
Abstract

This paper addresses a generalized version of the facility location problem with customer

preferences which includes an additional constraint on the number of customers which can

be allocated to each facility. The model aims to minimize the total cost due to opening

facilities and allocating customers while taking into account both customer preferences for

the facilities and these cardinality constraints. First, two approaches to deal with this

problem are proposed, which extend the single level and bilevel formulations of the problem

in which customers are free to select their most preferred open facility. After analyzing

the implications of assuming any of the two approaches, in this research, we adopt the

approach based on the hierarchical character of the model which leads to the formulation of

a bilevel optimization problem. Then, taking advantage of the characteristics of the lower

level problem, a single level reformulation of the bilevel optimization model is developed

based on duality theory which does not require the inclusion of additional binary variables.

Finally, we develop a simple but effective matheuristic for solving the bilevel optimization

problem whose general framework follows that of an evolutionary algorithm and exploits the

bilevel structure of the model. The chromosome encoding pays attention to the upper level

variables and controls the facilities which are open. Then, an optimization model is solved

to allocate customers in accordance with their preferences and the availability of the open

facilities. A computational experiment shows the effectiveness of the matheuristic in terms

of the quality of the solutions yielded and the computing time.

Keywords: Facility location, Cardinality constraint, Capacity, Preferences, Bilevel

optimization, Matheuristic, Evolutionary algorithm
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dFacultad  de  Ciencias  F́ısico-Matemáticas,  Universidad  Autónoma  de  Nuevo  León,  Avenida  Universidad 
s/n,  66450  San  Nicolás  de  los  Garza,  NL,  México.
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1. Introduction

Facility location problems are amongst the most widely studied in the literature of Oper-

ations Research. They have been applied to locate production plants, warehouses, schools,

fire stations, hospitals, etc., and thus play a central role in a great number of decision-making

problems in both the public and the private sectors. In a nutshell, facility location problems

are concerned with selecting the best placement for a number of facilities to serve a set of

customers, in accordance with the optimality criteria established. The criteria proposed in

the literature usually take into account costs and distances, as well as the service provided

to customers. As stated by ReVelle et al. [27]: ‘Even though the contexts in which these

models are situated may differ, their main features are always the same: a space includ-

ing a metric, customers whose locations in the given space are known, and facilities whose

locations have to be determined according to some objective function.’ Many variants of

the problem have been proposed, which differ in the type of space considered (continuous,

discrete, or with network structure), the objectives, the facility features (uncapacitated or

capacitated), or the time horizon, amongst others. There is also a wide variety of solution

methods, ranging from the exact solution of the optimization model to the developing of

heuristic or metaheuristic procedures when the size of the problem or its complexity prevent

the use of exact methods. Without being exhaustive, [12, 14, 21, 22, 25, 26, 27] and the

references therein provide a comprehensive survey of the topic.

In this paper we focus on a generalized version of the simple plant location problem

with order (SPLPO) first proposed by Hanjoul and Peeters [17]. The SPLPO extends the

simple plant location problem (SPLP), a discrete facility location problem which consists of

selecting some facilities to be opened from a set of candidates and determining the allocation

of the customers to the open facilities, aiming to minimize the total cost due to opening

facilities and allocating customers. Although some previous papers [28, 33] had considered
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the reaction of customers if they are free to choose an open facility by introducing additional

constraints to assign customers to their closest facility, the idea of allowing the customers to

select the facility they will patronize is credited to Hanjoul and Peeters [17]. These authors

assumed that each customer had a preference ordering with respect to the facilities which

depended on his/her personal characteristics, as well as the features of the sites and the trips

to the sites. The authors proposed the SPLPO in which each customer chooses the open

facility which is his/her most preferred one. This model assumes that the decision-maker

in charge of selecting the facilities, the locator, knows the preference orderings of customers

and takes them into account when selecting the facilities to be opened. In the mathematical

model the preference orderings are written as a set of constraints which are added to the

formulation of the SPLP. For solving the SPLPO, the authors developed a heuristic algorithm

and solved small examples. Cánovas et al. [7] analyzed the SPLPO and strengthened the

formulation by introducing valid inequalities and applying several preprocessing rules.

Hanjoul and Peeters [17] in their pioneering work also recognized the existence of an

implicit hierarchical structure associated with the two interrelated subproblems involved in

the SPLPO: the location problem, which refers to the selection of facilities, at the upper level

of the hierarchy, and the allocation problem, which refers to the assignment of customers, at

the lower level. Based on the fact that bilevel optimization models [11, 13] provide a frame-

work to deal with decision processes involving a hierarchical structure, Hansen et al. [18],

Vasilyev and Klimentova [31] and Vasilyev et al. [32] formulated the SPLPO as a bilevel

model. The upper level decision maker, which selects the facilities, aims to minimize the

total cost. In the lower level problem, customers are allocated aiming to minimize the sum

of preferences (the smaller the value, the greater the preference). The authors assumed that

the preference ordering is strict, that is, for any pair of facilities, each customer prefers one

of them. Based on this assumption, the bilevel model can be rewritten as the single level

formulation proposed in [7, 17]. Then, Hansen et al. [18] proposed a reformulation of this

single level problem which dominated previous formulations from the point of view of their

linear programming relaxation. Vasilyev et al. [32] used a new family of valid inequalities

rather than increasing the number of variables. Based on the previous formulation, Vasi-

lyev and Klimentova [31] developed a branch and cut method to find an optimal solution.

Camacho-Vallejo et al. [6] proposed an evolutionary algorithm to solve the bilevel model.

The key point in the above mentioned strategies developed to deal with the SPLPO

is the absence of a cardinality constraint associated with each facility which restricts the

number of customers that can be allocated to it. This fact guarantees that, once it has been

decided which facilities are to be opened, each customer can be allocated to his/her most
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preferred facility because there is enough room in each facility for them. This paper gen-

eralizes the SPLPO to include cardinality constraints, providing a more realistic approach,

while aiming to maintain that each customer should be served in accordance with his/her

preferences. This problem will be termed C-SPLPO. For this purpose, we assume the exis-

tence of an upper bound on the number of customers which can be allocated to each facility.

Therefore, it is no longer true that customers can freely choose their most preferred open

facility. As will be shown in Section 2, modeling this version of the SPLPO is not a trivial

matter since the preference ordering interacts with the cardinality constraint. When there

are several customers who want to be allocated to the same facility and this facility cannot

serve all those customers, a conflict arises. In fact, it may be possible that no selection of

facilities allows customers to be allocated to their most preferred open facility.

In this paper we analyze the implications of extending the two above mentioned ap-

proaches applied to deal with the SPLPO. As a result of this analysis, we propose to consider

the implicit hierarchical structure of the C-SPLPO and model it using a bilevel optimization

model. In the proposed model, the upper level decision maker selects the facilities to be

opened while taking into account the reaction of customers. This model extends that pro-

posed in [18] for the SPLPO. Typical examples of such cases are customers of public services

like health care services, emergency services, social services, etc. In all of these cases, in

general, the locator aims to minimize the total cost of locating facilities while bearing in

mind customer preferences globally. For instance, let us consider the allocation of students

to schools in a particular school district. For a given grade in elementary, middle or high

school, every school can have one or more modules or classes, each being able to accommo-

date a certain number of students. The public administration knows the cost of opening

a module in every school as well as the cost of transporting students from their homes to

school. It also knows the preferences of each student regarding the school to which he/she

would like to be allocated (obtained, for instance, from surveys). Then, the public adminis-

tration plans the allocation aiming to minimize the total cost, but taking into account the

students’ preferences.

To the best of our knowledge, there are only two papers dealing with bilevel capacitated

facility location problems. In Casas-Ramı́rez et al. [9] capacity is considered in the lower-

level problem when allocating customers to facilities based on the customers preferences.

The main difference with our problem, is that in [9] each customer has a demand and the

capacity of a facility refers to the amount of demand it can deal with. These facts convert

the lower level problem into the well-known generalized assignment problem, which is NP-

hard. Hence, the special structure exploited in our research cannot be considered in the
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problem with generalized demands. Additionally, due to the complexity that exists in the 

lower-level in the problem presented in [9], semi-feasible bilevel solutions are proposed. In 

contrast, the evolutionary algorithm developed in the current research only deals with bilevel 

feasible solutions, thus guaranteeing the bilevel feasibility of the solution provided. Caramia 

and Mari [8] consider that the capacity of the facilities is a decision variable. That is, the 

leader decides the capacity of each located facility aiming to minimize costs. The lower-

level problem consists of allocating customers to located facilities respecting their capacity, 

aiming to maximize the profit. In particular, their upper level problem has a constraint 

that purely depends on followers variables (coupling constraint). This is a crucial part of 

the decomposition approach proposed for solving the problem. The main difference with 

our proposed problem relies in the manner in which capacity is considered. In other words, 

they consider capacity as a decision while in our research capacity is a parameter. Moreover, 

in [8] no customer preferences are taken into consideration.

After selecting the hierarchical approach to model the C-SPLPO, a single level reformu-

lation of the bilevel model is developed based on the fact that the coefficient matrix of the 

lower level problem is unimodular. Thus, the integrality condition on the lower level variables 

can be relaxed, the lower level problem can be reformulated as a linear program, and the 

complementary slackness conditions are necessary and sufficient for optimality. Unlike the 

classical reformulation of bilevel optimization problems using Karush-Kuhn-Tucker (KKT) 

conditions, the proposed reformulation avoids the inclusion of additional binary variables. 

The paper also develops a matheuristic whose general framework follows that of an evolu-

tionary algorithm. The chromosome encoding concentrates on the upper level variables and 

controls the facilities which are open. Then, customers are allocated to the corresponding 

facilities by solving a biobjective transportation problem which takes into account the car-

dinality constraint of the open facilities and the optimistic approach assumed in the bilevel 

formulation. This procedure allows us to associate a bilevel feasible solution to every chro-

mosome and thus evaluate its fitness as the upper level objective function of its associated 

bilevel feasible solution. The remainder of the paper is organized as follows. Section 2 dis-

cusses alternative formulations for the C-SPLPO and presents the mathematical formulation 

of the bilevel optimization model we propose. Section 3 goes on to transform the bilevel 

problem into a single level mixed integer optimization model using duality theory and the 

properties of the lower level problem. The matheuristic is developed in Section 4. Using a set 

of instances which are variants of established synthetic benchmark instances, section 5 

analyzes the computational performance of the matheuristic and gives an in-depth insight 

into the differences of the above mentioned alternative formulations. Finally, Section 6 sets
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out future research directions and some concluding remarks.

