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ABSTRACT

This work presents a non-geometrical navigation approach based on a purely topological understanding of underground

environments. By conceptualizing subterranean scenarios as a set of tunnels that intersect with each other, and taking a

navigation approach based on topological instructions, we simplify the navigation problem to the sequential execution of

human-understandable instructions. This approach is built on top of a lightweight Convolutional Neural Network

(CNN) that processes the readings of a 3D LiDAR sensor and produces an estimation of the angular positions of the

surrounding tunnels with respect to the robot. As a result of this approach, our method can navigate these underground

environments by only being provided with the necessary topological instructions, without the need for a map, or for

building one during navigation. Additionally, it can also rely on a lightweight graph representation of the environment.

This graph can be either defined by the user, generated during navigation or explicitly built in an exploration task. To

showcase these capabilities, this article provides an experimental evaluation of the method both in simulation and in a

real environment.

1 | Introduction

Subterranean environments are interesting targets for automa-
tion, as they are an important part of our infrastructure and
economic development, but, at the same time, they share cer-
tain characteristics that make them hostile environments to
human workers. One example of this are underground mining
operations. In these environments, the presence of dust and fine
particles greatly increases the risk of respiratory diseases in
workers (Ross and Murray 2004), the operation of heavy
machinery and explosives poses a significant risk of traumatic
injury (Mitchell et al. 1998) and the oppressive environment can
lead to a multitude of psycho-social illnesses (Donoghue 2004).
Other important examples are utility tunnels in cities, which

carry crucial distribution lines, like electricity, gas, water etc.,
and are thus an important infrastructure for the functioning of
any large urban area. Given their criticality, they require fre-
quent inspection and maintenance by qualified operators, but,
due to their scale (from the 10s to 100 s of km), these inspec-
tions are time consuming, expensive, and require special
equipment—Ilike ultrasonic sensors—to detect defects. These
requirements imply that operators must be exposed to the
hazards of these environments (e.g., gas and electricity lines) for
long periods of time. The costs and hazards associated with this
activity have motivated the development of robots adapted to
execute these tasks. However, given the many challenges of
autonomous navigation in these environments, they still require
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the presence and supervision of human operators (Montero
et al. 2015).

All these factors make the reduction of human presence in these
environments a desirable goal and, given that most of the work is
already done by machines operated by workers (heavy machinery
in mines and inspection equipment in tunnels), the most straight-
forward solution would be their remote operation. However, tele-
communications in these environments are notoriously
challenging, making teleoperation rarely viable, as connecting
a robot with a base station (frequently outside the tunnel
network) involves great effort, and might not even be possible.
The use of cables, for example, is often unfeasible, due to the
large scale of these environments, and because the operation of
more than one robot would likely lead to tangles. The use of
wireless technologies is also problematic. The structure of these
environments, usually composed of long tunnels that intersect
with each other, makes the wave propagation unpredictable,
due to the destructive interferences that cause the fading effect.
This often results in reduced bandwidth and unexpected losses
of connection, even if a line-of-sight is still present, as demon-
strated in Rizzo et al. (2013).

The drive for automation and the limitations of teleoperation
have spurred efforts to create autonomous systems tailored
specifically to these environments. For example, in 2018,
DARPA' launched the Subterranean Challenge® with the
objective of encouraging the development of new technologies in
the field of autonomous underground exploration. In this
challenge, 20 different teams worked on new solutions
addressing the unique challenges that subterranean scenarios
pose to autonomous robots, with special focus on the autonomy,
perception, networking and mobility aspects

The goal of the competition was to autonomously explore an
unknown underground environment with a team of robots, and to
report back to base the location of certain pre-defined elements
(humans, cellphones, backpacks...) with a certain level of accuracy.
During the 3 years that the competition lasted, the teams made
important advancements in the field of underground robotics and
pushed it forward significantly. However, given the constraints of
the competition, there was an over-representation of the ap-
proaches best suited to the main objective. More specifically, the
requirement to accurately report a precise location of each of the
artifacts made the use of geometrical mapping methods implicitly
necessary, and, given the limited size of the competition scenarios,
minimal emphasis was put on the efficient representation of the
environment. All these factors have meant that, while geometrical
methods have been thoroughly explored and refined, topological
approaches have received little attention.

Within this context, this work aims to explore the use of
topological approaches to address the specific challenges that
underground environments pose to autonomous systems as
well as to exploit their underlying structure. With this in mind,
what we propose is a complete framework that:

« Makes use of a purely topological, graph-based represen-
tation of the environment that, without storing any metric
data, is capable of producing high-level topological plans
based on simple, human-readable instructions.

« Has a perception approach based on a Convolutional
Neural Network that can detect the distribution of the

galleries around the robot by processing a 3D LiDAR scan.
This work provides detailed information about how this
network has been trained using a fully procedurally gen-
erated synthetic dataset but can be used in real-world en-
vironments with a zero-shot transfer.

« Is capable of navigating by following high-level topological
instructions (e.g. take the second exit on the left and then
the third on the right), operating in arbitrarily large en-
vironments without the need for precise self-localization.
This removes one of the main challenges that underground
environments pose, and allows a human operator with
rough knowledge of the environment layout to define a
mission as a set of topological instructions, without pro-
viding a map to the robot.

« Can build topological representations of the environment
during navigation (topological mapping), or explicitly ex-
plore acyclic environments in a fully autonomous fashion.

This proposal is a direct evolution of two of our previous works
(Cano et al. 2022), (Cano et al. 2024b), that have been enhanced
and extended with the following contributions:

« The topological representation has been simplified. In our
previous works, tunnels were considered as nodes, which
meant that the environmental representation was more
complex, and the topological navigation task involved more
instructions than necessary.

« The topological navigation has been enhanced with the
introduction of hybrid instructions, that allow the user a
finer control over the behavior of the robot.

« The dataset generation has been completely modified, sig-
nificantly increasing its quality. This, in turn, has allowed
for the reduction of network size, and thus the computa-
tional requirements.

« In this work, the CNN has been trained in fully procedural
environments generated using our own tool (Cano
et al. 2024a), allowing for a greater diversity in the training
dataset. In consequence, the trained model presents a zero-
shot transfer learning capability from simulation to a real-
world environment.

« This work introduces the concept of prediction stability with
regards to the outputs of the CNN, improving its reliability
in intersections, and removing tunable parameters that
were present in our previous works.

« Finally, this work provides an experimental evaluation of
both the navigation and mapping approaches in a chal-
lenging real-world environment, as reported in Section 5.2,
in which conventional navigation solutions struggle.

2 | Motivation

It is our view that, in many real-world use cases, topological
approaches offer significant advantages for navigating under-
ground environments over geometric ones.

