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Abstract—Multiple HPC applications are often bottlenecked
by compute-intensive kernels implementing complex dependency
patterns (data-dependency bound). Traditional general-purpose
accelerators struggle to effectively exploit fine-grain parallelism
due to limitations in implementing convoluted data-dependency
patterns (like SIMD) and overheads due to synchronization and
data transfers (like GPGPUs). In contrast, custom FPGA and
ASIC designs offer improved performance and energy efficiency
at a high cost in hardware design and programming complexity
and often lack the flexibility to process different workloads.

We propose Squire, a general-purpose accelerator designed
to exploit fine-grain parallelism effectively on dependency-bound
kernels. Each Squire accelerator has a set of general-purpose
low-power in-order cores that can rapidly communicate among
themselves and directly access data from the L2 cache. Our
proposal integrates one Squire accelerator per core in a typical
multicore system, allowing the acceleration of dependency-bound
kernels within parallel tasks with minimal software changes.

As a case study, we evaluate Squire’s effectiveness by accelerat-
ing five kernels that implement complex dependency patterns. We
use three of these kernels to build an end-to-end read-mapping
tool that will be used to evaluate Squire. Squire obtains speedups
up to 7.64× in dynamic programming kernels. Overall, Squire
provides an acceleration for an end-to-end application of 3.66×.
In addition, Squire reduces energy consumption by up to 56%
with a minimal area overhead of 10.5% compared to a Neoverse-
N1 baseline.

Index Terms—Hardware accelerator, General-purpose, Fine-
grain parallelism, Dynamic programming, Genomics

I. INTRODUCTION

Modern multi-core architectures and accelerators have be-
come the cornerstone for accelerating many workloads in
scientific computing and engineering [1]. Many efforts have
been made to accelerate HPC applications on modern hard-
ware architectures such as CPUs and GPUs, as well as FPGA
and custom accelerators (ASICs) for specific workloads [2].
Hence, HPC platforms are increasingly sought after to handle

large-scale workloads that exploit different levels of paral-
lelism available in the accelerators.

However, there is an emergent class of workloads that
cannot fully exploit the massively parallel capabilities of
mainstream accelerators. Many HPC applications are often
bottlenecked by the execution of sequential workflows com-
posed of rather small compute-intensive kernels that imple-
ment complex dependency patterns (dependency-bound). This
is particularly noticeable in life science and healthcare appli-
cations, which implement long workflows of data-processing
kernels [3]. Often based on stencil and Dynamic Programming
(DP) computations, dependency-bound kernels tend to be
moderate in size and implement complex data-dependency
patterns that ultimately restrict parallelism exploitation.

Traditionally, coarse-grain parallelism approaches seek to
execute independent kernels concurrently (inter-task) and
improve resource utilization [4], [5]. However, offloading
dependency-bound kernels to specialized hardware accelera-
tors seldom pays off. Due to its rather small size, offloading
workloads to decoupled accelerators often incur significant
overheads both from data-transfer initialization and move-
ment [6]. Similarly, task-level parallelization approaches often
introduce synchronization delays that hinder performance.
Also, load imbalance and data sparsity present significant chal-
lenges to the flexibility of conventional accelerators, ultimately
limiting their performance [7].

Similarly, fine-grain (intra-task) parallelism is difficult to
exploit in dependency-bound workloads. Complex dependency
patterns and irregular computations make the exploitation of
the underlying parallelism challenging [8], [9]. Moreover,
the need for fine-grain synchronization introduces significant
overheads during execution. Ultimately, these kernels often
cannot saturate computing resources and effectively exploit
fine-grain parallelism [10], [11].



Mainstream SIMD-based and GPU approaches are limited
in accelerating these types of workloads. SIMD approaches
face significant limitations in handling sparse data-processing
tasks, such as gather and scatter operations, which introduce
substantial latency overheads [12]. Additionally, SIMD in-
structions often struggle to implement complex data depen-
dency patterns, limiting their effectiveness in many scenarios.
Similarly, GPUs tend to provide only modest performance
improvements on these small-scale workloads, as they cannot
saturate GPU’s compute resources (i.e., few threads and thread
blocks). In addition, GPUs load imbalance and data-transfers
overheads limit the performance benefits of offloading these
types of kernels [6].

In contrast, custom FPGA-based and domain-specific ASIC
designs offer improved performance and energy efficiency at
the cost of complex and expensive hardware design, devel-
opment, and fabrication processes [13]. In some cases, they
also suffer from data transfer and synchronization overheads.
Ultimately, custom hardware approaches often lack the flex-
ibility to adapt to different workloads and incur significant
programming and maintenance costs [14]–[16].

To address these challenges, our goal in this work is to
enable (i) efficient exploitation of fine-grain parallelism in
dependency-bound kernels, (ii) reducing data-transfers over-
heads, and (iii) providing hardware support for fast synchro-
nization primitives.

In this work, we propose Squire, a general-purpose accel-
erator designed to effectively exploit fine-grain parallelism on
dependency-bound kernels. Squire is equipped with several
general-purpose in-order cores, called workers, and a hard-
ware semaphore for rapid synchronization among the workers.
Our proposal incorporates one Squire per core in a typical
multicore system, connecting it to the memory hierarchy to
directly access the virtual memory space. Each core controls
one Squire, rapidly offloading workloads whenever it needs.
Since workers share the same Instruction Set Architecture
(ISA) as the core, we can develop and compile code for Squire
just as we do for the core.

We discuss three potential use cases for our accelerator: data
sorting, genomics, and signal processing. We examine some
representative kernels and show how fine-grain parallelism
can be exploited. These kernels include Radix Sort [17],
Seeding [18], Chain [18], Smith-Waterman [19], [20], and
Dynamic Time Warping [21].

This work makes the following contributions.
• We propose Squire, a general-purpose accelerator for

exploiting fine-grain parallelism on dependency-bound
kernels.

• We select five dependency-bound kernels and analyze
them. Then, we adapt these kernels to be executed with
Squire.

• We use three of these kernels to build an end-to-end read-
mapping tool that will be used to evaluate Squire.

• We show how Squire can speed-up the five evaluated
kernels. We also evaluate the end-to-end read-mapper
to understand how Squire improves a full application.

a) b) c)

Sorting algorithm Dynamic-programming Sparse matrix-vector multiplication

Fig. 1: Examples of coarse-grain tasks with fine-grain par-
allelism: (a) sorting, (b) dynamic programming matrix, (c)
sparse matrix-vector multiplication. Each color in the data
structures represents a chunk of fine-grain work.