2. Problem formulation

Consider a set of potential facilities I = {1, . . . , n} and a set of customers J = {1, . . . ,m}.
Each facility i ∈ I has associated a nonnegative fixed cost fi which refers to opening/handling

the facility, and a parameter qi which indicates the maximum number of customers which

can be allocated to it, called capacity. There is also a nonnegative cost cij, i ∈ I, j ∈ J ,

associated with allocating customer j to facility i. Moreover, we assume that each customer

j ∈ J has ranked the facilities from best to worst, i.e. has a set of predefined nonnegative

preferences gij ∈ {1, . . . , n}, i ∈ I. We assume that the smaller the value, the greater the

preference. The goal of the C-SPLPO is to select a subset of the potential facilities in order

to minimize the total cost, bearing in mind their capacity and the reaction of customers in

terms of their preferred facilities. Notice that if qi > m, for all i ∈ I, the C-SPLPO reduces

to the SPLPO.

In order to formulate the C-SPLPO, the first issue we should notice is that there is not a

single way of considering the reaction of customers. We can include the individual customer

preferences as constraints, thus extending the classical formulation of the SPLPO by Hanjoul

and Peeters [17]. Or the preferences can be considered globally, aiming to minimize a function

of them. In this paper, we propose to consider the utilitarian approach in which the goal is

to minimize the sum of the utilities of the customers, where the utility or satisfaction level

is measured through the customers ranking of the facility. This formulation is appropriate

for public services in which instead of seeking to satisfy the preferences of each individual

customer, the utilitarian approach is taken to evaluate the satisfaction of customers as a

whole. This formulation would extend the bilevel formulation of Hansen et al. [18]. Unlike

the SPLPO case, the two approaches are not equivalent when there is an upper bound on

the number of customers which can be allocated to every facility. Therefore, to assume

one formulation or the other can provide very different results. Next, we consider both

formulations and analyze their impact on the feasible region and the optimal solution.

We define the variables:

yi =

 1, if facility i is selected to be open

0, otherwise
i ∈ I

xij =

 1, if customer j is allocated to the facility i

0, otherwise
i ∈ I, j ∈ J
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When there is no need to explicitly identify the indices of the variables, we will denote by y

and x the variables {yi}i∈I and {xij}i∈I,j∈J , respectively.

2.1. C-SPLPO-1: Individual customer preferences as constraints

Model C-SPLPO-1 incorporates individual customer preferences as constraints. It can

be formulated as:

min
x,y

∑
i∈I

fiyi +
∑
i∈I

∑
j∈J

cijxij (1a)

subject to ∑
i∈I

xij = 1, j ∈ J (1b)

∑
{k:gij>gkj}

xkj > yi, i ∈ I, j ∈ J (1c)

∑
j∈J

xij 6 qiyi, i ∈ I (1d)

yi ∈ {0, 1}, i ∈ I (1e)

xij ∈ {0, 1}, i ∈ I, j ∈ J (1f)

The objective function (1a) minimizes the total cost due to opening facilities and allocating

customers. Constraints (1b) guarantee that each customer is allocated to exactly one facility.

Constraints (1c) ensure that if the i-th facility is opened, then the customer j must be

allocated to a facility that is at least as good as i according to his/her preference ordering.

Cardinality constraints (1d) enforce that customers can only be allocated to open facilities

and, besides, they guarantee that as many customers can be allocated to each facility as its

capacity allows. Finally, constraints (1e) and (1f) impose that all variables are binary.

In this model, every customer must be allocated to his/her most preferred open facility,

i.e. if a particular facility is open, due to constraints (1c) every customer for which this

facility is the most preferred among all the open facilities should be allocated to it. However,

this may be impossible because of cardinality constraints (1d). Therefore, if none of the

ways in which facilities could be selected to be opened allows this allocation, the C-SPLPO-

1 would be infeasible. Thus, to be able to provide an optimal solution, this formulation

requires the existence of selections of the open facilities in such a way that every customer

can be allocated to his/her most preferred open facility. This will be reconsidered again in

section 2.3 with the help of an illustrative numerical example.
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2.2. C-SPLPO-2: A bilevel approach

This formulation considers the underlying hierarchical structure of the problem. The

upper level decision maker decides on the open facilities, while the lower level decision

maker allocates customers to the open facilities. The goal of the former is to minimize total

cost; the goal of the latter is to minimize the total preference. Therefore, the C-SPLPO-2

can be formulated as the following binary bilevel optimization problem:

min
y

∑
i∈I

fiyi +
∑
i∈I

∑
j∈J

cijxij (2a)

subject to ∑
i∈I

qiyi > m (2b)

yi ∈ {0, 1}, i ∈ I (2c)

where, for every y fixed, x solves the problem:

min
x

∑
i∈I

∑
j∈J

gijxij (2d)

subject to ∑
i∈I

xij = 1, j ∈ J (2e)

∑
j∈J

xij 6 qiyi, i ∈ I (2f)

xij ∈ {0, 1}, i ∈ I, j ∈ J (2g)

The objective function (2a) minimizes the total cost due to opening facilities and allocating

customers. Constraint (2b) guarantees that open facilities provide enough room to allocate

all the customers and constraints (2c) ensure that variables y are binary. Constraints (2b)

and (2c) provide the constraint region of variables y, which will be denoted by Sy. The

lower level problem is represented by (2d)-(2g). Note that the binary variables of the upper

level are parameters of the lower level problem. The objective function (2d) minimizes the

global preference of customers. Constraints (2e) ensure that each customer is allocated to

exactly one facility. Cardinality constraints (2f) enforce that customers can only be allocated

to open facilities and, besides, they guarantee that as many customers can be allocated to

each facility as its capacity allows. Finally, constraints (2g) guarantee that variables x are

binary. Constraint (2b) is redundant. Indeed, to be a bilevel feasible solution the point

(y, x) needs x to be an optimal solution of the lower level problem and constraints (2e)

of this problem require all customers to be allocated. Hence, the global capacity provided
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by the open facilities needs to be at least m. However, we keep this constraint because

in the algorithm it allows us to reduce the set in which the upper level variables need to

be searched. All the values y which do not satisfy constraint (2b) are implicitly discarded

because the corresponding lower level problem is not feasible. Notice that, unlike C-SPLPO-

1, in C-SPLPO-2 individual preferences are not imposed as constraints. Instead, given the

values of the variables y, the lower level problem provides the allocation of customers which

minimizes the total preference.

For y ∈ Sy, a feasible solution of the bilevel problem (2) is obtained by solving the lower

level problem (2d)-(2g). One main concern in bilevel optimization is the existence of multiple

optima for the lower level problem. This fact can result in an ill-posed bilevel optimization

model. To overcome this difficulty, several approaches have been proposed in the bilevel

optimization literature, the most common being the optimistic approach in which the upper

level decision maker is enabled to select the lower level optimal solution that suits him/her

best [11, 13].

Papers dealing with the bilevel approach of the SPLPO assume that for each customer j ∈
J , preferences are distinct, i.e. gij 6= gi′j, for all i, i′ ∈ I. This assumption guarantees that the

bilevel model is well-posed since there exists a unique optimal allocation of customers for any

arbitrary selection of the variables y [18]. However, that assumption no longer ensures the

uniqueness of the optimal solution of the lower level problem when the cardinality constraint

is added. In this paper we assume the optimistic approach to the bilevel formulation of the C-

SPLPO-2, which is equivalent to assuming that the objective function (2a) is minimized over

y and x. Under this assumption, for a given y ∈ Sy we need to choose the optimal solution

of the lower level problem (2d)-(2g) with the best value of the objective function (2a). This

can be done by solving the following modified lower level problem in which we lexicographic

optimize two objective functions. The first one refers to the preferences (as in problem (2d)-

(2g)) and the second one refers to the allocating cost:

lex min
x

(∑
i∈I

∑
j∈J

gijxij,
∑
i∈I

∑
j∈J

cijxij

)
subject to ∑

i∈I
xij = 1, j ∈ J

∑
j∈J

xij 6 qiyi, i ∈ I

xij ∈ {0, 1}, i ∈ I, j ∈ J

Lexicographic optimization assumes that the objectives are ranked in order of importance
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Table 1: Data of the illustrative examples

cij

fi f̂i qi q̂i R1 R2 R3 R4 R5 R6

F1 5 5 2 2 5 1 6 10 9 10
F2 7 7 3 3 3 4 4 6 8 8
F3 7 7 3 3 5 3 3 9 6 5
F4 5 25 2 6 9 1 5 8 5 2

gij ĝij

R1 R2 R3 R4 R5 R6 R1 R2 R3 R4 R5 R6

F1 4 1 2 1 1 3 1 2 2 1 3 2
F2 1 2 4 3 2 1 3 1 1 3 1 1
F3 3 4 1 4 4 2 2 3 3 2 2 3
F4 2 3 3 2 3 4 4 4 4 4 4 4

and the objective functions are minimized one at a time in order of priority. Hence, the

main criterion
∑
i∈I

∑
j∈J

gijxij is minimized first. Then, the second criterion
∑
i∈I

∑
j∈J

cijxij is

minimized subject to achieving the optimum with respect to the first criterion. If there

are multiple optimal solutions to the lower level problem (first criterion), choosing among

them the optimal solution of the second criterion guarantees that the best solution for the

leader (optimistic approach) is selected. Notice that the term
∑

i∈I fiyi has been suppressed

because it is constant while solving the lower level problem.

Next we show main differences in modeling the C-SPLPO using formulations (1) and (2).

2.3. Highlighting the differences between C-SPLPO-1 and C-SPLPO-2

From our point of view, the main difficulty with formulation (1) is that it can be ‘too

restrictive’ in the sense that this model reduces, even dramatically, the number of ways in

which the selection of facility locations can be done, thus worsening the optimal objective

function value. We explain this with the help of the following illustrative examples. Let us

assume that there are four facilities, F1, . . . , F4, and six customers, R1, . . . , R6. First, we

consider the costs fi and cij, capacities qi, and preferences gij provided in Table 1.

