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ABSTRACT
This paper introduces a novel method to address the pessimistic approach to the
bilevel problem. It consists of considering a lexicographic biobjective optimisation
problem at the lower level. To emphasise the significance of this approach, we imple-
ment it in the context of the Rank Pricing Problem with Ties. This problem can be
formulated as a bilevel problem that inherently demands the use of the pessimistic
approach. Considering the properties of the lexicographic biobjective problem in-
volved, we formulate this problem as a single level mixed integer optimisation prob-
lem, deriving also valid values for the big-Ms involved and valid inequalities for this
formulation. The computational experiment carried out confirms the relevance of
the proposed method.
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1. Addressing pessimistic bilevel problems through a novel approach

Bilevel optimisation models involve two decision-makers within a hierarchical frame-

work. Each of these decision makers manages a subset of variables and seeks to op-

timise his/her respective objective functions while fulfilling certain constraints. The

lower level (LL) decision maker, or follower, performs optimisation with full awareness

of the values assigned to the variables controlled by the upper level (UL) decision

maker, or leader. The UL decision-maker, having complete information about the LL

decision-maker’s reactions, selects variable values to optimise his/her own objective

function. Bilevel optimisation can be computationally challenging due to the inter-

dependence between the levels and the need to find optimal solutions for both levels
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simultaneously. But, at the same time, this interaction between both levels makes

bilevel optimisation relevant in many real-world applications, such as supply chain

management, transportation planning, and pricing strategies, since it can effectively

represent systems involving hierarchical decision-making.

In general, a bilevel optimisation model can be formulated as:

“min
x

” F (x, y)

subject to
Gj(x, y) ⩽ 0, j = 1, . . . , q

where, for every x fixed, y solves

min
y

f(x, y)

subject to
gh(x, y) ⩽ 0, h = 1, . . . , p

(1)

where x ∈ Rn are the UL variables controlled by the leader, and y ∈ Rm are the

lower level variables controlled by the follower; F, f : Rn+m −→ R are the UL and LL

objective functions, respectively; and Gj(x, y) ⩽ 0, j = 1, . . . , q, and gh(x, y) ⩽ 0,

h = 1, . . . , p, indicate, in their respective cases, the constraints associated with UL

and LL the upper and lower levels.

Bilevel problems are difficult to manage and solve because of their nonconvex nature.

In addition, complications arise when the set of optimal solutions of the LL problem,

called M(x), is not a singleton for certain values of x. If the UL objective function

is sensitive to different values of y ∈ M(x), it becomes necessary to establish a rule

for selecting y∗ ∈ M(x) in order to evaluate F . Quotation marks have been employed

to convey the uncertainty in defining the bilevel problem when lower-level optimal

solutions are not uniquely determined. Several assumptions have been proposed in

the literature, with the most common being the optimistic or weak approach. This

approach assumes that the UL decision maker has the possibility to influence the LL

decision maker so that the latter selects y∗ that yields the best possible value of

F . In this case, the UL objective function is minimised with respect to both x and

y. The pessimistic or strong approach, which assumes that the LL decision maker

always selects the optimal solution which provides the worst value of F , is notably

more challenging to handle than the optimistic one. The main findings concerning

optimality of bilevel problems, algorithms for solving them, applications and related

topics can be found in [1–7] and the references therein.

This paper proposes a novel approach to deal with pessimistic bilevel problems.
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Assuming that the bilevel problem has an optimal solution, to ensure the pessimistic

approach we propose to consider a lexicographic biobjective problem associated to

the LL decision maker. Therefore, the pessimistic approach to the bilevel problem (1)

presented in this paper consists of reformulating it as:

min
x,y

F (x, y)

subject to
Gj(x, y) ⩽ 0, j = 1, . . . , q

where, for every x fixed, y solves

lexmin
y

(f(x, y), −F (x, y))

subject to
gh(x, y) ⩽ 0, h = 1, . . . , p

(2)

Lexicographic optimisation [8] is based on the assumption that objectives are ranked

in order of importance, and the objective functions are optimised one at a time in a

prioritised manner. Therefore, for given values of the variables x, f(x, y) is minimised

first. Then, F (x, y) is maximised while ensuring that the optimum objective function

value is achieved with respect to the first criterion. To accomplish this, an additional

constraint can be added to guarantee the optimal value of f(x, y). In cases where the LL

problem (first criterion) has multiple optimal solutions, choosing the optimal solution

for the second criterion guarantees the selection of the worst solution for the UL

decision maker, so applying the pessimistic approach. Also, it is worth noting that the

UL objective function now minimises over x and y. Bearing in mind that the pessimistic

approach is ensured by the lexicographic approach on the LL problem, minimising

over y in the bilevel problem occurs when, for any given value of x, there are multiple

values of y that yield the same minimum value of f(x, y) and the same maximum value

of F (x, y) (as required by the lexicographic approach). Hence, these feasible bilevel

solutions provide the same value of the UL objective function. In such scenarios, the

selection of the feasible bilevel solution can be left to the UL decision maker, as it does

not affect the value of any of the objective functions. While the reformulation proposed

in problem (2) can be applied to any pessimistic bilevel problem, its effectiveness will,

of course, hinge upon the characteristics and favourable properties of the resulting

problem. To demonstrate its efficacy, we have selected a problem from the literature

whose characteristics make it particularly well-suited for being reformulated as a single

level problem using this approach. On the other hand, it is worth pointing out that

this approach can also be effectively employed in the development of metaheuristic

algorithms, as it facilitates the generation of feasible bilevel solutions from upper-level
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variable values through solving the lexicographic optimisation problem at the lower

level.

To highlight the relevance of this approach, we apply it to the Rank Pricing Problem

with Ties (RPPT) [9], an optimisation problem which admits a bilevel formulation

that inherently requires the pessimistic approach. Moreover, the properties of the

resulting LL lexicographic problem allow for a compact formulation of the RPPT

as a single level optimisation problem. The aim of Rank Pricing Problems (RPP), as

introduced by Rusmevichientong [10] and Rusmevichientong, Van Roy, and Glynn [11],

is to determine the prices of a range of products aiming to maximise a company’s

revenue. They assume that each customer has a budget and a ranked list of products

of interest, and is looking to acquire at most one unit of a single product. Setting

a lower price can result in a loss of income if customers would have been willing to

pay a higher price, but it can also make the product accessible to a larger number

of customers. In contrast, a higher price can generate greater revenue, but customers

may be prevented from buying it if the price is too high. As a consequence, these

problems exhibit a clear hierarchical structure with two interdependent levels. On the

one hand, the company, at the upper level, must make decisions regarding the prices,

taking into account the response that those prices will elicit in the customer purchase

decisions. On the other hand, in the LL problem, each customer decides the product

to purchase. The RPP [12] assumes that each customer establishes strict preferences

over products, meaning that no two or more products are equally preferred. Then, for

each set of prices given by the UL decision maker, the LL problem has unique optimal

solution i.e. the customer selects the most preferred product he/she can afford. In

this case, the bilevel problem is well-posed. In the RPPT [9] ties are allowed, i.e., for

each customer there can be several products with the same preference and therefore

equally favoured by the customer. In this case, following what is usually general human

behaviour, the customer chooses the cheapest among those whose preference is the

highest and can afford to purchase. Therefore, the nature of this bilevel problem calls

for addressing it with the pessimistic approach, as the company cannot compel the

customer to purchase the most expensive product when the customer derives maximum

satisfaction from several products.

The key contributions of this paper are the following:

• We propose to address the pessimistic approach to a bilevel problem by reformu-

lating the LL problem as a lexicographic biobjective optimization model. Bearing
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in mind model (2), in which each level of decision making minimises its objective

function, the highest priority objective function is the LL objective function and

the second highest priority is the UL objective function reversed in sign.

• We introduce the formulation of the RPPT as a bilevel problem, which requires

the pessimistic approach to be solved, and formally reformulate it as a single level

mixed integer optimisation problem, based on the properties of the lexicographic

biobjective problem involved in the LL problem.

• We derive valid values for some big Ms involved in the single level reformulated

model as well as some valid inequalities for this model.

The remainder of this paper is structured as follows. Section 2 describes the RPPT.

Section 3 presents the pessimistic bilevel formulation of the RPPT. Taking into account

the properties of the lexicographic biobjective LL problem, section 4 reformulates the

problem as a single level mixed integer optimisation model. In section 5 valid values for

the big Ms involved and valid inequalities are derived. Section 6 presents the results

of the extensive computational experiments conducted, evaluating several variants of

the reformulated single level model. The outcomes yielded by this approach indicate

that it is competitive with the previous formulations of the RPPT proposed in the

literature.

