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ABSTRACT

This paper introduces a novel method to address the pessimistic approach to the
bilevel problem. It consists of considering a lexicographic biobjective optimisation
problem at the lower level. To emphasise the significance of this approach, we imple-
ment it in the context of the Rank Pricing Problem with Ties. This problem can be
formulated as a bilevel problem that inherently demands the use of the pessimistic
approach. Considering the properties of the lexicographic biobjective problem in-
volved, we formulate this problem as a single level mixed integer optimisation prob-
lem, deriving also valid values for the big-Ms involved and valid inequalities for this
formulation. The computational experiment carried out confirms the relevance of
the proposed method.
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1. Addressing pessimistic bilevel problems through a novel approach

Bilevel optimisation models involve two decision-makers within a hierarchical frame-
work. Each of these decision makers manages a subset of variables and seeks to op-
timise his/her respective objective functions while fulfilling certain constraints. The
lower level (LL) decision maker, or follower, performs optimisation with full awareness
of the values assigned to the variables controlled by the upper level (UL) decision
maker, or leader. The UL decision-maker, having complete information about the LL
decision-maker’s reactions, selects variable values to optimise his/her own objective
function. Bilevel optimisation can be computationally challenging due to the inter-

dependence between the levels and the need to find optimal solutions for both levels
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simultaneously. But, at the same time, this interaction between both levels makes
bilevel optimisation relevant in many real-world applications, such as supply chain
management, transportation planning, and pricing strategies, since it can effectively

represent systems involving hierarchical decision-making.

In general, a bilevel optimisation model can be formulated as:

“min” F(z,y)

x
subject to

Gj(z,y) <0, j=1,...,q

where, for every x fixed, y solves (1)
min fz,y)

Y
subject to

gn(z,y) <0, h=1,...,p

where x € R" are the UL variables controlled by the leader, and y € R™ are the
lower level variables controlled by the follower; F, f : R*™ — R are the UL and LL
objective functions, respectively; and Gj(z,y) < 0, j = 1,...,q, and gp(z,y) < 0,
h = 1,...,p, indicate, in their respective cases, the constraints associated with UL

and LL the upper and lower levels.

Bilevel problems are difficult to manage and solve because of their nonconvex nature.
In addition, complications arise when the set of optimal solutions of the LL problem,
called M(x), is not a singleton for certain values of z. If the UL objective function
is sensitive to different values of y € M (x), it becomes necessary to establish a rule
for selecting y* € M (x) in order to evaluate F. Quotation marks have been employed
to convey the uncertainty in defining the bilevel problem when lower-level optimal
solutions are not uniquely determined. Several assumptions have been proposed in
the literature, with the most common being the optimistic or weak approach. This
approach assumes that the UL decision maker has the possibility to influence the LL
decision maker so that the latter selects y* that yields the best possible value of
F'. In this case, the UL objective function is minimised with respect to both = and
y. The pessimistic or strong approach, which assumes that the LL decision maker
always selects the optimal solution which provides the worst value of F', is notably
more challenging to handle than the optimistic one. The main findings concerning
optimality of bilevel problems, algorithms for solving them, applications and related

topics can be found in [IH7] and the references therein.

This paper proposes a novel approach to deal with pessimistic bilevel problems.



Assuming that the bilevel problem has an optimal solution, to ensure the pessimistic
approach we propose to consider a lexicographic biobjective problem associated to
the LL decision maker. Therefore, the pessimistic approach to the bilevel problem
presented in this paper consists of reformulating it as:

min F(z,y)

x7y
subject to

G](xay)<07 ]:qu

where, for every x fixed, y solves (2)
lex min (f(may)v —F($, y))

y
subject to

gh(xay)<07 hzlvap

Lexicographic optimisation [8] is based on the assumption that objectives are ranked
in order of importance, and the objective functions are optimised one at a time in a
prioritised manner. Therefore, for given values of the variables x, f(z,y) is minimised
first. Then, F'(x,y) is maximised while ensuring that the optimum objective function
value is achieved with respect to the first criterion. To accomplish this, an additional
constraint can be added to guarantee the optimal value of f(x,y). In cases where the LL
problem (first criterion) has multiple optimal solutions, choosing the optimal solution
for the second criterion guarantees the selection of the worst solution for the UL
decision maker, so applying the pessimistic approach. Also, it is worth noting that the
UL objective function now minimises over z and y. Bearing in mind that the pessimistic
approach is ensured by the lexicographic approach on the LL problem, minimising
over y in the bilevel problem occurs when, for any given value of z, there are multiple
values of y that yield the same minimum value of f(z,y) and the same maximum value
of F(x,y) (as required by the lexicographic approach). Hence, these feasible bilevel
solutions provide the same value of the UL objective function. In such scenarios, the
selection of the feasible bilevel solution can be left to the UL decision maker, as it does
not affect the value of any of the objective functions. While the reformulation proposed
in problem can be applied to any pessimistic bilevel problem, its effectiveness will,
of course, hinge upon the characteristics and favourable properties of the resulting
problem. To demonstrate its efficacy, we have selected a problem from the literature
whose characteristics make it particularly well-suited for being reformulated as a single
level problem using this approach. On the other hand, it is worth pointing out that
this approach can also be effectively employed in the development of metaheuristic

algorithms, as it facilitates the generation of feasible bilevel solutions from upper-level



variable values through solving the lexicographic optimisation problem at the lower

level.

To highlight the relevance of this approach, we apply it to the Rank Pricing Problem
with Ties (RPPT) [9], an optimisation problem which admits a bilevel formulation
that inherently requires the pessimistic approach. Moreover, the properties of the
resulting LL lexicographic problem allow for a compact formulation of the RPPT
as a single level optimisation problem. The aim of Rank Pricing Problems (RPP), as
introduced by Rusmevichientong [10] and Rusmevichientong, Van Roy, and Glynn [I1],
is to determine the prices of a range of products aiming to maximise a company’s
revenue. They assume that each customer has a budget and a ranked list of products
of interest, and is looking to acquire at most one unit of a single product. Setting
a lower price can result in a loss of income if customers would have been willing to
pay a higher price, but it can also make the product accessible to a larger number
of customers. In contrast, a higher price can generate greater revenue, but customers
may be prevented from buying it if the price is too high. As a consequence, these
problems exhibit a clear hierarchical structure with two interdependent levels. On the
one hand, the company, at the upper level, must make decisions regarding the prices,
taking into account the response that those prices will elicit in the customer purchase
decisions. On the other hand, in the LL problem, each customer decides the product
to purchase. The RPP [12] assumes that each customer establishes strict preferences
over products, meaning that no two or more products are equally preferred. Then, for
each set of prices given by the UL decision maker, the LL problem has unique optimal
solution i.e. the customer selects the most preferred product he/she can afford. In
this case, the bilevel problem is well-posed. In the RPPT [J] ties are allowed, i.e., for
each customer there can be several products with the same preference and therefore
equally favoured by the customer. In this case, following what is usually general human
behaviour, the customer chooses the cheapest among those whose preference is the
highest and can afford to purchase. Therefore, the nature of this bilevel problem calls
for addressing it with the pessimistic approach, as the company cannot compel the
customer to purchase the most expensive product when the customer derives maximum

satisfaction from several products.

The key contributions of this paper are the following:

e We propose to address the pessimistic approach to a bilevel problem by reformu-

lating the LL problem as a lexicographic biobjective optimization model. Bearing



in mind model , in which each level of decision making minimises its objective
function, the highest priority objective function is the LL objective function and
the second highest priority is the UL objective function reversed in sign.

e We introduce the formulation of the RPPT as a bilevel problem, which requires
the pessimistic approach to be solved, and formally reformulate it as a single level
mixed integer optimisation problem, based on the properties of the lexicographic
biobjective problem involved in the LL problem.

e We derive valid values for some big Ms involved in the single level reformulated

model as well as some valid inequalities for this model.