Figure 1 summarizes the results. It shows the elements of set Sy, i.e. the feasible

ways of selecting facilities to allocate six customers, and the related customer allocations

according to model C-SPLPO-1 (left-hand-side) and model C-SPLPO-2 (right-hand-side).

Notice that model C-SPLPO-1 is not feasible. None of the selections allows every customer

to be allocated to a facility in accordance with his/her preference ordering. For instance, in

Figure 1a, facilities F2 and F3 are chosen to be open. This selection is not feasible because
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the capacity of F2 is 3, and five customers should be allocated to it. The same happens with

Figure 1c, in which facilities F1, F2 and F3 are open. In this case, F1 is preferred by three

customers but it can serve at most two customers. The remaining selections are not feasible

for analogous reasons.

In contrast, the feasible region of the model C-SPLPO-2 consists of the six feasible

solutions shown in the right-hand-side of Figure 1. In the optimal solution, facilities F2 and

F3 are open, the total cost being 46. Customers R1, R2 and R5 are allocated to facility F2,

whereas customers R3, R4 and R6 are allocated to facility F3. Notice also that customers

R1, R2, R3 and R5 are allocated to their most preferred open facility.

Now, let us modify the previous example. Instead of fixed costs fi, capacities qi and

preferences gij, we consider the values f̂i, q̂i and ĝij provided in Table 1. In this case, the

model C-SPLPO-1 has a single feasible solution, and so it is the optimal solution. Only

facility F4 is open, the total cost being 55. Obviously, all customers are allocated to F4,

which is the only open facility and thus their most preferred. However, it is worth pointing

out that, according to preferences ĝij, F4 is the least preferred facility by all customers

ĝ4j = 4, j = 1, . . . , 6. The feasible region of the model C-SPLPO-2 consists now of ten

feasible solutions, and the optimal solution opens F2 and F3 at a cost of 50. Customers R2,

R3 and R6 are allocated to facility F2, whereas customers R1, R4 and R5 are allocated to

facility F3. All customers except customer R5 are allocated to their most preferred open

facility. Moreover, customers R2, R3 and R6 are allocated to their most preferred facility

(ĝ22 = ĝ23 = ĝ26 = 1), and customers R1, R4 and R5 are allocated to their second most

preferred facility (ĝ31 = ĝ34 = ĝ35 = 2). Notice also that the optimal objective function

value of the C-SPLPO-2 is smaller than that of the C-SPLPO-1.

Given the above considerations, we can conclude that C-SPLPO-1 would be appropriate

for modeling the C-SPLPO if it is compulsory to guarantee the individual preferences of

every customer. Otherwise, if customer preferences are looked upon as a goal to be aimed

at, model C-SPLPO-2 seems to be more suitable for the C-SPLPO. Hence, from this point

on, when referring to this problem, we will refer to the bilevel formulation. Next, we focus

on how to solve model C-SPLPO-2.

3. Reformulating the C-SPLPO-2 as a single level problem

The C-SPLPO-2 is a bilevel integer optimization problem with binary variables at both

levels. General bilevel integer models are very difficult to deal with [16, 23, 30]. However, by

adequately managing the properties of the lower level problem (2d)-(2g), the C-SPLPO-2
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(a) Not feasible (b) Objective function = 46

(c) Not feasible (d) Objective function = 52

(e) Not feasible (f) Objective function = 51

(g) Not feasible (h) Objective function = 52

(i) Not feasible (j) Objective function = 50

(k) Not feasible (l) Objective function = 56

Figure 1: The six feasible ways of selecting facilities to allocate six customers and related customer allocations
according to model C-SPLPO-1 (left-hand-side) and model C-SPLPO-2 (right-hand-side)
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can be reformulated as a single level optimization problem.

One of the most frequent approaches to solve bilevel optimization problems consists in

reformulating them as single level problems by replacing the lower level problem by its nec-

essary and sufficient optimality conditions (when they exist). Then, standard optimization

techniques can be applied for solving them. That reformulation usually involves additional

variables as well as nonlinear terms that can be linearized at the cost of including binary

variables. This approach can be applied to handle the C-SPLPO-2 after realizing that the

coefficient matrix of the lower level problem is unimodular once the upper level variables are

stated. Hence, it can be written as a linear optimization problem for which necessary and

sufficient optimality conditions exists. Moreover, the proposed reformulation avoids the use

of nonlinear terms, and consequently does not need to include additional binary variables.

For a given value of the upper level variables ỹ ∈ Sy, let I(ỹ) = {i ∈ I : ỹi = 1}. Notice

that, for each j ∈ J , x̃ij = 0 for all i /∈ I(ỹ) due to constraint (2f). Moreover, the lower

level problem can be treated as a transportation problem in which there are |I(ỹ)| origin

points (where |I(ỹ)| stands for the cardinality of I(ỹ)), which are the open facilities, each

with a supply qi, i ∈ I(ỹ), and the destination points are the customers, each one with a

unit demand. Therefore, the binary constraint on the variable xij can be substituted by a

nonnegativity constraint [3]. As a result, the lower level optimization problem can be stated

as:

min
x

∑
i∈I(ỹ)

∑
j∈J

gijxij (3a)

subject to ∑
i∈I(ỹ)

xij = 1, j ∈ J (3b)

∑
j∈J

−xij > −qi, i ∈ I(ỹ) (3c)

xij > 0, i ∈ I(ỹ), j ∈ J (3d)

The dual of problem (3) is:

max
u,v

∑
j∈J

uj −
∑

i∈I(ỹ)

qivi

subject to

uj − vi 6 gij, i ∈ I(ỹ), j ∈ J

vi > 0, i ∈ I(ỹ)

(4)

where {uj}j∈J are the dual variables associated with constraints (3b), and {vi}i∈I(ỹ) are the
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dual variables associated with constraints (3c).

Since problem (3) has an optimal solution, so does the dual problem, and both optimal ob-

jective function values coincide. Therefore, by applying duality theory, {x̃ij, ũj, ṽi}i∈I(ỹ),j∈J

are optimal solutions, respectively, of problem (3) and its dual (4) if and only if:∑
i∈I(ỹ)

∑
j∈J

gijx̃ij =
∑
j∈J

ũj −
∑

i∈I(ỹ)

qiṽi

∑
i∈I(ỹ)

x̃ij = 1, j ∈ J

∑
j∈J

x̃ij 6 qi, i ∈ I(ỹ)

ũj − ṽi 6 gij, i ∈ I(ỹ), j ∈ J

x̃ij > 0, i ∈ I(ỹ), j ∈ J

ṽi > 0, i ∈ I(ỹ)

Therefore, the C-SPLPO-2 can be stated as the following single level mixed integer linear

optimization problem:

min
y,x,u,v

∑
i∈I

fiyi +
∑
i∈I

∑
j∈J

cijxij (5a)

subject to ∑
i∈I

qiyi > m (5b)

∑
i∈I

xij = 1, j ∈ J (5c)

∑
j∈J

xij 6 qiyi, i ∈ I (5d)

uj − vi 6 gij + M(1− yi), i ∈ I, j ∈ J (5e)

vi 6Myi, i ∈ I (5f)∑
i∈I

∑
j∈J

gijxij =
∑
j∈J

uj −
∑
i∈I

qivi (5g)

yi ∈ {0, 1}, i ∈ I (5h)

xij > 0, i ∈ I, j ∈ J (5i)

vi > 0, i ∈ I (5j)

where M is a constant big enough to guarantee that constraints (5e) are restrictive only

when yi = 1, i.e. the facility is open, and constraints (5f) restrict the value of vi only
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if the facility is closed. The importance of selecting an appropriate value of M has been

recognized in [20]. In this paper, taking into account the properties of the transportation

problem, the value of M can be bounded. Indeed, in the transportation problem, multipliers

uj, vi are computed as sums and differences of gij corresponding to basic variables, so they

are bounded by n(n+m). In order to avoid possible round-off computational error problems

associated with a large value of M , as well as tightening the constraints (5e) and (5f), in the

next Theorem we derive upper bounds on the value of the dual variables.

Theorem 1. For a given value of the upper level variables ỹ ∈ Sy, let x∗ be an optimal

solution of the lower level problem (3) and (u∗, v∗) be an optimal solution of the dual problem

associated with the lower level (4). Then, there exists an optimal solution of the dual problem

(û, v̂) so that there exists i0 ∈ I(ỹ) such that v̂i0 = 0. Moreover, v̂i 6 n, for all i ∈ I(ỹ), and

ûj 6 n, for all j ∈ J .

Proof. If there exists i0 ∈ I(ỹ) such that v∗i0 = 0, we take (û, v̂) = (u∗, v∗) and the result

is at hand.

Otherwise, v∗i > 0, for all i ∈ I(ỹ). Then, by applying the complementary slackness

conditions, ∑
j∈J

x∗ij = qi, i ∈ I(ỹ)

Let k = mini∈I(ỹ){v∗i } > 0, and i0 = arg mini∈I(ỹ){v∗i }. We define

ûj = u∗j − k, j ∈ J v̂i = v∗i − k, i ∈ I(ỹ)

Notice that (û, v̂) is a feasible solution of problem (4):

ûj − v̂i = u∗j − v∗i 6 gij, i ∈ I(ỹ), j ∈ J

v̂i > 0, i ∈ I(ỹ)

Moreover,

∑
j∈J

ûj−
∑
i∈I(ỹ)

qiv̂i =
∑
j∈J

u∗j−mk−
∑
i∈I(ỹ)

qiv
∗
i +k

∑
i∈I(ỹ)

qi =
∑
j∈J

u∗j−
∑
i∈I(ỹ)

qiv
∗
i +k

∑
i∈I(ỹ)

qi −m


On the other hand, ∑

i∈I(ỹ)

qi =
∑
i∈I(ỹ)

∑
j∈J

x∗ij =
∑
j∈J

∑
i∈I(ỹ)

x∗ij =
∑
j∈J

1 = m
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Thus,
∑

i∈I(ỹ) qi −m = 0 and (û, v̂) is an optimal solution of the dual problem (4). For this

optimal solution, v̂i0 = 0, and the first part of the Theorem follows. Furthermore, for the

facility i0, ûj − v̂i0 6 gi0j, j ∈ J . Hence,

ûj 6 gi0j 6 n, j ∈ J.