Finally, we perform an area and energy consumption
study.

Key results. Squire obtains speedups up to 7.64× in
dynamic programming kernels. Overall, Squire provides an
acceleration for an end-to-end application of 3.66×. In addi-
tion, Squire reduces power consumption by up to 56% with a
minimal area overhead of 10.5% compared to a Neoverse-N1
baseline.

II. MOTIVATION

Coarse-grain parallelism is desirable in high-performance
computing environments to hide the overheads associated
with task management and data movement. This inter-task
parallelism means that each processing core operates on an
independent task [4], [5], [18], [22]–[26]. However, this ap-
proach often struggles to exploit the fine-grain parallelism
inherent in many kernels with complex dependencies.

Intra-task fine-grain parallelism is usually tackled via SIMD
on general-purpose processors or SIMT on GPUs. However,
these techniques are inefficient when targeting specific algo-
rithms containing dependencies or sparse patterns. Well-known
algorithms that suffer such problems include: Quicksort [27],
Dynamic Time Warping [21], and Smith-Waterman [19], [20].
Additionally, data structures with sparse memory patterns,
such as FM-Index [28]–[30], hash tables [17], and sparse
matrix-vector multiplication (SpMV) [31], are often limited by
the amount of memory-level parallelism that can be exposed.
All these patterns are present in many applications.

Figure 1 highlights three kernels that exhibit fine-grain
parallelism (shown using different colors) which is challenging
to exploit due to existing dependencies. Figures 1a and 1c
show how sorting and SpMV coarse-grain tasks could be
further parallelized by processing chunks of the array or
independent rows of the matrix in parallel. However, this is not
efficient due data-dependent irregular patterns and the fact that
SIMD gather/scatter memory operations are not efficient [12].
Subfigure 1b shows how parallelism is present per cell in a
dynamic programming matrix. For some dynamic program-
ming problems, antidiagonal vectorization is the best way to
avoid dependencies; however, it requires data rearranging that
diminishes potential gains. Support for exploiting this fine-
grain parallelism can benefit a large set of workloads.

GPGPUs have also been proposed to tackle dynamic pro-
gramming kernels [8], [32]. However, GPGPUs are designed



for massive parallel workloads, and dependencies and sparsity
hinder performance. In addition, offloading fine-grain parallel
workloads is not recommended due to the high transfer time,
and fine-grain synchronization is also challenging. For these
reasons, GPGPUs obtain modest speed-ups when targeting
dynamic programming algorithms [9]–[11], [33], [34]. Finally,
custom hardware solves dependency constraints at the cost of
fixing the functionality of the proposed components, losing
generality [14]–[16], [35], [36].

Chain is a dynamic programming algorithm widely used in
the field of genomics [18]. Lorién et al. show that the SIMD
version of chain obtains slowdowns of up to 0.71× with re-
spect to the scalar version with heuristics [37]. Chain presents
dependency-bound patterns in the inner loop, resulting in
underutilized vector lanes. Similarly, Guo et al. show that in
the GPU version of chain, 16.3% of the kernel instructions are
control instructions for synchronizing warps [33]. They use an
NVIDIA Tesla P100 for the evaluation [38]. The P100 GPU
achieves a 3.17× speed-up with respect to a 14-core CPU
while consuming 300W and occupying 610 mm2, resulting in
under-utilization of resources.

These limitations highlight the need for a flexible and effi-
cient solution to exploit fine-grain parallelism in dependency-
bound workloads. We propose a general-purpose accelerator -
Squire - to unlock the parallelism potential of a wide range of
workloads while maintaining flexibility and low overhead.

III. USE CASES

In this section, we discuss three potential use cases for
our accelerator: data sorting, genomics, and signal processing.
We examine some representative kernels and demonstrate how
fine-grain parallelism can be exploited.

A. Data Sorting

Sorting [17] is a widely studied problem in computer
science, fundamental to various applications such as search
engines, data mining, databases, and numerical methods. The
importance of sorting spans from energy-efficient devices [39],
[40] to GPGPUs and data centers [41]–[43].

Radix sort [17] is an efficient sorting algorithm with a time
complexity of O(nk), where n is the number of elements in the
array and k is the length of the key. This makes it particularly
effective to sort arrays of 32-bit or 64-bit integers. In the first
iteration, the algorithm uses the eight most significant bits
to divide the array into 28 buckets. This process is repeated
recursively for subsequent bits until all bits are processed.

Fine-grain parallelism in Radix Sort can be achieved by
dividing the array into smaller chunks, sorting them indepen-
dently, and merging the results. Previous work has shown how
GPGPUs can achieve this using parallel architectures [44]. We
will show that Squire can also leverage this parallelism while
experiencing minimal synchronization overhead.

B. Genomics

In life science research and health care, sequencing tech-
nologies have revolutionized the way scientists analyze the

genome to uncover biological insights. Modern sequencing
technologies can accurately read massive amounts of genome
sequences. Afterwards, tools like read mappers are extensively
used in multiple sequence data analysis methods to locate
(align) the read sequences in a reference genome (e.g., the
human genome). Since alignment algorithms are computation-
ally expensive, read mappers usually follow a seed-and-extend
approach. During the seeding stage, the tool searches for
partial matches between the query sequence and the reference.
These partial matches are hints for the extend stage, where
dynamic programming algorithms find the best location for
each sequence.

The goal of seeding is to find partial exact matches between
an input sequence and the reference genome. Typically, FM-
Index [28] or hash-tables [17] are used to locate these matches
faster. These data structures are built once and used along all
the sequences being aligned, typically several GBs or even
TBs of data.

Minimap2 [18] is a well-known read-mapper tool used for
long reads (around 10K base pairs). Initially, Minimap2 builds
a hash table that contains the positions in the reference for
all combinations of k base pairs (k-mer). When Minimap2
indexes the hash table with a k-mer, the hash table returns a list
of positions in the reference. To split the sequence into k-mers,
Minimap2 establishes a sliding window that moves along the
sequence and extracts the lowest k-mer alphabetically in each
window. Each one of these k-mers is called a minimizer.