2. Rank pricing problems

The RPP [10–14] involves determining the price of multiple products assuming that

each customer has a budget, wants to purchase a unit of a single product, and possesses

his/her own ranking of the available products, resulting in incomplete preference lists.

Moreover, preferences are assumed to be strict, i.e. no ties are allowed and there

is an unlimited supply of products. The flexibility of the ranked-based model lies

in its ability to incorporate a variety of product characteristics, apart from price,

into the customer’s decision-making process. The use of preferences is also frequent,

for instance, in location problems. Hanjoul and Peeters [15] and Cánovas et al. [16]

assume that customers have ranked the facilities based on preferences influenced by

their personal characteristics and the attributes of the sites and trips to those sites.

Hansen et al. [17], Vasilyev and Klimentova [18] and Vasilyev et al. [19], assuming

that the preference ranking is strictly ordered, propose a bilevel formulation of that

problem in which the upper level decision maker selects the facilities, while in the lower
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level problem, customers are allocated aiming to minimise the sum of preferences (the

lower the value, the higher the preference). Camacho-Vallejo et al. [20] introduce an

evolutionary algorithm for addressing the bilevel model. Finally, Calvete et al. [21]

extend that model by introducing a capacity constraint on the number of customers

assigned to each facility.

Calvete et al. [12] propose two different formulations of the RPP. The first one,

following the intuitive notion provided by the two levels of decision-making, formulates

the RPP as a bilevel multi-follower optimisation model with independent followers.

Since the RPP does not allow for ties in customer preferences, the second-level problem

has a unique optimal solution, ensuring that the bilevel problem is well-posed. The

second formulation is based on the fact that each customer purchases the product

he/she prefers the most among the products he/she can afford, resulting in a single-

level non-linear optimisation model. Both formulations are transformed into binary

linear optimisation models.

This paper focuses on the bilevel approach to the generalisation of the RPP known

as the RPPT, in which customers are allowed to have indifference among candidate

products, and ties are permitted in their preference lists. This problem was introduced

by Dominguez et al. [9]. Although they mention that there is an implicit bilevel frame-

work associated to the problem, they did not address it as a bilevel problem. Instead,

they proposed a mathematical formulation involving three indices and developed two

distinct resolution methods. One formulation is based on projecting out the customer

decision variables, thus resulting in a streamlined formulation. The second one adopts

a Benders decomposition approach which takes advantage of the separability of the

problem. Both approaches were strengthened with valid inequalities. Considering the

bilevel structure of the RPPT, when ties exist in customer preferences it cannot be

guaranteed that a unique optimal solution exists to the LL problem. In this case, i.e.

if there are several products that a customer can afford and that satisfy him the most,

he/she will choose the cheapest among them, thereby providing the least revenue to

the company. Therefore, to address the bilevel optimisation problem, a pessimistic

approach needs to be considered. From now on, we denote this model as the Pes-

simistic Bilevel Rank Pricing Problem with Ties (PB-RPPT). As far as we are aware,

the PB-RPPT remains unexplored in the existing literature.

Regarding other papers related to the RPP, Domı́nguez et al. [22] propose another

extension of the problem in which they assume that the amount of available products is

limited. After comparing the envy-free allocation of products with the envy approach,
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they focus on the second one and propose two formulations of the problem as mixed

integer linear optimisation models, deriving also valid inequalities. The computational

study shows the performance of the formulations. Additionally, Ansari [23] presents

a bilevel model for an extension of the RPP which involves both customer utility

and rank, implying that customers make decisions considering their preferences and

potential savings. To address this issue, they reformulate the problem as a single-level

problem and devise two algorithms: one based on Scatter Search and the other on

price perturbation.

3. Bilevel formulation of the RPPT: The PB-RPPT

As mentioned above, the RPPT involves determining the price of multiple products

assuming that there is an unlimited supply of products and that each customer has

a budget and intends to purchase a unit of a single product. In order to formulate

the PB-RPPT, we introduce in Table 1 the notations used.

Table 1. Notations used to formulate the PB-RPPT

Sets
K Set of customers. K = {1, . . . , |K|}.
I Set of products. I = {1, . . . , |I|}.
Sk ⊆ I Subset of products in which customer k ∈ K is interested.

Indices
k ∈ K Index of customer.
i, j ∈ I Index of product.

Parameters
bk > 0 Budget of customer k ∈ K.
ski > 0 Value of the preference assigned by customer k ∈ K to prod-

uct i ∈ Sk.
UL variables
pi ⩾ 0 Price of product i ∈ I.

LL variables
xki ∈ {0, 1} If customer k ∈ K decides to buy product i ∈ Sk, xki = 1.

Otherwise, xki = 0.

Depending on his/her personal interests, as well as the features of the products,

each customer k ∈ K has ranked the products, Sk, he/she is interested in from worst

to best, i.e., has a set of predefined nonnegative preferences ski , i ∈ Sk. It is assumed

that the greater the number, the greater the preference, i.e. ski > skj implies that
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customer k prefers product i over product j, where i, j ∈ Sk. If ski = skj customer k

has an equal preference for both products. Hence, the customer k selects one product

from Sk with the highest preference that he/she can afford. Note that customers are

not required to establish strict preferences for the products, which means they may

have equal preferences for two or more of them. In the event of a tie, i.e., if two or

more products are equivalent in terms of their appeal to a customer, he/she, as it

is common for individuals, chooses the cheapest product among those he/she equally

prefers. If a customer cannot afford any product, he/she does not make a purchase.

We also assume that each customer is interested in some product, i.e. Sk ̸= ∅, k ∈ K.

Otherwise, the customer may be eliminated from the study. Similarly, we assume that

all products are on some customer’s preference list, i.e. for every i ∈ I, there exists

k ∈ K such that i ∈ Sk. Otherwise, the product could be eliminated from the study.

In the bilevel approach of the RPPT proposed in this paper, the UL decision

maker decides on product pricing, i.e., on the value of variables {pi}i∈I , while each of

the LL decision makers decides on product purchasing, i.e. on the value of variables{
xki

}
k∈K,i∈Sk . Notice that there are as many LL decision makers as customers. Hence,

the RPPT can be formulated as the following bilinear-linear bilevel mixed integer

optimisation problem with multiple independent followers:

“max
p

”
∑
k∈K

∑
i∈Sk

pix
k
i (3a)

subject to

pi ⩾ 0, i ∈ I (3b)

where, for each customer k ∈ K, the variables {xki }i∈Sk solve

max
x

∑
i∈Sk

ski x
k
i (3c)

subject to ∑
i∈Sk

xki ⩽ 1 (3d)∑
i∈Sk

pix
k
i ⩽ bk (3e)

xki ∈ {0, 1} i ∈ Sk (3f)

The UL objective function (3a) maximises the revenue of the company. Con-

straints (3b) ensure the requirements of the price variables. The LL problem corre-

sponding to the customer k ∈ K is defined by (3c)-(3f). The LL objective function (3c)

maximises the preference of the product chosen by the customer k. Constraint (3d)
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guarantees that the customer k chooses at most one product from his/her prefer-

ence list. Constraint (3e) enforces customer k to purchase only among the products

on his/her preference list that cost less than or equal to the available budget. Con-

straints (3f) ensure that the variables xki , k ∈ K, i ∈ Sk are binary. Notice that, due

to the unlimited supply assumption, the LL problems are independent in the sense

that each of them involves only the UL variables and the LL decision variables of the

corresponding customer [24].

When there are no ties, as assumed in the RPP studied in [12], each of the LL prob-

lems has a unique optimal solution. This property allows us to ensure that the bilevel

problem is well-posed. However, the RPPT allows ties, which means that each LL prob-

lem can have multiple optimal solutions, for given values of the prices. This issue raises

concerns in bilevel optimisation as it can lead to an ill-posed model. The optimistic

approach would result in the customer choosing the most expensive among several

products with the same (and higher) preference that he/she can afford. However, this

contradicts the typical behaviour of customers who tend to seek the best product at

the lowest possible price. Therefore, the appropriate approach to solving the RPPT

is the pessimistic approach where customers act in a manner that is contrary to the

interests of the company and instead prioritise their own benefit.