The remainder of this paper is structured as follows. Section [2| describes the RPPT.
Section [3]presents the pessimistic bilevel formulation of the RPPT. Taking into account
the properties of the lexicographic biobjective LL problem, section [ reformulates the
problem as a single level mixed integer optimisation model. In section 5] valid values for
the big Ms involved and valid inequalities are derived. Section [f] presents the results
of the extensive computational experiments conducted, evaluating several variants of
the reformulated single level model. The outcomes yielded by this approach indicate
that it is competitive with the previous formulations of the RPPT proposed in the

literature.

2. Rank pricing problems

The RPP [10-14] involves determining the price of multiple products assuming that
each customer has a budget, wants to purchase a unit of a single product, and possesses
his/her own ranking of the available products, resulting in incomplete preference lists.
Moreover, preferences are assumed to be strict, i.e. no ties are allowed and there
is an unlimited supply of products. The flexibility of the ranked-based model lies
in its ability to incorporate a variety of product characteristics, apart from price,
into the customer’s decision-making process. The use of preferences is also frequent,
for instance, in location problems. Hanjoul and Peeters [I5] and Cénovas et al. [16]
assume that customers have ranked the facilities based on preferences influenced by
their personal characteristics and the attributes of the sites and trips to those sites.
Hansen et al. [17], Vasilyev and Klimentova [I8] and Vasilyev et al. [19], assuming
that the preference ranking is strictly ordered, propose a bilevel formulation of that

problem in which the upper level decision maker selects the facilities, while in the lower



level problem, customers are allocated aiming to minimise the sum of preferences (the
lower the value, the higher the preference). Camacho-Vallejo et al. [20] introduce an
evolutionary algorithm for addressing the bilevel model. Finally, Calvete et al. [21]
extend that model by introducing a capacity constraint on the number of customers

assigned to each facility.

Calvete et al. [12] propose two different formulations of the RPP. The first one,
following the intuitive notion provided by the two levels of decision-making, formulates
the RPP as a bilevel multi-follower optimisation model with independent followers.
Since the RPP does not allow for ties in customer preferences, the second-level problem
has a unique optimal solution, ensuring that the bilevel problem is well-posed. The
second formulation is based on the fact that each customer purchases the product
he/she prefers the most among the products he/she can afford, resulting in a single-
level non-linear optimisation model. Both formulations are transformed into binary

linear optimisation models.

This paper focuses on the bilevel approach to the generalisation of the RPP known
as the RPPT, in which customers are allowed to have indifference among candidate
products, and ties are permitted in their preference lists. This problem was introduced
by Dominguez et al. [9]. Although they mention that there is an implicit bilevel frame-
work associated to the problem, they did not address it as a bilevel problem. Instead,
they proposed a mathematical formulation involving three indices and developed two
distinct resolution methods. One formulation is based on projecting out the customer
decision variables, thus resulting in a streamlined formulation. The second one adopts
a Benders decomposition approach which takes advantage of the separability of the
problem. Both approaches were strengthened with valid inequalities. Considering the
bilevel structure of the RPPT, when ties exist in customer preferences it cannot be
guaranteed that a unique optimal solution exists to the LL problem. In this case, i.e.
if there are several products that a customer can afford and that satisfy him the most,
he/she will choose the cheapest among them, thereby providing the least revenue to
the company. Therefore, to address the bilevel optimisation problem, a pessimistic
approach needs to be considered. From now on, we denote this model as the Pes-
simistic Bilevel Rank Pricing Problem with Ties (PB-RPPT). As far as we are aware,

the PB-RPPT remains unexplored in the existing literature.

Regarding other papers related to the RPP, Dominguez et al. [22] propose another
extension of the problem in which they assume that the amount of available products is

limited. After comparing the envy-free allocation of products with the envy approach,



they focus on the second one and propose two formulations of the problem as mixed
integer linear optimisation models, deriving also valid inequalities. The computational
study shows the performance of the formulations. Additionally, Ansari [23] presents
a bilevel model for an extension of the RPP which involves both customer utility
and rank, implying that customers make decisions considering their preferences and
potential savings. To address this issue, they reformulate the problem as a single-level
problem and devise two algorithms: one based on Scatter Search and the other on

price perturbation.

3. Bilevel formulation of the RPPT: The PB-RPPT

As mentioned above, the RPPT involves determining the price of multiple products
assuming that there is an unlimited supply of products and that each customer has
a budget and intends to purchase a unit of a single product. In order to formulate

the PB-RPPT, we introduce in Table [I] the notations used.

Table 1. Notations used to formulate the PB-RPPT

Sets

K Set of customers. K = {1,...,|K]|}.

I Set of products. I ={1,...,|I|}.

SkcCr Subset of products in which customer k£ € K is interested.

Indices

ke K Index of customer.

1,7€1 Index of product.

Parameters

bk >0 Budget of customer k € K.

sf >0 Value of the preference assigned by customer k € K to prod-
uct i € S*.

UL variables

pi =0 Price of product i € I.

LL variables
z¥ € {0,1} If customer k € K decides to buy product i € S*, z¥ = 1.
Otherwise, xf = 0.

Depending on his/her personal interests, as well as the features of the products,
each customer k € K has ranked the products, S*, he/she is interested in from worst

to best, i.e., has a set of predefined nonnegative preferences sf, i € Sk It is assumed

k> s* implies that

that the greater the number, the greater the preference, i.e. s; J



customer k prefers product ¢ over product j, where i,j € Sk, If sf = 5? customer k
has an equal preference for both products. Hence, the customer & selects one product
from S* with the highest preference that he/she can afford. Note that customers are
not required to establish strict preferences for the products, which means they may
have equal preferences for two or more of them. In the event of a tie, i.e., if two or
more products are equivalent in terms of their appeal to a customer, he/she, as it
is common for individuals, chooses the cheapest product among those he/she equally
prefers. If a customer cannot afford any product, he/she does not make a purchase.
We also assume that each customer is interested in some product, i.e. S* # 0, k € K.
Otherwise, the customer may be eliminated from the study. Similarly, we assume that
all products are on some customer’s preference list, i.e. for every ¢ € I, there exists

k € K such that i € S*. Otherwise, the product could be eliminated from the study.

In the bilevel approach of the RPPT proposed in this paper, the UL decision
maker decides on product pricing, i.e., on the value of variables {p;},.;, while each of
the LL decision makers decides on product purchasing, i.e. on the value of variables
{xf} heK .St Notice that there are as many LL decision makers as customers. Hence,
the RPPT can be formulated as the following bilinear-linear bilevel mixed integer

optimisation problem with multiple independent followers:

“max” Z Z pizf (3a)

P kEK icS*
subject to
pi =0, el (3b)
where, for each customer k € K, the variables {zF};cgr solve
k. .k
max Z s; Ty (3c)
€Sk

subject to

> af<i (3d)

€Sk
Z pixy < bF (3e)
ieSk
k . - ok
xz; € {0,1} iesS (3f)

The UL objective function maximises the revenue of the company. Con-
straints ensure the requirements of the price variables. The LL problem corre-
sponding to the customer k € K is defined by —. The LL objective function
maximises the preference of the product chosen by the customer k. Constraint



guarantees that the customer k chooses at most one product from his/her prefer-
ence list. Constraint enforces customer k to purchase only among the products
on his/her preference list that cost less than or equal to the available budget. Con-
straints 1' ensure that the variables xf, k € K, i€ S* are binary. Notice that, due
to the unlimited supply assumption, the LL problems are independent in the sense
that each of them involves only the UL variables and the LL decision variables of the

corresponding customer [24].