Minimap2 indexes the hash table with all the minimizers
and extracts a list of tuples (called anchors), which consist of
the position in the sequence and the position in the reference.
Finally, the anchors are sorted by the position in the reference
so that the following stages can easily traverse the list. For
this purpose, Minimap2 uses a radix sort algorithm, which is
the most time-consuming step of the entire seeding stage.

The Chain kernel, a 1D dynamic programming algorithm,
combines multiple seeds (termed anchors) to create extended
matching regions, also called a chains. The algorithm receives
a set of sorted anchors and scores each anchor pair based on
their proximity and overlap using the following formula:

f(i) = max
(i−T )≤j<i

{f(j) + α(i, j)− β(i, j)} (1)

where f(i) is the score of anchor i, α(i, j) is a bonus score
between the anchors i and j, and β(i, j) a penalty for gaps
and overlaps. Finally, T is the chain iteration threshold. Notice
that the f(i) calculation depends on f(i − 1). On the other
hand, the calculation of α and β is independent for any i and
j.

Figure 2 shows the dependencies present in the chain kernel.
The score array (f in Equation 1) is added to the match-up
scores (α and β in Equation 1). Then, the maximum of the
row is calculated, and the score of anchor 4 is obtained. Notice
that f(4) will be added to subsequent rows, thus creating a
dependency in the outer loop.

In addition to the score array, a predecessor array is com-
puted, which stores the index of the best match-up for each
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Fig. 2: Chain algorithm dependencies. To calculate the score
of anchor 4 (f(4)), we add all the previous scores to row 4
and perform a maximum. In the next iteration, f(4) will be
added to row 5.

anchor. Once both arrays are computed, a backtracking process
is performed. Starting from the best score in the score array,
the algorithm recursively traces back through its predecessors.
The resulting list of predecessors forms a chain.

Dynamic programming 1D algorithms typically involve an
inner loop with dependencies across iterations, which limits
the amount of parallelism that can be exploited. The fine-
grain parallelism arises from the computation of elements that
depend on previously computed iterations. As illustrated in
Figure 2, the element f(4) in the score array requires all
elements smaller than 4. However, it is unnecessary to wait for
f(3) to complete before calculating certain cells in the row.
For example, we can compute cell x in row 4 as soon as f(x)
is available by dynamically checking the computed scores. A
system of detached computing elements could facilitate such
computations effectively.

Smith-Waterman is a 2D dynamic programming algorithm
used during the extend stage for sequence alignment [19], [20].
As this paper discusses another 2D dynamic programming
algorithm, Dynamic Time Warping, in detail later, we do not
elaborate further on Smith-Waterman here.

C. Signal Processing

Signal processing focuses on analyzing various types of
signals, including sound, images, potential fields, seismic data,
altimetry, and scientific measurements. A signal represents a
flow of information originating from a source, which can take
many forms, such as mechanical, optical, magnetic, electrical,
or acoustic. Signals can be digital, characterized by discrete
values, such as semaphores, Morse code, or the contents of
computer memory. Conversely, signals can also be analog,
encompassing continuous values like pressure, temperature, or
velocity.

Dynamic Time Warping (DTW) is a 2D dynamic pro-
gramming algorithm designed to align two signals to measure
their similarity. It is widely used in applications such as speech
recognition, speaker recognition, and music recognition. DTW
constructs a dynamic programming matrix with a computa-
tional complexity of O(n×m), where n and m represent the
lengths of the signals being aligned.
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Fig. 3: DTW matrix representation. The samples from signal
1 are set at the top of the matrix, while samples from signal
2 are set at the left. For each cell DTW computes Equation 2.
Arrows indicates the minimum value from Equation 2.

Figure 3 provides an example of a DTW matrix. Each cell
in the matrix is computed using the following equation:

M [i, j] = abs(S[i]−R[j]) + min{M [i− 1, j − 1],

M [i− 1, j],

M [i, j − 1]}
(2)

Where M [i, j] is the cell in row i and column j, while
S and R are the aligned signals. The equation calculates the
value of the cell [i, j] as the minimum value of the left, top,
and left-top cells plus the absolute difference between S[i]
and R[j]. This dependency on the left, top, and left-top cells
complicates parallelization.

Similarly, the aforementioned Smith-Waterman algorithm
also exhibits the same dependency patterns as DTW. Like
DTW, Smith-Waterman also constructs a matrix with depen-
dencies on the left, top, and left-top cells.

Typically, fine-grain parallelism for 2D dynamic program-
ming kernels is primarily achieved using SIMD techniques.
The most common approaches are anti-diagonal vectoriza-
tion [45] and inter-task vectorization [46]. Both methods
require prior reorganization of the data structures and often
suffer from under-utilization of SIMD lanes.

On one hand, SIMD enforces a lockstep execution order,
limiting flexibility. On the other hand, dividing work in this
manner can lead to load imbalance. A potential solution
to these issues is to increase the size of the work chunks
assigned to each computing element. As shown in Section V-C,
the dynamic programming (DP) matrix could be divided
by columns and distributed among the computing elements.
To implement this effectively, we would require a set of
independent computing elements capable of asynchronously
processing their assigned chunks of work.

D. Discussion

We have demonstrated that fine-grain parallelism exists in
several key dependency-bound kernels. Exploiting this par-
allelism effectively requires a set of generic, independent,
general-purpose computing elements. Such a system must



include a mechanism for rapid work offloading and efficient
synchronization among the computing elements. Building on
these principles, the next section introduces Squire, a general-
purpose accelerator designed specifically to address the chal-
lenges of dependency-bound fine-grain parallelism.

IV. SQUIRE

One of the main goals of Squire is to make it general-
purpose, enabling workloads with inherent fine-grain paral-
lelism to benefit from the accelerator. To achieve this, we
identify two key design principles: (i) enable low-latency
execution of fine-grain tasks and (ii) provide architectural
support for fast synchronization between processing units to
manage dependencies. Hence, our hardware accelerator must
have the following features:

• A set of general-purpose processing units sharing a
unified memory view with the host core.

• A synchronization mechanism to enable rapid communi-
cation among processing units.

