ i€l jeJ
subject to

injzla jEJ

el

Yo < qyi, 1€l
jeJ

Q?z‘jE{O,l}, iE[,jGJ

Lexicographic optimization assumes that the objectives are ranked in order of importance
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Table 1: Data of the illustrative examples

Cij

fi fioa G Ry Ry, Ry R, Rs Ry
F 5 2 2 5 1 6 10 9 10
F 7 7 3 3 3 4 4 6 8 8
F; 7 7 3 3 5 3 3 9 6 5
Fy 5 25 2 6 9 1 5 8 5) 2

Gij Gij

R, Ry R; Ris Rs Rsg Ry, Ry Rs3 Ris Rs Rg
Fi 4 1 2 1 1 3 1 2 2 1 3 2
F 1 2 4 3 2 1 3 1 1 3 1 1
F; 3 4 1 4 4 2 2 3 3 2 2 3
Fy 2 3 3 2 3 4 4 4 4 4 4 4

and the objective functions are minimized one at a time in order of priority. Hence, the
main criterion ) Y ¢;;x;; is minimized first. Then, the second criterion ) > ¢;;z;; is
i€l jeJ i€l jeJ
minimized subject to achieving the optimum with respect to the first criterion. If there
are multiple optimal solutions to the lower level problem (first criterion), choosing among
them the optimal solution of the second criterion guarantees that the best solution for the
leader (optimistic approach) is selected. Notice that the term ) .., fiy; has been suppressed

because it is constant while solving the lower level problem.

Next we show main differences in modeling the C-SPLPO using formulations (1) and (2).

2.3. Highlighting the differences between C-SPLPO-1 and C-SPLPO-2

From our point of view, the main difficulty with formulation (1) is that it can be ‘too
restrictive’ in the sense that this model reduces, even dramatically, the number of ways in
which the selection of facility locations can be done, thus worsening the optimal objective
function value. We explain this with the help of the following illustrative examples. Let us
assume that there are four facilities, Fi, ..., Fj, and six customers, Ry, ..., Rg. First, we

consider the costs f; and ¢;;, capacities g;, and preferences g;; provided in Table 1.

Figure 1 summarizes the results. It shows the elements of set S,, i.e. the feasible
ways of selecting facilities to allocate six customers, and the related customer allocations
according to model C-SPLPO-1 (left-hand-side) and model C-SPLPO-2 (right-hand-side).
Notice that model C-SPLPO-1 is not feasible. None of the selections allows every customer
to be allocated to a facility in accordance with his/her preference ordering. For instance, in

Figure 1a, facilities F, and F3 are chosen to be open. This selection is not feasible because
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the capacity of I3 is 3, and five customers should be allocated to it. The same happens with
Figure 1c, in which facilities F;, F5 and F3 are open. In this case, I} is preferred by three
customers but it can serve at most two customers. The remaining selections are not feasible

for analogous reasons.

In contrast, the feasible region of the model C-SPLPO-2 consists of the six feasible
solutions shown in the right-hand-side of Figure 1. In the optimal solution, facilities F» and
F3 are open, the total cost being 46. Customers Ry, Ry and Rj are allocated to facility F5,
whereas customers R3, R4 and Rg are allocated to facility F5. Notice also that customers

R, Ry, R3 and Ry are allocated to their most preferred open facility.

Now, let us modify the previous example. Instead of fixed costs f;, capacities ¢; and
preferences g;;, we consider the values ﬁ, ¢; and g;; provided in Table 1. In this case, the
model C-SPLPO-1 has a single feasible solution, and so it is the optimal solution. Only
facility Fj is open, the total cost being 55. Obviously, all customers are allocated to Fj,
which is the only open facility and thus their most preferred. However, it is worth pointing
out that, according to preferences g;;, Fy is the least preferred facility by all customers
gsj = 4,7 = 1,...,6. The feasible region of the model C-SPLPO-2 consists now of ten
feasible solutions, and the optimal solution opens F», and Fj at a cost of 50. Customers R,
R3 and Rg are allocated to facility Fy, whereas customers R;, R4 and Rj5 are allocated to
facility Fs. All customers except customer Ry are allocated to their most preferred open
facility. Moreover, customers Ry, R3 and Rg are allocated to their most preferred facility
(g22 = Gos3 = Ggog = 1), and customers Ry, Ry and R; are allocated to their second most
preferred facility (gs1 = 34 = G35 = 2). Notice also that the optimal objective function

value of the C-SPLPO-2 is smaller than that of the C-SPLPO-1.

Given the above considerations, we can conclude that C-SPLPO-1 would be appropriate
for modeling the C-SPLPO if it is compulsory to guarantee the individual preferences of
every customer. Otherwise, if customer preferences are looked upon as a goal to be aimed
at, model C-SPLPO-2 seems to be more suitable for the C-SPLPO. Hence, from this point
on, when referring to this problem, we will refer to the bilevel formulation. Next, we focus

on how to solve model C-SPLPO-2.