When there are no ties, as assumed in the RPP studied in [12], each of the LL prob-
lems has a unique optimal solution. This property allows us to ensure that the bilevel
problem is well-posed. However, the RPPT allows ties, which means that each LL prob-
lem can have multiple optimal solutions, for given values of the prices. This issue raises
concerns in bilevel optimisation as it can lead to an ill-posed model. The optimistic
approach would result in the customer choosing the most expensive among several
products with the same (and higher) preference that he/she can afford. However, this
contradicts the typical behaviour of customers who tend to seek the best product at
the lowest possible price. Therefore, the appropriate approach to solving the RPPT
is the pessimistic approach where customers act in a manner that is contrary to the

interests of the company and instead prioritise their own benefit.

To illustrate these issues, Table [2| displays an instance of the RPPT with 12 cus-
tomers and 8 products. The inner part of the table shows the preferences assigned by
each customer to every product, while the budget of each customer is shown in the
last column. When the problem is solved using the optimistic approach, the prices
assigned to the products in the optimal solution are shown in the second to last row of
the table. The products purchased by customers are identified with a blue dot in the
inner part of the table. Note that customer kp is forced to choose product i3 whereas
his/her choice would be product i4 which has the same priority and is cheaper. Hence,
this is not an achievable solution. The optimal prices of the products when the pes-
simistic approach is applied are shown in the last row of the table and the products
purchased are identified with a red dot. Notice that customers k1 to k19 purchase the
cheapest product among those they prefer the most and can afford within their budget.

Moreover, with these prices, customers k117 and ki2 cannot buy any product.

As pointed out in section [I] the novel approach to handle pessimistic bilevel prob-
lems consists of considering the k-th LL problem, k € K, as a lexicographic biobjective
optimisation problem, i.e., in the problem —, the objective should be sub-



Table 2. An instance of the RPPT with 12 customers and 8 products.

Products Budget
Customers i1 12 i3 N i5 i6 i7 i8
k1 7 5 e8 38 7 6 - 7 99
ko 6 eel 5 3 7 - 6 4 78
k3 ee 8 - - 8 - 8 7 - 70
k4 ool 4 5 6 3 2 7 6 70
ks 5 6 6 e8 o7 7 - 5 63
ke - e 8 - o8 - - - - 57
k7 - 4 6 5 7 4 ee38 7 43
ks - 6 8 8 o7 - - 6 42
) 4 1 5 3 2 6 7 ee8 37
k1o 7 5 - 4 o8 - o6 - 30
k11 6 5 7 8 3 o4 - - 27
k12 7 7 - 8 6 - 6 L] 20

Product prices in the optimal solution
Optimistic e 70 78 99 57 30 27 43 20
Pessimistic e 70 57 99 99 63 99 30 37

stituted by

k., .k k
lexqu}x Z sy, - Z pjT; (4)
jesw jesw
The first objective aims to maximise the preference of the k-th customer, while the

second objective aims to minimise the price paid for the product.

Rusmevichientong et al. [I1] state that there is an optimal solution of the RPP
such that only distinct budgets need to be considered for price selection. This result
can be directly extended to the RPPT [9]. Based on these findings, and bearing in
mind that each product has at most one price, prices can be expressed in terms of
budgets, as done in [12]. For this purpose, let us assume that budgets are sorted in
increasing order and let L be the set of indices of different budgets, L = {1,...,|L|}.
The indices in L are consistent with that order, i.e., I; < Iy if b < b2. We also define
the function o: K — L which maps the customer k to the index [ corresponding
to the position that his/her budget occupies in the ordered set of distinct budgets.
With this definition, from now on, b°*) refers to the budget of customer k. Let vf be
a binary variable which takes value 1 if product i has price b'; otherwise vf is equal to

0. Using these variables, the price p; can be written as:

IZ| IZ|
p; = Zblvﬁ, where va <1, 1el
=1 =1

On the other hand, customer k can only buy a product that is on his/her preference

10



list and whose price is less than or equal to his/her budget. Hence,

q
—~

e
=

8
S
N

. ek (5)

(Y

N
Il
—

Given the above considerations, the PB-RPPT can be formulated as the following
bilinear linear bilevel optimisation problem with binary variables, multiple indepen-

dent followers and a lexicographic biobjective function at the LL of decision-making:

o(k)
max Z Z Zblvé :L';C (6a)

kEK jest \ I=1
subject to
|L|
Yol el (6b)
I=1
vle{0,1}, iel, lelL (6¢)
where, for each customer k € K, the variables {z¥};cgr solve
o (k)
k,.k I, k
lexmxax Z ijj’ — Z Z b Uj x] (6d)
jesk jesr \ i=1
subject to
Z xf <1 (6e)
jeSk
o(k)
zF < Zvﬁ, icS” (6f)
=1
k ~ k
x; € {07 1}7 i €S (Gg)

Note that the UL objective function maximises over v and x, as indicated when
formulating problem . Bearing in mind that the pessimistic approach is guaranteed
by , maximisation over x only occurs when there are multiple products that the
customer can buy having the same priority, which is the highest, and having the same
price, which is the lowest. In other words, the problem LL has multiple optima with
several of these products having the lowest price. In such cases, the control over the
product purchased by the customer can be left to the UL decision maker, as it does

not affect the value of any of the objective functions.

In order to exactly solve the PB-RPPT, in the next section we reformulate it as a

11



single level optimisation problem by transforming the LL problems corresponding to

each customer.

4. A single level reformulation of the PB-RPPT

Let us consider the LL problem — corresponding to the k-th customer, for a
given value of the UL variables {vf}ie 1,1c.- Based on these values, product prices can
be determined and it is possible to know which products each customer can afford.
Let I(k) € S* be the subset of products that customer k is interested in and can
purchase with his/her budget, I(k) = {i € S*: Z;f:(]i) vt = 1}. Note that ¥ = 0 for
i € S*\ I(k), since the price of these products is greater than the k-th customer’s

budget. Hence, the LL problem corresponding to the k-th customer can be written as:

o (k)
lex max Z sf:):;?, - Z Z blvé xf (7a)
’ JEI(k) jel(k) \ =1
subject to
Z :E;C <1 (7b)
jel(k)
¥ e {01}, iel(k) (7c)

Since lexicographic optimisation takes into consideration one objective at a time, let
us consider the maximisation of problem — with respect to the first objective

function:

max sf:cf (8a)
T
Jel(k)
subject to
ah <1 (8b)
JEI(k)
¥ e{0,1}  iel(k) (8c)

Its optimal solution is the product i € I(k) with the largest preference (or any of the
products tied if there are several products with the same largest preference), i.e., such

k ..k k

2

12



Let us consider the linear relaxation of problem :

max Z sf:rf (9a)

T

Jjel(k)
subject to
d ek (9b)
jel(k)
¥ >0 ie (k) (9c)

Taking into account the characteristics of the constraint , the linear optimisation
problem @ has an optimal solution which takes integer values, and so solves problem
(8). The lexicographic approach then maximises with respect to the second objective,
which, basically, selects the most economical product from the tied ones among the
affordable and most preferred by the customer k. As pointing out above, in the event
that there are still tied products among that most economical ones, we have left it
up to the UL decision maker to select from among these products the one that the
customer k purchases since neither the UL objective function nor the LL one have their
optimal values modified. Based on previous statements, problem — includes
among its possible alternative optima an optimal solution of problem —:

o (k)
mzin Z Z blvé- x;“ (10a)

jel(k) \[I=1

subject to

Ak < (10Db)

Jel(k)

Z 3?3}? > 5P iel(k) (10c)
jel(k)
¥ >0, iel(k) (10d)

where constraints (10c|) guarantee the optimality of the solution with respect to the

first objective function.