A. Squire Design

Figure 4 shows the architectural overview of Squire, a
general-purpose accelerator for dependency-bound fine-grain
parallelism. Figure 4a illustrates a conventional multi-core
SoC with a distributed L3 cache, where each core complex
contains two levels of private caches. Figure 4b depicts the
integration of Squire into the system, where each core complex
is augmented with a Squire block interfaced with the private
L2 cache. Finally, Figure 4c shows that Squire consists of
a set of very simple general-purpose in-order cores, termed
workers. In addition, Squire features control registers and a
synchronization module, which are visible to both the host
core and the workers.

Typically, hardware accelerators solve dependency-bound
parallelism, such as dynamic programming, using systolic
arrays [14], [33], [35]. However, these solutions rely on hard-
wired components that serve a fixed purpose and usually target
a specific kernel. In order to increase the flexibility of Squire,
we propose employing simple in-order cores with small area
and power consumption requirements for each worker. To
simplify the design, we assume these cores share the same
base ISA as the host core. In addition, each worker has small,
private data and instruction caches. We define the size of these
caches with a design space study in Section VII-D.

A host core can offload computation to the workers via a
simple API (see Section IV-C) that sets a function’s address
and the necessary arguments into the control registers. Then,
the workers start executing the workload using regular instruc-
tions. If the host core has recently accessed the input data, it
is likely to still reside in the L2 cache, reducing data transfer
latency.

To orchestrate L2 access requests from the worker cores, we
employ a shared bus coupled with a centralized arbiter. The
arbiter selects one request per cycle from the set of pending
L2 accesses issued by the workers. This design enforces a
single L2 access per cycle, thereby requiring only a single

TABLE I: Squire programming interface. For each API call,
we provide a brief description and who can use the API call.

API call Description Caller

start_squire(f,a)
Squire executes f function with a arguments. CoreCounters reset to 0.

stop_worker() Suspends the worker execution. Workers
id_worker() Returns the worker ID. Workers
num_workers() Returns the total number of workers. Core/Workers
inc_lcounter(w) Increments the local counter w by one. Workers
inc_gcounter() Increments the global counter by one. Workers
wait_lcounter(w,s) Waits until the local counter w is greater or equal to s. Core/Workers
wait_gcounter(s) Waits until the global counter is greater or equal to s. Core/Workers

extra read/write port on the L2 cache, reducing implementation
complexity. Cache coherence is maintained through a snoop-
based protocol, where all workers monitor the L2 bus for
invalidation messages. This is practical given the simplicity of
the in-order cores. Moreover, workers are designed to target
workloads that maximize L1 data reuse. Empirically, even
with 32 workers active, the system sustains an average of no
more than one L2 access every two cycles, demonstrating that
accessing the L2 cache is not a primary bottleneck.

Tasks are distributed using traditional coarse-grain paral-
lelism, with OpenMP assigning independent workloads to
host cores [47]. In read mapping tools, for example, each
host core aligns a subset of sequences. These tasks are typ-
ically dependency-bound, limiting the effectiveness of SIMD
and instruction-level parallelism. Squire addresses this by
subdividing tasks into fine-grain sub-tasks, enabling nested
parallelism even in dependency-bound kernels.

B. Synchronizing Workers

The synchronization mechanism is used to coordinate the
workers, and it is visible to the host core as well as the
workers. We have designed the mechanism to enable modeling
dependencies for two distinct common use cases.

On the one hand, our aim is to tackle algorithms that
perform computation over 1D data structures. To achieve
this, we use a simple mechanism that features a hardware
atomic counter, referred to as global counter. This will enable
handling loops where iteration i conditionally consumes the
data produced by iteration i-1. For this purpose, we require
the workers to increment the global counter in order, i.e., if
worker x increments the global counter before worker x-1, the
increment is saved in a structure until worker x-1 increments
the global counter. To implement this with a non-blocking
scheme, we instantiate one queue per worker and a token.
The token indicates which worker is the next to increment the
global counter and is initialized to zero. If worker x wants
to increment the global counter and the token contains the
value x-1, an increment request is enqueued in x’s queue.
When worker x-1 increments the global counter, the queues
are searched for pending increments in order, and the token is
updated accordingly.

On the other hand, we want to efficiently handle workloads
with 2D data structures, such as dynamic programming matri-
ces with vertical and horizontal dependencies. For this reason,
we also instantiate an array of hardware atomic counters,
with a length equal to the number of workers, referred to as
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local counters. When filling a dynamic programming matrix,
a worker increments its local counter each time it computes a
matrix row. Thus, worker x can check local counter x-1 before
starting the next row.

This set of hardware atomic counters is implemented as 64-
bit registers that can be accessed in one cycle.

C. Squire API

Table I describes the Squire programming interface. Each
functionality in the table defines a new ISA primitive to
interact with the accelerator. The table also specifies whether
the host core, the workers, or both can invoke the primitives.
Section V-A shows how the Squire API works using radix sort
as an example.

V. USING SQUIRE

This section shows how to use Squire for several kernels. We
describe the implementation process for the Radix Sort, Chain,
and DTW algorithms in Squire. Finally, we discuss some
alternatives considered for certain implementation details.

A. Sorting: Radix Sort

The pseudocode for Squire’s radix sort implementation is
shown in Algorithm 1. The host core executes the RADIX
function (Line 1), which calls start_squire with the
function and input data addresses as arguments (Line 3). This
call writes the addresses to Squire’s control registers, sets
the workers’ program counters to the function’s entry point,
and resets internal counters. The workers then execute the
RADIX_Workers function (Line 8). Each worker retrieves
its ID and the total number of workers via the id_worker
and num_workers APIs, using this information to evenly
partition the input array (Lines 9–10). Each chunk is sorted
using the standard radix sort algorithm (Line 11). Upon
completing its chunk, a worker increments the global counter
and halts (Lines 12–13). Meanwhile, the host core waits until

Algorithm 1 Radix Sort Squire version

1: function RADIX(X[N])
2: if N > 10000 then
3: start squire(RADIX WORKERS, X)
4: wait gcounter(num workers())
5: MERGE SORTED ARRAYS(X)
6: else
7: RADIX KERNEL(X[0:N])
8: function RADIX WORKERS(X[N])
9: start = id worker() × (N / num workers())

10: end = (id worker()+1) × (N / num workers())
11: RADIX KERNEL(X[start:end])
12: inc gcounter()
13: stop worker()

the global counter matches the number of workers (Line 4). At
this point, the input has been divided into n sorted subarrays,
which the host core merges using a min-heap (Line 5). Squire
may not be beneficial when the workload is too small. To
address this, Algorithm 1 includes a check to ensure that
at least 10,000 elements are present before activating Squire
(Line 2); otherwise, the host core handles sorting directly
(Line 7).