To illustrate these issues, Table 2 displays an instance of the RPPT with 12 cus-

tomers and 8 products. The inner part of the table shows the preferences assigned by

each customer to every product, while the budget of each customer is shown in the

last column. When the problem is solved using the optimistic approach, the prices

assigned to the products in the optimal solution are shown in the second to last row of

the table. The products purchased by customers are identified with a blue dot in the

inner part of the table. Note that customer k1 is forced to choose product i3 whereas

his/her choice would be product i4 which has the same priority and is cheaper. Hence,

this is not an achievable solution. The optimal prices of the products when the pes-

simistic approach is applied are shown in the last row of the table and the products

purchased are identified with a red dot. Notice that customers k1 to k10 purchase the

cheapest product among those they prefer the most and can afford within their budget.

Moreover, with these prices, customers k11 and k12 cannot buy any product.

As pointed out in section 1, the novel approach to handle pessimistic bilevel prob-

lems consists of considering the k-th LL problem, k ∈ K, as a lexicographic biobjective

optimisation problem, i.e., in the problem (3c)-(3f), the objective (3c) should be sub-
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Table 2. An instance of the RPPT with 12 customers and 8 products.

Products Budget

Customers i1 i2 i3 i4 i5 i6 i7 i8

k1 7 5 • 8 • 8 7 6 - 7 99
k2 6 • • 8 5 3 7 - 6 4 78
k3 • • 8 - - 8 - 8 7 - 70
k4 • • 8 4 5 6 3 2 7 6 70
k5 5 6 6 • 8 • 7 7 - 5 63
k6 - • 8 - • 8 - - - - 57
k7 - 4 6 5 7 4 • • 8 7 43
k8 - 6 8 8 • 7 - - • 6 42
k9 4 1 5 3 2 6 7 • • 8 37
k10 7 5 - 4 • 8 - • 6 - 30
k11 6 5 7 8 3 • 4 - - 27
k12 7 7 - 8 6 - 6 • 8 20

Product prices in the optimal solution

Optimistic • 70 78 99 57 30 27 43 20
Pessimistic • 70 57 99 99 63 99 30 37

stituted by

lexmax
x

∑
j∈Sk

skjx
k
j , −

∑
j∈Sk

pjx
k
j

 (4)

The first objective aims to maximise the preference of the k-th customer, while the

second objective aims to minimise the price paid for the product.

Rusmevichientong et al. [11] state that there is an optimal solution of the RPP

such that only distinct budgets need to be considered for price selection. This result

can be directly extended to the RPPT [9]. Based on these findings, and bearing in

mind that each product has at most one price, prices can be expressed in terms of

budgets, as done in [12]. For this purpose, let us assume that budgets are sorted in

increasing order and let L be the set of indices of different budgets, L = {1, . . . , |L|}.
The indices in L are consistent with that order, i.e., l1 < l2 if bl1 < bl2 . We also define

the function σ : K −→ L which maps the customer k to the index l corresponding

to the position that his/her budget occupies in the ordered set of distinct budgets.

With this definition, from now on, bσ(k) refers to the budget of customer k. Let vli be

a binary variable which takes value 1 if product i has price bl; otherwise vli is equal to

0. Using these variables, the price pi can be written as:

pi =

|L|∑
l=1

blvli, where

|L|∑
l=1

vli ⩽ 1, i ∈ I

On the other hand, customer k can only buy a product that is on his/her preference
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list and whose price is less than or equal to his/her budget. Hence,

xki ⩽
σ(k)∑
l=1

vli, i ∈ Sk (5)

Given the above considerations, the PB-RPPT can be formulated as the following

bilinear linear bilevel optimisation problem with binary variables, multiple indepen-

dent followers and a lexicographic biobjective function at the LL of decision-making:

max
v,x

∑
k∈K

∑
j∈Sk

σ(k)∑
l=1

blvlj

xkj (6a)

subject to

|L|∑
l=1

vli ⩽ 1, i ∈ I (6b)

vli ∈ {0, 1} , i ∈ I, l ∈ L (6c)

where, for each customer k ∈ K, the variables {xki }i∈Sk solve

lexmax
x

∑
j∈Sk

skjx
k
j , −

∑
j∈Sk

σ(k)∑
l=1

blvlj

xkj

 (6d)

subject to ∑
j∈Sk

xkj ⩽ 1 (6e)

xki ⩽
σ(k)∑
l=1

vli, i ∈ Sk (6f)

xki ∈ {0, 1} , i ∈ Sk (6g)

Note that the UL objective function (6a) maximises over v and x, as indicated when

formulating problem (1). Bearing in mind that the pessimistic approach is guaranteed

by (6d), maximisation over x only occurs when there are multiple products that the

customer can buy having the same priority, which is the highest, and having the same

price, which is the lowest. In other words, the problem LL has multiple optima with

several of these products having the lowest price. In such cases, the control over the

product purchased by the customer can be left to the UL decision maker, as it does

not affect the value of any of the objective functions.

In order to exactly solve the PB-RPPT, in the next section we reformulate it as a
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single level optimisation problem by transforming the LL problems corresponding to

each customer.

4. A single level reformulation of the PB-RPPT

Let us consider the LL problem (6d)-(6g) corresponding to the k-th customer, for a

given value of the UL variables {vli}i∈I, l∈L. Based on these values, product prices can

be determined and it is possible to know which products each customer can afford.

Let I(k) ⊆ Sk be the subset of products that customer k is interested in and can

purchase with his/her budget, I(k) = {i ∈ Sk :
∑σ(k)

l=1 vli = 1}. Note that xki = 0 for

i ∈ Sk \ I(k), since the price of these products is greater than the k-th customer’s

budget. Hence, the LL problem corresponding to the k-th customer can be written as:

lexmax
x

 ∑
j∈I(k)

skjx
k
j , −

∑
j∈I(k)

σ(k)∑
l=1

blvlj

xkj

 (7a)

subject to ∑
j∈I(k)

xkj ⩽ 1 (7b)

xki ∈ {0, 1} , i ∈ I (k) (7c)

Since lexicographic optimisation takes into consideration one objective at a time, let

us consider the maximisation of problem (7a)-(7c) with respect to the first objective

function:

max
x

∑
j∈I(k)

skjx
k
j (8a)

subject to ∑
j∈I(k)

xkj ⩽ 1 (8b)

xki ∈ {0, 1} i ∈ I (k) (8c)

Its optimal solution is the product i ∈ I(k) with the largest preference (or any of the

products tied if there are several products with the same largest preference), i.e., such

that
∑

j∈I(k) s
k
jx

k
j ⩾ ski .
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Let us consider the linear relaxation of problem (8):

max
x

∑
j∈I(k)

skjx
k
j (9a)

subject to ∑
j∈I(k)

xkj ⩽ 1 (9b)

xki ⩾ 0 i ∈ I (k) (9c)

Taking into account the characteristics of the constraint (9b), the linear optimisation

problem (9) has an optimal solution which takes integer values, and so solves problem

(8). The lexicographic approach then maximises with respect to the second objective,

which, basically, selects the most economical product from the tied ones among the

affordable and most preferred by the customer k. As pointing out above, in the event

that there are still tied products among that most economical ones, we have left it

up to the UL decision maker to select from among these products the one that the

customer k purchases since neither the UL objective function nor the LL one have their

optimal values modified. Based on previous statements, problem (10a)-(10d) includes

among its possible alternative optima an optimal solution of problem (7a)-(7c):

min
x

∑
j∈I(k)

σ(k)∑
l=1

blvlj

xkj (10a)

subject to ∑
j∈I(k)

xkj ⩽ 1 (10b)

∑
j∈I(k)

skjx
k
j ⩾ ski , i ∈ I (k) (10c)

xki ⩾ 0, i ∈ I (k) (10d)

where constraints (10c) guarantee the optimality of the solution with respect to the

first objective function.