3. Reformulating the C-SPLPO-2 as a single level problem

The C-SPLPO-2 is a bilevel integer optimization problem with binary variables at both
levels. General bilevel integer models are very difficult to deal with [16, 23, 30]. However, by
adequately managing the properties of the lower level problem (2d)-(2g), the C-SPLPO-2

11



@@@@@ (B @) @& () (B) ()

{
@@ () (5

9= a5=3 Q=3 q3=3
(a) Not feasible (b) Objective function = 46
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s

=2 qo=3 q;=3 Q=2 qs=3 q5=3
(c) Not feasible (d) Objective function = 52

u=2 Q=3 =2 =2 =3 =2
(e) Not feasible (f) Objective function = 51

q1:2 Q=3 q=2
(g) Not feasible h) Objective function = 52

@g@ @g@

Q=3 q>=3 q5=3 Q=2
(i) Not fe351ble (j) Objective function = 50

a=2 =3  ¢=3 q~=2 a=2 =3  q=3  q=2
(k) Not feasible (1) Objective function = 56

Figure 1: The six feasible ways of selecting facilities to allocate six customers and related customer allocations
according to model C-SPLPO-1 (left-hand-side) and model C-SPLPO-2 (right-hand-side)
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can be reformulated as a single level optimization problem.

One of the most frequent approaches to solve bilevel optimization problems consists in
reformulating them as single level problems by replacing the lower level problem by its nec-
essary and sufficient optimality conditions (when they exist). Then, standard optimization
techniques can be applied for solving them. That reformulation usually involves additional
variables as well as nonlinear terms that can be linearized at the cost of including binary
variables. This approach can be applied to handle the C-SPLPO-2 after realizing that the
coefficient matrix of the lower level problem is unimodular once the upper level variables are
stated. Hence, it can be written as a linear optimization problem for which necessary and
sufficient optimality conditions exists. Moreover, the proposed reformulation avoids the use

of nonlinear terms, and consequently does not need to include additional binary variables.

For a given value of the upper level variables g € S,, let I(g) = {i € I : y; = 1}. Notice
that, for each j € J, Z;; = 0 for all i ¢ I(y) due to constraint (2f). Moreover, the lower
level problem can be treated as a transportation problem in which there are |I(7)| origin
points (where |I(g)| stands for the cardinality of (7)), which are the open facilities, each
with a supply ¢;, ¢ € I(g), and the destination points are the customers, each one with a
unit demand. Therefore, the binary constraint on the variable x;; can be substituted by a
nonnegativity constraint [3]. As a result, the lower level optimization problem can be stated

as:

mgn Z Z 9ijTij (3a)

i€I(§) jeJ

subject to
Z LTij = L, J € J (Bb)
i€l(7)
> —wyz—q, i€l (3¢)
jeJ
2520, i€I(g), jeJ (3d)

The dual of problem (3) is:

max Z Uj — Z q;V;
v jeJ i€I(y)
subject to
uj — v < gy, 1EINY), jEJ
(P O, 1€ I(g])
where {u;},c; are the dual variables associated with constraints (3b), and {v;},cr(y) are the
13



dual variables associated with constraints (3c).

Since problem (3) has an optimal solution, so does the dual problem, and both optimal ob-

jective function values coincide. Therefore, by applying duality theory, {Zi;, @;, ¥; }ic1(5)jes

are optimal solutions, respectively, of problem (3) and its dual (4) if and only if:

Yo D0 Gl = Y U5 — Y qib;

i€I(y) jeJ jeJ i€I(§)

Z-i'ijzlg jEJ

i€l (g)

YTy <q, €Iy
ied

iy — 0 < gy, 1€1(y), j€J

T;20, 1€l(g), jed

5 >0, iel(j)

Therefore, the C-SPLPO-2 can be stated as the following single level mixed integer linear

optimization problem:
min

y?x’u7v

subject to

Zfiyi + chijxij

iel iel jeJ

Z%‘yz‘ Zm

el

Z[Eij = ]_, ] eJ
el

Zﬂfij < qyi, 1€1
jeJ

uj —v; < gy + M1 —y;), i€l jeJ

viéMyZ-, 1el

Z Z 9ijTij = Z uj — Z qiVi

el jedJ JjeJ el
yi€{0,1}, iel
L5 = 0, 1€ [, ] eJ

v, =20, 1€l

where M is a constant big enough to guarantee that constraints (5e) are restrictive only

when y; = 1, i.e. the facility is open, and constraints (5f) restrict the value of v; only
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if the facility is closed. The importance of selecting an appropriate value of M has been
recognized in [20]. In this paper, taking into account the properties of the transportation
problem, the value of M can be bounded. Indeed, in the transportation problem, multipliers
uj, v; are computed as sums and differences of g;; corresponding to basic variables, so they
are bounded by n(n+m). In order to avoid possible round-off computational error problems
associated with a large value of M, as well as tightening the constraints (5e) and (5f), in the

next Theorem we derive upper bounds on the value of the dual variables.