The main difference between geometrical and topological ap-
proaches is how the environment is represented. In geometrical
approaches the environmental representations consist on data
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structures that store features with an associated pose. This way,
when the robot detects a previously mapped feature it can infer
its own position. Within this definition, there are two main
families of mapping methods. The first one are the occupancy
grids, which are based on the discretization of the environment
into a 2D or 3D grid, where each cell of the grid typically
contains occupancy information (whether a cell is free space or
contains an obstacle). These methods tend to be used with
range-based sensors (LiDARs or Depth Cameras), and their
memory footprint tends to increase with the volume of the
explored environment (or horizontal surface if a 2D map is
used). On the other hand, feature maps contain a set of features,
each with an assigned location in the environment. These fea-
tures are typically extracted from images, so they are necessarily
associated with a surface, which means that these kinds of
representations typically increase their memory footprint lin-
early with the number of surfaces of the environment that have
been seen.

In contrast to geometrical methods, topological approaches rep-
resent the environment as a graph, which, from now on, will be
referred to as a topological map. In this map, nodes represent a
place or position in the environment and typically contain a set of
coordinates along with additional information, such as a point
cloud or an image, to assist in localizing the robot with respect to
the node. Edges represent, instead, the traversability between
nodes, typically meaning that a node is directly reachable from

another node. As a general rule, this type of maps tend to provide
less accurate position estimates, as they are more sparse than
geometrical ones but they are more lightweight and computa-
tionally efficient in path planning, which becomes more relevant
as the size of the environment increases. Additionally, topological
maps facilitate the inclusion of semantic information and re-
lationships between semantic elements, so they are proven to be
the preferred approach in semantically-aware navigation ap-
proaches (Kostavelis and Gasteratos 2015). There are a number of
reasons why topological maps are a good fit for underground
environments in comparison with geometrical ones, but the es-
sential one is that most human-made underground environments
share an underlying structure of tunnels that intersect each other
(Figure 1), that can be directly mapped into a graph representa-
tion. By interpreting the tunnels as edges and the intersections
and dead ends as nodes, a simple yet complete topological map of
the environment is obtained, as seen in Figure 2. This simplified
representation has some interesting consequences:

« Given its simplicity, it is feasible for a human operator to
define the layout of the environment. This could prove
valuable in emergency situations, where the time needed to
map the environment may not be available.

« Another consequence of this representation is the signifi-
cant decrease in computational complexity and memory
footprint of the map. As mentioned before, geometrical

FIGURE1 | Man-made underground environments share the same underlying structure of intersecting tunnels. a) Underground waterways in
Argentina, b) Metro Network in Madrid c) 3D model of a mine in Cornwall, UK d) Map of a mine in Pennsylvania, US. [Color figure can be viewed at

wileyonlinelibrary.com]
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FIGURE 2 | Simplicity of our topological map. a) Layout of a real mine. b) Hand-made topological representation of said mine where blue lines

are the edges, red dots are the nodes associated to intersections and green dots are nodes associated with the dead-end. [Color figure can be viewed at

wileyonlinelibrary.com]|

maps memory footprint increases with the size of the en-
vironment. This is easily manageable in most indoor en-
vironments, but can become an issue when reaching the
order of tens, hundreds or even thousands of kilometers of
tunnels. In contrast, our proposal increases in size linearly
with the number of tunnels and intersections regardless of
the length of the tunnels, which would be advantageous in
large-scale environments like mines. Additionally, this
would reduce significantly the bandwidth requirements to
exchange the map with the base station or among members
of a hypothetical robot team.

+ The final characteristic of our approach is that precise self-
localization is no longer needed, and it is instead replaced
with a system that detects when the robot is in a tunnel or
intersection and can follow high-level instructions of the
sort “in the fifth intersection, take the tunnel to the right.”
This can be a significant advantage over metric methods, as
maintaining a consistent and precise enough self-
localization is one of the main challenges that our target
environments pose.

As a tradeoff of operating in such environments, our method
is tailored to their particular characteristics and, conse-
quently, cannot operate in more general environments whose
structure cannot be recognized as a set of intersecting tunnels,
galleries, or corridors. In this sense, the approach is not a
general-purpose method, but a specialized solution. Never-
theless, this specialization makes it particularly useful, or
even necessary, in parts of environments unsuited for more
general approaches, be it because of lack of features, or
because there is no map available to the robot, so defining a
goal is not possible.

2.1 | Localization in Underground Environments

One of the biggest challenges for mobile robotics in under-
ground environments is reliable self-localization (Tardioli
et al. 2019). Self-localization in robotics involves determining
the robot's position by comparing detected environmental fea-
tures with those in a reference map. In underground settings,
this process is particularly challenging.

The localization process infers the robot's position based on
detected features. When exploring new areas, the absence of pre-
existing features can lead to discrepancies between the estimated
and actual positions. In typical environments, these errors are
corrected when the robot revisits a known location. However, in
underground environments like tunnels, which can extend for
kilometers, these errors accumulate, making accurate self-
localization difficult and potentially unmanageable.

To illustrate this, we have tested five different SLAM
(Simultaneous Localization And Mapping) systems on real-
world data captured on the Somport Tunnel, a 7 km, feature-
deprived tunnel with 19 lateral galleries (see Section 5 for
details). This makes it especially challenging for traditional,
geometry-based localization methods. These methods are
Gmapping (Grisetti et al. 2007), Hector-SLAM (Kohlbrecher
et al. 2011), Fast-LOAM (Wang et al. 2020), Faster-LIO (Bai
et al. 2022) and Direct LiDAR Odometry (Chen et al. 2022).

In the first dataset, used for the Gmapping, Hector-SLAM and Fast-
LOAM methods, the robot starts at the end of one of the lateral
galleries, advances to the main tunnel, and navigates to the end of
the lateral gallery to the right. From there, it goes back to the main
tunnel, advances to the original gallery, skips it, and enters into the
next lateral gallery. Finally, it goes back to the main tunnel, ad-
vances to the intersection between the original gallery and the
main tunnel and stops there. The second dataset contains addi-
tional IMU measurements and is used for the Faster-LIO and
Direct LIDAR Odometry methods. The robot starts from the main
tunnel, advances skipping the first gallery, and enters the next two
until reaching the end of both. Then it advances 100 m more
through the main tunnel, before turning around and returning to
the starting point. The results of these tests are shown in Figure 3.

In the case of Gmapping (Figure 3a). The result is the best of the
three methods because it takes advantage of odometry readings,
but ends up failing due to the accumulation of error, which
causes the duplication of a lateral gallery and the creation of
many duplicate niches on the map.