The dual of problem is:

—F kook
max y" 4 Z 8 W; (11a)
jel(k)
subject to

13



o(k)
—yFsE Y wh <Y bl eIk (11b)
jel(k) =1

y" =0 (11c)

wj

WV

0, iel(k) (11d)

where y* is the dual variable associated with the constraint and {wk};c I(k) are
the dual variables associated with constraints . As problem ((10) possesses an
optimal solution, the dual problem also has an optimal solution, and the optimal ob-
jective function values for both problems coincide. Hence, by applying duality theory,

{25}ic (k) and {y*, whe 1(k) are optimal solutions to their respective problems if and

only if:
o(k)
Z blvj- xf = —yF + Z S?wf (12a)
jel(k) \ =1 jel(k)
d ak<i (12b)
Jel(k)
s;“x;“ > s, iel(k) (12¢)
Jel(k)
o(k)
—yFsF Y wh <Y bl e I(k) (12d)
jel(k) =1
¥ >0,  iel(k) (12€)
wh >0, iel(k) (12f)
yF >0 (12g)

Substituting the value of the variable y* obtained from equation (12a)) in con-

straints (12d) and (12g)), we obtain:

> ak<i (13a)
Jel(k)
S oshak>sf, iel(k) (13b)
JEI(k)
o(k) o(k)
Z blvé :Isé€ - Z s?wf + sf wé-“ < Z bt iel(k) (13c¢)
jel(k) \ =1 jEI(k) jel(k) =1

14



Z s?wf — Z blvé- a:éC >0 (13d)

jel(k) jel(k) \ =1
¥ >0, iel(k) (13e)
wh >0, iel(k) (13f)

These constraints have been derived by assuming that a value of the UL variables is
known and thus only the LL variables corresponding to products in I(k) are needed,
since the remaining variables are equal to zero due to constraints . Therefore, to
replace the LL problem of the k-th customer by constraints in problem PB-RPPT,
we need to include these constraints and handle them when writing the summation
in S*, guaranteeing that they apply when i € I(k) and do not impose any additional
condition when i € S¥\ I(k).

For this purpose, assuming that constraints are included, next we analyse each

constraint in :

e Variables w’ have been defined only for i € I(k). We introduce the variables w¥

for i € S*\ I(k) and impose that they are equal to zero. Thus, constraints ((13f)
are replaced by w¥ > 0, i € S* and wF < MF Z?:(?) vl i € S* where MF is a
constant big enough to guarantee that these constraints are only restrictive when
i€ Sk\ I(k:) In the following section, we propose values for MF, i € S¥ k € K.
e Constraint can be replaced by Z ek ;U < 1, as only terms equal to zero
are added.
e Constraints (13b]) can be replaced by > icsn 8; a;k > sk 27:(1;) vl i€ SF as

> jest S sk:c > 0, and Zl 1 vl is equal to 1 when i € I(k), and is equal to 0
otherwise.
e In constraints (13c|), the summation can be extended over S* as only zeros are

added. Thus, they can be replaced by

a(k) o (k)
Z Zblvg a:?— s w; +Skaf<Zblvl+Mk 1- v, ie sk
jesk \ =1 jESk jESkK =1

where ]\f/ff are constants big enough to guarantee that the constraints are only
restrictive when ¢ € I(k). In the following section, we propose values for Z\Z-’“,
icStkeK.

e Constraint (13d)) can be substituted by >, sé"wk > jes (Zlaz(l? blvé)

x?}O
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as only terms equal to zero are added.

Hence, the PB-RPPT can be reformulated as the following single level mixed integer

bilinear optimisation problem:

o(k)

max Z Z Zblvé- x? (14a)

keK jeSk \ I=1

subject to

L]
w1, el (14b)
=1
doak<1,  kekK (14c)
jESE

o (k)
aF <Y W, keK, ieS” (14d)

=1

o (k)
Zs?:c?}szvf, ke K, ieSk (14e)
jeSk =1
o (k)
wf <MFY ol kekK, iesF (14f)
=1
o(k)
Z s?w? — Z Z blvé- azf 20, ke K (14g)
jesk jesk \ =1
o (k)

DR DI R DA EEAD DR S
jESK =1 JESK jESK

o(k) o(k)

Sotl e [1-3"], kek, iest (14h)

I=1 =1
vl e {0,1}, iel, lel (14i)
¥ e{0,1}, kek, ies* (14j)
wi >0, keK, icSk (14k)

In order to linearise problem , following the approach proposed in [12], we
introduce the non-negative variables {2¥},c; e defined as the profit obtained by the
company due to customer k purchasing product i, i.e., 2F = <Zla:(];) blv,f) a:f Since

7
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the problem maximises, in order to guarantee this equality the following two sets of

additional constraints must be added:

S

o(k)
2k < vl keK, iecSk
1

<k kek, iest

~

The first one ensures that the profit cannot exceed the price set for the product. The

second one imposes that the profit obtained from customer k must be zero if customer

k does not purchase product i, either because he/she cannot afford it or because he/she

decides to purchase another product.

Therefore, finally the PB-RPPT can be stated as the following single level linear

mixed integer optimisation problem:

max E E Z;?
Z,0,T,Ww

keK jeSk
subject to
L]
i1, el
=1
d b1, keK
A
jesk
a(k)
zr < ol ke K, iecS*
=1
(k)
2P < vl keK, ieSk
=1
2P <Rk ke K, iecSk
a(k)
s?azf)szvé, keK, ieSk
jeSk =1
a(k)
wf <MFY o, keK, ieSt
1=1
Zsfw}“— zjk20, ke K
jESk jESk
S o S b Y uh <
jeSk jeSsk jeSk
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(15b)

(15¢)

(15d)

(15e)

(15f)

(15h)

(15i)



o (k) o (k)

STl Ml (1-3"0l|,  kek iest (15])
=1 =1
vl e{0,1}, iel, lelL (15k)
¥ e{0,1}, kekK, icSk (151)
wf >0, kekK, icS* (15m)
2X>0, kekK, icsk (15n)

Note that the final model has as many variables as |I||L| + 3}, |S*| and as
many constraints as [I| +2[K|+6) , x ‘Sk" Nevertheless, the formal simplicity of
the model allows it to be implemented in most commercial software. In the following

section we will complete the model formulation by suggesting suitable values for the
big-Ms.

5. Deriving values for M,Lk and Mz’“ and valid inequalities for problem ||

The computation of bilevel-correct big-Ms needed when working with the reformula-
tion of the bilevel problem using duality properties is a problem that Kleinert et al. [25]
have shown to be as complex, in general, as solving the original bilevel problem. Ad-
ditionally, they suggest the need to explore problem-specific bounds when employing
this approach to tackle bilevel problems. Furthermore, Pineda and Morales [26] high-
light the issues encountered in solving bilevel problems when M is set either too small
or too large. However, in certain specific bilevel problems, as the PB-RPPT, it is
possible to ensure the computation of suitable constants by taking advantage of the

characteristics of the model.

Note that, according to constraints l , Mz-k must be an upper bound of the
value of the variable wf, i € Sk, k € K. On the other hand, taking into account
constraints (15i), it follows that the left part of constraints (15])) is:

OEED SRS SE RIS ST 16

jESk jEeSk jESk jESk

Therefore, the task of determining ]\Zk becomes finding an upper bound for ) jesk wé?,
ke K.

18



The strategy proposed below to find valid bounds consists of constructively finding
an optimal solution of the dual problem. Let us recall that the dual variables were
introduced when formulating the dual problem of that consisted of minimising the
price paid by the customer guaranteeing that the product with the highest preference
among those accessible according to his/her budget is chosen. We denote sk, . =
max{s¥ :i € I(k)}, [(k)T = {i € I(k) : sF =sF, .} and pt, = min{p;: i € I(k)T}.