The dual of problem (10) is:

max
y,w

− yk +
∑

j∈I(k)

skjw
k
j (11a)

subject to
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− yk + ski
∑

j∈I(k)

wk
j ⩽

σ(k)∑
l=1

blvli, i ∈ I (k) (11b)

yk ⩾ 0 (11c)

wk
i ⩾ 0, i ∈ I (k) (11d)

where yk is the dual variable associated with the constraint (10b) and {wk
i }i∈I(k) are

the dual variables associated with constraints (10c). As problem (10) possesses an

optimal solution, the dual problem also has an optimal solution, and the optimal ob-

jective function values for both problems coincide. Hence, by applying duality theory,

{xki }i∈I(k) and {yk, wk
i }i∈I(k) are optimal solutions to their respective problems if and

only if:

∑
j∈I(k)

σ(k)∑
l=1

blvlj

xkj = −yk +
∑

j∈I(k)

skjw
k
j (12a)

∑
j∈I(k)

xkj ⩽ 1 (12b)

∑
j∈I(k)

skjx
k
j ⩾ ski , i ∈ I (k) (12c)

− yk + ski
∑

j∈I(k)

wk
j ⩽

σ(k)∑
l=1

blvli i ∈ I (k) (12d)

xki ⩾ 0, i ∈ I (k) (12e)

wk
i ⩾ 0, i ∈ I (k) (12f)

yk ⩾ 0 (12g)

Substituting the value of the variable yk obtained from equation (12a) in con-

straints (12d) and (12g), we obtain:∑
j∈I(k)

xkj ⩽ 1 (13a)

∑
j∈I(k)

skjx
k
j ⩾ ski , i ∈ I (k) (13b)

∑
j∈I(k)

σ(k)∑
l=1

blvlj

xkj −
∑

j∈I(k)

skjw
k
j + ski

∑
j∈I(k)

wk
j ⩽

σ(k)∑
l=1

blvli, i ∈ I (k) (13c)

14



∑
j∈I(k)

skjw
k
j −

∑
j∈I(k)

σ(k)∑
l=1

blvlj

xkj ⩾ 0 (13d)

xki ⩾ 0, i ∈ I (k) (13e)

wk
i ⩾ 0, i ∈ I (k) (13f)

These constraints have been derived by assuming that a value of the UL variables is

known and thus only the LL variables corresponding to products in I(k) are needed,

since the remaining variables are equal to zero due to constraints (6f). Therefore, to

replace the LL problem of the k-th customer by constraints (13) in problem PB-RPPT,

we need to include these constraints and handle them when writing the summation

in Sk, guaranteeing that they apply when i ∈ I(k) and do not impose any additional

condition when i ∈ Sk \ I(k).

For this purpose, assuming that constraints (6f) are included, next we analyse each

constraint in (13):

• Variables wk
i have been defined only for i ∈ I(k). We introduce the variables wk

i

for i ∈ Sk \ I(k) and impose that they are equal to zero. Thus, constraints (13f)

are replaced by wk
i ⩾ 0, i ∈ Sk, and wk

i ⩽ Mk
i

∑σ(k)
l=1 vli, i ∈ Sk, where Mk

i is a

constant big enough to guarantee that these constraints are only restrictive when

i ∈ Sk \ I(k). In the following section, we propose values for Mk
i , i ∈ Sk, k ∈ K.

• Constraint (13a) can be replaced by
∑

j∈Sk xkj ⩽ 1, as only terms equal to zero

are added.

• Constraints (13b) can be replaced by
∑

j∈Sk skjx
k
j ⩾ ski

∑σ(k)
l=1 vli, i ∈ Sk as∑

j∈Sk skjx
k
j ⩾ 0, and

∑σ(k)
l=1 vli is equal to 1 when i ∈ I(k), and is equal to 0

otherwise.

• In constraints (13c), the summation can be extended over Sk as only zeros are

added. Thus, they can be replaced by

∑
j∈Sk

σ(k)∑
l=1

blvlj

xkj−
∑
j∈Sk

skjw
k
j+ski

∑
j∈Sk

wk
j ⩽

σ(k)∑
l=1

blvli+M̃k
i

1−
σ(k)∑
l=1

vli

 , i ∈ Sk

where M̃k
i are constants big enough to guarantee that the constraints are only

restrictive when i ∈ I(k). In the following section, we propose values for M̃k
i ,

i ∈ Sk, k ∈ K.

• Constraint (13d) can be substituted by
∑

j∈Sk skjw
k
j −

∑
j∈Sk

(∑σ(k)
l=1 blvlj

)
xkj ⩾ 0
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as only terms equal to zero are added.

Hence, the PB-RPPT can be reformulated as the following single level mixed integer

bilinear optimisation problem:

max
v,x,w

∑
k∈K

∑
j∈Sk

σ(k)∑
l=1

blvlj

xkj (14a)

subject to

|L|∑
l=1

vli ⩽ 1, i ∈ I (14b)

∑
j∈Sk

xkj ⩽ 1, k ∈ K (14c)

xki ⩽
σ(k)∑
l=1

vli, k ∈ K, i ∈ Sk (14d)

∑
j∈Sk

skjx
k
j ⩾ ski

σ(k)∑
l=1

vli, k ∈ K, i ∈ Sk (14e)

wk
i ⩽ Mk

i

σ(k)∑
l=1

vli, k ∈ K, i ∈ Sk (14f)

∑
j∈Sk

skjw
k
j −

∑
j∈Sk

σ(k)∑
l=1

blvlj

xkj ⩾ 0, k ∈ K (14g)

∑
j∈Sk

σ(k)∑
l=1

blvlj

xkj −
∑
j∈Sk

skjw
k
j + ski

∑
j∈Sk

wk
j ⩽

σ(k)∑
l=1

blvli + M̃k
i

1−
σ(k)∑
l=1

vli

 , k ∈ K, i ∈ Sk (14h)

vli ∈ {0, 1}, i ∈ I, l ∈ L (14i)

xki ∈ {0, 1}, k ∈ K, i ∈ Sk (14j)

wk
i ⩾ 0, k ∈ K, i ∈ Sk (14k)

In order to linearise problem (14), following the approach proposed in [12], we

introduce the non-negative variables {zki }i∈I,k∈K defined as the profit obtained by the

company due to customer k purchasing product i, i.e., zki =
(∑σ(k)

l=1 blvli

)
xki . Since

16



the problem maximises, in order to guarantee this equality the following two sets of

additional constraints must be added:

zki ⩽
σ(k)∑
l=1

blvli, k ∈ K, i ∈ Sk

zki ⩽ bσ(k)xki , k ∈ K, i ∈ Sk

The first one ensures that the profit cannot exceed the price set for the product. The

second one imposes that the profit obtained from customer k must be zero if customer

k does not purchase product i, either because he/she cannot afford it or because he/she

decides to purchase another product.

Therefore, finally the PB-RPPT can be stated as the following single level linear

mixed integer optimisation problem:

max
z,v,x,w

∑
k∈K

∑
j∈Sk

zkj (15a)

subject to

|L|∑
l=1

vli ⩽ 1, i ∈ I (15b)

∑
j∈Sk

xkj ⩽ 1, k ∈ K (15c)

xki ⩽
σ(k)∑
l=1

vli, k ∈ K, i ∈ Sk (15d)

zki ⩽
σ(k)∑
l=1

blvli, k ∈ K, i ∈ Sk (15e)

zki ⩽ bσ(k)xki , k ∈ K, i ∈ Sk (15f)

∑
j∈Sk

skjx
k
j ⩾ ski

σ(k)∑
l=1

vli, k ∈ K, i ∈ Sk (15g)

wk
i ⩽ Mk

i

σ(k)∑
l=1

vli, k ∈ K, i ∈ Sk (15h)

∑
j∈Sk

skjw
k
j −

∑
j∈Sk

zkj ⩾ 0, k ∈ K (15i)

∑
j∈Sk

zkj −
∑
j∈Sk

skjw
k
j + ski

∑
j∈Sk

wk
j ⩽

17



σ(k)∑
l=1

blvli + M̃k
i

1−
σ(k)∑
l=1

vli

 , k ∈ K, i ∈ Sk (15j)

vli ∈ {0, 1}, i ∈ I, l ∈ L (15k)

xki ∈ {0, 1}, k ∈ K, i ∈ Sk (15l)

wk
i ⩾ 0, k ∈ K, i ∈ Sk (15m)

zki ⩾ 0, k ∈ K, i ∈ Sk (15n)

Note that the final model has as many variables as |I| |L| + 3
∑

k∈K
∣∣Sk

∣∣ and as

many constraints as |I| + 2 |K| + 6
∑

k∈K
∣∣Sk

∣∣. Nevertheless, the formal simplicity of

the model allows it to be implemented in most commercial software. In the following

section we will complete the model formulation by suggesting suitable values for the

big-Ms.

5. Deriving values for Mk
i and M̃k

i and valid inequalities for problem (15)

The computation of bilevel-correct big-Ms needed when working with the reformula-

tion of the bilevel problem using duality properties is a problem that Kleinert et al. [25]

have shown to be as complex, in general, as solving the original bilevel problem. Ad-

ditionally, they suggest the need to explore problem-specific bounds when employing

this approach to tackle bilevel problems. Furthermore, Pineda and Morales [26] high-

light the issues encountered in solving bilevel problems when M is set either too small

or too large. However, in certain specific bilevel problems, as the PB-RPPT, it is

possible to ensure the computation of suitable constants by taking advantage of the

characteristics of the model.