Figure 3b shows the result of using the hector-SLAM system.
This method relies exclusively on a LiDAR scan, and as such, is
incapable of reliably detecting the advancement of the robot
through the tunnel, resulting in an unusable map.
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Figure 3c shows the results of using Fast-LOAM. This method
relies exclusively on a 3D LiDAR for localization, and, similarly
to hector-SLAM, fails to detect when the robot is advancing
through the tunnel, and ends up super-imposing all the lateral
galleries at the same position.

The results of the Faster-LIO simulation can be appreciated in
Figure 3d. This method relies on IMU measurements and 3D
LiDAR data. The IMU, as can be seen, helps significantly with
regards to aligning the LIDAR measurements so that they are
consistently placed. However, it also fails to detect the
advancement of the robot through the tunnel, so the distance
between lateral galleries, and the length of the lateral galleries
themselves is significantly smaller than in reality.

The Direct LIDAR Odometry method is the most successful at
accounting for the small features in the tunnel, and manages to
detect the advancement of the robot through the tunnel.
However, in the experiments conducted in our environment, it
showed a tendency to “detach” from the map and oscillate
violently back and forth when map-to-LiDAR matching fails.

This produces both a trajectory much larger than real, and an
incorrect reconstruction of the environment, in which the main
tunnel is much longer than in reality (Figure 3e).

These are problems recognized by the underground SLAM
research community (Ebadi et al. 2022), and is still an active
area of research, with substantial progress being made
every year. In contrast, this work intends to explore an alter-
native solution to these problems by removing the need for
precise self-localization and exploiting the inherently graph-like
structure of such underground environments.

The rest of this article is structured as follows: Section 3 pro-
vides an overview of the field of underground navigation sys-
tems and other topological navigation approaches, Section 4
contains a detailed explanation of our proposed method,
Section 5 showcases the experimental evaluation that has been
carried out, Section 6 comments on the results of the tests and
the lessons learned, and in Section 7 we provide our conclusions
and final thoughts.

3 | Related Work

This work finds itself at the intersection between topological
navigation and mapping, autonomous navigation in under-
ground environments and CNN-based perception for robotics.

As previously mentioned in this work, the tasks of self-
localization and navigation in underground scenarios are
challenging, especially in comparison to other more structured
environments. This has motivated the robotics community to
develop methods tailored to these types of environments, which
generally rely on 3D LiDAR sensors, as cameras tend to perform
poorly, due to the low-light conditions. However, even with
LiDAR sensors, the presence of long and featureless tunnels still
presents a challenge, which typically requires the tuning and
refining of established methods to work correctly (Prados Ses-
mero et al. 2021; Ren et al. 2019; Yang et al. 2022; Chen
et al. 2023)

It is generally recognized by the robotics community that rep-
resenting an environment as a graph of places and connections
can be more efficient than building a detailed, globally

FIGURE 3 | Results of geometrical mapping approaches in an en-
vironment with long, feature-deprived tunnels. The robot starts at the end
of the central gallery, goes to the end of the right gallery, then enters 20 m
into the left gallery, and comes back to the intersection between the
central gallery and the main tunnel. a) Gmapping obtains the best result
due to the use of odometry, but fails to maintain a correct localization,
causing it to detect the lateral gallery at an incorrect location. b) Hector-
SLAM fails to detect when the robot advances through the tunnels,
resulting in large errors in map generation. c) In this run, the robot visits
two lateral galleries, but Fast-LOAM also fails to detect when the robot
advances through the tunnel, and ends up superimposing the two inter-
sections. d) Faster-LIO fails to detect the advancement trough the corri-
dors, making the main tunnel appear much shorter than in reality. It also
has trouble with the estimation of the heading in the return, causing de-
alignment. e) The Direct LIDAR Odometry method detects the advance-
ment through the tunnel, however a combination of vibrations on the
IMU and a detachment from the generated map cause the method to over-
estimate the advancement trough the tunnel. [Color figure can be viewed
at wileyonlinelibrary.com]

consistent geometrical map and be more resilient to error
accumulation. Additionally, these representations allow for
more efficient path computations, so they are commonly used
in conjunction with geometrical SLAM approaches. In these
hybrid systems, the robot constructs simultaneously a geomet-
rical map using SLAM and a topological pose-graph to aid in
path-planning, exploration or self-localization (Dang et al. 2020;
Duberg and Jensfelt 2022; Blochliger et al. 2018; Fredriksson
et al. 2024; Montano-Olivan et al. 2024; Xue et al. 2020; Placed
et al. 2022).

These efficiencies become more pronounced in corridor-based
environments, as certain underground environments tend to be,
reason why these approaches are more represented among
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underground robotics applications. Another interesting prop-
erty of the topological representation of environments is the
flexibility that the graph structure provides, as nodes can con-
tain any arbitrary type of information (geometric position,
images, point clouds, neural embeddings, semantical labels,
etc.) and edges can represent different relationships between
nodes (distance, reachability, traversal time, distance, semantic
relationship, etc.). This flexibility is especially useful in the case
of hierarchical semantic graphs, where, starting from a
semantically-labeled occupational map, different clusters of
semantically-related nodes are grouped (Hughes et al. 2022).

An interesting approach to topological maps is presented in
Chaplot et al. (2020), where nodes contain images and edges
communicate traversability, but no explicit geometric infor-
mation is stored, as the authors propose the use of a Neural
Network to directly obtain the velocity commands to go from
the current position to a certain node. In a similar way, the
authors in Li et al. (2023) also store image data in each of the
nodes to help with place recognition, although they rely on
more classical image descriptors to determine similarity.

A more extended approach is the use of hybrid, topo-metric
methods (Blanco et al. 2008; Muravyev et al. 2025; Bosse
et al. 2003), where nodes are considered local coordinate frames
with a local map associated. This way, the robot can self-localize
only w.r.t the local map improving the resilience against noisy
estimations. However, they do not explicitly deal with feature
poor environments, as they still require a geometrical pose es-
timation, whereas our proposal, by not depending on any type
of geometrical pose estimation is not affected.

One of the first works exploring a mainly topological repre-
sentation of an underground mine can be found in Morris et al.
(2005), where the authors followed a similar representation as
the one we propose (an acyclic graph with corridors as edges
and dead-ends and intersections and nodes). However this
approach uses a geometrical approach for node detection that
could become unreliable in presence of obstacles. Other authors
defend that, in the case of robotic operations in underground
mines, centimeter-level accuracy is unnecessary, and that the
focus must be put on safely traversing the tunnels and correctly
exiting the intersections (Tampier et al. 2021; Mascard
et al. 2021). For these reasons, the authors propose the use of a
two-tiered level topological map that, on one level, contains the
overall topological structure of the entire environment, while
each of the intersection nodes also contain a sub-graph that aids
in executing the complex maneuvers that are needed when
operating a large haul-dumping vehicle through narrow tun-
nels. These works serve as the foundation upon which our
earlier research (Cano et al. 2022) was constructed, which in
turn forms the basis for this current proposal.