Notice that customer k will purchase a product h € I(k)T, such that p, = p¥ . .

Theorem 5.1. For a given value of the UL variables {p;}ic; and a customer k € K,
let h € I(k)*, such that p, = pk ;. Then,

y" = —phin + spw; (17a)
k Phin — Pi k k k Pl

wy =max< max § ——— . gF < 8§ i < Do s min 17b
h X {ie[(?) { Sz _ Sé} 7 max bi pmzn} Sz } ( )

wh =0 if i#h, iclI(k) (17¢)

s an optimal solution of the dual problem .

Proof. From , wF = 0 for i € I(k), i # h. In order to guarantee that it is a

feasible solution, together with y* > 0 and wﬁ > 0, it is necessary to ensure that

o(k)

—y* + sfwl < Z bl = p; (18)
=1

Moreover, in order to be optimal, the objective function value of this solution must
be equal to the optimal objective function value of the primal problem . Hence
—yk 4+ sﬁw,’i = pﬁlm, providing the value of * in 1} To guarantee that y* > 0, it

k
Prin
P
Sh

must be ensured that wﬁ >

Finally, bearing in mind the value of y*, constraint is trivially met for i € I(k)™.
Otherwise, to ensure the constraint , it must be met that:
Proin — Di
wy > 2mn = e I(k)\I(k)*

Sp— S5

As a consequence,

k Pk — Di k k k pk
. ; .
wp = max { max {"L’" 0 8 < Smazy Di < Pmm} , mkm}

iclk) | sp —s; sy
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and the proof is complete. ]

Corollary 5.2. For every product i € S* and customer k € K,

o(k)
MF :max{ba(k')—bl, b }

2
55

(19)
Mf = sf max MF

are valid constants in constraints and , respectively.

Proof. According to theorem 1) and taking into account that b' < p; < b°®) for
i€ I(k),

o(k)
wf < max {ba(k) — bl, b }

%
55

Moreover, w¥ = 0 for i € S¥\ I(k). Thus, MF is a valid constant in constraint ([L5h]).

In addition, jesr wf is equal to the value of the dual variable whose price is the
lowest among those that provide the greatest customer satisfaction for customer k,

therefore, it is less than or equal to max;jecgr M Jk Thus, ]\Z-k is a valid constant in

constraint (15])). O

Corollary 5.3. For every product i € S* and customer k € K, the following set of

constraints which relate the variables of the LL problem and its dual:
wh < MFak, ieSt kek (20)

are valid inequalities for problem .

Proof. Note that when :Ef = 1, the constraint does not impose any restriction on
the value of wf . On the other hand, if J:f = 0, according to theorem lj an optimal
solution of the dual problem exists for which wf = 0. O

Theorem 5.4. The following inequalities are valid for problem :

o(k)

dF<yat+ Y (bl—br>vf, kek, iesS r=1,...,0(k)—1 (21)
l=r+1

Proof. See Proposition 4.3 in [12] and Propositions 5.2 and 5.3 in [22]. O

20



6. Computational study

In this section we present and discuss the results of the computational experiments
carried out. The numerical experiments were performed on a PC 13th Gen Intel Core
i9-13900F at 2.0 GHz x 32 having 64.0 GB of RAM, and Windows 11 64-bit as the
operating system, using Gurobi 10.0.3 with 6 threads. The absolute MIP optimality
gap was set at 0.999 and the relative MIP optimality gap was set at 1e-5. The stopping

criterion was set at 3600 seconds.

The performance of the algorithm was tested on the set of RPPT benchmark
problems described in [9], which are available at https://github.com/cdomsa/RPPT/
and are themselves based on the instances proposed in [12]. In this set of instances,
|K| € {50,100, 150}, |I| € {0.1|K|,0.5|K|,|K|} and |S*| € {[0.2|I]],[0.5I[],|1]}.
The number of ties can be 1, 2, 3, 5 or 10, depending on the combination of |K]|, |I]
and ’Sk ’ Typically, for each combination of these parameters, there are three distinct
possible values for the number of ties, except for instances with the smallest number
of customers and products. This information can be observed in Table [4] in the first,
second and third (corresponding to |K| = 50), tenth, eleventh and twelfth (corre-
sponding to |K| = 100), and nineteenth, twentieth and twenty-first (corresponding to
|K| = 150) columns. Moreover, for each combination of |K|, |I|, |S*| and number of

ties, 5 instances were generated, making a total of 365 instances.

In order to reduce the size of the preference list and consequently the instance
size before solving it, the preprocessing technique introduced in [9], based on the one
developed in [12], is applied. The purpose of preprocessing is to reduce the preference
list of each customer by removing some products (or, equivalently, to fix some of
the z-variables and v-variables to 0) since it is guaranteed that an optimal solution
exists so that the customer does not purchase the removed products. The theoretical
results supporting the aforementioned assertions can be found in [I2]. Next, we briefly
describe how the preprocessing technique operates. Assuming that the customers have
been sorted by budget from highest to lowest (in case of a tie in the budget, the
customers are arbitrarily ordered), the first customer on the list (the richest) is selected
and assigned the set of products he/she prefers the most. The preference value of the
products in this set is established as the score of this customer. Then, in descending
order according to budget, each customer is assigned either his/her most preferred
set of products not contained in the union of the sets previously assigned to richer

customers, and the corresponding score or, in case all of them are contained in such
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union, his/her least preferred set of products which determines his/her score. At the
end of the process, for each customer, all products whose preference is lower than
the customer’s score are removed from his/her preference list. Table |3 shows how the
preprocessing works with the illustrative example presented in Table[2] The preference
values of the products eligible for removal are highlighted in grey. The corresponding

products are removed from the customer’s preference list.

Table 3. Preprocessing of the illustrative example shown in Table

Customers Products Budget Score

11 %2 13 %4 U5 Ig 7 13

k1 8 8 - 99 8
ko 8 - 78 8
ks 8§ - - 8 - 8 - 70 8
k4 8 7 70 7
ks 8 7 7 - 63 7
ke 8 - 8 - - - o7 8
k7 - 7 8 7 43 7
kg - 6 8 8 7 - - 6 42 6
ko 4 1 5 3 2 6 7 8 37 1
k1o 7T 5 - 4 8 - 6 - 30 4
k11 6 5 7v 8 3 4 - - 27 3
k12 T 8 6 6 8 20 6

We have evaluated the formulation presented in problem , called variant Vj,
and three more variants of this model which involve the use of the valid inequalities
proposed in section These variants are: 1) V3 = Vj plus the set of inequalities ; ii)
Vo = Vy plus the set of inequalities ; and iii) V3 = Vj plus both sets of inequalities.
In all cases, the values of Mik and ]\Z»k developed in 1' are applied. It is worth
mentioning that there is an important difference in the way each set of inequalities
is introduced into the models. On the one hand, inequalities are valid cuts that
help tighten the relaxation of a MIP by removing fractional solutions. Since it is not
mandatory to satisfy all the constraints simultaneously and the number of them does
not increase exponentially, these inequalities have been defined as user cuts in Gurobi.
They act as a pool of inequalities the solver can use when they are needed. On the
other hand, the purpose of the inequalities is to achieve a solution with the
characteristics of the Theorem and so they must all be fulfilled simultaneously.

Therefore, they are introduced directly as constraints in the model.