Finally, let i ∈ I(ỹ). If x∗ij = 0, for all j ∈ J , i.e. no customer is allocated to this facility,

then
∑

j∈J x
∗
ij = 0 < qi, and thus v̂i = 0. Otherwise, let j0 ∈ J such that x∗ij0 = 1. By the

complementary slackness conditions, ûj0 − v̂i = gij0 . Therefore, v̂i = ûj0 − gij0 6 n. �

Corollary 2. For every facility i ∈ I and customer j ∈ J , the number of facilities n is a

valid constant M for constraints (5e) and (5f).

As mentioned above the reformulation (5) does not involve additional binary variables.

Note that the classical reformulation of a bilevel problem into a single level optimization

model using KKT conditions would need to include a binary variable and two additional

constraints for linearizing each product constraint. On the other hand, model (5) is a

mixed integer optimization problem and thus can be solved by using standard optimization

techniques. This approach is in general useful for solving small and medium-size problems,

but it may not be competitive for large problems. Therefore, in the next section we will

develop CLOA (Capacitated Location Ordering Algorithm), a matheuristic which proves to

be quite efficient according to the extensive computational experiment carried out.

4. CLOA: A matheuristic to solve the C-SPLPO-2

CLOA is a matheuristic which combines the framework of an evolutionary algorithm

with the lexicographic optimization of a transportation problem aiming to provide good fea-

sible solutions for C-SPLPO-2. Evolutionary algorithms [1, 10, 24] have been increasingly

applied to solve different kinds of optimization problems, especially combinatorial optimiza-

tion problems, because they are able to provide good solutions to complex problems in

reasonable computational time. A key point when designing evolutionary algorithms is to

identify good convenient manners of encoding solutions as chromosomes. As in biological

evolution, an evolutionary algorithm consists of a population of chromosomes which evolves

to create offspring. Each chromosome is given a fitness value which measures its quality.

Some parents and offspring are selected in accordance with a preset criterion based on the

fitness function to survive to the next population. The aim is to guide the population to
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include better chromosomes through the generations. The algorithm proceeds through suc-

cessive iterations until the stopping condition is met. The solution associated with the best

chromosome is provided as the solution of the problem considered.

CLOA uses the general structure of an evolutionary algorithm, but also takes into account

the characteristics of the bilevel model to use compact chromosomes and optimization to pro-

vide bilevel feasible solutions. Next we explain the main characteristics of the matheuristic

developed.

4.1. Chromosome encoding, feasible solution construction and fitness evaluation

Let (y, x) be a bilevel feasible solution. The purpose is to encode its information in a

compact chromosome. Note that x is completely determined after knowing the value of y,

since x is the optimal solution of the corresponding lower level problem which provides the

best value of the upper level objective function. Therefore, we encode each chromosome

C as a binary n-dimensional vector which provides the value of variables y. That is, the

components of the chromosome indicate if the corresponding facility is open or not:

Ci =

 1, if facility i is open

0, otherwise
, i ∈ I

Let C be a chromosome. First, its feasibility in terms of being able to allocate all the

customers is checked. If
∑

i∈I qiCi < m the chromosome is repaired. For this purpose, as

many times as needed to achieve
∑

i∈I qiCi > m, a gene Cj = 0 is randomly selected and

switched.

After repairing the chromosome C (if needed), its associated bilevel feasible solution

(y, x) is computed. From a chromosome C, the value of variables y is directly obtained,

yi = Ci, i ∈ I. Moreover, xij = 0 for all j ∈ J and i /∈ I(y). The value of the remaining

variables x is obtained by solving the lexicographic optimization problem:

lex min
x

( ∑
i∈I(y)

∑
j∈J

gijxij,
∑

i∈I(y)

∑
j∈J

cijxij

)
subject to ∑

i∈I(y)

xij = 1, j ∈ J

∑
j∈J

xij 6 qi, i ∈ I(y)

xij > 0, i ∈ I(y), j ∈ J

(6)

This problem can be solved using standard techniques, i.e. first solving the problem with

the lower level objective function
∑

i∈I(y)

∑
j∈J gijxij. After solving this problem, the second
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objective function
∑

i∈I(y)

∑
j∈J cijxij is considered, and a constraint is included in which∑

i∈I(y)

∑
j∈J gijxij equals the optimal value of the first problem. An optimal solution of

this second problem is an optimal solution of the lexicographic problem (6) [15]. However, if

this approach is used, the problem solved in the second place lose the transportation struc-

ture. To maintain this structure and take advantage of the efficiency of the transportation

algorithm, we propose to use a similar approach to that developed in [4, 5]. Based on this,

when solving problem (6) both objective functions are simultaneously considered. Thus, a

bidimensional vector of reduced costs is associated with each variable. The first component

is the reduced cost with respect to the first objective function
∑

i∈I(y)

∑
j∈J gijxij, computed

in the usual way for transportation problems. The second component is the reduced cost

with respect to the second objective function
∑

i∈I(y)

∑
j∈J cijxij, computed in the same way.

Then, reduced costs are checked in accordance with their lexicographic character. If they

are all lexicographically nonnegative, i.e. the first nonzero component is nonnegative, the

lexicographic optimization problem has reached its optimal solution; otherwise, the variable

having the lexicographically smallest reduced cost vector is selected to enter the basis and

an iteration of the usual transportation algorithm is applied.

After computing (y, x), a final check is made about the facilities which actually need to

be open. If Ci = 1, equivalently yi = 1, but xij = 0 for all j ∈ J , then this facility has no

customers allocated. Therefore, it can be closed. This update is made by switching Ci = 0,

and yi = 0.

Then, the fitness of the updated (if needed) chromosome C is defined as the value of

the upper level objective function of the bilevel feasible solution (y, x) associated with the

chromosome, i.e. the objective function value of the C-SPLPO-2:

fitness(C) =
∑
i∈I

fiyi +
∑
i∈I

∑
j∈J

cijxij (7)

4.2. The initial population

The algorithm handles populations, denoted Pop, of size psize. All the chromosomes in

Pop are distinct. The initial population is formed with psize randomly generated chromo-

somes. Initially Pop = ∅, and successive non repeated chromosomes are added to Pop as

they are created. For the purpose of favoring diversification, first a random number p ∈ [0, 1]

is generated for each chromosome. Then, for i ∈ I a random number rni ∈ [0, 1] is selected.

If rni 6 p, then Ci = 1, i.e. the facility is open. Otherwise, Ci = 0. After this process, the

chromosome is checked for feasibility and repaired (if needed) as explained in section 4.1. If

the resulting chromosome is already in Pop, it is rejected, and the process of creating a new
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Input
The current population of chromosomes, Pop
A new chromosome C = (C1, . . . , Cn)

Procedure
While

∑
i∈I

qiCi < m,

Randomly select i ∈ I such that Ci = 0
Set Ci = 1.

If C = (C1, . . . , Cn) ∈ Pop reject C. Stop.

Let yi = Ci, i ∈ I.

Let xij = 0, j ∈ J , i /∈ I(y).

Solve the lexicographic problem (6).

Let (y, x) the bilevel feasible solution.

While Ci = 1 and xij = 0, for all j ∈ J ,

Set Ci = 0 and yi = 0

If C = (C1, . . . , Cn) ∈ Pop reject C. Stop.

Compute fitness(C) =
∑
i∈I

fiyi +
∑
i∈I

∑
j∈J

cijxij

Figure 2: Procedure for repairing a chromosome and computing its fitness

chromosome starts again.

After accepting the chromosome, its associated bilevel feasible solution (y, x) is computed

and the final check is made as explained in section 4.1. Finally, the chromosome is checked

again to see whether it is in Pop and it is rejected if this is the case, starting again the

process of creating a new chromosome.

The whole procedure of repairing a chromosome, if needed, rejecting it, computing its

associated bilevel feasible solution, and computing its fitness is displayed in Figure 2. This

routine is applied not only to the chromosomes in the initial population but to every chro-

mosome which is generated when the algorithm proceeds.

4.3. Crossover, mutation and survivor selection

Using the crossover and mutation operations the algorithm constructs offspring, i.e. new

chromosomes which are potential members of the next population. From the parent popula-

tion, each chromosome Cr, r = 1, . . . , psize is checked to undergo crossover with probability

pc. If Cr is selected, the single point crossover operation is applied. That is, a chromosome

from the current population (other than chromosome Cr) and a crossover point are randomly

selected. Two offspring are created by combining the parents at the crossover point, i.e. all
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genes beyond the crossover point in either parent are swapped between both parents. In the

following example, the crossover point is after the 5th gene:

Parent 1: (1, 0, 1, 1, 1, | 1, 0, 0) Offspring 1: (1, 0, 1, 1, 1, 0, 0, 1)

Parent 2: (0, 0, 1, 0, 1, | 0, 0, 1) Offspring 2: (0, 0, 1, 0, 1, 1, 0, 0)

Then, each offspring is selected for the mutation operation with probability pm. If a

chromosome is selected to undergo mutation, an integer number in {1, . . . , n} is randomly

generated and the corresponding gene is switched, i.e. the facility is changed to close if it

was open, and is changed to open if it was closed.

After crossover and mutation, the procedure of repairing a chromosome and computing its

fitness shown in Figure 2 is applied. From the complete set of distinct chromosomes formed

by the current population and the non repeated offspring, the best psize chromosomes with

respect to the fitness function are kept for the next population Pop (elitist survivor selection).

The algorithm iterates until a termination condition is met. In the implementation of the

algorithm, computing time has been chosen as the stopping criterion. Upon termination,

the bilevel feasible solution associated with the chromosome which has the least fitness value

is provided as the solution of the C-SPLPO-2.

5. Computational study

This section is devoted to presenting and discussing the computational experiments car-

ried out. The numerical experiments have been performed on a PC Intel Core i7-6700 with

3.4 gigahertz, 32.0 gigabyte of RAM and Windows 10 64-bit as the operating system. The

algorithm CLOA has been coded in Dev-C++ 5.11 under C++ language.