B. 1D Dynamic Programming: Chain

We describe the process of integrating the Chain kernel
into Squire. First, we show the pseudocode for the baseline
version of the Chain kernel. Next, we outline generic software
modifications to enable parallelism, and finally, we show the
necessary changes to integrate Chain into Squire.

1) Baseline Chain Kernel
Algorithm 2 shows the pseudocode for the original chain

kernel. The function CHAIN receives an array of anchors
sorted by position in the reference (Line 1). The kernel consists
of two nested loops. The outer loop (Line 3) goes through



Algorithm 2 Chain kernel baseline version

1: function CHAIN(A[N]) ▷ A: anchors array
2: T = 5000
3: for i = 0; i < N; i++ do
4: for j = i-1; j ≥ i-T; j-- do
5: AUX[j] = α(A[i], A[j]) - β(A[i], A[j])
6: AUX[j] += F[j] ▷ Consume F[j]
7: F[i] = MAX(AUX) ▷ Generate F[i]

all the anchors sorted by reference position, while the inner
loop (Line 4) iterates through the T anchors prior to anchor i
and performs a match-up between each of them and anchor i.
Line 5 corresponds to the calculation of α and β in Equation 1,
and Line 6 to the addition of f(j) in Equation 1. Line 7
performs the maximum, obtaining f(i). Notice that Line 5
can be computed in parallel for all the anchors, while Line 6
must wait for the generation of F[j] by Line 7.

2) Enabling Fine-Grain Parallelism
To delay the consumption of F[i] from Line 7 to Line 6,

we alter the order of the inner loop (Line 4). To achieve this,
we traverse the anchors in reverse order, i.e., from i-T to
i-1. In addition, to isolate dependency-free parallelism from
the dependencies imposed by Line 6, we fission the inner loop
(Line 4), effectively detaching the computation of α and β in
Line 5 from the addition in Line 6.

By default, the chain algorithm has a threshold on the
number of anchors it visits backward (T in Lines 2 and 4).
However, the best match-up is typically found during the initial
iterations. In addition, the chain implements some heuristics
to stop the inner loop earlier. For example, if the match-up
scores are below a threshold. Therefore, the chain kernel visits
fewer anchors, and typically only the first few are useful.
Consequently, we can reduce T with a negligible penalization
in accuracy. We observe a misprediction rate lower than 9 per
million when setting T to 64. Therefore, we use this value for
our final evaluation. Although the overall Minimap2 accuracy
remains almost unchanged, limiting T skips some match-ups,
and some computation shifts to the align stage.

In the original implementation, after performing the chain
stage, there is a second opportunity to rerun the chain algo-
rithm if the area covered by the anchors is not large enough.
The chain kernel is executed again with looser parameters and
simpler versions of α and β functions. We modify the second
chain run to use the same function as in the first chain run
while applying the new parameters. This simplifies the imple-
mentation process while preserving the output of the original
algorithm. As a summary of the software modifications:

• We have reversed the order in which we traverse the inner
loop (Line 4).

• We fission the inner loop. Line 5 will be executed in the
first loop, and Line 6 in the second one.

• We limit the number of anchors visited backward to 64
(T in Lines 2 and 4).

• We reformulate the second chain run to use the same

Algorithm 3 Chain kernel Squire version

1: function CHAIN WORKERS(A[N]) ▷ A: Anchors array
2: T = 64
3: for i = id worker(); i < N; i += num workers() do
4: for j = i-T; j ≤ i-1; j++ do
5: AUX[j] = α(A[i], A[j]) - β(A[i], A[j])
6: for j = i-T; j ≤ i-1; j++ do
7: if AUX[j] ̸= -∞ then
8: wait gcounter(j+1)
9: AUX[j] += F[j] ▷ Consume F[j]

10: F[i] = MAX(AUX) ▷ Generate F[i]
11: inc gcounter()
12: stop worker()
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Fig. 5: DTW work distribution among workers. Worker 0 (W0)
computes columns 0 and 1, worker 1 (W1) columns 2 and 3,
worker 2 (W2) columns 4 and 5, and worker 3 (W3) columns
6 and 7. The workers compute the cells following the path
indicated by the arrows.

function as in the first run.

Algorithm 3 shows the modified code with all these changes.

3) Squire Integration
Algorithm 3 shows the modified chain kernel adapted for

Squire. The work is divided in a round-robin fashion (Line 3);
e.g., with four workers, worker 0 computes the scores of
anchors (0, 4, 8, ...), worker 1 computes the scores of anchors
(1, 5, 9, ...), and so on.

Note that now the loop in Line 4 can be computed in
parallel without dependencies using the workers. Once all
the α and β values have been computed, the second loop
in Line 6 proceeds to compute the remaining part, which
has dependencies across workers (red lines in Figure 2). The
dependencies are expressed by waiting on the global counter
until it contains the desired value (Line 8), which means the
dependent F[j] has been computed. Once the current F[i]
is computed (Line 10), we increment the global counter to
notify (Line 11) the consumers of that value.

When β (the penalization score) is high enough, we can
stop the computation for that match-up. For these cases, we
add a conditional statement (Line 7). Note that bypassing the
wait_gcounter instruction could cause a race condition.
For this purpose, we have implemented the mechanism de-
scribed in Section IV-B, where we enforce the order of the
increments in the global counter.



Algorithm 4 DTW kernel Squire version

1: function DTW WORKERS(A[N], B[M])
2: start = id worker() × (M / num workers())
3: end = (id worker() + 1) × (M / num workers())
4: for i = 0; i < N; i++ do
5: if id worker() ̸= 0 then
6: wait lcounter(id worker()-1, i+1)
7: for j = start; j < end; j++ do
8: PREV ← MIN(M[i-1,j], M[i,j-1], M[i-1,j-1])
9: COST ← COST FUNC(A[i], B[j])

10: M[i,j] ← PREV + COST
11: inc lcounter(id worker())
12: stop worker()

C. 2D Dynamic Programming: DTW

We now detail how to use Squire to exploit fine-grain
parallelism in DTW. Other well-known 2D DP kernels (e.g.,
Smith-Waterman, Needleman-Wunsch, etc.) exhibit the same
patterns when computing the DP matrix.