Table [] displays the number of instances solved to optimality for each variant pro-
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posed in this paper, V, V; :Vo—l—, ngV{ﬁ— andV3:V0+—|—, as
well as the number of problems solved by the best models in [9]. Models Vi and Vg
correspond to the models referred to in this paper as (RM) + VIs 4 prepro and (BM)
+ VIs + prepro, respectively. According to [9], both formulations were implemented
by means of Mosel version 4.0.3 of Xpress-MP, Optimizer version 29.01.10, running on
a Dell PowerEdge T110 IT Server (Intel Xeon E3-1270, 3.40 GHz) with 16 GB of RAM.
In the Table {4} there are three blocks, which refer to the number of customers (50,
100 and 150). In each block, the three first columns refer to the number of products,
the size of the list of preferences and the number of ties. The remaining six columns
indicate the number of problems solved to optimality. Each cell groups the 5 instances
generated with the corresponding characteristics. The green colour means that every
instance in the group has been solved. A colour shading from green to red indicates
the transition from 5 to 0 solved problems. The last row in the table displays the total

number of instances solved by each model.
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Summarising the results, every variant solves all instances with 50 customers. Re-
garding the 125 instances with 100 customers, variants V5 and V3 show the best per-
formance since they solve 121 instances, as variant Vg. Finally, for the 125 instances
with 150 customers, variants V» clearly outperform the remaining ones, solving 106 in-
stances. Globally, V5 solves 342 (93.7%) instances, while Vg and Vg solve 322 (88.2%)
and 311 (85.2%) instances, respectively. Concerning the computational times of solved
instances, Table [5| presents several statistical measures which reinforce the quality of
the variant V5. This variant has the lowest mean time, 167.25 seconds, and 75% of the

solved instances are processed in less than 48.50 seconds.

Table 5. Numerical summary of the computational time of solved instances by vari-
ant, in seconds.

Variant  # of instances Mean cVv Min Pss Pso Prs Max
Vo 297 173.76  2.62 0.07 1.04 4.79 54.98 2817.10
Vi 307 236.45 2.65 0.05 0.99 3.39 70.94 3385.25
Vo 342 167.25 2.78 0.04 1.13 4.03 48.50 3230.00
Vs 332 217.36  2.82 0.04 1.33 3.93 65.40 3537.44

In addition, Table [f] displays various statistical measures related to the MIPGap
provided by Gurobi (multiplied by 100) for instances that were not solved to optimality.
It is worth noting that variant V5 consistently yields the best results. The number of
unsolved problems is the lowest, 23 instances, as well as the mean of the MIPGap,
0.0057. Moreover, 75% of these instances have a MIPGap less than or equal to 0.0082.
Figure [1] shows the corresponding box plots. A box plot has been drawn to illustrate
the MIPGap of instances that were not solved to optimality in each of the variants,
with outliers represented by a black dot. The mean value is represented by a grey
circle. It can be observed that variant V5 is the only one with no outliers, meaning
there are no problems where the MIPGap value is considerably higher than in the rest
of the problems. In addition, variant V5 shows much less dispersion than the other
variants. From all the previous remarks, we conclude that variant V5, which exploits

the use of the valid inequalities , outperforms the other variants analysed.

Table 6. Numerical summary of the MIPGap (multiplied by 100) of non-solved
instances by variant.

Variant  # of instances Mean CV  Min Pos Pso Prs Max

Vo 68 1.83 0.56 0.15 1.10 1.88 231 6.19
Vi 58 1.62 0.58 0.06 1.01 1.59 2.36 4.57
Vo 23 0.57 0.61 0.04 036 0.57 0.82 1.36
V3 33 2.12 1.50 0.09 042 080 1.55 12.34
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MIPGap (multiplied by 100)

VO V1 V2 V3

Figure 1. Box plots of the MIPGap (multiplied by 100) of non-solved instances by variant.

In [9], two additional randomly generated large-scale instances were solved to opti-
mality. For both instances, |K| = 350, |I| = 10, ‘Sk‘ = 5 and the number of ties is 1,
with all customers having distinct budgets. Table[7] shows the optimal value of the ob-
jective function, Z, as well as the computation time, T, required to obtain the optimal
solution. Note that, again, the V5 variant provides the best results. In fact, comparing
the computation times required by variants Vi and Vg versus those required by the
variant Vs, these are 34 and 66 times lower, respectively, for the first instance and 51

and 17 times lower, respectively, for the second instance.

Table 7. Additional instances solved to optimality. Z refers to the optimal objective
function value, T' means computational time involved. Variant Vj refers to model ([15]),
Vi = Vb plus the set of inequalities , Vo = Vp plus the set of inequalities ,
V3 = Vp plus both sets of inequalities. Variant Vg is model (RM) + VIs + prepro and
variant Vp refers to model (BM) + VIs + prepro in [9].

|K| 1] |S*| Ties Inst. Z T

Vo 1 \%3 V3 \%3 %
350 10 5 1 1 148414 8525 1171.9 3549  679.6 12109.9  23644.0
350 10 5 1 2 143469  1931.5 1479.8 1452.6 1649.1 77737.9 25292.9
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7. Conclusions and further research

This paper introduces a novel and competitive approach to tackle bilevel problems from
a pessimistic standpoint. The proposed method entails reformulating the bilevel prob-
lem using a lexicographic biobjective approach associated with the LL decision-maker.
It is illustrated by its successful application to the RPPT. The RPPT is presented as a
bilevel optimisation problem where the company, as the UL decision-maker, must set
prices considering customer purchasing decisions at the lower level. When ties exist
in customer preferences, the existence of a unique optimal solution to the LL prob-
lem cannot be guaranteed. In this scenario, if customers have several products within
their budget that equally satisfy their preferences, they will opt for the least expen-
sive among them, thereby providing the least revenue to the company. Therefore, the

RPPT is an inherently hierarchical problem aligned with the pessimistic approach.

After formulating the RPPT as a pessimistic bilevel problem, the paper goes on
to develop the theory that allows us to reformulate it as a single-level problem. The
idea is to replace the lower-level lexicographic optimisation problem associated to each
customer with a set of constraints by applying the relationships between primal and
dual problems. In addition, it is necessary in some constraints to use big-Ms, for which
valid values are proposed. The paper also includes the derivation of valid inequalities

whose possible interest is analysed in the computational study.

The computational experiment aims to solve the benchmark instances existing in
the literature for the RPPT. The quality of four variants of the model is checked,
obtaining that the best one is the variant that adds to the original model formulation
the valid inequalities on the z variables which are used to linearise the pricing problem.

The results achieved improve on the results presented in the literature.

The purpose of further research will be to explore other bilevel problems where the
pessimistic approach is applicable and there exists a structure which allows making use
of the approach proposed in this paper. On the other hand, focusing on the RPPT, it
will be also of interest to establish relationships between the formulation RM proposed
in [9] and the one proposed in this paper, as well as to study the inclusion of a limitation

in the number of available products as proposed in [22].
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8. Appendix

In order to facilitate future comparisons with other algorithms developed to solve the

RPPT, this appendix makes available all relevant information provided by Gurobi on

the application of the V5 variant to the instances. Tables [§] to provide for each

instance the characteristics which define it, together with the best objective function

value provided by Gurobi, Z, the computational time invested, T', and the MIPGap

when applicable, G.
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Table 8. Results using variant 2 for each instance of size |K| = 50, problem by
problem. Inst. refers to the number of the instance, Z refers to the best objective
function value provided by Gurobi, T' means computational time and G refers to the
MIPGap. Stopping criterion 3600 seconds.