Note that, according to constraints (15h), Mk
i must be an upper bound of the

value of the variable wk
i , i ∈ Sk, k ∈ K. On the other hand, taking into account

constraints (15i), it follows that the left part of constraints (15j) is:

∑
j∈Sk

zkj −
∑
j∈Sk

skjw
k
j + ski

∑
j∈Sk

wk
j ⩽ ski

∑
j∈Sk

wk
j (16)

Therefore, the task of determining M̃k
i becomes finding an upper bound for

∑
j∈Sk wk

j ,

k ∈ K.
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The strategy proposed below to find valid bounds consists of constructively finding

an optimal solution of the dual problem. Let us recall that the dual variables were

introduced when formulating the dual problem of (10) that consisted of minimising the

price paid by the customer guaranteeing that the product with the highest preference

among those accessible according to his/her budget is chosen. We denote skmax =

max{ski : i ∈ I(k)}, I(k)+ = {i ∈ I(k) : ski = skmax} and pkmin = min{pi : i ∈ I(k)+}.
Notice that customer k will purchase a product h ∈ I(k)+, such that ph = pkmin.

Theorem 5.1. For a given value of the UL variables {pi}i∈I and a customer k ∈ K,

let h ∈ I(k)+, such that ph = pkmin. Then,

yk = −pkmin + skhw
k
h (17a)

wk
h = max

{
max
i∈I(k)

{
pkmin − pi

skh − ski
: ski < skmax, pi < pkmin

}
,

pkmin

skh

}
(17b)

wk
i = 0 if i ̸= h, i ∈ I(k) (17c)

is an optimal solution of the dual problem (11).

Proof. From (17), wk
i = 0 for i ∈ I(k), i ̸= h. In order to guarantee that it is a

feasible solution, together with yk ⩾ 0 and wk
h ⩾ 0, it is necessary to ensure that

−yk + skiw
k
h ⩽

σ(k)∑
l=1

blvli = pi (18)

Moreover, in order to be optimal, the objective function value of this solution must

be equal to the optimal objective function value of the primal problem (10). Hence

−yk + skhw
k
h = pkmin, providing the value of yk in (17a). To guarantee that yk ⩾ 0, it

must be ensured that wk
h ⩾ pk

min

skh
.

Finally, bearing in mind the value of yk, constraint (18) is trivially met for i ∈ I(k)+.

Otherwise, to ensure the constraint (18), it must be met that:

wk
h ⩾

pkmin − pi

skh − ski
i ∈ I(k) \ I(k)+

As a consequence,

wk
h = max

{
max
i∈I(k)

{
pkmin − pi

skh − ski
: ski < skmax, pi < pkmin

}
,

pkmin

skh

}
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and the proof is complete.

Corollary 5.2. For every product i ∈ Sk and customer k ∈ K,

Mk
i = max

{
bσ(k) − b1,

bσ(k)

ski

}
M̃k

i = ski max
j∈Sk

Mk
j

(19)

are valid constants in constraints (15h) and (15j), respectively.

Proof. According to theorem (5.1) and taking into account that b1 ⩽ pi ⩽ bσ(k) for

i ∈ I(k),

wk
i ⩽ max

{
bσ(k) − b1,

bσ(k)

ski

}
Moreover, wk

i = 0 for i ∈ Sk \ I(k). Thus, Mk
i is a valid constant in constraint (15h).

In addition,
∑

j∈Sk wk
j is equal to the value of the dual variable whose price is the

lowest among those that provide the greatest customer satisfaction for customer k,

therefore, it is less than or equal to maxj∈Sk Mk
j . Thus, M̃

k
i is a valid constant in

constraint (15j).

Corollary 5.3. For every product i ∈ Sk and customer k ∈ K, the following set of

constraints which relate the variables of the LL problem and its dual:

wk
i ⩽ Mk

i x
k
i , i ∈ Sk, k ∈ K (20)

are valid inequalities for problem (15).

Proof. Note that when xki = 1, the constraint does not impose any restriction on

the value of wk
i . On the other hand, if xki = 0, according to theorem (5.1) an optimal

solution of the dual problem (11) exists for which wk
i = 0.

Theorem 5.4. The following inequalities are valid for problem (15):

zki ⩽ brxki +

σ(k)∑
l=r+1

(
bl − br

)
vli, k ∈ K, i ∈ Sk, r = 1, . . . , σ(k)− 1 (21)

Proof. See Proposition 4.3 in [12] and Propositions 5.2 and 5.3 in [22].
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6. Computational study

In this section we present and discuss the results of the computational experiments

carried out. The numerical experiments were performed on a PC 13th Gen Intel Core

i9-13900F at 2.0 GHz × 32 having 64.0 GB of RAM, and Windows 11 64-bit as the

operating system, using Gurobi 10.0.3 with 6 threads. The absolute MIP optimality

gap was set at 0.999 and the relative MIP optimality gap was set at 1e-5. The stopping

criterion was set at 3600 seconds.

The performance of the algorithm was tested on the set of RPPT benchmark

problems described in [9], which are available at https://github.com/cdomsa/RPPT/

and are themselves based on the instances proposed in [12]. In this set of instances,

|K| ∈ {50, 100, 150}, |I| ∈ {0.1 |K| , 0.5 |K| , |K|} and
∣∣Sk

∣∣ ∈ {⌈0.2 |I|⌉ , ⌈0.5 |I|⌉ , |I|}.
The number of ties can be 1, 2, 3, 5 or 10, depending on the combination of |K|, |I|
and

∣∣Sk
∣∣. Typically, for each combination of these parameters, there are three distinct

possible values for the number of ties, except for instances with the smallest number

of customers and products. This information can be observed in Table 4 in the first,

second and third (corresponding to |K| = 50), tenth, eleventh and twelfth (corre-

sponding to |K| = 100), and nineteenth, twentieth and twenty-first (corresponding to

|K| = 150) columns. Moreover, for each combination of |K|, |I|,
∣∣Sk

∣∣ and number of

ties, 5 instances were generated, making a total of 365 instances.

In order to reduce the size of the preference list and consequently the instance

size before solving it, the preprocessing technique introduced in [9], based on the one

developed in [12], is applied. The purpose of preprocessing is to reduce the preference

list of each customer by removing some products (or, equivalently, to fix some of

the x-variables and v-variables to 0) since it is guaranteed that an optimal solution

exists so that the customer does not purchase the removed products. The theoretical

results supporting the aforementioned assertions can be found in [12]. Next, we briefly

describe how the preprocessing technique operates. Assuming that the customers have

been sorted by budget from highest to lowest (in case of a tie in the budget, the

customers are arbitrarily ordered), the first customer on the list (the richest) is selected

and assigned the set of products he/she prefers the most. The preference value of the

products in this set is established as the score of this customer. Then, in descending

order according to budget, each customer is assigned either his/her most preferred

set of products not contained in the union of the sets previously assigned to richer

customers, and the corresponding score or, in case all of them are contained in such

21

https://github.com/cdomsa/RPPT/


union, his/her least preferred set of products which determines his/her score. At the

end of the process, for each customer, all products whose preference is lower than

the customer’s score are removed from his/her preference list. Table 3 shows how the

preprocessing works with the illustrative example presented in Table 2. The preference

values of the products eligible for removal are highlighted in grey. The corresponding

products are removed from the customer’s preference list.

Table 3. Preprocessing of the illustrative example shown in Table 2.

Customers Products Budget Score

i1 i2 i3 i4 i5 i6 i7 i8

k1 7 5 8 8 7 6 - 7 99 8
k2 6 8 5 3 7 - 6 4 78 8
k3 8 - - 8 - 8 7 - 70 8
k4 8 4 5 6 3 2 7 6 70 7
k5 5 6 6 8 7 7 - 5 63 7
k6 - 8 - 8 - - - - 57 8
k7 - 4 6 5 7 4 8 7 43 7
k8 - 6 8 8 7 - - 6 42 6
k9 4 1 5 3 2 6 7 8 37 1
k10 7 5 - 4 8 - 6 - 30 4
k11 6 5 7 8 3 4 - - 27 3
k12 7 7 - 8 6 - 6 8 20 6

We have evaluated the formulation presented in problem (15), called variant V0,

and three more variants of this model which involve the use of the valid inequalities

proposed in section 5. These variants are: i) V1 = V0 plus the set of inequalities (20); ii)

V2 = V0 plus the set of inequalities (21); and iii) V3 = V0 plus both sets of inequalities.