Theorem 1. For a given value of the upper level variables § € Sy, let * be an optimal
solution of the lower level problem (3) and (u*,v*) be an optimal solution of the dual problem
associated with the lower level (). Then, there exists an optimal solution of the dual problem
(@, 0) so that there exists ig € I1(y) such that 0;, = 0. Moreover, v; < n, for alli € I1(y), and
u; <n, forall jeJ.

PROOF. If there exists iy € I(¢) such that vj = 0, we take (@,0) = (u*,v*) and the result

is at hand.

Otherwise, v > 0, for all i € I(g). Then, by applying the complementary slackness

conditions,
Zx;‘kj:qia ZEI(g)
jeJ
Let k = min;e;g {v]} > 0, and iy = arg min,e ) {v;}. We define
Uy =u;—k, j€J Oy=v; —k, i€l(y)

Notice that (@, ) is a feasible solution of problem (4):

ﬂj—ﬁi:u*—vfggija lel(g)7]€‘]

Moreover,
Zu] Z qil; = Zu;—mk— Z qivi +k Z = Zu — Z q;v; +k Z G —m
jeJ iel(y jedJ i€l (y) icl(g) jedJ iel(y i€1(g)

On the other hand,

dow= D =) ) ah=) l=m

icl(q) iel(g) j€J Jj€J iel(3) JjeJ
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Thus, ), 15 % —m =0 and (@, 0) is an optimal solution of the dual problem (4). For this
optimal solution, v;, = 0, and the first part of the Theorem follows. Furthermore, for the

facﬂlty io, ’l)j — 'lA}Z'O < Giog> j e J. Hence,

ﬁj<9i0j<n7 jE‘]
Finally, let i € I(g). If xj; = 0, for all j € J, i.e. no customer is allocated to this facility,
then Z]EJ xj; = 0 < ¢;, and thus 0; = 0. Otherwise, let jo € J such that zj; = 1. By the

complementary slackness conditions, u;, — 0; = g;;,. Therefore, 0; = @, — gij, < n. O

Corollary 2. For every facility i € I and customer j € J, the number of facilities n is a

valid constant M for constraints (5¢) and (5f).

As mentioned above the reformulation (5) does not involve additional binary variables.
Note that the classical reformulation of a bilevel problem into a single level optimization
model using KKT conditions would need to include a binary variable and two additional
constraints for linearizing each product constraint. On the other hand, model (5) is a
mixed integer optimization problem and thus can be solved by using standard optimization
techniques. This approach is in general useful for solving small and medium-size problems,
but it may not be competitive for large problems. Therefore, in the next section we will
develop CLOA (Capacitated Location Ordering Algorithm), a matheuristic which proves to

be quite efficient according to the extensive computational experiment carried out.

4. CLOA: A matheuristic to solve the C-SPLPO-2

CLOA is a matheuristic which combines the framework of an evolutionary algorithm
with the lexicographic optimization of a transportation problem aiming to provide good fea-
sible solutions for C-SPLPO-2. Evolutionary algorithms [1, 10, 24] have been increasingly
applied to solve different kinds of optimization problems, especially combinatorial optimiza-
tion problems, because they are able to provide good solutions to complex problems in
reasonable computational time. A key point when designing evolutionary algorithms is to
identify good convenient manners of encoding solutions as chromosomes. As in biological
evolution, an evolutionary algorithm consists of a population of chromosomes which evolves
to create offspring. Each chromosome is given a fitness value which measures its quality.
Some parents and offspring are selected in accordance with a preset criterion based on the

fitness function to survive to the next population. The aim is to guide the population to
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include better chromosomes through the generations. The algorithm proceeds through suc-
cessive iterations until the stopping condition is met. The solution associated with the best

chromosome is provided as the solution of the problem considered.

CLOA uses the general structure of an evolutionary algorithm, but also takes into account
the characteristics of the bilevel model to use compact chromosomes and optimization to pro-
vide bilevel feasible solutions. Next we explain the main characteristics of the matheuristic

developed.

4.1. Chromosome encoding, feasible solution construction and fitness evaluation

Let (y,x) be a bilevel feasible solution. The purpose is to encode its information in a
compact chromosome. Note that x is completely determined after knowing the value of y,
since x is the optimal solution of the corresponding lower level problem which provides the
best value of the upper level objective function. Therefore, we encode each chromosome
C as a binary n-dimensional vector which provides the value of variables y. That is, the

components of the chromosome indicate if the corresponding facility is open or not:

1, if facility ¢ is open
C; = Y P , 1el
0, otherwise
Let C be a chromosome. First, its feasibility in terms of being able to allocate all the
customers is checked. If ), , ¢;C; < m the chromosome is repaired. For this purpose, as

many times as needed to achieve ), ; ¢;C; > m, a gene C; = 0 is randomly selected and

switched.