Figure 5 shows a graphical scheme of how Squire would
compute the DTW matrix. A set of consecutive columns is
assigned to each worker; worker 0 (W0) computes columns 0
and 1, worker 1 (W1) columns 2 and 3, and so on. Each cell
(i,j) of the matrix has a dependency with cells (i-1,j), (i,j-1)
and (i-1,j-1). The workers compute their columns in a row-
wise order. Hence, they do not have to worry about the vertical
and diagonal dependencies. To solve horizontal dependencies
at the boundaries, the local counters from the synchronization
module are used.

Algorithm 4 shows the pseudocode for the Squire version
of DTW. First, the work is evenly divided among the workers
(Lines 2 and 3). The outer loop iterates through the rows
(Line 4), while the inner loop iterates through the assigned
columns of the corresponding worker (Line 7). The equations
of DTW are implemented in Lines 8, 9, and 10. To synchronize
workers at the boundaries, worker x increments the local
counter x when it finishes a row (Line 11), so worker x+1
knows the dependency for that row is solved. Similarly, when
worker x starts a row, it waits for worker x-1 to finish its chunk
of the row (Line 6). Note that worker 0 has no horizontal
dependencies. Therefore, it skips the synchronization (Line 5).

D. Discussion

Throughout the development of Squire, we have examined
several ideas regarding certain implementation details.

For communication among the workers, we have considered
message-passing through a crossbar, a FIFO, or a ring. Finally,
we have used the shared L2 cache since the worker’s messages
are part of the output, avoiding the need to write the same data
twice.

We also considered other synchronization mechanisms be-
sides the counters. Initially, the message-passing mechanism
would be used as the synchronization point. We explored
expanding the synchronization module functionality, allowing

TABLE II: Simulated architectural parameters.

Cores 8 Neoverse-N1-like Armv8 out-of-order cores 2.4 GHz
Structure entries ROB: 224 | LD/ST queues: 96/96 | Inst. queue: 120

OoO Private L1 I&D 64 KB, 4-way, 1 cycle data access, 32 MSHRs
Private L2 512 KB, 8-way, 4 cycle data access, 64 MSHRs
Shared L3 Mostly exclusive, 8 slices of 1 MB, 16-way,

10 cycles data access, 128 MSHRs

Coherence protocol MOESI-like AMBA 5 CHI specification
Network topology 4×4 2D mesh, 1 cycle routers, 1 cycle links (Fig. 4a)

Memory 1 HBM2 stack, 300 GB/s

Worker Cortex-M35P-like Armv8 4-stage dual-issue
in-order cores 2.4 GHz

TABLE III: Size of the datasets used in the evaluation.

RADIX SEED CHAIN SW DTW

# experiments 15 5 5 5 2
# inputs/exp. 8 arrays 24 seq. 24 arrays 6195 align. 5000 align.

Input avg. size 53536 elems. 23014 bps 53536 anchors 1373 bps 221 samples
Size st. dev. 36886 15075 36886 2950 101

Mem. footprint 837 KB 22.5 KB 837 KB 3.27 KB 1.72 KB

subtractions and arbitrary additions over the counter. The
current synchronization module specifications are sufficient for
the algorithms we use, but they could be extended in the future.

Finally, as we explained in Section IV-A, workers must
increase the global counter in order. We considered solving
this problem in software by waiting for the global counter
to reach its correct value before incrementing it, e.g., in
Algorithm 3 adding wait_gcounter(i) between Lines
10 and 11. However, this approach would harm available
parallelism and performance.

VI. EVALUATION METHODOLOGY

A. Architectural Simulation

We prototype Squire using the gem5 simulator v23.0 [48],
[49]. We simulate a multicore system consisting of 8
Neoverse-N1-like out-of-order cores, three levels of cache, 4
HBM2e memory channels, and a mesh-based network-on-chip
modeling the AMBA 5 CHI protocol, as shown in Figure 4a.
Each host core features a Squire engine that faithfully models
the described architecture. The simulated system runs Ubuntu
22.04 with Linux kernel 5.4.65. Table II summarizes the
architectural parameters.

B. Workloads and Inputs

Table III details the inputs used for each kernel. All the
inputs have been extracted from real genomics and signal-
processing datasets. To evaluate Squire, we use the five kernels
described below.

Radix Sort (RADIX) Radix sort is shown in Section III-A.
We did 15 experiments. In each experiment, we sort eight
arrays, one for each out-of-order core. Some of the arrays used
for radix sort have less than 10,000 elements, thus avoiding
offloading work to Squire (see Section V-A). We divide the
array into equal chunks and use Squire to sort them (see
Section V-A).



Seeding (SEED) We evaluate the seeding algorithm from
Minimap2 [18] (see Section III-B). We use five input se-
quences datasets (see Table IV). Each one of the datasets has
24 sequences, hence, each out-of-order core performs three
seeding processes. The most consuming part of seeding is the
final sorting of the seeds. Therefore, we use the Squire version
of the radix sort algorithm explained above.

Chain (CHAIN) Chain is a dynamic algorithm used in
Minimap2 [18] (see Section III-B). As in seeding kernel, we
use five input sequences datasets, where each one has 24
sequences, resulting in three chain processes per out-of-order.
The anchors are assigned to the workers in a round robin
manner (see Section V-B).

Smith-Waterman (SW) Smith-Waterman is a 2D dynamic
programming algorithm used for aligning (see Section III-B).
We use the same datasets used in seeding and chain. These
datasets produce several alignments that we use as inputs in
Smith-Waterman. The work has been distributed using the
same approach as for DTW (see Section V-C).

Dynamic Time Warping (DTW) Dynamic Time Warping
is a 2D dynamic programming algorithm (explained in Sec-
tion III-C) used for signal processing. We use two synthetic
datasets of 5,000 alignments of floating point numbers. The
small dataset has an average alignment size of 133 samples,
while the larger one has 380 samples on average. Each worker
is the responsible of computing several contiguous columns
(see Section V-C).

C. Evaluation of an End-to-End Read-Mapping Application

With the kernels introduced above, we have built an end-
to-end read-mapping tool that receives a set of sequences and
produces alignments. We use Minimap2 [18] as the skeleton
for our read-mapper since two of the evaluated kernels are
extracted from Minimap2 (SEED and CHAIN). We combine
SEED, CHAIN, and SW into a single application to set up
a read-mapper that serves as a test-bench for evaluating the
speed-up achieved on an end-to-end application when using
Squire.