Since the C-SPLPO-2 has not been previously studied, no benchmark instances are

available. Therefore, we decided to adapt two groups of instances which have been used

as benchmark instances for the capacitated facility location problem. The first group of

instances is described by Holmberg et al. [19], and can be downloaded from http://www.

di.unipi.it/optimize/. It comprises four sets of randomly generated test instances (sets

S1, S2, S3 and S5), and one more set based on vehicle routing problems used by Solomon [29]

(set S4), each with different sizes and properties. The second group of instances is composed

of a subset of 20 instances of those described by Avella and Boccia [2], which are publicly

available at http://www.ing.unisannio.it/boccia/CFLP.htm. They are organized into

five subsets in accordance with their size. The first instance in each category according to

the classification in [2] has been selected. Table 2 summarizes the instance sizes. Altogether
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Table 2: The sizes of the test instances.

Set Subset Instances # of facilities (n) # of customers (m)

Holmberg et al. S1 P1 - P12 10 50
S2 P13 - P24 20 50
S3 P25 - P40 30 150
S4 P41 - P55 10 - 30 70 - 100
S5 P56 - P71 30 200

Avella and Boccia S6 i300-1, -6, -11, -16 300 300
S7 i3001500-1, -6, -11, -16 300 1500
S8 i500-1, -6, -11, -16 500 500
S9 i700-1, -6, -11, -16 700 700
S10 i1000-1, -6, -11, -16 1000 1000

91 instances have been tested, ranging from small-size (10 facilities and 50 customers) to very

large-size (1000 facilities and 1000 customers). For all the instances, we have maintained the

location of potential facilities and customers, as well as the cost cij. Moreover, we assigned

a capacity qi to the facility i as qi =
⌈
Qi/d

⌉
where d.e denotes the ceiling function, Qi is

the original capacity, and d is the average of the original customer demands. To assign the 

preferences, we have applied the procedure proposed by Cánovas et al. [7], which generates 

random preferences but maintains some rationality with respect to the allocation costs. 

These authors propose to generate fake costs c̃ij , for each pair (i, j), using a triangular 

distribution defined on the interval [mj , Mj ], where mj = min{cij : i ∈ I} and Mj = 

max{cij : i ∈ I}, with cij as the peak of the distribution. After ordering the fake costs for 

each customer j, the facility i1 with the lowest value c̃i1j is the most preferred facility of the 

customer j and so on until the least preferred facility is reached which corresponds to the 

facility with the highest fake cost.

In the following subsections, we present the results of the computational experiment. 

First, we have analyzed the impact of the population size and the crossover and mutation 

probabilities on the quality of the solution provided by CLOA. Based on this study, we have 

selected the value of those parameters. Then, we have compared the results provided by 

CLOA with this selection and the optimal solution (when available) provided by CPLEX. 

Finally, using the same instances, we have solved models C-SPLPO-1 and C-SPLPO-2, 

together with the single level variant of the problem without customer preferences (the so-

called relaxed problem in bilevel optimization) to show that they are structurally different.

5.1. Selecting the configuration of CLOA

As mentioned above, the purpose of the first part of the computational study is to assess

the influence of the value of the population size and the crossover and mutation probabilities
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Table 3: Algorithm configurations.

Configuration psize pc pm

cfg1 50 0.5 0.5
cfg2 50 0.5 0.9
cfg3 50 0.9 0.5
cfg4 50 0.9 0.9
cfg5 100 0.5 0.5
cfg6 100 0.5 0.9
cfg7 100 0.9 0.5
cfg8 100 0.9 0.9

based on the results of a 23 factorial design. The factors and levels considered are: population

size (psize = 50, psize = 100), crossover probability (pc = 0.5, pc = 0.9), and mutation

probability (pm = 0.5, pm = 0.9). Table 3 displays the eight configurations of the algorithm.

Each of the test instances has been solved five times under each algorithm configuration, 40

times in total. The termination condition of the algorithm has been established in terms of

computing time. Sets S1, S2 and S4 are given 1 second of computing time; set S3, 5 seconds;

set S5, 10 seconds; and sets S6 to S10, 300 seconds. The statistical analysis has been carried

out using Minitab R©, release 17.

In order to select the best configuration, for each instance we compute CLOAbest, the

best value of the objective function of problem C-SPLPO-2 obtained in the 40 runs of the

instance. Then, for a particular instance and run, we consider a success to be when its

objective function value equals CLOAbest. All the runs of all the instances in sets S1, S2,

S3 and S4 provide the best value CLOAbest. Therefore, to select the best configuration we

have applied an analysis of variance separately to set S5, and sets S6 to S10 together. The

results for set S5 indicate that psize (26.12% of variability explained) and pm (34.78% of

variability explained) are significant factors. For the sets S6 to S10, the same factors are

significant. The parameter psize explains 47.61% of the variability, whereas pm explains

34.08% of the variability. No interaction is significant in either case. In both cases, the

effect is negative in the sense that the greater the value, the lower the mean of success,

that is the percentage of success for the configuration. For each of these sets of instances,

we have also computed the percentage of gap defined as the value of the objective function

of problem (2) in the instance run minus CLOAbest, divided by CLOAbest, and multiplied

by 100 to get a percentage. As an illustration, Figure 3 shows the minimum, the average

and the maximum of the percentage of gap for every configuration in sets S5 to S10. Set

S5 contains 16 instances, whereas sets S6 to S10 contain 4 instances each. We see that, as

expected, when the size of the problem increases, the percentage of gap and its variability
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Figure 3: Percentage of gap for every configuration of CLOA in sets S5 to S10

also increase. Moreover, for most problems a configuration having psize = 50 is better. As a

result of the statistical analysis, we have selected for CLOA the configuration cfg1 in which

psize = 50, pc = 0.5 and pm = 0.5. From now on, when we refer to CLOA we assume these

values for the parameters.

5.2. Measuring the quality of CLOA

Next, our purpose is to measure the quality of CLOA by comparing the results provided

by the selected configuration of CLOA with the optimal solution (or the best known feasible

solution) of problem (5) provided by IBM ILOG CPLEX 12.9.0. For this purpose we have

considered two variants of the CPLEX settings. In the first one, called CPLEX-1, the default

settings are implemented. In the second one, called CPLEX-2, the search strategy is changed

from the best-bound to the depth-first strategy. The CLOA stopping criterion has been set

to 1 second of computing time for sets S1, S2 and S4, 5 seconds for set S3, 10 seconds for

set S5, and 1800 seconds for sets S6 to S10. Each of the test instances has been solved five

times. The CPLEX stopping criterion was set at 7200 seconds. When the run is interrupted

before providing the optimal solution, the best solution at this time is saved and the letters

TL are written when the computing time is displayed. According to Corollary 2, the value

of M has been set to n.

We separately analyze results of the small and large instances. Table 4 displays the

results for the instances based on Holmberg et al. instances (sets S1 to S5). The first and

second columns show the instance set and instance name, respectively. The third to seventh

columns display the information provided by CPLEX-1: Obj1 is the objective function value

23



of the optimal solution (best feasible solution if the run is interrupted); Gap1 is the relative

gap; #nodes1 is the number of branching nodes; Tbest1 is the time at which CPLEX finds the

reported solution; and Ttot1 is the total required CPU time. The eighth to twelfth columns

display the same information but corresponding to CPLEX-2. When Obj2 is equal to Obj1

a symbol ‘=’ is written in the column of Obj2. The thirteenth to sixteenth columns in

Table 4 display the results provided by CLOA: Objmin and Objmax are the minimum and

the maximum objective function values obtained in the five runs; Tbest is the average of

the CPU time at which CLOA finds the reported solution in the five runs; and Ttot is the

total CPU time assigned to each run. If Objmin coincides with the best value provided by

CPLEX, i.e. Objmin = min{Obj1,Obj2}, a symbol ‘=’ is written in the column of Objmin.

When Objmin and Objmax coincide, a symbol ‘=’ is also written in the column of Objmax.

Moreover, in each row, the smallest value of the objective function is written in bold. All

times are in seconds.

Both variants of CPLEX are only able to solve to optimality 51 out of the 55 instances

of sets S1 to S4 and none of set S5. CPLEX-1 and CPLEX-2 provide the same objective

function value in 64 instances out of the 71 instances. For the remaining seven instances,

CPLEX-1 provides a better value than CPLEX-2 in four instances (all of them in set S5).

For all the 51 instances for which CPLEX provides the optimal solution, CLOA obtains it as

well (instances P1 to P28, P33 to P55). Moreover, CLOA yields the same objective function

value in these instances in all the five runs (Objmin and Objmax are equal). For the remaining

20 instances, CLOA provides at least the same objective function value than the best value

of CPLEX in all the five runs, except for instance P58 where in just one out of the five runs

the objective function value is 1.001 times greater than the best value provided by CPLEX.

Moreover, for instance P59 in two out of the five runs and for instance P68 in four out of the

five runs, the objective function value provided by CLOA strictly improves the best value

of CPLEX. It is worth remarking that CLOA provides a value better than or equal to the

best value provided by CPLEX in 354 out of the 355 runs of the experiment.

Table 5 is similar to Table 4 and presents the results for the instances based on Avella and

Boccia instances (sets S6 to S10). The first and second columns show the instance set and

instance name, respectively. For the variants of CPLEX we have not included the column

Ttot since CPLEX was not able to solve any instance of these sets within the computing time

prescribed (7200 seconds). For CLOA, we have included two more columns which include

the relative Gap defined as:

MinGap =
Objmin −min{Obj1,Obj2}

min{Obj1,Obj2}
, MaxGap =

Objmax −min{Obj1,Obj2}
min{Obj1,Obj2}
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Concerning CPLEX performance, in instances i300-11, i500-6, i500-16, i700-16, i1000-11

and i1000-16 both variants of CPLEX provide the same value of the objective function (6

out of the 20 instances). For the remaining 14 instances, CPLEX-1 is better than CPLEX-2

in ten instances and worse in the other four. As could be expected, there is more variability

in the results provided by CLOA in these sets than in sets S1 to S5. Only in 5 out of the 20

instances does CLOA provide the same value in the five runs. For the remaining instances

Objmax is lower than 1.078 times Objmin, except for instance i1000-6, for which it is 1.279

times the minimum value. If we look at the best solution provided by CLOA, we see that

Objmin is better than the best solution provided by CPLEX in 11 out of the 20 instances

(all the instances of set S7, three out of the four instances of sets S8 and S9 and one instance

of set S10), it is equal in the four instances of set S6, and it is worse in the remaining five

instances. Moreover, for 10 out of the 11 instances for which the best solution provided

by CLOA is strictly better than the best solution provided by CPLEX (MinGap is negative)

the worst solution provided by CLOA, i.e. Objmax, is also better (MaxGap is negative).