In all cases, the values of Mk
i and M̃k

i developed in (19) are applied. It is worth

mentioning that there is an important difference in the way each set of inequalities

is introduced into the models. On the one hand, inequalities (21) are valid cuts that

help tighten the relaxation of a MIP by removing fractional solutions. Since it is not

mandatory to satisfy all the constraints simultaneously and the number of them does

not increase exponentially, these inequalities have been defined as user cuts in Gurobi.

They act as a pool of inequalities the solver can use when they are needed. On the

other hand, the purpose of the inequalities (20) is to achieve a solution with the

characteristics of the Theorem 5.1, and so they must all be fulfilled simultaneously.

Therefore, they are introduced directly as constraints in the model.

Table 4 displays the number of instances solved to optimality for each variant pro-
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posed in this paper, V0, V1 = V0 + (20), V2 = V0 + (21) and V3 = V0 + (20) + (21), as

well as the number of problems solved by the best models in [9]. Models VR and VB

correspond to the models referred to in this paper as (RM) + VIs + prepro and (BM)

+ VIs + prepro, respectively. According to [9], both formulations were implemented

by means of Mosel version 4.0.3 of Xpress-MP, Optimizer version 29.01.10, running on

a Dell PowerEdge T110 II Server (Intel Xeon E3-1270, 3.40 GHz) with 16 GB of RAM.

In the Table 4, there are three blocks, which refer to the number of customers (50,

100 and 150). In each block, the three first columns refer to the number of products,

the size of the list of preferences and the number of ties. The remaining six columns

indicate the number of problems solved to optimality. Each cell groups the 5 instances

generated with the corresponding characteristics. The green colour means that every

instance in the group has been solved. A colour shading from green to red indicates

the transition from 5 to 0 solved problems. The last row in the table displays the total

number of instances solved by each model.
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Summarising the results, every variant solves all instances with 50 customers. Re-

garding the 125 instances with 100 customers, variants V2 and V3 show the best per-

formance since they solve 121 instances, as variant VR. Finally, for the 125 instances

with 150 customers, variants V2 clearly outperform the remaining ones, solving 106 in-

stances. Globally, V2 solves 342 (93.7%) instances, while VR and VB solve 322 (88.2%)

and 311 (85.2%) instances, respectively. Concerning the computational times of solved

instances, Table 5 presents several statistical measures which reinforce the quality of

the variant V2. This variant has the lowest mean time, 167.25 seconds, and 75% of the

solved instances are processed in less than 48.50 seconds.

Table 5. Numerical summary of the computational time of solved instances by vari-
ant, in seconds.

Variant # of instances Mean CV Min P25 P50 P75 Max

V0 297 173.76 2.62 0.07 1.04 4.79 54.98 2817.10

V1 307 236.45 2.65 0.05 0.99 3.39 70.94 3385.25
V2 342 167.25 2.78 0.04 1.13 4.03 48.50 3230.00

V3 332 217.36 2.82 0.04 1.33 3.93 65.40 3537.44

In addition, Table 6 displays various statistical measures related to the MIPGap

provided by Gurobi (multiplied by 100) for instances that were not solved to optimality.

It is worth noting that variant V2 consistently yields the best results. The number of

unsolved problems is the lowest, 23 instances, as well as the mean of the MIPGap,

0.0057. Moreover, 75% of these instances have a MIPGap less than or equal to 0.0082.

Figure 1 shows the corresponding box plots. A box plot has been drawn to illustrate

the MIPGap of instances that were not solved to optimality in each of the variants,

with outliers represented by a black dot. The mean value is represented by a grey

circle. It can be observed that variant V2 is the only one with no outliers, meaning

there are no problems where the MIPGap value is considerably higher than in the rest

of the problems. In addition, variant V2 shows much less dispersion than the other

variants. From all the previous remarks, we conclude that variant V2, which exploits

the use of the valid inequalities (21), outperforms the other variants analysed.

Table 6. Numerical summary of the MIPGap (multiplied by 100) of non-solved
instances by variant.

Variant # of instances Mean CV Min P25 P50 P75 Max

V0 68 1.83 0.56 0.15 1.10 1.88 2.31 6.19

V1 58 1.62 0.58 0.06 1.01 1.59 2.36 4.57
V2 23 0.57 0.61 0.04 0.36 0.57 0.82 1.36

V3 33 2.12 1.50 0.09 0.42 0.80 1.55 12.34
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Figure 1. Box plots of the MIPGap (multiplied by 100) of non-solved instances by variant.

In [9], two additional randomly generated large-scale instances were solved to opti-

mality. For both instances, |K| = 350, |I| = 10,
∣∣Sk

∣∣ = 5 and the number of ties is 1,

with all customers having distinct budgets. Table 7 shows the optimal value of the ob-

jective function, Z, as well as the computation time, T , required to obtain the optimal

solution. Note that, again, the V2 variant provides the best results. In fact, comparing

the computation times required by variants VR and VB versus those required by the

variant V2, these are 34 and 66 times lower, respectively, for the first instance and 51

and 17 times lower, respectively, for the second instance.

Table 7. Additional instances solved to optimality. Z refers to the optimal objective
function value, T means computational time involved. Variant V0 refers to model (15),

V1 = V0 plus the set of inequalities (20), V2 = V0 plus the set of inequalities (21),
V3 = V0 plus both sets of inequalities. Variant VR is model (RM) + VIs + prepro and

variant VB refers to model (BM) + VIs + prepro in [9].

|K| |I|
∣∣Sk

∣∣ Ties Inst. Z T

V0 V1 V2 V3 VR VB

350 10 5 1 1 148414 852.5 1171.9 354.9 679.6 12109.9 23644.0
350 10 5 1 2 143469 1931.5 1479.8 1452.6 1649.1 77737.9 25292.9
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7. Conclusions and further research

This paper introduces a novel and competitive approach to tackle bilevel problems from

a pessimistic standpoint. The proposed method entails reformulating the bilevel prob-

lem using a lexicographic biobjective approach associated with the LL decision-maker.

It is illustrated by its successful application to the RPPT. The RPPT is presented as a

bilevel optimisation problem where the company, as the UL decision-maker, must set

prices considering customer purchasing decisions at the lower level. When ties exist

in customer preferences, the existence of a unique optimal solution to the LL prob-

lem cannot be guaranteed. In this scenario, if customers have several products within

their budget that equally satisfy their preferences, they will opt for the least expen-

sive among them, thereby providing the least revenue to the company. Therefore, the

RPPT is an inherently hierarchical problem aligned with the pessimistic approach.

After formulating the RPPT as a pessimistic bilevel problem, the paper goes on

to develop the theory that allows us to reformulate it as a single-level problem. The

idea is to replace the lower-level lexicographic optimisation problem associated to each

customer with a set of constraints by applying the relationships between primal and

dual problems. In addition, it is necessary in some constraints to use big-Ms, for which

valid values are proposed. The paper also includes the derivation of valid inequalities

whose possible interest is analysed in the computational study.

The computational experiment aims to solve the benchmark instances existing in

the literature for the RPPT. The quality of four variants of the model is checked,

obtaining that the best one is the variant that adds to the original model formulation

the valid inequalities on the z variables which are used to linearise the pricing problem.

The results achieved improve on the results presented in the literature.

The purpose of further research will be to explore other bilevel problems where the

pessimistic approach is applicable and there exists a structure which allows making use

of the approach proposed in this paper. On the other hand, focusing on the RPPT, it

will be also of interest to establish relationships between the formulation RM proposed

in [9] and the one proposed in this paper, as well as to study the inclusion of a limitation

in the number of available products as proposed in [22].
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[21] Calvete H, Galé C, Iranzo JA, et al. A matheuristic for solving the bilevel approach of
the facility location problem with cardinality constraints and preferences. Computers and
Operations Research. 2020;124(105066):1–15.

[22] Domı́nguez C, Labbé M, Maŕın A. Mixed-integer formulations for the capacitated rank
pricing problem with envy. Computers and Operations Researc. 2022;140(105664):1–12.

[23] Ansari A. A bilevel product pricing problem with ranks and utilities: Models and algo-
rithms Thesis for the degree of master of applied science (industrial engineering). Con-
cordia University, Montréal, Québec, Canada; 2022.
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[25] Kleinert T, Labbé M, Plein F, et al. There’s no free lunch: On the hardness of choosing
a correct big-M in bilevel optimization. Operations Research. 2020;68:1716–1721.

[26] Pineda S, Morales J. Solving linear bilevel problems using big-Ms: Not all that glitters is
gold. IEEE Transactions on Power Systems. 2019;34(3):2469–2471.