Table IV shows the inputs used to evaluate the end-to-end
application. All these inputs are from sequencing machines
that have sequenced the human genome. Note the differences
in the accuracy of the inputs, which refer to the errors
introduced by the machines during the sequencing (reading)
process. ONT and PBCLR have an accuracy of 85% and 88%,
respectively, while PBHF inputs have an accuracy of nearly
100%. PBHF inputs are obtained using “PacBio High Fidelity”
technology, which consists of reading the same piece of
genome several times and mitigating the error by a consensus
process. This difference in accuracy is translated into different
behavior during the read-mapping process. A higher accuracy
implies a lighter volume of work in the align stage when using
SW.

We select the 18 most time-consuming sequences from each
input set to keep simulation time in gem5 manageable. This
allows us to reduce the execution time while maintaining the
application’s behavior.

TABLE IV: Input sequence datasets.

Sequencing machine Avg. seq. length Accuracy

ONT [50] Oxford Nanopore 17,710 85%
PB CLR [51] PB Sequel II System 6,739 88%
PB HF 1 [50] PacBio HiFi 12,858 99.99%
PB HF 2 [50] PacBio HiFi 15,602 99.99%
PB HF 3 [50] PacBio HiFi 14,149 99.99%
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Fig. 6: Squire evaluation for the five kernels described in
Section VI-B. We evaluate Squire with 4, 8, 16, and 32
workers.

VII. EVALUATION

In this section, first, we show how Squire can speed up
the five evaluated kernels. Then, we evaluate the impact the
synchronization module has on the design by modifying the
implementation to use software mutexes instead of Squire’s
hardware module. We also evaluate the end-to-end read-
mapper to understand how Squire improves a full application.
Finally, we perform a design space exploration to justify the
size of the caches used by the workers and perform an area
and energy consumption study.

A. Performance Evaluation

Figure 6 shows the performance evaluation of Squire for
the five kernels described in Section VI-B when changing the
number of workers.

For RADIX and SEED, Squire achieves diminishing returns
when using from 8 up to 32 workers, due to small input data
size. As explained in Section V-A, we stablish a minimum of
10,000 elements to use Squire. Below that, the initialization
of Squire becomes the bottleneck in the sorting process.
Maximum performance is achieved with 16 workers, reaching
1.58× for RADIX and 1.32× for SEED.

Employing 32 workers for CHAIN and SW leads to notice-
able speed-ups, unlike RADIX and SEED, reaching 3.35×
and 3.43× with respect to the base system, respectively. The
speedups from 16 to 32 workers are 1.19× and 1.26× for
CHAIN and SW.

Finally, Squire obtains remarkable speedups up to 32 work-
ers for DTW, reaching 7.64×. However, we consider 16
workers the optimum point with a speedup of 7.42×.

These results show that Squire can enable fine-grain paral-
lelism on dependency-bond kernels. While Squire scales well
with worker count if there is enough work to compute, we
advocate that a balanced design should have between 8 and
16 workers. Doubling the number of workers to 32 does not
compensate for the cost in the common case.
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Fig. 7: Squire performance evaluation when using the syn-
chronization module vs the pthread library.

ONT PBCLR PBHF1 PBHF2 PBHF30

1

2

3

4

Sp
ee

d-
up

 w
.r.

t. 
ba

se
lin

e

Squire4 Squire8 Squire16 Squire32

Fig. 8: Squire evaluation for the end-to-end read-mapping
application described in Section VI-C.

B. Synchronization Module Evaluation

Figure 7 shows the benefits of using the synchronization
module in Squire for DTW kernel. We show the results
up to 16 workers since we have considered it the optimum
point in Section VII-A. We instantiate Squire without the
synchronization module and synchronize through the pthread
mutex library. We use DTW for this experiment since it is one
of the kernels (along with SW) that uses the local counters.

The synchronization module improves performance for any
number of workers, increasing in importance as the number of
workers increases. We observe a speed-up of up 1.69× when
using the synchronization module with 16 workers.

C. End-to-End Application Evaluation

Figure 8 shows the performance evaluation of Squire for
an end-to-end application for the five inputs described in
Table IV. We evaluate Squire with 4, 8, 16, and 32 workers. As
stated in Section VI-C, the different datasets behave differently
during the read mapping process; thus, the align stage has less
weight for the PBHF inputs.

When looking at the whole read-mapping end-to-end ap-
plication, Squire achieves speed-ups of up to 3.66×. For
all the inputs, Squire scales well with worker count and
accomplishes its best performance with 32 workers. For ONT
and PBCLR inputs, Squire achieves speed-ups of 2.54× and
2.27×, respectively. For PBHF inputs, Squire achieves speed-
ups higher than 3×. A higher accuracy of the sequencing
machines implies more work to process but smaller chunks of
work, which favors Squire. As sequencing technologies keep
improving, this trend will consolidate and devices like Squire
will be more effective.

D. Cache Size Exploration

Each worker has its own private L1 data and instruction
caches, which will largely determine the area that Squire will

512B 1KB 2KB 4KB 8KB 16KB 32KB 64KB
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Fig. 9: Misses per kilo instructions (MPKI) when changing
the cache size for the instruction and data caches.

occupy. For this reason, we perform a design space exploration
study to make a judicious choice and minimize the area and
power overhead of the design.

To evaluate the cache sizes, we use the end-to-end ap-
plication and fix the number of workers to 16. We use the
ONT input dataset. To evaluate the instruction cache size, we
fixed the data cache size to 8 KB and vice versa. To measure
performance, we use misses per kilo instructions (MPKI).

Figure 9 shows MPKI when varying cache sizes. For the
instruction cache, we observe a drastic change when going
from 512 B to 1 KB. Beyond that, MPKI remains close to
zero. For the data cache, we see consistent improvement up to
8 KB, which we consider the sweet spot. A larger 16 KB data
cache improves MPKI marginally at a large cost. Therefore,
we have employed 1 KB and 8 KB as instruction and data
cache sizes, respectively, for all the experiments in this section.

E. Area Overhead

We use the Arm Neoverse N1 to model the out-of-order
core. Using the public data for an N1 [52] at 7nm, the floor
planned area is given as 1.15 mm2.