Inst. |I| |S*| Ties Z T G
1 5 2 1 1551 0.345
2 5 2 1 1802 0414
3 5 2 1 1460 0.266
4 5 2 1 1545 0.283
5 5 2 1 1375 0.289
6 5 3 1 1796 0.466
7 5 3 1 1928 0545
8 5 3 1 1641 0.486
9 5 3 1 1709 0.583
10 5 3 1 1519 0.518
11 5 5 1 1901 1.141
12 5 5 1 2023 0.903
3 5 5 1 1825 1.099
14 5 5 1 1867 0.856
15 5 5 1 1717 1227
16 5 5 2 1867 1.080
7 5 5 2 1944 1178
18 5 5 2 1773 0.944
19 5 5 2 1736 1.301
20 5 5 2 1583 0.989
21 5 5 3 1780 1.128
22 5 5 3 1866 0.990
23 5 5 3 1635 1.684
24 5 5 3 1727 1.188
25 5 5 3 1524 1576
26 25 5 1 2142 0.348
27 25 5 1 2211 0.849
28 25 5 1 2047 0.403
29 25 5 1 2310 0.217
30 25 5 1 2575 0417
31 25 5 2 2053 0.948
32 25 5 2 2099 1.390
33 25 5 2 2028 0.395
34 25 5 2 2212 0.906
3 25 5 2 2446 1.023
36 25 5 3 2013 2482
37 25 5 3 2059 8.023
38 25 5 3 1813 6.896
39 25 5 3 2093 5.183
40 25 5 3 2312 7.581
41 25 13 1 2245 2.094
42 25 13 1 2336 1.397
43 25 13 1 2149 1.451
44 25 13 1 2433 1.478
45 25 13 1 2661 0.434
46 25 13 3 2203 2.398
47 25 13 3 2329 1.788
48 25 13 3 2092 2430
49 25 13 3 2402 2.034
50 25 13 3 2605 2.689
51 25 13 5 2207 3.035
52 25 13 5 2259 11.090
53 25 13 5 2047 4.764
54 25 13 5 2348 4.078
55 25 13 5 2565 12.549
56 25 25 3 2266 6.470
57 25 25 3 2365 6.788
58 25 25 3 2096 9.183
59 25 25 3 2419  9.602
60 25 25 3 2704 5.704
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Inst. |I| |S¥| Ties Z T G
61 25 25 5 2274 8.756 -
62 25 25 5 2365 8.006 -
63 25 25 5 2104 13.113 -
64 25 25 5 2442 7.554 -
65 25 25 5 2662 10.226 -
66 25 25 10 2230 8721 -
67 25 25 10 2271 45460 -
68 25 25 10 2075 47.199 -
69 25 25 10 2369 27.623 -
70 25 25 10 2583 59.075 -
71 50 10 1 2473 0.070 -
72 50 10 1 3035 0.148 -
73 50 10 1 2610 0.037 -
74 50 10 1 2652 0.108 -
75 50 10 1 2552 0.092 -
76 50 10 3 2423 0473 -
77 50 10 3 3019 0.388 -
78 50 10 3 2556 0.461 -
79 50 10 3 2619 0.287 -
80 50 10 3 2547 0.190 -
81 50 10 5 2349 1.749 -
82 50 10 5 2962 2.278 -
83 50 10 5 2515 2234 -
84 50 10 5 2585 0.983 -
85 50 10 5 2476 1372 -
8 50 25 3 2481 0.123 -
87 50 25 3 3050 0.269 -
88 50 25 3 2625 0.055 -
80 50 25 3 2648 0.337 -
90 50 25 3 2559 0.286 -
91 50 25 5 2470 1.026 -
92 50 25 5 3044 0.393 -
93 50 25 5 2617 0.119 -
94 50 25 5 2656 0.131 -
95 50 25 5 2557 0.252 -
96 50 25 10 2438 2574 -
97 50 25 10 3016 3.637 -
98 50 25 10 2586 1.909 -
99 50 25 10 2626 2.182 -
100 50 25 10 2533 1.110 -
101 50 50 3 2484 0270 -
102 50 50 3 3061 0.097 -
103 50 50 3 2627 0.092 -
104 50 50 3 2657 0.090 -
105 50 50 3 2564 0.097 -
106 50 50 5 2484 0.285 -
107 50 50 5 3061 0.096 -
108 50 50 5 2627 0.074 -
109 50 50 5 2657 0.089 -
110 50 50 5 2563 0212 -
111 50 50 10 2472 2.672 -
112 50 50 10 3047 1.835 -
113 50 50 10 2622 0.558 -
114 50 50 10 2647 2.141 -
115 50 50 10 2560 0.610 -




Table 9. Results using variant 2 for each instance of size |K| = 100, problem by
problem. Inst. refers to the number of the instance, Z refers to the best objective
function value provided by Gurobi, T' means computational time and G refers to the
MIPGap. Stopping criterion 3600 seconds.

Inst. |I] |S*| Ties Z T G Inst. |I| |S¥| Ties Z T G
116 10 2 1 7089 0.773 - 181 50 50 3 9949  92.465 -
117 10 2 1 6258 0.784 - 182 50 50 3 10896  476.565 -
118 10 2 1 5763 0.738 - 183 50 50 3 9443 149.015 -
119 10 2 1 5759 0.630 - 184 50 50 3 8853 490.241 -
120 10 2 1 5657 1.832 - 185 50 50 3 9773 147.031 -
121 10 5 1 7977 3.317 - 186 50 50 5 9912 146.681 -
122 10 5 1 7125 7.103 - 187 50 50 5 10824 1394.719 -
123 10 5 1 6903 5.230 - 188 50 50 5 9478 149.510 -
124 10 5 1 6700 4.356 - 189 50 50 5 8782  726.056 -
125 10 5 1 6580 3.973 - 190 50 50 5 9765 190.495 -
126 10 5 2 7777 7.608 - 191 50 50 10 9904  202.346 -
127 10 5 2 6927  27.599 - 192 50 50 10 10696 - 0.006
128 10 5 2 6472  17.253 - 193 50 50 10 9444 442.149 -
129 10 5 2 6577 5.583 - 194 50 50 10 8760 1533.954 -
130 10 5 2 6409 7.051 - 195 50 50 10 9675 847.401 -
131 10 5 3 7372  30.737 - 196 100 20 1 12055 0.680 -
132 10 5 3 6780  13.647 - 197 100 20 1 10897 0.640 -
133 10 5 3 6292  28.963 - 198 100 20 1 10215 0.441 -
134 10 5 3 6025  23.908 - 199 100 20 1 9557 0.366 -
135 10 5 3 6316  29.083 - 200 100 20 1 10070 0.413 -
136 10 10 1 8579  11.382 - 201 100 20 3 12028 2.341 -
137 10 10 1 7851  12.240 - 202 100 20 3 10894 0.995 -
138 10 10 1 7295  11.761 - 203 100 20 3 10214 0.731 -
139 10 10 1 7091  19.571 - 204 100 20 3 9534 0.839 -
140 10 10 1 7093  32.026 - 205 100 20 3 10055 0.891 -
141 10 10 3 8305  39.740 - 206 100 20 5 11994 2.388 -
142 10 10 3 7763  30.883 - 207 100 20 5 10807 4.300 -
143 10 10 3 7149  42.351 - 208 100 20 5 10180 1.953 -
144 10 10 3 6931  48.928 - 209 100 20 5 9467 2.642 -
145 10 10 3 6912  41.877 - 210 100 20 5 10033 2.237 -
146 10 10 5 7979  62.847 - 211 100 50 3 12060 0.720 -
147 10 10 5 7553  64.036 - 212 100 50 3 10922 1.228 -
148 10 10 5 6756  65.826 - 213 100 50 3 10221 0.930 -
149 10 10 5 6614  87.780 - 214 100 50 3 9597 1.059 -
150 10 10 5 6747  67.652 - 215 100 50 3 10071 0.532 -
151 50 10 1 9674 2.384 - 216 100 50 5 12048 2.642 -
152 50 10 1 10586 3.817 - 217 100 50 5 10915 1.986 -
153 50 10 1 9185 3.438 - 218 100 50 5 10218 1.105 -
154 50 10 1 8549 3.149 - 219 100 50 5 9596 1.720 -
155 50 10 1 9418 2.947 - 220 100 50 5 10063 1.300 -
156 50 10 3 9369  30.575 - 221 100 50 10 12017 8.730 -
157 50 10 3 10356  50.562 - 222 100 50 10 10901 3.131 -
158 50 10 3 9086  23.127 - 223 100 50 10 10175  12.010 -
159 50 10 3 8421 4.906 - 224 100 50 10 9583 2.535 -
160 50 10 3 9261 111.701 - 225 100 50 10 10035 5.598 -
161 50 10 5 8963 1637.883 - 226 100 100 3 12062 1.494 -
162 50 10 5 10051  468.380 - 227 100 100 3 10926 0.529 -
163 50 10 5 8778 177.615 - 228 100 100 3 10221 1.459 -
164 50 10 5 8042 149.137 - 229 100 100 3 9603 0.369 -
165 50 10 5 8890 809.246 - 230 100 100 3 10073 0.583 -
166 50 25 3 9820  29.554 - 231 100 100 5 12057 1.898 -
167 50 25 3 10798  54.806 - 232 100 100 5 10923 2.293 -
168 50 25 3 9391  18.478 - 233 100 100 5 10223 0.481 -
169 50 25 3 8628 124.791 - 234 100 100 5 9602 0.576 -
170 50 25 3 9619  86.881 - 235 100 100 5 10069 2.061 -
171 50 25 5 9689 192.435 - 236 100 100 10 12038  13.888 -
172 50 25 5 10628 841.358 - 237 100 100 10 10915 5.148 -
173 50 25 5 9309 129.788 - 238 100 100 10 10218 9.477 -
174 50 25 5 8633 228.770 - 239 100 100 10 9598 1.736 -
175 50 25 5 9568 279.139 - 240 100 100 10 10066 2.702 -
176 50 25 10 9561  637.457 -