One of the main benefits that comes from a lightweight repre-
sentation of the environment is that sharing said map can be
done in a much faster fashion (Cowley et al. 2011; Chang
et al. 2007). This is especially relevant for underground sce-
narios, where the communication between robot team members
is one of the central challenges (Tardioli et al. 2016). For this
reason, topological maps are being explored as a way of com-
municating essential information about the structure of
the environment among teams of robots without having to
share the complete geometrical map. This becomes more

advantageous if the robots operate in low-bandwidth environ-
ments, as is often the case in underground environments (Bayer
and Faigl 2021).

Similar to our approach, the authors in Worley and Anderson
(2025) use the inherently graph-like structure of pipe networks to
bypass the challenges they pose to self localization. By enforcing
certain assumptions (the robot only turns in intersections, and
only advances in pipes) over the possible evolution of the robot
state, they manage to use the Viterbi algorithm to discriminate
between multiple hypotheses of the robot trajectory.

Given the robustness that topological approaches provide against
localization errors, they have also been used in sensing-denied en-
vironments, as is the case in underwater robotics. In Rossi et al.
(2023), the authors used a pre-built topological map to successfully
navigate a flooded mine environment. They exploit the flexibility
that graph representations provide to store relevant sonar data in
each of the nodes of the map, which allows the robot to localize
without the need of a precise geometric map, which is notoriously
difficult to build with the use of sonar sensors (Ribas et al. 2006). Or
in the case of (Morlana et al. 2024), they make use of topological
mapping methods to deal with the severe uncertainty that visual
mapping inside organic tissue imposes.

Additionally, the topological understanding of underground
environments has been demonstrated to be useful for more than
mapping and navigation, as is the case in Saroya et al. (2020),
where the authors exploit the inherently topological nature of
subterranean scenarios to predict how the graph structure is
going to evolve, and therefore optimize the exploration task
based on these predictions.

Another side of this proposal that has been previously explored is
the use of Convolutional Neural Networks or other deep learning
approaches as a perception system. In the case of (Mansouri
et al. 2020, 2018), the authors explore the use of a CNN to process
images from a front-facing camera mounted onboard a drone. The
CNN then predicts from the images the relative yaw of the robot
with respect to the axis of the tunnel, allowing the drone to stay
aligned with the tunnel, and navigate it safely without the need for
a precise pose estimation. A similar approach was followed by a
previous work of ours, (Cano et al. 2023), in which the CNN pro-
cessed LiDAR-based depth images to predict the necessary bearing
of the robot so that it could safely and rapidly traverse tunnels while
staying centered and avoiding obstacles.

An important part of our perception system is detecting certain
features in the environment (corridors, intersections and dead-
ends) that are assumed to be there. This is in the vein of, but
more general than (Romeo and Montano 2006), where the au-
thors use Principal Component Analysis to classify 2D laser
readings as a priori features (T-intersections, dead-ends, corri-
dors, left/right turns etc.) to aid in the self-localization task.

4 | Approach

As mentioned earlier, our proposed method interprets the en-
vironment as a graph, where tunnels serve as edges connecting
intersections and dead ends, which act as nodes. This approach
is substantially different from geometrical approaches, so it has
been necessary to rethink the typical mobile robotics stack
(perception, navigation and mapping layers).
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In this section, we describe in detail how the topological map is
implemented and how it is used to generate navigation plans
based on topological instructions (Section 4.1). We also describe
how the perception layer (Section 4.2) has been implemented
with the use of a Convolutional Neural Network (CNN), which
processes the point cloud data from a 3D LiDAR and provides
an estimation of the distribution of the galleries around the
robot. Thanks to this perception stack, it is possible to use a
navigation approach based on the sequential execution of high-
level topological instructions of the type “take the left exit on the
third intersection” (Section 4.3).

4.1 | Topological Map and Path Planning

The field of topological mapping in robotics has yielded many
different approaches to the problem. As mentioned earlier, as a
general rule, in these maps the nodes contain both a geometric
pose, and some information that allows the robot to self-localize
(usually images or point clouds), so they are typically referred to
as topo-metric maps.

4.1.1 | Data Structure

Instead, we aim to obtain a pure topological representation of
the environment, which means that the only information that a
node contains is to which other nodes it is connected by an edge
of the graph and their relative angular order.

Figure 4 shows a topological map that contains seven nodes and its
corresponding data structure. As mentioned, it consists, for each
node, on a circular list of its neighbors ordered in a counterclockwise
manner. By having the neighbors of each node ordered it is possible
to look at their respective positions (index on the neighbor list) and
know which edge should be chosen to go from one to another. This
structure allows us to create topological plans without the need to
store any explicit geometrical information, only the angular order-
ing of neighbor nodes.

4.1.2 | Topological Path Planning

Traditional path-planning methods wusually produce a
(dynamic) plan consisting on a sequence of geometrical posi-
tions that gradually take the robot from its initial position to a
target position. In our case, this approach is not feasible, as we
do not store geometric information in the topological map.

In our approach, instead of an origin pose and a target pose, we
have an origin node or edge and a target node, and the topo-
logical plan consists of a sequence of high-level topological
instructions of the type “take the first exit clockwise in the next
intersection.” One characteristic of these instructions is that

1 [B]
:[A,C,D]

1 [B]
:[B,E,F,G]
1 [D]

F:[D]
G:[D]

mooOw>

FIGURE 4 | Data Structure of our Topological map. On the left, the
graphical representation where the Black lines represent the walls of
the environment, the red dots are the nodes and the blue lines are the
edges. On the right there is the actual data structure used in our
implementation. [Color figure can be viewed at wileyonlinelibrary.com]

they are only relevant when entering an intersection, which
allows us to make an important assumption: As our robot can
only advance forward, every time it enters a node, it will have
the guarantee that there is at least an exit at its back (from
where it entered) and as such, this is taken as the reference
point for the topological instructions, and will be henceforth
referred to as the rear exit.

In a more specific fashion, these instructions take the form of a
simple integer number that can be either positive, negative or 0.
The value of 0 is the one corresponding to the rear exit, a
positive value N, refers to the N™ counterclockwise exit and a
negative value —N refers to the N™ clockwise exit.