After repairing the chromosome C' (if needed), its associated bilevel feasible solution
(y,x) is computed. From a chromosome C, the value of variables y is directly obtained,
y; = C;, i € I. Moreover, z;; = 0 for all j € J and i ¢ I(y). The value of the remaining

variables x is obtained by solving the lexicographic optimization problem:

lex min ( D> T, YL Yl Cisz'])

i€l(y) jeJ i€l(y) jeJ
subject to
>, wy=1, jeJ (6)
icl(y)
DT < g, 1€ I(Y)
jeJ

zij =20, i€l(y), jeJ

This problem can be solved using standard techniques, i.e. first solving the problem with

the lower level objective function ), () > jes 9ij%ij- After solving this problem, the second
17



objective function ). () > .o CijTij is considered, and a constraint is included in which

jeJ
Y ic () > jes 9ij%ij equals the optimal value of the first problem. An optimal solution of
this second problem is an optimal solution of the lexicographic problem (6) [15]. However, if
this approach is used, the problem solved in the second place lose the transportation struc-
ture. To maintain this structure and take advantage of the efficiency of the transportation
algorithm, we propose to use a similar approach to that developed in [4, 5]. Based on this,
when solving problem (6) both objective functions are simultaneously considered. Thus, a
bidimensional vector of reduced costs is associated with each variable. The first component
is the reduced cost with respect to the first objective function ), 1) > e YijTij, computed
in the usual way for transportation problems. The second component is the reduced cost
with respect to the second objective function ) . () > e CijTijs computed in the same way.
Then, reduced costs are checked in accordance with their lexicographic character. If they
are all lexicographically nonnegative, i.e. the first nonzero component is nonnegative, the
lexicographic optimization problem has reached its optimal solution; otherwise, the variable

having the lexicographically smallest reduced cost vector is selected to enter the basis and

an iteration of the usual transportation algorithm is applied.

After computing (y, x), a final check is made about the facilities which actually need to
be open. If C; = 1, equivalently y; = 1, but x;; = 0 for all j € J, then this facility has no
customers allocated. Therefore, it can be closed. This update is made by switching C; = 0,

and y; = 0.

Then, the fitness of the updated (if needed) chromosome C' is defined as the value of
the upper level objective function of the bilevel feasible solution (y,z) associated with the

chromosome, i.e. the objective function value of the C-SPLPO-2:

fitness(C) = Z Jiyi + Z Z CijTij (7)

iel iel jeJ
4.2. The initial population

The algorithm handles populations, denoted Pop, of size pg;... All the chromosomes in
Pop are distinct. The initial population is formed with p;.. randomly generated chromo-
somes. Initially Pop = (), and successive non repeated chromosomes are added to Pop as
they are created. For the purpose of favoring diversification, first a random number p € [0, 1]
is generated for each chromosome. Then, for ¢ € I a random number rn; € [0, 1] is selected.
If rn; < p, then C; = 1, i.e. the facility is open. Otherwise, C; = 0. After this process, the
chromosome is checked for feasibility and repaired (if needed) as explained in section 4.1. If

the resulting chromosome is already in Pop, it is rejected, and the process of creating a new
18



Input
The current population of chromosomes, Pop

A new chromosome C' = (C4,...,C,)
Procedure
While > ¢;C; < m,
i€l
Randomly select ¢ € I such that C; =0

If C=(Cy,...,C,) € Pop reject C. Stop.
Let y;, =C;, 1€ 1.
Let z;;, =0,j€ J, i ¢ I(y).
Solve the lexicographic problem (6).
Let (y,x) the bilevel feasible solution.
While C; =1 and z;; = 0, for all j € J,
Set C; =0and y; =0
If C=(C,...,C,) € Pop reject C. Stop.
Compute fitness(C) =" fiyi + D> cijxij

iel iel jeJ

Figure 2: Procedure for repairing a chromosome and computing its fitness

chromosome starts again.

After accepting the chromosome, its associated bilevel feasible solution (y, x) is computed
and the final check is made as explained in section 4.1. Finally, the chromosome is checked
again to see whether it is in Pop and it is rejected if this is the case, starting again the

process of creating a new chromosome.

The whole procedure of repairing a chromosome, if needed, rejecting it, computing its
associated bilevel feasible solution, and computing its fitness is displayed in Figure 2. This
routine is applied not only to the chromosomes in the initial population but to every chro-

mosome which is generated when the algorithm proceeds.