8. Appendix

In order to facilitate future comparisons with other algorithms developed to solve the

RPPT, this appendix makes available all relevant information provided by Gurobi on

the application of the V2 variant to the instances. Tables 8 to 10 provide for each

instance the characteristics which define it, together with the best objective function

value provided by Gurobi, Z, the computational time invested, T , and the MIPGap

when applicable, G.
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Table 8. Results using variant 2 for each instance of size |K| = 50, problem by

problem. Inst. refers to the number of the instance, Z refers to the best objective
function value provided by Gurobi, T means computational time and G refers to the

MIPGap. Stopping criterion 3600 seconds.

Inst. |I|
∣∣Sk

∣∣ Ties Z T G

1 5 2 1 1551 0.345 -
2 5 2 1 1802 0.414 -
3 5 2 1 1460 0.266 -
4 5 2 1 1545 0.283 -
5 5 2 1 1375 0.289 -
6 5 3 1 1796 0.466 -
7 5 3 1 1928 0.545 -
8 5 3 1 1641 0.486 -
9 5 3 1 1709 0.583 -

10 5 3 1 1519 0.518 -
11 5 5 1 1901 1.141 -
12 5 5 1 2023 0.903 -
13 5 5 1 1825 1.099 -
14 5 5 1 1867 0.856 -
15 5 5 1 1717 1.227 -
16 5 5 2 1867 1.080 -
17 5 5 2 1944 1.178 -
18 5 5 2 1773 0.944 -
19 5 5 2 1736 1.301 -
20 5 5 2 1583 0.989 -
21 5 5 3 1780 1.128 -
22 5 5 3 1866 0.990 -
23 5 5 3 1635 1.684 -
24 5 5 3 1727 1.188 -
25 5 5 3 1524 1.576 -
26 25 5 1 2142 0.348 -
27 25 5 1 2211 0.849 -
28 25 5 1 2047 0.403 -
29 25 5 1 2310 0.217 -
30 25 5 1 2575 0.417 -
31 25 5 2 2053 0.948 -
32 25 5 2 2099 1.390 -
33 25 5 2 2028 0.395 -
34 25 5 2 2212 0.906 -
35 25 5 2 2446 1.023 -
36 25 5 3 2013 2.482 -
37 25 5 3 2059 8.023 -
38 25 5 3 1813 6.896 -
39 25 5 3 2093 5.183 -
40 25 5 3 2312 7.581 -
41 25 13 1 2245 2.094 -
42 25 13 1 2336 1.397 -
43 25 13 1 2149 1.451 -
44 25 13 1 2433 1.478 -
45 25 13 1 2661 0.434 -
46 25 13 3 2203 2.398 -
47 25 13 3 2329 1.788 -
48 25 13 3 2092 2.430 -
49 25 13 3 2402 2.034 -
50 25 13 3 2605 2.689 -
51 25 13 5 2207 3.035 -
52 25 13 5 2259 11.090 -
53 25 13 5 2047 4.764 -
54 25 13 5 2348 4.078 -
55 25 13 5 2565 12.549 -
56 25 25 3 2266 6.470 -
57 25 25 3 2365 6.788 -
58 25 25 3 2096 9.183 -
59 25 25 3 2419 9.602 -
60 25 25 3 2704 5.704 -

Inst. |I|
∣∣Sk

∣∣ Ties Z T G

61 25 25 5 2274 8.756 -
62 25 25 5 2365 8.006 -
63 25 25 5 2104 13.113 -
64 25 25 5 2442 7.554 -
65 25 25 5 2662 10.226 -
66 25 25 10 2230 8.721 -
67 25 25 10 2271 45.460 -
68 25 25 10 2075 47.199 -
69 25 25 10 2369 27.623 -
70 25 25 10 2583 59.075 -
71 50 10 1 2473 0.070 -
72 50 10 1 3035 0.148 -
73 50 10 1 2610 0.037 -
74 50 10 1 2652 0.108 -
75 50 10 1 2552 0.092 -
76 50 10 3 2423 0.473 -
77 50 10 3 3019 0.388 -
78 50 10 3 2556 0.461 -
79 50 10 3 2619 0.287 -
80 50 10 3 2547 0.190 -
81 50 10 5 2349 1.749 -
82 50 10 5 2962 2.278 -
83 50 10 5 2515 2.234 -
84 50 10 5 2585 0.983 -
85 50 10 5 2476 1.372 -
86 50 25 3 2481 0.123 -
87 50 25 3 3050 0.269 -
88 50 25 3 2625 0.055 -
89 50 25 3 2648 0.337 -
90 50 25 3 2559 0.286 -
91 50 25 5 2470 1.026 -
92 50 25 5 3044 0.393 -
93 50 25 5 2617 0.119 -
94 50 25 5 2656 0.131 -
95 50 25 5 2557 0.252 -
96 50 25 10 2438 2.574 -
97 50 25 10 3016 3.637 -
98 50 25 10 2586 1.909 -
99 50 25 10 2626 2.182 -

100 50 25 10 2533 1.110 -
101 50 50 3 2484 0.270 -
102 50 50 3 3061 0.097 -
103 50 50 3 2627 0.092 -
104 50 50 3 2657 0.090 -
105 50 50 3 2564 0.097 -
106 50 50 5 2484 0.285 -
107 50 50 5 3061 0.096 -
108 50 50 5 2627 0.074 -
109 50 50 5 2657 0.089 -
110 50 50 5 2563 0.212 -
111 50 50 10 2472 2.672 -
112 50 50 10 3047 1.835 -
113 50 50 10 2622 0.558 -
114 50 50 10 2647 2.141 -
115 50 50 10 2560 0.610 -
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Table 9. Results using variant 2 for each instance of size |K| = 100, problem by
problem. Inst. refers to the number of the instance, Z refers to the best objective

function value provided by Gurobi, T means computational time and G refers to the

MIPGap. Stopping criterion 3600 seconds.

Inst. |I|
∣∣Sk

∣∣ Ties Z T G

116 10 2 1 7089 0.773 -
117 10 2 1 6258 0.784 -
118 10 2 1 5763 0.738 -
119 10 2 1 5759 0.630 -
120 10 2 1 5657 1.832 -
121 10 5 1 7977 3.317 -
122 10 5 1 7125 7.103 -
123 10 5 1 6903 5.230 -
124 10 5 1 6700 4.356 -
125 10 5 1 6580 3.973 -
126 10 5 2 7777 7.608 -
127 10 5 2 6927 27.599 -
128 10 5 2 6472 17.253 -
129 10 5 2 6577 5.583 -
130 10 5 2 6409 7.051 -
131 10 5 3 7372 30.737 -
132 10 5 3 6780 13.647 -
133 10 5 3 6292 28.963 -
134 10 5 3 6025 23.908 -
135 10 5 3 6316 29.083 -
136 10 10 1 8579 11.382 -
137 10 10 1 7851 12.240 -
138 10 10 1 7295 11.761 -
139 10 10 1 7091 19.571 -
140 10 10 1 7093 32.026 -
141 10 10 3 8305 39.740 -
142 10 10 3 7763 30.883 -
143 10 10 3 7149 42.351 -
144 10 10 3 6931 48.928 -
145 10 10 3 6912 41.877 -
146 10 10 5 7979 62.847 -
147 10 10 5 7553 64.036 -
148 10 10 5 6756 65.826 -
149 10 10 5 6614 87.780 -
150 10 10 5 6747 67.652 -
151 50 10 1 9674 2.384 -
152 50 10 1 10586 3.817 -
153 50 10 1 9185 3.438 -
154 50 10 1 8549 3.149 -
155 50 10 1 9418 2.947 -
156 50 10 3 9369 30.575 -
157 50 10 3 10356 50.562 -
158 50 10 3 9086 23.127 -
159 50 10 3 8421 4.906 -
160 50 10 3 9261 111.701 -
161 50 10 5 8963 1637.883 -
162 50 10 5 10051 468.380 -
163 50 10 5 8778 177.615 -
164 50 10 5 8042 149.137 -
165 50 10 5 8890 809.246 -
166 50 25 3 9820 29.554 -
167 50 25 3 10798 54.806 -
168 50 25 3 9391 18.478 -
169 50 25 3 8628 124.791 -
170 50 25 3 9619 86.881 -
171 50 25 5 9689 192.435 -
172 50 25 5 10628 841.358 -
173 50 25 5 9309 129.788 -
174 50 25 5 8633 228.770 -
175 50 25 5 9568 279.139 -
176 50 25 10 9561 637.457 -
177 50 25 10 10338 - 0.007
178 50 25 10 9130 1049.079 -
179 50 25 10 8464 - 0.004
180 50 25 10 9298 - 0.001