4.1.3 | Obtaining a Plan

The process of obtaining this plan is divided into two steps. The
first step consists in obtaining the sequence of nodes that need
to be traversed to go from the initial node to the objective node.
To do this, Dijkstra’s algorithm is used (Dijkstra 1959). It is
important to note that, as we aim for a purely topological
method, no metric information is contained in the map, and as
such all edges are set to have the same weight. This means that
Dijkstra’s algorithm will always provide the sequence with the
least number of nodes possible, even if it is not the shortest in
terms of real-world metric distance or time of travel. However,
this information could easily be added to the map (e.g., for
visualization purposes, or to estimate faster paths) without loss
of generality for the rest of the algorithm.

The second step is to take the sequence of nodes and transform
it into a set of high-level topological instructions, a process that
is better illustrated with an example.

Consider again Figure 4. In this example, we want to obtain the
topological path that corresponds to the set of exits the robot
must take to go from node C to node G which will be repre-
sented by a set of integer numbers. By applying Dijkstra's
algorithm to the map, the sequence of nodes that is returned is
[C, B, D, G]. Thanks to the enforced ordering of the node con-
nections, this sequence can be mapped to topological instruc-
tions using the data on the right of the figure that represent the
nodes reachable from a given node ordered in a counter-
clockwise manner as explained before.

This path must traverse two intersections (nodes B and D). In
the case of B, it is known that the robot is coming from C (the
previous node) and heading to D (the next node). By looking at
their position in the neighbor array of B, we obtain that C has
an index of 1 and D has an index of 2. From this information,
we can obtain the corresponding instruction by subtracting the
index of the previous node (C) to the index of the next node (D),
obtaining 2 — 1 = +1. If we repeat this same reasoning with the
intersection node D, we will see that the previous node (B) has
an index of 1, and the next node (G) has an index of 4, so the
instruction would be 4 — 1 = +3. This would result in the path
[+1, +3], which would translate to: at the next intersection take
the first exit counter-clockwise and at the intersection after that,
take the third counterclockwise exit.

As an extra note, it is clear that two different numbers can
result in the same behavior, as there is an equivalent counter-
clockwise value for each clockwise one, and vice versa. For
example, the previous plan [+1, +3] is equivalent to [-2, —1].
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4.2 | Perception

The previous section details how the topological plan is gen-
erated from the topological map. However, to be able to follow
it, a robot needs to have a topological understanding of its
surroundings. To be more specific, it is necessary to know
whether the robot is in an intersection or in a tunnel, and how
the galleries are distributed around the robot.

To accomplish this task we make use of the concept of exits. In
our method, an exit is defined as the direction in which a tunnel
advances. For example, when the robot is at a dead-end, only one
exit is present (Figure 5a). When the robot is in the middle of a
tunnel, two exits are present (in opposite directions, Figure 5b).
Finally, when the robot is at an intersection, there are as many
exits as tunnels that meet at said intersection (Figure 5c).

By detecting these exits we address the two requirements: by
counting the number of exits present around the robot, we
know if it is in an intersection (more than 2 exits), tunnel (two
exits) or the dead-end (one exit), and thus, whether it is in a
node or an edge.

4.2.1 | Exit Detection

To solve this exit-detection problem we have made use of a 2D
CNN. The use of a Deep Learning solution, instead of one based
in a geometrical analysis (eg. Voronoi Diagrams), was moti-
vated by the difficulty to account for all possible variations in
local geometry that do not affect the topological structure, such
as, for example, the different shapes (square, circular, horse-
shoe, arch, etc.), varying radii and cross-section, different
roughness (from smooth concrete walls to rough bare-rock
walls), or the presence of small obstacles, people or vehicles.
The main reason to use a 2D CNN architecture over others (like
3D CNN (Ji et al. 2012) or PointNets (Qi et al. 2017)), was the
goal of reducing the computational cost to a minimum.

The detection pipeline is divided into four processes: First, we
transform a 3D LiDAR point cloud into a depth image. Then,
this image is fed into the CNN, that outputs a vector of 360
numbers with values ranging from 0.0 to 1.0. In this vector, the
galleries appear as peaks, so the next step is to process it to
extract the angle at which the galleries are being detected, and
the strength of the detection. The final step is to track how these
exits behave over time as the robot moves and rotates, and the
exits appear and disappear when the robot transitions from
edges to nodes (or vice versa).

(QaR)))
— R
m =
(@ (b) (©

FIGURE 5 | What is an exit. The black lines are the walls of the
environment, the red square is the robot and the blue lines indicate the
exits present around the robot in each situation. a) Exits detected in a
dead-end. b) Exits detected in a gallery. c) Exits detected in an inter-
section. [Color figure can be viewed at wileyonlinelibrary.com]

As previously mentioned, the first step is the transformation of
the point cloud obtained from the 3D LiDAR (Figure 6b) into a
depth image (Figure 6c). This begins by discarding all points
that are further away than 50 m, maintaining only the points
with the most useful information. Secondly, a blank image
(filled with zeros) 16 px high (the number of beams of
the LiDAR) and 720 px wide is created. Then, for each point in
the cloud, we obtain the corresponding position in the image
(according to its spherical coordinates), and assign the distance
of that point as the value of the pixel. Finally, the image is
divided by the max range of the LiDAR (50 m in our case,
because of the cutoff) to normalize it in [0, 1].

This image is then fed into the CNN, whose architecture is
displayed in Figure 7. This model is inspired on the VGG-16
architecture (Simonyan and Zisserman 2014), having multiple
Convolutions + ReLU between the Pooling layers, but has some
differences.

Specifically, our last-layer activation is a ReLU layer, instead of
the more commonly used Sigmoid, and the kernel depth is kept
relatively low, reaching only 32 channels, while VGG-16
reaches 512. The use of ReLU activation instead of Sigmoid
for the last layer was decided based on empirical results, as it
resulted in a significant reduction of the loss during training.
The number of channels was also reduced so that the resulting
network was lightweight enough to run at high frequencies in
compute-constrained platforms. More details on how this net-
work has been trained can be found in Section 4.2.2.

The output of the network (Figure 6d) is an array of 360
numbers in the range [0, 1], where the position of each element
corresponds to an angle around the robot in the z axis. As can
be seen in the figure, this vector presents peaks; each of them
corresponds to one exit.

The last step of the detection is the extraction of the angular
position of the exits from the output of the CNN (Figure 6e). For
this, we use two simple heuristics: 1) First, we extract all the
local maxima in the vector and 2) we only keep the values that
are over a certain threshold. This way, we ensure that only
high-confidence detections are used in the following processes.

4.2.2 | Training Dataset

Given the specific nature of our approach, no previous datasets
were available to train the CNN, so it was necessary to create a
custom one.