4.8. Crossover, mutation and survivor selection

Using the crossover and mutation operations the algorithm constructs offspring, i.e. new
chromosomes which are potential members of the next population. From the parent popula-
tion, each chromosome C", r = 1,..., psi.e is checked to undergo crossover with probability
pe. If C7 is selected, the single point crossover operation is applied. That is, a chromosome
from the current population (other than chromosome C”) and a crossover point are randomly

selected. Two offspring are created by combining the parents at the crossover point, i.e. all
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genes beyond the crossover point in either parent are swapped between both parents. In the

following example, the crossover point is after the 5th gene:

Parent 1: (1,0,1,1,1,] 1,0,0) Offspring 1: (1,0,1,1,1,0,0,1)
Parent 2: (0,0,1,0,1,] 0,0,1) Offspring 2: (0,0,1,0,1,1,0,0)

Then, each offspring is selected for the mutation operation with probability p,,. If a
chromosome is selected to undergo mutation, an integer number in {1,...,n} is randomly
generated and the corresponding gene is switched, i.e. the facility is changed to close if it

was open, and is changed to open if it was closed.

After crossover and mutation, the procedure of repairing a chromosome and computing its
fitness shown in Figure 2 is applied. From the complete set of distinct chromosomes formed
by the current population and the non repeated offspring, the best pg;.. chromosomes with
respect to the fitness function are kept for the next population Pop (elitist survivor selection).
The algorithm iterates until a termination condition is met. In the implementation of the
algorithm, computing time has been chosen as the stopping criterion. Upon termination,
the bilevel feasible solution associated with the chromosome which has the least fitness value

is provided as the solution of the C-SPLPO-2.

5. Computational study

This section is devoted to presenting and discussing the computational experiments car-
ried out. The numerical experiments have been performed on a PC Intel Core i7-6700 with
3.4 gigahertz, 32.0 gigabyte of RAM and Windows 10 64-bit as the operating system. The
algorithm CLOA has been coded in Dev-C++ 5.11 under C++ language.

Since the C-SPLPO-2 has not been previously studied, no benchmark instances are
available. Therefore, we decided to adapt two groups of instances which have been used
as benchmark instances for the capacitated facility location problem. The first group of
instances is described by Holmberg et al. [19], and can be downloaded from http://www.
di.unipi.it/optimize/. It comprises four sets of randomly generated test instances (sets
S1, Se, S3 and Sy), and one more set based on vehicle routing problems used by Solomon [29]
(set S;), each with different sizes and properties. The second group of instances is composed
of a subset of 20 instances of those described by Avella and Boccia [2], which are publicly
available at http://www.ing.unisannio.it/boccia/CFLP.htm. They are organized into
five subsets in accordance with their size. The first instance in each category according to

the classification in [2] has been selected. Table 2 summarizes the instance sizes. Altogether
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Table 2: The sizes of the test instances.

Set Subset Instances # of facilities (n) # of customers (m)

Holmberg et al. S P - Pps 10 50
S9 Pis - Pou 20 50
Ss Ps - Py 30 150
Sy Py - Pss 10 - 30 70 - 100
Ss Psg - Py 30 200

Avella and Boccia S i300-1, -6, -11, -16 300 300
S;  13001500-1, -6, -11, -16 300 1500
S i500-1, -6, -11, -16 500 500
Sy i700-1, -6, -11, -16 700 700
S1o i1000-1, -6, -11, -16 1000 1000

91 instances have been tested, ranging from small-size (10 facilities and 50 customers) to very
large-size (1000 facilities and 1000 customers). For all the instances, we have maintained the
location of potential facilities and customers, as well as the cost ¢;;. Moreover, we assigned
a capacity ¢; to the facility i as ¢; = (QZ /E‘ where [.] denotes the ceiling function, @Q; is
the original capacity, and d is the average of the original customer demands. To assign the
preferences, we have applied the procedure proposed by Cénovas et al. [7], which generates
random preferences but maintains some rationality with respect to the allocation costs.
These authors propose to generate fake costs ¢;, for each pair (i,j), using a triangular
distribution defined on the interval [m;, M;], where m; = min{c;; : i € I} and M; =
max{c;; : ¢ € I}, with ¢;; as the peak of the distribution. After ordering the fake costs for
each customer j, the facility ¢; with the lowest value ¢;,; is the most preferred facility of the
customer 7 and so on until the least preferred facility is reached which corresponds to the

facility with the highest fake cost.

In the following subsections, we present the results of the computational experiment.
First, we have analyzed the impact of the population size and the crossover and mutation
probabilities on the quality of the solution provided by CLOA. Based on this study, we have
selected the value of those parameters. Then, we have compared the results provided by
CLOA with this selection and the optimal solution (when available) provided by CPLEX.
Finally, using the same instances, we have solved models C-SPLPO-1 and C-SPLPO-2,
together with the single level variant of the problem without customer preferences (the so-

called relaxed problem in bilevel optimization) to show that they are structurally different.

5.1. Selecting the configuration of CLOA

As mentioned above, the purpose of the first part of the computational study is to assess

the influence of the value of the population size and the crossover and mutation probabilities
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Table 3: Algorithm configurations.