Hence, in these 10 instances CLOA is better than CPLEX in all the five runs. Moreover,

in the remaining instance i700-6, CLOA is better than CPLEX-2 in all the five runs and is

better than CPLEX-1 in three out of the five runs.

Finally, we analyze the total computing times. Except for the smaller instances P1 to

P12 (set S1) and for instances P41, P44, P47, P50, P52, and P54 (set S4), whose CPLEX CPU

times are less than 1 second compared to CLOA CPU times of 1 second, the CPU times

of CLOA are noticeably shorter for the remaining 73 out of 91 instances. If we analyze

by sets, in set S2 CLOA uses 1 second, whereas the average time for CPLEX-1 is 56.41

seconds and for CPLEX-2 it is 61.83 seconds. For instances in set S3, CLOA uses 5 seconds,

whereas variants CPLEX-1 and CPLEX-2 were interrupted after 7200 seconds in 4 out of

the 16 instances and the average time of the remaining 12 instances is 2096.31 seconds and

1173.63 seconds, respectively. In set S4, CLOA is given 1 second, whereas the average time

for CPLEX-1 is 46.60 seconds and for CPLEX-2 it is 53.84 seconds. For the remaining sets,

CPLEX was interrupted after 7200 seconds whereas CLOA is given 10 seconds for instances

in set S5, and 1800 seconds for sets S6 to S10. Regarding the times at which CPLEX and

CLOA find the reported solution, Tbest < min{Tbest1,Tbest2} for all the instances except

instance i3001500-6. Moreover, while min{Tbest1,Tbest2} ranges from 0.11 to 7044.45, Tbest

ranges from 0.01 to 1811.76.
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5.3. Comparing models C-SPLPO-1 and C-SPLPO-2

Next, aiming to emphasize the differences between the models C-SPLPO-1 and C-

SPLPO-2, we include in this section a thorough analysis of the structure of solutions ob-

tained for both models. We also include in this analysis the relaxed problem in which the 

preferences of customers are not taken into account. This model is formulated as:

min
x,y

∑
i∈I  fiyi  +  

∑
i∈I
∑

j∈J  cijxij

subject  to ∑
i∈I  qiyi  >  m∑
i∈I  xij  =  1,∑
j∈J  xij  6  qiyi,

j  ∈  J

i  ∈  I

xij  ∈  {0,  1},

yi  ∈  {0,  1},

i  ∈  I,  j  ∈  J

i  ∈  I

In order to use the same software for the three models, we have selected the solution 

provided by CPLEX. Moreover, we have chosen CPLEX-1 since, according to the CPLEX 

documentation, it is, in general, quicker. For the model C-SPLPO-1, there are five instances of 

sets S9 and S10 for which CPLEX has not provided any information after 7200 seconds of 

computing time. For these instances, we have also tried the variant CPLEX-2, but the same 

results are obtained. Hence, only the information provided by the remaining 86 instances is 

used to assess the differences between the models.

For all the instances, the optimal solution (or the best known feasible solution) of the three 

models is different. For these solutions, Table 6 displays the value of the total cost, the sum of 

preferences, and the number of unsatisfied customers (i.e. customers who are allocated to an 

open facility which is not their most preferred one among the open facilities), as well as the 

total CPU time in seconds required by CPLEX-1. C-SPLPO-1 is not feasible for instances P44 

and P54 and, when it is feasible, it provides the largest cost, thus confirming that the C-

SPLPO-1 is, in general, a very restrictive model. Obviously, the relaxed problem provides a 

lower bound on the objective function value for both models C-SPLPO-1 and C-SPLPO-2. 

Concerning the sum of preferences, as expected, the worst value is provided by the relaxed 

model (which does not take the preferences into account). The number of unsatisfied 

customers is zero for the C-SPLPO-1 since this is a constraint of the model, but it is not very 

large for the C-SPLPO-2 with respect to the number of customers. Finally, although CPU 

times are longer, in general, for the C-SPLPO-2, the matheuristic which is the subject of this 

paper requires much shorter computing times. As an illustration, the optimal solution 

corresponding to instance P1 has been included in Table 7.

29



T
a
b

le
6
:

C
o
m

p
a
ra

ti
v
e

re
su

lt
s.