Due to the close sim-to-real gap that LIDAR sensors have, it was
decided to create a fully synthetic dataset using procedural
environments that where generated using a tool that we pre-
sented in Cano et al. (2024a). This tool allows tuning many of
the generation parameters, like the number of tunnels and
intersections, diameters and curvatures of tunnels and rough-
ness of the tunnels' walls. This way, by using different combi-
nations of these parameters, a varied set of environments where
obtained, such that they contain the overall variability that real-
world underground scenarios present (Figure 8).

For each individual training sample, the process is the follow-
ing: 1) Since the axis of the tunnels in the environment are
known (they are provided by the procedural generation tool,
Figure 9a), the robot is placed in a random position on any of
the axis (Figure 9b,c), 2) A random pose transformation is
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FIGURE 6 | Perception pipeline. a) Robot and Environment. b) Point cloud from the VLP-16. c) Rasterization of the point cloud into a depth-
image. d) Raw output of the CNN. e) Detected galleries after analyzing the CNN's output. [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 7 | Architecture of our Convolutional Neural Network.
[Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 8 | Some of the environments used to train our CNN.

applied to the robot, adding rotations and displacements that
ensure the robot stays within the tunnel (Figure 9d), 3) A
LiDAR scan is captured for this position (Figure 9¢) and the
corresponding depth image is obtained (Figure 9g), and finally,
4) The axis points that are at a specific distance from the robot
(5 m has shown to be a value that generalizes well to smaller
and larger tunnels) are selected (Figure 9f) These axis points are
the ones used to create the label of this training sample. By
calculating their relative position to the robot, we can obtain
their respective heading w.r.t. the robot. These headings are the

ideal output of our complete perception pipeline, but they need
to be transformed into a format that can be produced by a CNN,
meaning the 360-element array that will be the label for train-
ing. To do this, we start from a zeros-only vector and place
gaussian-shaped “peaks” centered in each of the angles that
correspond to the headings (Figure 9h).

For the training dataset, 50 different environments were gen-
erated, and 10,000 data points were captured for each of them,
for a total of 500,000 data points.

The network is trained with this dataset, using the Adam op-
timizer (Kingma 2014), with a starting Learning Rate of
4 x 1073, a Learning Rate decay of 0.999 between epochs and
the Mean Square Error cost function. It was trained for 512
epochs, with a batch size of 64.

4.2.3 | Exit Tracking and Stability

At this point, the perception pipeline provides only a series of
values whose peaks indicate the presence of an exit. However,
this information is not refined enough to navigate so it needs
further processing.

One of the problems of using the raw angles is that, as the robot
moves and rotates, the same exit will be detected at different
angles, so it is necessary to track this change over time for all of
the detected exits. Additionally, as the robot enters and leaves
the nodes, some exits will appear while others will disappear.

To take this into account, we discriminate between detected and
tracked exits. Detected exits are the output of the neural networks,
and consist of an angle and a magnitude, while tracked exits are the
result of the continuous processing of the detected exits, and consist
of a unique ID, an angle and a confidence score.

For each prediction of the CNN, a new set of detected exits must
be processed with the objective of: 1) updating the angles of the
tracked exits, 2) checking if one of the tracked exits is no longer
being detected and 3) checking if there is a new exit that needs
to start being tracked.
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FIGURE 9 | Collection of a synthetic training sample. a) Procedural environment (black) and tunnel axis (blue). b) Selected axis point (black
sphere). c) Robot aligned with tunnel (red, green and blue are the robot's X,y and z axis respectively). d) Transformation applied to the robot. e)
Captured LiDAR point cloud (red dots). f) Axis points used to generate the label (red spheres). g) Training Image. h) Training Label. [Color figure can
be viewed at wileyonlinelibrary.com]
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To update the angles of the tracked exits, we first start by cal-
culating the angular distances between each of the detected
exits to each of the tracked exits, obtaining a triangular matrix
where each row corresponds to a detected exit, each column to
a tracked exit and each cell contains the angular distance
between the corresponding tracked and angular distances. To
consider that a specific detected exit is the same as a specific
tracked exit, the angular distance between them must be the
minimum in both its row and column. This ensures that a
detected exit can only be associated to one tracked exit, and
vice-versa. Additionally, this distance must be smaller than a
certain threshold, that is established depending on the robot's
maximum angular speed and the frequency of the predictions.
Once a detected exit is associated with a tracked exit, the angle
of the tracked exit is updated to that of the latest detection.

After this step there are two possible scenarios. The first one is
that each of the detected exits has been associated to one of the
tracked exits. If this is the case, the tracking is finished. In
the second scenario, two possibilities exist: either some detected
exits have not been associated with a tracked exit and/or some
of the tracked exits have not been associated with a detected
exit. These two possibilities translate to either a tracked exit that
is no longer being detected, or a new exit that is not being
tracked yet. To deal with the possibility of spurious detections,
the creation and deletion of tracked exits is handled with a
simple hysteresis method in which the important criterion is
the number of consecutive observations or, equivalently, the
time elapsed since an exit is detected for the first/last time.

Each tracked gallery has a confidence value (y) that can be in
the interval y € [0, ¥,,,.J- When a detected exit is not associated
with a tracked exit, a new tracked exit is created, with: 1) a
unique ID, 2) the same angle as the detected exit and 3) a
confidence score of y = §;, §; being the magnitude of the exit
(the height of the peak in the CNN's output). After being cre-
ated, every time a detected gallery is associated with it, its
confidence is increased by the height of the detected gallery
y = min(y,,,., ¥ + da). However, if it is not, the confidence is
decreased: y = max(0, y — &;), &; being a parameter that defines
the rate at which the confidence decreases. If the the confidence
reaches a certain threshold (y > y, it is considered reliable,
however if it reaches 0 (y = 0), it is deleted. To ensure a
behavior equivalent to hysteresis, the confidence should grow
slower than it decreases, meaning &; > &3, and because
E(84) ~ 0.8, we have chosen the value J; = 1. Regarding y,,,,
and ¥, their values have been set to 5 and 3 respectively, as they
have shown to provide reliable results in our configuration.

4.2.4 | Dealing with Instability

Even with the introduction of the tracking system, there are
periods of substantial instability (especially in realistic en-
vironments), when the output of the neural network presents
significant inconsistencies between consecutive predictions.
This occurs during the transitions between galleries and inter-
sections, and vice versa. This can cause the quick creation and
deletion of tracked galleries, making the decision process less
reliable. In our previous work, this issue was addressed by
starting an “instability timer” when a new tracked exit was
created or removed which was used to wait for the output of the
network to stabilize. However, this timer was a parameter that

had to be adjusted from one environment to another, and was
prone to failures if intersections or galleries of different
dimensions where present in the same environment. For this
reason in this work we introduce the concept of prediction
stability.