Configuration  pg.e Dc Pm

cfgy 50 0.5 0.5
cfgy 50 0.5 09
cfgs 50 09 0.5
cfgy 50 09 09
cfgs 100 0.5 0.5
cfgg 100 0.5 09
cfgr 100 09 0.5
cfgg 100 09 09

based on the results of a 22 factorial design. The factors and levels considered are: population
size (psize = 50, psize = 100), crossover probability (p. = 0.5, p. = 0.9), and mutation
probability (p,, = 0.5, p,, = 0.9). Table 3 displays the eight configurations of the algorithm.
Each of the test instances has been solved five times under each algorithm configuration, 40
times in total. The termination condition of the algorithm has been established in terms of
computing time. Sets S, Sy and Sy are given 1 second of computing time; set S3, 5 seconds;
set S5, 10 seconds; and sets Sg to S1g, 300 seconds. The statistical analysis has been carried

out using Minitab®, release 17.

In order to select the best configuration, for each instance we compute CLOA., the
best value of the objective function of problem C-SPLPO-2 obtained in the 40 runs of the
instance. Then, for a particular instance and run, we consider a success to be when its
objective function value equals CLOAy.s. All the runs of all the instances in sets S, s,
Ss and Sy provide the best value CLOA,.;. Therefore, to select the best configuration we
have applied an analysis of variance separately to set S5, and sets Sg to Sig together. The
results for set S5 indicate that pg.. (26.12% of variability explained) and p,, (34.78% of
variability explained) are significant factors. For the sets Sg to Sio, the same factors are
significant. The parameter p;.. explains 47.61% of the variability, whereas p,, explains
34.08% of the variability. No interaction is significant in either case. In both cases, the
effect is negative in the sense that the greater the value, the lower the mean of success,
that is the percentage of success for the configuration. For each of these sets of instances,
we have also computed the percentage of gap defined as the value of the objective function
of problem (2) in the instance run minus CLOA., divided by CLOA,.s, and multiplied
by 100 to get a percentage. As an illustration, Figure 3 shows the minimum, the average
and the maximum of the percentage of gap for every configuration in sets S5 to Syp. Set
S contains 16 instances, whereas sets Sg to Sip contain 4 instances each. We see that, as

expected, when the size of the problem increases, the percentage of gap and its variability
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Figure 3: Percentage of gap for every configuration of CLOA in sets S5 to Sig

also increase. Moreover, for most problems a configuration having p,;.. = 50 is better. As a
result of the statistical analysis, we have selected for CLOA the configuration cfg; in which
Psize = D0, p. = 0.5 and p,,, = 0.5. From now on, when we refer to CLOA we assume these

values for the parameters.

5.2. Measuring the quality of CLOA

Next, our purpose is to measure the quality of CLOA by comparing the results provided
by the selected configuration of CLOA with the optimal solution (or the best known feasible
solution) of problem (5) provided by IBM ILOG CPLEX 12.9.0. For this purpose we have
considered two variants of the CPLEX settings. In the first one, called CPLEX-1, the default
settings are implemented. In the second one, called CPLEX-2, the search strategy is changed
from the best-bound to the depth-first strategy. The CLOA stopping criterion has been set
to 1 second of computing time for sets Sy, Ss and S4, 5 seconds for set S3, 10 seconds for
set S5, and 1800 seconds for sets Sg to S19. Each of the test instances has been solved five
times. The CPLEX stopping criterion was set at 7200 seconds. When the run is interrupted
before providing the optimal solution, the best solution at this time is saved and the letters
TL are written when the computing time is displayed. According to Corollary 2, the value

of M has been set to n.

We separately analyze results of the small and large instances. Table 4 displays the
results for the instances based on Holmberg et al. instances (sets Sy to S;). The first and
second columns show the instance set and instance name, respectively. The third to seventh

columns display the information provided by CPLEX-1: Obj; is the objective function value
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of the optimal solution (best feasible solution if the run is interrupted); Gap; is the relative
gap; #nodes; is the number of branching nodes; Ty, is the time at which CPLEX finds the
reported solution; and Ty is the total required CPU time. The eighth to twelfth columns
display the same information but corresponding to CPLEX-2. When Objs is equal to Obj;

Y

a symbol ‘=" is written in the column of Obj,. The thirteenth to sixteenth columns in
Table 4 display the results provided by CLOA: Obj,.;, and Obj,,. are the minimum and
the maximum objective function values obtained in the five runs; Thes is the average of
the CPU time at which CLOA finds the reported solution in the five runs; and Ty, is the
total CPU time assigned to each run. If Obj,,;, coincides with the best value provided by
CPLEX, i.e. Obj,in = min{Obj,, Obj,}, a symbol ‘=" is written in the column of Obj,y.

)

When Obj,in and Obj,,q. coincide, a symbol ‘=" is also written in the column of Obj,,q..
Moreover, in each row, the smallest value of the objective function is written in bold. All

times are in seconds.