The workers we model could be compared to the Arm
Cortex M35P microprocessor. Using public data for an M35P
at 40LP [53], the floor planned area is given as 0.091 mm2.
This area already includes a 16 KB instruction cache. The
instruction cache included in the M35P is larger than the
caches we employ since we employ 1 KB for L1I and 8 KB
for L1D (see Section VII-D). Also, the M35P is a processor
capable of booting an operating system, and our workers do
not require as many functionalities as the M35P. Therefore,
we must consider that we are overestimating the area of the
workers.

When employing 16 workers, the total area overhead at
40nm would be 1.456 mm2. To estimate the area with 7 nm,
we scale these numbers, considering fin pitch, gate pitch, and
interconnect pitch, using data from several studies [54]–[59]
to arrive at a 12× area reduction when moving from 40 nm
to 7 nm. Thus, obtaining an area for a Squire component of
0.121 mm2.

Therefore, we could place a 16-worker Squire component
per core with an area overhead of 10.5%.

F. Energy Consumption

To estimate the Squire energy consumption, we use Mc-
PAT 1.3 [60] with the enhancements proposed by Xi et al. [61].
We performed this estimation using a process technology node
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Fig. 10: Energy consumption comparison between the baseline
and when using Squire for the end-to-end application.

of 22 nm, a supply voltage of 0.8 V, and the default clock
gating scheme.

Figure 10 shows the energy consumption of the baseline
when using Squire with 16 workers for the end-to-end appli-
cation. The executions using Squire achieve significant energy
reductions of up to 56% over the baseline system for the
PBHF3 input. Similarly, Squire reduces consumption by 55%
and 50% for PBHF1 and PBHF2 inputs. The ONT and PBCLR
inputs show a more modest energy reduction of 24% and 14%,
respectively.

The host cores are the most energy-consuming components,
followed by the L2 and L3 caches. The memory controllers
and the NoC have a marginal energy consumption. The energy
overhead introduced by Squire is small; we observe an energy
overhead of around 6% with respect to the host cores, which is
largely offset by the reduction in the rest of the components.

VIII. RELATED WORK

We identify more general-purpose hardware accelerators
like the Walkers [62], a programmable hardware accelerator
for traversing hash tables in a database. Transmuter [63] and
Versa [64] propose a matrix of general-purpose processing
elements interconnected by a mesh. The accelerator is shared
by all the cores of the chip. The system can be reconfigured as
a systolic array of processing elements, as a typical memory
hierarchy, or as a private scratchpad for each processing
element. UPMEM [65] is the first publicly available general-
purpose programmable PIM system. AIM [66] is a sequence
alignment framework that uses UPMEM for the evaluation.

Table V shows a qualitative comparison between Squire
and the other general-purpose hardware accelerators. The
Walkers have a fixed pipeline, forcing the data to traverse it,
thus limiting its flexibility. In addition, the Walkers have a
very limited ISA support and do not have any method for
synchronization. The compute units must execute the code
completely in parallel without communicating with the rest.
Transmuter and Versa instantiate one accelerator shared for
all the cores of a chip. To exploit all the computing resources,
the application should be split into two sets of threads, one
that is executed on the accelerator and the other on the cores.
By contrast, Squire is a simpler private accelerator for each
core. The application is divided into as many threads as cores,
and then each core performs nested parallelism in its Squire.
Moreover, the interconnection networks in Transmuter and

TABLE V: Qualitative comparison among several proposals.

Walkers [62] Transmuter [63] Versa [64] AIM [66] Squire

Programable ✓ ✓ ✓ ✓ ✓
Rich ISA support × ✓ ✓ ✓ ✓
Flexible datapath × ✓ ✓ ✓ ✓

Virtual memory support ✓ ✓ ✓ × ✓
Rapid synchronization × ✓ ✓ × ✓

Private accelerator per core ✓ × × × ✓

Versa (among processing elements and between the accelerator
and the host cores) add communication latencies with respect
to Squire. AIM is a processing in memory component that
instantiates several processors per physical memory cell, thus
losing the virtual memory capability and limiting the address
range the processors can access. Each processor controls a
chunk of the memory and can not access the rest of the system.
To communicate with other processors, they must do it through
main memory, which hinders performance [67].

A big.LITTLE architecture is composed of several cores
with different design targets: computational performance and
power efficiency [68]. All are capable of running system code
and are visible to the operating system. In contrast, Squire
is a set of very simple cores with no system support and is
subordinated to a host core. Moreover, Squire is equipped with
a synchronization module that allows for fast communication
among its workers (see Section VII-B).

IX. CONCLUSIONS

In this article, we propose Squire, a general-purpose ac-
celerator for dependency-bound fine-grain parallelism. Squire
consists of a set of simple general-purpose in-order cores,
called workers, and a synchronization module for rapid syn-
chronization. Each host core is augmented with a Squire
engine to offload fine-grain tasks.

We evaluate Squire on a simulated multicore SoC, obtaining
speed-ups of up to 7.64× in dynamic programming kernels,
and an acceleration for an end-to-end application of 3.66×.
We also evaluate the usage of resources and show that Squire
achieves an energy reduction of up to 56% with an area
overhead of 10.5% per core.

ACKNOWLEDGMENT

This research was supported by MI-
CIU/AEI/10.13039/501100011033 and by ”ERDF A way of
making Europe” through contracts [PID2023-146511NB-I00],
[PID2023-146193OB-I00], and [PID2022-136454NB-
C22]; by the Ministry for Digital Transformation and
Public Service, (i) via the framework of the Recovery,
Transformation and Resilience Plan - NextGenerationEU
[REGAGE22e00058408992] and (ii) through the Càtedra Chip
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mapper: fast, accurate and versatile alignment by filtration,” Nature
methods, vol. 9, no. 12, p. 1185, 2012.

[27] C. A. R. Hoare, “Algorithm 64: quicksort,” Communications of the ACM,
vol. 4, no. 7, p. 321, 1961.

[28] P. Ferragina and G. Manzini, “Opportunistic data structures with ap-
plications,” in Proceedings 41st Annual Symposium on Foundations of
Computer Science. IEEE, 2000, pp. 390–398.

[29] J. M. Herruzo, S. G. Navarro, P. Ibáñez, V. Viñals-Yufera, J. Alastruey,
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