To determine whether a CNN output qualifies as stable, we
initially examined the attributes of predictions during both
stable and unstable periods. One clear characteristic of stable
periods is that subsequent predictions look very similar,
meaning that they present the same number of peaks in close-
by positions. From this observation, we can define two condi-
tions for a prediction to be stable: 1) Every tracked exit has a
high-enough confidence level, 2) every detected exit is associ-
ated to a tracked exit. Also, when the robot enters an inter-
section, it tends to detect the new exits closer to already tracked
exits, making their respective “bulbs” overlap, creating a valley
between them. From this observation, we derive a third con-
dition: 3) there are no local minima in the output. Finally,
transitional phases often manifest minor peaks in the output
that fall below the threshold for detection, leading to our final
criterion: 4) there are as many local maxima in the output of the
CNN as tracked exits.

If all these conditions are met, it means that there are well
defined peaks in the output of the network, and that all present
exits are tracked and reliable. Figure 10 shows how the exit
tracking and prediction stability behave in the context of en-
tering and exiting an intersection. In Figure 10a, the robot is
beginning to detect the lateral gallery, so a small peak appears
in the left side. This is a local maxima, but too small to be
considered a detection, so it is considered unstable. As the robot
fully enters the intersection (Figure 10b), the small peak grows
and becomes a detection, and after being detected enough times
(its confidence reaches 3, as explained before), it also becomes a
reliably-tracked gallery, so the situation is considered stable.
Then, the robot begins to exit the intersection through the lat-
eral gallery. As it does so, the exits 1 and 2 start to decrease in
size, and a new exit with ID = 4 is tracked. However, the part of
the network output corresponding to the back of the robot
presents local maxima and local minima that make the pre-
diction unstable (see in Figure 10c the network output in polar
coordinates).

From this point onward, every time we refer to an exit, we will
be referring exclusively to the tracked exits, which are the
actual output of the perception pipeline.

4.3 | Navigation

This section will showcase how the information that the robot
has access to about its environment (odometry and tracked
exits) is used to execute a sequential set of high-level navigation
tasks. Each task has some requirements on the initial condi-
tions, and will provide information about the successful com-
pletion or failure. We differentiate between two types of tasks:
purely topological and hybrid tasks, due to the fact that limiting
the navigation to purely topological commands would preclude
some intuitive interactions with the robot.

The purely topological tasks are executed without using any
extra information outside the perception system outlined in
Section 4.2. They are the following:
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FIGURE 10 | Instability stages when entering and exiting an intersection. Images on the left are the situation of the robot, images on the middle

show the point cloud of the 3D LiDAR. The images on the right show: the network prediction in blue, the raw local maxima as a black line, the
detected exits as a blue dot, the tracked exits as a red dot with a number (the ID) and the stability as the background color (red is instable and green is
stable). The presented situations are: a) The robot enters the intersection, and the prediction is unstable. b) The robot fully enters the intersection,
causing the prediction to become stable. c) The robot starts leaving the intersection, and the prediction becomes unstable again. [Color figure can be
viewed at wileyonlinelibrary.com]|

take <N>: This instruction works as described in
Section 4.1, where N is the N exit to take. If N > 0, it
means to take the N counterclockwise exit, if N < 0 it
means to take the N'! exit clockwise, and if N = 0, it means
to take the rear exit. If the instruction is received while in
an intersection, it will take the specified exit and indicate a
success. On the other hand, if this instruction is received
while the robot is in a gallery or a dead-end, it will advance
until an intersection is found and, once there, if the node is
an intersection it will take the specified exit.

advance_to_node:Ifin a gallery or a dead-end, the robot
will advance through the tunnel following the exit closest to its
front until either an intersection or a dead-end is encountered.

« turn_around: The robot must be in a gallery (otherwise
it will report a failure). Then, it will turn until it faces the
exit originally closest to its back and report a success.

The hybrid tasks cannot be considered purely topological, as
they make use of additional information like wheel odometry,
time passed or angular values instead of angular ordering.
However, they allow extra functionalities and more options for
the user to interact with the robot:

« take <leftrightfrontback>: This instruction
behaves similarly to the "take [N]" one, but including
the angles of the exits into the decision process. Each of the
four directions is associated with an arch of 90°, centered in
said direction. For example, if the robot is in an intersection
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and receives the instruction take [right] it will check
if there is an exit within the 90° arch centered in 270°. If that
is the case, it will take said exit; however, if no exit is
detected to the right of the robot, it will report a failure.

« advance_met <M>: The robot must be in a gallery or dead-
end (if it is in an intersection it will report a failure), and will
advance M meters (according to the odometry), unless it
reaches a node, in which case it will stop and report a success.

« advance_sec <S>: This instruction behaves exactly
like the previous one, except in this case the robot will
advance S seconds.

The reporting of success or failure is used to address the mis-
match between user expectations and reality. For example, in a
hypothetical rescue operation inside a mine, the operator may
have indicated a path that is no longer available because a
gallery is now blocked. In this situation, the robot could have
received a take <N> instruction, but instead of reaching the
intersection, it finds the blocked gallery. If this was the case, it is
important for the robot not to continue with the following
instructions, as they would lose their intended meaning.

4.3.1 | Obstacle Avoidance

During the execution of the previously detailed instructions, the
robot is always advancing towards an exit and, as explained in
Section 4.2.2, this means that the robot stays centered in the
tunnel. This is true even if there is an obstacle in the middle of
the tunnel, so it is necessary to add an avoidance system that
prevents any collision with such obstacles.

Given that the navigation target is an angle w.r.t the robot, there
is the need to use an obstacle avoidance system that can take
this information, combine it with the information from the
LiDAR, and output a new direction that, while avoiding the
obstacle, keeps the robot advancing towards the objective.

We developed a specific solution (presented and validated in Cano
et al. (2022)), which involves assigning a value to each of the 360
angles around the robot and choosing the angle of highest value.
This means that the value of each angle should be the highest if it
points in the desired direction and is free of obstacles, and lower if it
points in a different direction or towards an obstacle.

Each of these values are obtained by multiplying two weights,
one derived from the desired angle of advancement
(advancement weight), and the other one derived from the
horizontal LiDAR scan (obstacle weight).

To derive the directional weight of any angle (§) for given a
specific angle of advancement (8) the following formula is used:

Ws=1—I[(8 — 6 + 180) mod 360] — 180/180 (1)

This results in a linear decrease of W3 from 1 at the desired
angle of advancement to 0 in the opposite direction, as can be
seen in Figure 11d.