Both variants of CPLEX are only able to solve to optimality 51 out of the 55 instances
of sets S; to S4 and none of set S;. CPLEX-1 and CPLEX-2 provide the same objective
function value in 64 instances out of the 71 instances. For the remaining seven instances,
CPLEX-1 provides a better value than CPLEX-2 in four instances (all of them in set Sj).
For all the 51 instances for which CPLEX provides the optimal solution, CLOA obtains it as
well (instances Py to Pag, P33 to Pss). Moreover, CLOA yields the same objective function
value in these instances in all the five runs (Obj,;, and Obj,,q. are equal). For the remaining
20 instances, CLOA provides at least the same objective function value than the best value
of CPLEX in all the five runs, except for instance P58 where in just one out of the five runs
the objective function value is 1.001 times greater than the best value provided by CPLEX.
Moreover, for instance P59 in two out of the five runs and for instance P68 in four out of the
five runs, the objective function value provided by CLOA strictly improves the best value
of CPLEX. It is worth remarking that CLOA provides a value better than or equal to the
best value provided by CPLEX in 354 out of the 355 runs of the experiment.

Table 5 is similar to Table 4 and presents the results for the instances based on Avella and
Boccia instances (sets Sg to Sig). The first and second columns show the instance set and
instance name, respectively. For the variants of CPLEX we have not included the column
T, since CPLEX was not able to solve any instance of these sets within the computing time
prescribed (7200 seconds). For CLOA, we have included two more columns which include
the relative Gap defined as:

Objmin — min{Objlv Ob.]Q}
min{Obj,, Obj,} ’

Objmtw — min{Objla Ob.]Q}
min{Obj,, Obj,}

Mingap = MaXGap =

24



Concerning CPLEX performance, in instances i300-11, i500-6, i500-16, i700-16, i1000-11
and 11000-16 both variants of CPLEX provide the same value of the objective function (6
out of the 20 instances). For the remaining 14 instances, CPLEX-1 is better than CPLEX-2
in ten instances and worse in the other four. As could be expected, there is more variability
in the results provided by CLOA in these sets than in sets S; to S5. Only in 5 out of the 20
instances does CLOA provide the same value in the five runs. For the remaining instances
Objnae is lower than 1.078 times Obj,,:n, except for instance 11000-6, for which it is 1.279
times the minimum value. If we look at the best solution provided by CLOA, we see that
Objnin is better than the best solution provided by CPLEX in 11 out of the 20 instances
(all the instances of set S7, three out of the four instances of sets Sg and Sy and one instance
of set Syg), it is equal in the four instances of set Sg, and it is worse in the remaining five
instances. Moreover, for 10 out of the 11 instances for which the best solution provided
by CLOA is strictly better than the best solution provided by CPLEX (Ming,, is negative)
the worst solution provided by CLOA, i.e. Objua, is also better (Maxg,, is negative).
Hence, in these 10 instances CLOA is better than CPLEX in all the five runs. Moreover,
in the remaining instance i700-6, CLOA is better than CPLEX-2 in all the five runs and is
better than CPLEX-1 in three out of the five runs.

Finally, we analyze the total computing times. Except for the smaller instances P; to
Py5 (set Sy) and for instances Py, Py, Py7, Pso, P52, and Psy (set Sy), whose CPLEX CPU
times are less than 1 second compared to CLOA CPU times of 1 second, the CPU times
of CLOA are noticeably shorter for the remaining 73 out of 91 instances. If we analyze
by sets, in set Sy CLOA uses 1 second, whereas the average time for CPLEX-1 is 56.41
seconds and for CPLEX-2 it is 61.83 seconds. For instances in set S5, CLOA uses 5 seconds,
whereas variants CPLEX-1 and CPLEX-2 were interrupted after 7200 seconds in 4 out of
the 16 instances and the average time of the remaining 12 instances is 2096.31 seconds and
1173.63 seconds, respectively. In set Sy, CLOA is given 1 second, whereas the average time
for CPLEX-1 is 46.60 seconds and for CPLEX-2 it is 53.84 seconds. For the remaining sets,
CPLEX was interrupted after 7200 seconds whereas CLOA is given 10 seconds for instances
in set S5, and 1800 seconds for sets Sg to Sip. Regarding the times at which CPLEX and
CLOA find the reported solution, Tpes < min{ Tpest1, Toest2} for all the instances except
instance i3001500-6. Moreover, while min{Tpess1, Thesio} Tanges from 0.11 to 7044.45, They
ranges from 0.01 to 1811.76.
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5.3. Comparing models C-SPLPO-1 and C-SPLPO-2

Next, aiming to emphasize the differences between the models C-SPLPO-1 and C-
SPLPO-2, we include in this section a thorough analysis of the structure of solutions ob-
tained for both models. We also include in this analysis the relaxed problem in which the

preferences of customers are not taken into account. This model is formulated as:

min doier fivi + i ZjeJ CijLij

.y
subject to
Y oier GiYi =M
DTy =1, jeJ
diesTip S qiyi,  1€1
r; €{0,1}, i€l jelJ
y; €{0,1}, i€l

In order to use the same software for the three models, we have selected the solution
provided by CPLEX. Moreover, we have chosen CPLEX-1 since, according to the CPLEX
documentation, it is, in general, quicker. For the model C-SPLPO-1, there are five instances of
sets Sy and Sio for which CPLEX has not provided any information after 7200 seconds of
computing time. For these instances, we have also tried the variant CPLEX-2, but the same
results are obtained. Hence, only the information provided by the remaining 86 instances is

used to assess the differences between the models.