Inst. |I|
∣∣Sk

∣∣ Ties Z T G

181 50 50 3 9949 92.465 -
182 50 50 3 10896 476.565 -
183 50 50 3 9443 149.015 -
184 50 50 3 8853 490.241 -
185 50 50 3 9773 147.031 -
186 50 50 5 9912 146.681 -
187 50 50 5 10824 1394.719 -
188 50 50 5 9478 149.510 -
189 50 50 5 8782 726.056 -
190 50 50 5 9765 190.495 -
191 50 50 10 9904 202.346 -
192 50 50 10 10696 - 0.006
193 50 50 10 9444 442.149 -
194 50 50 10 8760 1533.954 -
195 50 50 10 9675 847.401 -
196 100 20 1 12055 0.680 -
197 100 20 1 10897 0.640 -
198 100 20 1 10215 0.441 -
199 100 20 1 9557 0.366 -
200 100 20 1 10070 0.413 -
201 100 20 3 12028 2.341 -
202 100 20 3 10894 0.995 -
203 100 20 3 10214 0.731 -
204 100 20 3 9534 0.839 -
205 100 20 3 10055 0.891 -
206 100 20 5 11994 2.388 -
207 100 20 5 10807 4.300 -
208 100 20 5 10180 1.953 -
209 100 20 5 9467 2.642 -
210 100 20 5 10033 2.237 -
211 100 50 3 12060 0.720 -
212 100 50 3 10922 1.228 -
213 100 50 3 10221 0.930 -
214 100 50 3 9597 1.059 -
215 100 50 3 10071 0.532 -
216 100 50 5 12048 2.642 -
217 100 50 5 10915 1.986 -
218 100 50 5 10218 1.105 -
219 100 50 5 9596 1.720 -
220 100 50 5 10063 1.300 -
221 100 50 10 12017 8.730 -
222 100 50 10 10901 3.131 -
223 100 50 10 10175 12.010 -
224 100 50 10 9583 2.535 -
225 100 50 10 10035 5.598 -
226 100 100 3 12062 1.494 -
227 100 100 3 10926 0.529 -
228 100 100 3 10221 1.459 -
229 100 100 3 9603 0.369 -
230 100 100 3 10073 0.583 -
231 100 100 5 12057 1.898 -
232 100 100 5 10923 2.293 -
233 100 100 5 10223 0.481 -
234 100 100 5 9602 0.576 -
235 100 100 5 10069 2.061 -
236 100 100 10 12038 13.888 -
237 100 100 10 10915 5.148 -
238 100 100 10 10218 9.477 -
239 100 100 10 9598 1.736 -
240 100 100 10 10066 2.702 -
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Table 10. Results using variant 2 for each instance of size |K| = 150, problem by
problem. Inst. refers to the number of the instance, Z refers to the best objective

function value provided by Gurobi, T means computational time and G refers to the

MIPGap. Stopping criterion 3600 seconds.

Inst. |I|
∣∣Sk

∣∣ Ties Z T G

241 15 3 1 14671 16.383 -
242 15 3 1 14327 18.660 -
243 15 3 1 15024 4.793 -
244 15 3 1 16261 6.238 -
245 15 3 1 17610 13.507 -
246 15 8 1 17128 88.737 -
247 15 8 1 16176 107.276 -
248 15 8 1 16822 71.120 -
249 15 8 1 18189 31.350 -
250 15 8 1 19541 161.105 -
251 15 8 2 16570 727.047 -
252 15 8 2 16050 148.430 -
253 15 8 2 16709 86.859 -
254 15 8 2 17982 81.615 -
255 15 8 2 19229 149.653 -
256 15 8 3 16461 480.098 -
257 15 8 3 15587 542.917 -
258 15 8 3 16249 472.055 -
259 15 8 3 17720 143.755 -
260 15 8 3 18847 458.212 -
261 15 15 1 17768 422.776 -
262 15 15 1 17119 373.875 -
263 15 15 1 17527 329.278 -
264 15 15 1 18824 262.455 -
265 15 15 1 20586 1122.884 -
266 15 15 3 17415 919.347 -
267 15 15 3 16739 1080.546 -
268 15 15 3 17483 311.436 -
269 15 15 3 18515 416.604 -
270 15 15 3 20452 1547.155 -
271 15 15 5 17517 974.659 -
272 15 15 5 16663 974.958 -
273 15 15 5 17257 547.615 -
274 15 15 5 18244 1355.965 -
275 15 15 5 19909 2239.446 -
276 75 15 1 21180 23.232 -
277 75 15 1 22619 20.832 -
278 75 15 1 22343 65.087 -
279 75 15 1 20016 36.622 -
280 75 15 1 19966 11.078 -
281 75 15 3 21142 44.784 -
282 75 15 3 22395 30.613 -
283 75 15 3 21946 672.658 -
284 75 15 3 19745 59.135 -
285 75 15 3 19803 23.339 -
286 75 15 5 20818 388.586 -
287 75 15 5 21871 2515.510 -
288 75 15 5 21892 807.789 -
289 75 15 5 19594 206.893 -
290 75 15 5 19145 1512.165 -
291 75 38 3 21515 1283.728 -
292 75 38 3 23034 86.470 -
293 75 38 3 22580 1981.924 -
294 75 38 3 20367 3229.996 -
295 75 38 3 20226 455.895 -
296 75 38 5 21494 1129.141 -
297 75 38 5 22933 208.843 -
298 75 38 5 22438 - 0.005
299 75 38 5 20273 - 0.004
300 75 38 5 20021 1406.413 -
301 75 38 10 21345 - 0.008
302 75 38 10 22775 2942.789 -
303 75 38 10 22270 - 0.014
304 75 38 10 20009 - 0.011
305 75 38 10 20008 - 0.007

Inst. |I|
∣∣Sk

∣∣ Ties Z T G

306 75 75 3 21785 2650.917 -
307 75 75 3 23067 - 0.000
308 75 75 3 22850 - 0.004
309 75 75 3 20467 - 0.008
310 75 75 3 20337 - 0.004
311 75 75 5 21804 - 0.000
312 75 75 5 23095 2924.169 -
313 75 75 5 22857 - 0.006
314 75 75 5 20519 - 0.008
315 75 75 5 20352 - 0.001
316 75 75 10 21739 - 0.003
317 75 75 10 22809 - 0.010
318 75 75 10 22712 - 0.009
319 75 75 10 20473 - 0.008
320 75 75 10 20342 - 0.004
321 150 30 3 23434 1.953 -
322 150 30 3 23294 2.359 -
323 150 30 3 21260 2.453 -
324 150 30 3 21121 2.500 -
325 150 30 3 22856 1.438 -
326 150 30 5 23426 3.001 -
327 150 30 5 23245 8.110 -
328 150 30 5 21270 2.016 -
329 150 30 5 21118 2.125 -
330 150 30 5 22832 3.203 -
331 150 30 10 23319 15.236 -
332 150 30 10 23144 18.379 -
333 150 30 10 21088 19.096 -
334 150 30 10 21006 13.860 -
335 150 30 10 22712 23.750 -
336 150 75 3 23441 2.172 -
337 150 75 3 23301 3.376 -
338 150 75 3 21287 3.032 -
339 150 75 3 21140 1.265 -
340 150 75 3 22875 2.187 -
341 150 75 5 23436 3.359 -
342 150 75 5 23303 2.204 -
343 150 75 5 21293 1.845 -
344 150 75 5 21134 2.846 -
345 150 75 5 22872 3.532 -
346 150 75 10 23432 3.984 -
347 150 75 10 23281 10.296 -
348 150 75 10 21278 5.640 -
349 150 75 10 21097 13.593 -
350 150 75 10 22874 3.641 -
351 150 150 3 23443 3.267 -
352 150 150 3 23303 4.984 -
353 150 150 3 21296 1.407 -
354 150 150 3 21140 1.343 -
355 150 150 3 22878 1.032 -
356 150 150 5 23444 2.281 -
357 150 150 5 23304 3.234 -
358 150 150 5 21296 2.328 -
359 150 150 5 21139 2.640 -
360 150 150 5 22876 5.047 -
361 150 150 10 23439 5.126 -
362 150 150 10 23297 10.408 -
363 150 150 10 21278 25.944 -
364 150 150 10 21137 4.266 -
365 150 150 10 22875 5.595 -
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