T
im

es
in

se
co

n
d

s

S
et

In
st

T
o
ta

l
co

st
S

u
m

o
f

p
re

fe
re

n
ce

s
#

o
f

u
n

sa
ti

sfi
ed

cu
st

o
m

er
s

T
to

t

R
el

a
x
ed

C
-S

P
L

P
O

-1
C

-S
P

L
P

O
-2

R
el

a
x
ed

C
-S

P
L

P
O

-1
C

-S
P

L
P

O
-2

R
el

a
x
ed

C
-S

P
L

P
O

-1
C

-S
P

L
P

O
-2

R
el

a
x
ed

C
-S

P
L

P
O

-1
C

-S
P

L
P

O
-2

S
1

P
1

8
8
0
6

1
9
7
7
9

1
8
5
9
2

2
7
9

8
4

7
7

4
3

0
5

0
.0

5
0
.1

5
0
.2

1
P
2

7
8
5
6

1
9
0
4
7

1
7
6
5
8

2
7
9

8
4

7
7

4
3

0
5

0
.0

5
0
.0

3
0
.1

5
P
3

9
2
8
6

2
0
2
4
7

1
9
0
5
8

2
8
5

8
4

7
7

4
2

0
5

0
.0

4
0
.0

2
0
.1

8
P
4

1
0
6
8
6

2
1
4
4
7

2
0
4
4
2

2
8
5

8
4

8
5

4
2

0
6

0
.0

6
0
.0

4
0
.2

3
P
5

8
6
6
9

2
1
4
3
4

1
8
5
5
2

2
6
1

6
7

8
0

4
3

0
5

0
.0

4
0
.0

3
0
.1

2
P
6

7
6
6
3

2
0
5
7
3

1
7
8
0
6

2
6
1

6
7

8
0

4
3

0
5

0
.0

5
0
.0

3
0
.1

5
P
7

9
2
3
2

2
2
1
7
3

1
9
2
0
6

2
6
5

6
7

8
0

4
2

0
5

0
.0

8
0
.0

3
0
.1

1
P
8

1
0
6
3
2

2
3
7
7
3

2
0
6
0
6

2
6
5

6
7

8
0

4
2

0
5

0
.0

5
0
.0

3
0
.1

1
P
9

8
4
2
0

1
8
8
5
8

1
7
6
5
1

2
4
3

8
4

1
0
4

4
0

0
3

0
.0

4
0
.1

7
0
.2

3
P
1
0

7
6
1
1

1
8
2
0
4

1
7
1
4
6

2
5
0

8
4

9
8

4
2

0
5

0
.0

4
0
.1

4
0
.2

0
P
1
1

8
8
9
0

1
9
4
0
4

1
8
1
4
6

2
5
4

8
4

9
8

3
9

0
5

0
.0

2
0
.1

4
0
.5

4
P
1
2

1
0
0
9
0

2
0
6
0
4

1
9
1
4
6

2
5
4

8
4

9
8

3
9

0
5

0
.0

6
0
.1

7
0
.3

7
S
2

P
1
3

8
0
5
1

1
9
9
8
3

1
7
7
4
5

4
8
8

1
3
7

1
5
0

4
3

0
1
2

0
.0

7
0
.5

0
7
1
.1

7
P
1
4

7
0
9
2

1
8
4
9
3

1
6
7
2
0

5
2
3

1
3
7

1
5
1

4
5

0
7

0
.0

7
0
.4

5
9
0
.0

6
P
1
5

8
7
3
7

2
0
0
9
3

1
8
1
2
0

4
8
8

1
3
7

1
5
1

4
3

0
7

0
.1

0
0
.4

8
7
5
.5

3
P
1
6

1
0
2
7
5

2
1
5
2
2

1
9
4
2
7

4
8
5

1
3
0

1
6
6

4
1

0
1
2

0
.1

3
0
.4

4
7
3
.1

9
P
1
7

8
0
4
9

1
9
4
6
7

1
7
6
1
3

4
8
2

1
0
9

1
3
8

4
3

0
8

0
.1

0
1
.0

8
4
7
.1

2
P
1
8

7
0
9
2

1
8
4
2
5

1
6
7
1
8

5
2
3

1
0
9

1
3
8

4
5

0
8

0
.0

9
1
.4

5
5
5
.6

7
P
1
9

8
7
3
5

2
0
0
2
5

1
8
1
1
8

4
8
2

1
0
9

1
3
8

4
3

0
8

0
.1

0
1
.1

4
4
8
.3

8
P
2
0

1
0
3
1
8

2
1
5
1
1

1
9
5
1
8

5
2
7

1
4
3

1
3
8

4
3

0
8

0
.2

4
1
.3

7
5
5
.2

8
P
2
1

8
0
4
9

1
8
6
7
2

1
7
2
5
3

4
8
2

1
3
5

1
5
1

4
3

0
2

0
.0

6
0
.9

0
3
7
.1

4
P
2
2

7
0
9
2

1
7
6
3
5

1
6
4
0
7

5
2
3

1
3
5

1
5
1

4
5

0
2

0
.0

7
0
.9

0
4
8
.9

7
P
2
3

8
7
3
5

1
9
0
3
5

1
7
6
0
7

4
8
2

1
3
5

1
5
1

4
3

0
2

0
.1

2
0
.9

9
4
1
.2

7
P
2
4

1
0
2
1
0

2
0
3
8
0

1
8
8
0
7

4
8
6

1
3
1

1
5
1

4
1

0
2

0
.2

6
1
.3

8
3
3
.1

4
S
3

P
2
5

1
1
5
0
4

5
1
8
1
2

4
0
1
6
4

2
1
2
3

4
9
6

5
7
6

1
2
4

0
2
8

0
.1

8
1
4
.0

6
1
0
8
6
.1

7
P
2
6

1
0
7
2
5

5
0
3
4
5

3
9
2
6
6

2
1
4
8

4
9
6

5
7
6

1
2
5

0
2
8

0
.2

5
1
1
.8

4
4
0
6
8
.6

3
P
2
7

1
2
1
2
9

5
2
1
4
5

4
0
8
6
6

2
1
0
0

4
9
6

5
7
6

1
2
4

0
2
8

0
.2

0
1
4
.4

4
1
0
4
4
.0

5
P
2
8

1
3
5
2
9

5
3
9
4
5

4
2
4
6
6

2
1
0
0

4
9
6

5
7
6

1
2
4

0
2
8

0
.2

0
1
2
.8

9
3
8
8
0
.2

4
P
2
9

1
2
1
7
9

5
0
3
9
2

4
4
7
1
5

2
2
6
9

3
8
3

4
3
7

1
3
3

0
9

0
.1

7
6
.2

2
T

L
P
3
0

1
1
0
8
8

4
8
9
5
1

4
3
4
8
0

2
3
6
6

3
8
3

4
5
8

1
3
6

0
6

0
.3

2
5
.6

8
T

L
P
3
1

1
3
0
8
8

5
1
1
5
1

4
5
4
8
0

2
3
6
6

3
8
3

4
5
8

1
3
6

0
6

0
.1

9
5
.9

2
T

L
P
3
2

1
5
0
8
8

5
3
3
5
1

4
7
5
9
6

2
3
6
6

3
8
3

4
3
7

1
3
6

0
9

0
.2

0
5
.8

7
T

L
P
3
3

1
1
5
9
4

4
3
4
4
9

4
0
4
2
8

2
1
7
4

4
7
2

5
2
1

1
2
7

0
1

0
.1

8
6
.1

4
4
9
0
7
.9

5
P
3
4

1
0
5
9
7

4
2
2
8
7

3
9
5
1
7

2
1
7
5

4
7
2

5
4
9

1
2
8

0
4

0
.1

4
5
.4

2
1
7
0
2
.7

7
P
3
5

1
2
1
9
7

4
4
0
8
7

4
1
1
1
7

2
1
7
5

4
7
2

5
4
9

1
2
8

0
4

0
.2

7
6
.2

2
6
2
1
7
.3

1
P
3
6

1
3
7
9
7

4
5
8
8
7

4
2
7
1
7

2
1
7
5

4
7
2

5
4
9

1
2
8

0
4

0
.2

1
6
.3

7
1
7
2
8
.2

6
P
3
7

1
1
2
4
8

3
6
4
8
9

3
3
1
3
4

2
2
2
4

6
9
4

8
1
4

1
2
0

0
8

0
.1

7
5
.9

1
1
2
9
.5

3
P
3
8

1
0
5
4
3

3
5
8
6
6

3
2
4
8
6

2
1
7
6

6
9
4

8
1
4

1
2
0

0
8

0
.1

5
4
.9

7
1
3
0
.5

7
P
3
9

1
1
8
1
6

3
7
0
6
6

3
3
4
8
6

2
2
7
7

6
9
4

8
1
4

1
2
4

0
8

0
.1

6
5
.7

5
1
3
3
.3

2
P
4
0

1
3
0
1
6

3
8
2
6
6

3
4
4
8
6

2
2
7
7

6
9
4

8
1
4

1
2
4

0
8

0
.2

6
5
.7

4
1
2
6
.9

4
S
4

P
4
1

6
6
1
4

1
3
7
1
8

1
1
5
7
4

5
1
3

1
6
7

2
5
2

7
9

0
1
8

0
.0

6
0
.0

4
0
.2

8
P
4
2

5
6
1
5

1
0
3
8
4

9
7
0
8

7
8
9

4
7
9

4
2
3

6
0

0
3
3

0
.1

7
0
.8

3
1
5
.0

3
P
4
3

5
2
1
4

8
9
5
8

8
6
3
7

1
0
6
2

4
6
9

4
0
7

5
2

0
1
0

0
.3

2
8
.2

1
8
0
.7

3
P
4
4

7
0
2
8

N
o
t

fe
a
si

b
le

1
6
4
2
6

4
7
2

2
0
3

8
2

2
4

0
.0

5
0
.2

6
C

o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

30



T
a
b

le
6

–
co

n
ti

n
u

ed
fr

o
m

p
re

v
io

u
s

p
a
g
e

S
et

In
st

T
o
ta

l
co

st
S

u
m

o
f

p
re

fe
re

n
ce

s
#

o
f

u
n

sa
ti

sfi
ed

cu
st

o
m

er
s

T
to

t

R
el

a
x
ed

C
-S

P
L

P
O

-1
C

-S
P

L
P

O
-2

R
el

a
x
ed

C
-S

P
L

P
O

-1
C

-S
P

L
P

O
-2

R
el

a
x
ed

C
-S

P
L

P
O

-1
C

-S
P

L
P

O
-2

R
el

a
x
ed

C
-S

P
L

P
O

-1
C

-S
P

L
P

O
-2

P
4
5

6
2
2
9

1
3
2
9
1

1
2
5
1
4

8
4
3

3
1
0

3
1
6

6
3

0
7

0
.1

3
1
.2

7
2
0
.3

1
P
4
6

5
5
8
2

1
1
2
4
3

1
0
7
4
1

1
0
8
6

5
9
2

4
9
0

6
2

0
2
5

0
.2

9
6
.3

6
2
6
7
.6

2
P
4
7

5
9
0
3

1
5
4
2
0

1
3
5
3
4

5
1
5

1
7
4

1
7
6

7
7

0
2
6

0
.0

8
0
.0

3
0
.2

8
P
4
8

5
7
0
8

1
1
9
5
1

1
1
0
7
0

7
5
9

3
1
5

3
3
9

6
6

0
1
2

0
.1

7
0
.7

7
1
8
.4

1
P
4
9

5
2
7
9

1
0
2
3
0

9
1
7
5

1
0
3
7

4
3
1

4
7
8

6
3

0
1
5

0
.1

3
1
0
.1

8
1
5
1
.5

0
P
5
0

8
6
5
4

1
7
9
8
5

1
6
7
4
9

5
8
0

1
7
8

2
2
2

9
5

0
6

0
.0

5
0
.0

7
0
.2

8
P
5
1

7
3
3
3

1
5
7
0
6

1
5
5
1
0

1
0
8
7

3
3
8

3
0
3

7
9

0
7

0
.1

6
1
.9

0
4
8
.5

2
P
5
2

9
1
4
8

2
5
6
6
8

2
1
8
7
2

5
3
4

1
3
3

2
1
1

8
8

0
2
4

0
.0

7
0
.0

3
0
.3

0
P
5
3

8
5
2
9

2
2
1
3
2

2
0
3
5
8

9
7
1

2
4
5

3
0
6

8
3

0
1
5

0
.1

0
1
.6

2
5
3
.1

6
P
5
4

8
7
2
6

N
o
t

fe
a
si

b
le

1
9
1
1
4

5
6
7

1
9
0

8
8

2
6

0
.0

5
0
.2

8
P
5
5

7
6
5
8

1
9
4
9
9

1
7
4
0
5

1
0
7
3

3
8
7

3
6
9

8
4

0
1
7

0
.1

3
0
.9

8
4
2
.1

0
S
5

P
5
6

2
0
7
6
1

7
5
1
5
5

6
8
0
8
2

2
9
6
6

3
1
0

4
1
4

1
8
9

0
2
9

0
.2

6
8
.7

6
T

L
P
5
7

2
5
5
5
3

8
0
2
5
5

7
2
5
8
2

3
0
6
4

3
1
0

4
1
4

1
8
8

0
2
9

1
.1

2
1
0
.7

3
T

L
P
5
8

3
6
0
5
3

9
2
1
5
5

8
3
0
8
2

3
0
6
4

3
1
0

4
1
4

1
8
8

0
2
9

0
.9

0
1
3
.7

6
T

L
P
5
9

2
6
6
4
2

8
3
1
3
6

7
4
8
5
3

3
0
3
3

3
1
2

4
0
1

1
8
9

0
2
4

0
.4

6
1
2
.7

9
T

L
P
6
0

2
0
5
4
3

6
8
2
3
6

6
2
4
3
4

3
0
1
8

4
7
6

6
4
6

1
9
0

0
2
5

0
.2

9
1
6
1
.5

7
T

L
P
6
1

2
4
4
5
8

7
1
8
3
6

6
6
6
9
6

3
0
7
4

4
7
6

5
8
5

1
8
8

0
2
3

0
.3

5
1
8
2
.3

1
T

L
P
6
2

3
2
5
1
2

8
0
2
3
6

7
2
4
3
4

3
0
0
8

4
7
6

6
4
6

1
8
8

0
2
5

2
.4

9
1
8
4
.4

2
T

L
P
6
3

2
5
1
0
6

7
2
6
3
8

6
6
1
9
2

3
0
2
2

4
7
6

6
4
6

1
8
6

0
2
5

0
.4

4
9
5
.7

3
T

L
P
6
4

2
0
5
3
0

6
4
5
4
2

6
1
9
5
3

3
0
1
4

5
9
6

7
0
9

1
9
0

0
1
3

0
.2

9
2
4
9
.3

8
T

L
P
6
5

2
4
4
4
5

6
7
3
0
0

6
4
3
5
3

3
0
7
0

6
9