For all the instances, the optimal solution (or the best known feasible solution) of the three
models is different. For these solutions, Table 6 displays the value of the total cost, the sum of
preferences, and the number of unsatisfied customers (i.e. customers who are allocated to an
open facility which is not their most preferred one among the open facilities), as well as the
total CPU time in seconds required by CPLEX-1. C-SPLPO-1 is not feasible for instances Py
and P54 and, when it is feasible, it provides the largest cost, thus confirming that the C-
SPLPO-1 is, in general, a very restrictive model. Obviously, the relaxed problem provides a
lower bound on the objective function value for both models C-SPLPO-1 and C-SPLPO-2.
Concerning the sum of preferences, as expected, the worst value is provided by the relaxed
model (which does not take the preferences into account). The number of unsatisfied
customers is zero for the C-SPLPO-1 since this is a constraint of the model, but it is not very
large for the C-SPLPO-2 with respect to the number of customers. Finally, although CPU
times are longer, in general, for the C-SPLPO-2, the matheuristic which is the subject of this
paper requires much shorter computing times. As an illustration, the optimal solution

corresponding to instance P; has been included in Table 7.
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Table 7: Optimal solutions of instance P;: Customers allocated to each facility.

Facility Relaxed C-SPLPO-1 C-SPLPO-2
1 18,29, 33, 39, 42, 46, 48, 50 6,12,13,17,18,25, 31,49, 50 6,13,17,18,25,31, 44,49, 50
2 3,10,27,30,43 Closed 3,4,27,41,43
3 2,7,14,25,31,47 8,26,27,29,33,39,43,45, 46 8,26,29,39,42, 45,46
4 5,13,16,21, 34, 38,41 Closed 7,11,12, 22, 28,32, 33, 34
5 8,9,17,20, 22,24, 36,37, 40, 45, 49 1,2,3,4,5,9,14,15,19, 28, 36 1,2,5,9,14,15,16, 19, 36, 37
6 Closed Closed Closed
7 4,23,26,28,32,44 20,23, 30, 35,41 20,23, 24, 30, 35,40,47
8 Closed Closed Closed
9 1,6,12,15 10,21, 24, 38 10,21, 38, 48
10 11,19, 35 7,11,16,22, 32, 34, 37, 40, 42, 44, 47, 48 Closed

6. Conclusions and further research directions

Most of the literature on location problems in which customers are allowed to select
the open facility they will patronize assumes that each facility can accommodate as many
customers as required. As a consequence, each customer can freely select a facility in ac-
cordance with his/her preferences. A more realistic model arises when the existence of a
cardinality constraint on the number of customers who can be allocated to each facility is

taken into account.

In this paper, the implications of extending original models with preferences to handle
cardinality constraints are analyzed. The extension of the single level formulation seems to
be only appropriate if it is compulsory to guarantee individual preferences. Otherwise, the
bilevel optimization extension provides a wider approach to the problem. In the upper level
of the hierarchy, the decision maker controls which facilities are open aiming to minimize
the total cost. In the second level of the hierarchy, the customer allocation is solved aiming
to minimize the global customer preference. Properties of the lower level problem allow
us to reformulate the bilevel model as a single level model without including additional
binary variables. This reformulated model can be solved by using standard mathematical

techniques.

We have also developed a matheuristic for solving the bilevel model. This algorithm
evolves as an evolutionary algorithm does, but also involves solving a lexicographic opti-
mization model to compute feasible solutions of the bilevel model. The algorithm has proved
to be very fast and efficient in the computational experimentation carried out. Moreover,
it is worth pointing out that the algorithm can also be applied to solve problem (2) with
different and even more complicated upper level objective functions. Only a single change

in the algorithm would be needed that would affect the computation of the fitness function.

Future lines of research could consider other ways of dealing with preferences when
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assessing the reaction of customers. Minimizing the sum of preferences can yield an unfair

solution as it compensates between the preferences of different customers. Therefore, other

criteria such as minimizing the maximum of the preferences could be appraised. It is worth

pointing out that, in this case, the lower level problem is NP-hard. Although CLOA can

be adapted to deal with this problem, by substituting the objective function in problem (6)

by lex min (maxiel(y),jej GijTij, Ziel(y) EjeJ cijxij> , due to the complexity of this problem

only small or medium size problems could be expected to be handled.
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