177 50 25 10 10338 - 0.007

178 50 25 10 9130 1049.079 -

179 50 25 10 8464 - 0.004

180 50 25 10 9298 - 0.001
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Table 10. Results using variant 2 for each instance of size |K| = 150, problem by
problem. Inst. refers to the number of the instance, Z refers to the best objective
function value provided by Gurobi, T' means computational time and G refers to the
MIPGap. Stopping criterion 3600 seconds.

Inst. [I| |S*| Ties Z T G Inst. |I| |S*| Ties Z T G
241 15 3 1 14671  16.383 - 306 75 75 3 21785 2650.917 -
242 15 3 1 14327  18.660 - 307 75 75 3 23067 - 0.000
243 15 3 1 15024 4.793 - 308 75 75 3 22850 - 0.004
244 15 3 1 16261 6.238 - 309 75 75 3 20467 - 0.008
245 15 3 1 17610  13.507 - 310 75 75 3 20337 - 0.004
246 15 8 1 17128  88.737 - 311 75 75 5 21804 - 0.000
247 15 8 1 16176 107.276 - 312 75 75 5 23095 2924.169 -
248 15 8 1 16822  71.120 - 313 75 75 5 22857 - 0.006
249 15 8 1 18189  31.350 - 314 75 75 5 20519 - 0.008
250 15 8 1 19541 161.105 - 315 75 75 5 20352 - 0.001
251 15 8 2 16570 727.047 - 316 75 75 10 21739 - 0.003
252 15 8 2 16050 148.430 - 317 75 75 10 22809 - 0.010
253 15 8 2 16709  86.859 - 318 75 75 10 22712 - 0.009
254 15 8 2 17982  81.615 - 319 75 75 10 20473 - 0.008
255 15 8 2 19229 149.653 - 320 75 75 10 20342 - 0.004
256 15 8 3 16461 480.098 - 321 150 30 3 23434 1.953 -
257 15 8 3 15587 542917 - 322 150 30 3 23294 2.359 -
258 15 8 3 16249 472.055 - 323 150 30 3 21260 2.453 -
259 15 8 3 17720 143.755 - 324 150 30 3 21121 2.500 -
260 15 8 3 18847 458212 - 325 150 30 3 22856 1.438 -
261 15 15 1 17768 422.776 - 326 150 30 5 23426 3.001 -
262 15 15 1 17119 373.875 - 327 150 30 5 23245 8.110 -
263 15 15 1 17527 329.278 - 328 150 30 5 21270 2.016 -
264 15 15 1 18824 262.455 - 329 150 30 5 21118 2.125 -
265 15 15 1 20586 1122.884 - 330 150 30 5 22832 3.203 -
266 15 15 3 17415 919.347 - 331 150 30 10 23319  15.236 -
267 15 15 3 16739 1080.546 - 332 150 30 10 23144  18.379 -
268 15 15 3 17483 311.436 - 333 150 30 10 21088  19.096 -
269 15 15 3 18515 416.604 - 334 150 30 10 21006  13.860 -
270 15 15 3 20452 1547.155 - 335 150 30 10 22712  23.750 -
271 15 15 5 17517 974.659 - 336 150 75 3 23441 2.172 -
272 15 15 5 16663 974.958 - 337 150 75 3 23301 3.376 -
273 15 15 5 17257 547.615 - 338 150 75 3 21287 3.032 -
274 15 15 5 18244 1355.965 - 339 150 75 3 21140 1.265 -
275 15 15 5 19909 2239.446 - 340 150 75 3 22875 2.187 -
276 75 15 1 21180  23.232 - 341 150 75 5 23436 3.359 -
277 75 15 1 22619  20.832 - 342 150 75 5 23303 2.204 -
278 75 15 1 22343  65.087 - 343 150 75 5 21293 1.845 -
279 75 15 1 20016  36.622 - 344 150 75 5 21134 2.846 -
280 75 15 1 19966  11.078 - 345 150 75 5 22872 3.532 -
281 75 15 3 21142  44.784 - 346 150 75 10 23432 3.984 -
282 75 15 3 22395  30.613 - 347 150 75 10 23281  10.296 -
283 75 15 3 21946 672.658 - 348 150 75 10 21278 5.640 -
284 75 15 3 19745  59.135 - 349 150 75 10 21097  13.593 -
285 75 15 3 19803  23.339 - 350 150 75 10 22874 3.641 -
286 75 15 5 20818 388.586 - 351 150 150 3 23443 3.267 -
287 75 15 5 21871 2515.510 - 352 150 150 3 23303 4.984 -
288 75 15 5 21892 807.789 - 353 150 150 3 21296 1.407 -
280 75 15 5 19594  206.893 - 354 150 150 3 21140 1.343 -
290 75 15 5 19145 1512.165 - 355 150 150 3 22878 1.032 -
291 75 38 3 21515 1283.728 - 356 150 150 5 23444 2.281 -
292 75 38 3 23034  86.470 - 357 150 150 5 23304 3.234 -
293 75 38 3 22580 1981.924 - 358 150 150 5 21296 2.328 -
294 75 38 3 20367 3229.996 - 359 150 150 5 21139 2.640 -
295 75 38 3 20226 455.895 - 360 150 150 5 22876 5.047 -
296 75 38 5 21494 1129.141 - 361 150 150 10 23439 5.126 -
297 75 38 5 22033 208.843 - 362 150 150 10 23297  10.408 -
298 75 38 5 22438 - 0.005 363 150 150 10 21278  25.944 -
299 75 38 5 20273 - 0.004 364 150 150 10 21137 4.266 -
300 75 38 5 20021 1406.413 - 365 150 150 10 22875 5.595 -
301 75 38 10 21345 - 0.008

302 75 38 10 22775 2942.789 -

303 75 38 10 22270 - 0.014

304 75 38 10 20009 - 0.011

305 75 38 10 20008 - 0.007
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