4

7
0
9

1
8
8

0
1
3

0
.4

3
1
9
9
.1

3
T

L
P
6
6

3
1
3
1
3

7
2
9
0
0

6
9
9
5
3

2
9
8
2

6
9
4

7
0
9

1
7
8

0
1
3

4
.1

1
2
7
8
.3

3
T

L
P
6
7

2
4
8
9
1

6
7
7
1
6

6
4
9
6
2

3
0
9
3

6
9
4

7
1
1

1
8
1

0
1
2

0
.4

2
3
2
8
.0

9
T

L
P
6
8

2
0
5
3
0

7
1
0
3
2

6
3
8
7
0

3
0
1
4

4
5
3

6
1
0

1
9
0

0
3
7

0
.2

9
1
7
0
.5

5
T

L
P
6
9

2
4
5
1
1

7
4
3
7
0

6
7
1
0
9

3
1
0
2

5
1
7

6
7
8

1
8
9

0
4
4

0
.4

9
2
2
7
.5

4
T

L
P
7
0

3
2
1
7
1

8
2
0
7
0

7
3
8
7
0

3
1
4
9

5
1
7

6
1
0

1
8
5

0
3
7

1
.4

7
1
9
5
.9

0
T

L
P
7
1

2
5
4
6
5

7
7
2
0
7

6
7
8
0
1

3
0
7
5

3
9
3

5
8
6

1
8
9

0
3
7

0
.5

0
2
2
4
.6

6
T

L
S
6

i3
0
0
-1

1
0
5
5
9
.8

0
1
8
5
4
1

1
1
7
9
9
.1

0
4
6
0
2
6

1
8
8
6

2
3
0
4

2
9
3

0
8
0

4
.1

3
T

L
T

L
i3

0
0
-6

5
3
6
1
.0

2
8
1
6
3
.3

6
6
4
5
2
.2

1
4
4
6
3
5

3
1
9
5

4
3
3
9

2
8
5

0
4
9

5
.7

0
T

L
T

L
i3

0
0
-1

1
3
1
4
2
.8

2
5
1
4
6
.5

4
3
9
4
6
.4

8
4
6
3
1
5

5
4
8
3

6
1
9
6

2
8
0

0
3
0

3
.7

7
T

L
T

L
i3

0
0
-1

6
2
2
7
2
.1

2
4
1
8
1
.3

8
3
2
2
2
.5

7
4
7
5
7
0

6
3
1
5

8
2
0
5

2
7
8

0
4
1

5
.2

T
L

T
L

S
7

i3
0
0
1
5
0
0
-1

2
3
1
7
2
.7

0
2
3
3
6
5
6

9
1
3
7
7
.5

0
2
2
6
6
7
9

1
6
0
2

9
4
7
5

1
4
7
2

0
3
3
9

3
8
7
.0

8
T

L
T

L
i3

0
0
1
5
0
0
-6

1
8
9
7
4
.3

0
2
2
4
7
6
7

8
8
0
6
7
.6

0
2
2
5
7
6
1

1
7
0
2

1
8
6
0
5

1
4
6
5

0
3
3
3

1
2
8
.6

6
T

L
T

L
i3

0
0
1
5
0
0
-1

1
1
7
7
9
3
.5

0
2
2
0
3
9
6

7
5
3
0
4
.1

0
2
3
0
3
8
2

1
7
8
2

2
6
5
5
7

1
4
5
0

0
5
1
3

2
3
2
.1

3
T

L
T

L
i3

0
0
1
5
0
0
-1

6
1
7
3
7
4
.5

0
2
4
2
4
6
6

7
9
6
2
7
.6

0
2
2
5
8
7
2

1
5
1
0

3
7
4
8
1

1
4
6
2

0
4
0
2

1
9
5
.9

8
T

L
T

L
S
8

i5
0
0
-1

1
7
4
1
3
.4

0
3
3
5
7
2
.9

0
1
9
4
5
8
.3

0
1
2
7
7
7
9

2
9
5
3

4
2
4
3

4
9
1

0
1
3
4

7
.6

4
T

L
T

L
i5

0
0
-6

7
3
4
6
.7

6
1
6
4
9
4
.6

0
9
2
6
1
.7

9
1
2
4
3
0
7

4
3
7
0

7
6
4
6

4
8
3

0
9
0

1
2
.2

9
T

L
T

L
i5

0
0
-1

1
4
8
5
0
.3

8
1
0
1
7
0
.4

0
6
6
9
3
.5

5
1
2
5
8
8
8

6
9
1
8

1
0
3
9
7

4
8
1

0
7
4

1
4
.1

6
T

L
T

L
i5

0
0
-1

6
3
5
8
1
.5

4
7
7
6
0
.1

8
5
2
4
3
.1

5
1
2
5
7
2
6

1
2
1
4
7

1
5
1
9
1

4
6
7

0
5
8

1
7
.7

7
T

L
T

L
S
9

i7
0
0
-1

2
5
9
9
1
.2

0
1
5
5
8
4
0

2
9
4
3
7
.5

0
2
4
1
7
3
3

1
2
6
9

5
9
7
1

6
9
4

0
2
0
2

1
8
.0

3
T

L
T

L
i7

0
0
-6

1
0
3
0
8

1
3
2
4
3
8

1
3
4
1
5
.4

0
2
4
7
9
2
0

1
2
4
9

1
0
3
9
1

6
9
3

0
1
3
1

2
2
.3

6
T

L
T

L
i7

0
0
-1

1
6
9
1
0
.5

9
2
7
7
7
5
.3

0
9
9
2
1
.4

7
2
4
1
5
7
0

5
1
8
4

1
5
1
1
7

6
7
3

0
1
4
2

4
4
.9

1
T

L
T

L
i7

0
0
-1

6
4
7
4
3
.6

0
7
5
1
4
.8

3
2
4
5
9
9
2

2
3
6
5
3

6
7
4

6
7

6
3
.8

1
T

L
S
1
0

i1
0
0
0
-1

3
6
4
1
8
.5

0
4
1
8
8
3
.6

0
4
8
6
9
1
4

8
2
0
1

9
9
5

2
3
4

7
5
.6

3
T

L
C

o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

31



T
a
b

le
6

–
co

n
ti

n
u

ed
fr

o
m

p
re

v
io

u
s

p
a
g
e

S
et

In
st

T
o
ta

l
co

st
S

u
m

o
f

p
re

fe
re

n
ce

s
#

o
f

u
n

sa
ti

sfi
ed

cu
st

o
m

er
s

T
to

t

R
el

a
x
ed

C
-S

P
L

P
O

-1
C

-S
P

L
P

O
-2

R
el

a
x
ed

C
-S

P
L

P
O

-1
C

-S
P

L
P

O
-2

R
el

a
x
ed

C
-S

P
L

P
O

-1
C

-S
P

L
P

O
-2

R
el

a
x
ed

C
-S

P
L

P
O

-1
C

-S
P

L
P

O
-2

i1
0
0
0
-6

1
5
8
0
6
.6

0
2
1
3
7
9
.7

0
4
8
9
5
0
3

1
3
9
1
0

9
8
0

1
4
8

1
9
7
.8

2
T

L
i1

0
0
0
-1

1
9
6
8
4
.9

6
1
4
2
2
1
.1

0
4
9
7
6
0
8

2
2
4
3
9

9
7
9

1
6
1

8
5
.2

3
T

L
i1

0
0
0
-1

6
7
6
4
0
.3

9
1
2
4
6
4
.3

0
5
0
7
8
1
8

2
9
5
9
2

9
7
1

1
9
0

3
7
6
.2

0
T

L

32



Table 7: Optimal solutions of instance P1: Customers allocated to each facility.

Facility Relaxed C-SPLPO-1 C-SPLPO-2

1 18, 29, 33, 39, 42, 46, 48, 50 6, 12, 13, 17, 18, 25, 31, 49, 50 6, 13, 17, 18, 25, 31, 44, 49, 50
2 3, 10, 27, 30, 43 Closed 3, 4, 27, 41, 43
3 2, 7, 14, 25, 31, 47 8, 26, 27, 29, 33, 39, 43, 45, 46 8, 26, 29, 39, 42, 45, 46
4 5, 13, 16, 21, 34, 38, 41 Closed 7, 11, 12, 22, 28, 32, 33, 34
5 8, 9, 17, 20, 22, 24, 36, 37, 40, 45, 49 1, 2, 3, 4, 5, 9, 14, 15, 19, 28, 36 1, 2, 5, 9, 14, 15, 16, 19, 36, 37
6 Closed Closed Closed
7 4, 23, 26, 28, 32, 44 20, 23, 30, 35, 41 20, 23, 24, 30, 35, 40, 47
8 Closed Closed Closed
9 1, 6, 12, 15 10, 21, 24, 38 10, 21, 38, 48
10 11, 19, 35 7, 11, 16, 22, 32, 34, 37, 40, 42, 44, 47, 48 Closed

6. Conclusions and further research directions

Most of the literature on location problems in which customers are allowed to select

the open facility they will patronize assumes that each facility can accommodate as many

customers as required. As a consequence, each customer can freely select a facility in ac-

cordance with his/her preferences. A more realistic model arises when the existence of a

cardinality constraint on the number of customers who can be allocated to each facility is

taken into account.

In this paper, the implications of extending original models with preferences to handle

cardinality constraints are analyzed. The extension of the single level formulation seems to

be only appropriate if it is compulsory to guarantee individual preferences. Otherwise, the

bilevel optimization extension provides a wider approach to the problem. In the upper level

of the hierarchy, the decision maker controls which facilities are open aiming to minimize

the total cost. In the second level of the hierarchy, the customer allocation is solved aiming

to minimize the global customer preference. Properties of the lower level problem allow

us to reformulate the bilevel model as a single level model without including additional

binary variables. This reformulated model can be solved by using standard mathematical

techniques.

We have also developed a matheuristic for solving the bilevel model. This algorithm

evolves as an evolutionary algorithm does, but also involves solving a lexicographic opti-

mization model to compute feasible solutions of the bilevel model. The algorithm has proved

to be very fast and efficient in the computational experimentation carried out. Moreover,

it is worth pointing out that the algorithm can also be applied to solve problem (2) with

different and even more complicated upper level objective functions. Only a single change

in the algorithm would be needed that would affect the computation of the fitness function.

Future lines of research could consider other ways of dealing with preferences when
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assessing the reaction of customers. Minimizing the sum of preferences can yield an unfair

solution as it compensates between the preferences of different customers. Therefore, other

criteria such as minimizing the maximum of the preferences could be appraised. It is worth

pointing out that, in this case, the lower level problem is NP-hard. Although CLOA can

be adapted to deal with this problem, by substituting the objective function in problem (6)

by lex min
x

(
maxi∈I(y),j∈J gijxij,

∑
i∈I(y)

∑
j∈J cijxij

)
, due to the complexity of this problem

only small or medium size problems could be expected to be handled.
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