The process of obtaining the obstacle weights can be divided
into two steps. In the first step, we discretize the angles around
the robot into 360 sections, assigning the corresponding closest
obstacle distance as the initial value of each angular sector.
The second step is to cap all the values larger than a certain
threshold. In our case this is 5 m, as the maximum speed of our

(d)

FIGURE 11 | Proposed method for obstacle avoidance. a) Situation of
the robot. b) Point Cloud captured by the LiDAR. c) Laser Scan extracted
from the point cloud. d) Desired direction (red line) and directional weights
(green dots). ) Scan in red and obstacle weights in purple. f) Combination of
directional weights (green) and obstacle weights (purple) into the final
weights (orange). The corrected angle (blue line) is different from the initial
angle (red line), in a way that the robot avoids the obstacle. [Color figure can
be viewed at wileyonlinelibrary.com]

robot is 1 m s~1, so that gives a time horizon of 5 s. Finally, the
remaining values are inflated so that every obstacle appears
wider than it is, depending on the desired safety distance,
obtaining thus the obstacle weight of each angle (Figure 11e).

Then the two sets of weights are multiplied, obtaining the final
values. These are then used to select the angle that contains the
largest value. This angle is referred to as the corrected angle (§"), and
it is the direction the robot should advance towards so that it avoids
any obstacles (Figure 11f). The linear and angular velocities
required to advance in this direction are calculated as follows:

w = max(I§'l X A, wyayx) X &' /18] )

V= max(vmax*(wmax - IC‘)l)/c‘)max’ 0) (3)

This results in the following behavior: A proportional controller
for the angular speed with a cutoff maximum angular speed and
a linear speed inversely proportional to the angular speed that
drops to 0 if the angular speed is high. With this approach, if the
corrected angle is large enough, the linear velocity is 0, allowing
the robot to rotate in place, while if the corrected angle is 0,
meaning the robot is perfectly aligned with it, the linear velocity
is the maximum possible.

This behavior ensures that when the robot enters an intersec-
tion and needs to take an exit at a considerable angular dis-
tance, the robot will rotate in place, maintaining stable
predictions from the network, and ensuring that the robot will
stay in the intersection until it is aligned with the desired exit.

4.4 | Mapping and Exploration

The final component of our proposal is the mapping frame-
work. The goal is to enable the robot to build a topological map
of the environment as it navigates through it.
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At its core, every mapping approach revolves around a simple
principle: Relate the robot's observations to specific elements in
the map, use this relationship to determine the robot's current
location within the map, and update the map with new relevant
information as the robot explores the environment.

In our approach, the perception system provides the angular dis-
tribution of detected exits around the robot, while the map is rep-
resented as a graph where edges correspond to galleries, and nodes
represent either intersections or dead-ends. This means that the
relationship between the observations and the topological map is
that each detected exit corresponds to a unique edge in the graph.
Consequently, the most critical task of our mapping approach is to
maintain this correspondence, ensuring that each detected exit is
accurately associated with the correct node in the map.

During mapping, we consider two types of nodes. The first one
is the visited nodes, whose number of connections is known.
The second type of node are the unvisited nodes, which are
nodes that are known to exist, but have not yet been visited, and
thus, whose number of exits is unknown.

The mapping process starts with an initialization step that varies
depending on whether the mapping starts in a node or an edge. If
the robot starts in an edge (meaning that only two exits are being
detected, namely back and front exits), two unvisited nodes are
added to the map and connected by an edge. Otherwise, if the
robot starts in a node (either dead-end or intersection), a visited
node and as many unvisited nodes as exits are added to the map,
with edges that connect each unvisited node to the visited node.
This initialization step is shown in Figure 12, where three possible
initial situations are illustrated.

After this initialization step, the initial map contains unvisited
and/or visited nodes, and the relationship between the observed
exits and nodes has been established. With this information, the
mapping system can start. It has been implemented as a simple
state machine formalized in a binary Petri net shown in Figure 13.
The main motivation behind the implementation of the mapping
system as a state machine was the need to account for the in-
stabilities in the network prediction when moving between nodes
and edges (as explained in Section 4.2.3). Both the fluctuations
that the prediction has at node-gallery boundaries, and the risk of
spurious detections made it necessary to have an unstable state

where these detections can be ignored until a fully stable state is
reached.

The analysis of this Petri net shows that it is safe (1-bounded),
and conservative with an invariant total of one token. Struc-
turally, it is a state machine (each transition has exactly one
input and one output place). Its reachability graph is strongly
connected, so markings can be revisited. The net is live (no
transition can become permanently disabled) and, therefore, it
is deadlock-free from a structural point of view.

Since transitions have associated guards, the overall system
correctness also depends on these guard conditions. The tran-
sition inputs are mutually exclusive CNN outputs: stable (s) and
unstable (—s) detection, and the number of detected galleries
n =2 and n # 2. Since navigation will eventually produce a
change from stable to unstable CNN output, or vice versa, each
state will in due time trigger its output transition. (During ini-
tialization, the robot can be manually driven to a stable place if
not initially at one.)

The inner workings of each state are as follows:

1. Stable Gallery State (Gallery in Figure 13): The robot is in
a gallery, far enough from any node that the output of the
CNN is stable. In this state, there are only two detected
exits and the main task of the mapping system is to track
to which node the robot is heading to. Given that the robot
can only move forward, this node (the target node) is the
one associated with the exit closest to the front. When
there is a change in the number of exits, the mapping
system transitions to the Unstable state.

2. Stable Node State (Node): When the robot fully enters an
intersection or reaches a dead-end, the prediction
becomes stable again, with a number of exits n # 2. If this
is a previously unvisited node, we mark it as visited, and
add new edges to unvisited nodes for each exit other than
the one we are arriving from. The relative ordering of exits
is preserved, as this is the only information required for
navigation (Section 4.1).

3. Node-Gallery Boundary Unstable State (Unstable): When
entering or leaving a node, there is a period of instability
of CNN output in which some exits can briefly appear or

— e @3
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FIGURE 12 |

Three possible initializations depending on the starting situation. From left to right, starting in a dead-end, starting in the middle of

a gallery or starting in an intersection. The upper figures illustrate the situation of the robot as well as the exits around it. The bottom figures illustrate
the initial maps, with red nodes being visited and blue ones being unvisited. To the left of each bottom figure there is the correspondence between
exits and nodes, and to the right, the data that the map contains, as in Figure 4. [Color figure can be viewed at wileyonlinelibrary.com]
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Initialization / Unstable

-S S A n#2

Gallery Node

FIGURE 13 | Petri net describing the state machine used in the
mapping approach, with state-changing inputs inside transitions. Places
have associated actions described in the text. Input combinations not
shown imply that the Petri net stays in the same state. n (a positive
number) is the number of detected exits and s (a boolean) indicates
whether the detection is stable, as explained in Section 4.2.4.

(a)|' (b) (c)
0/'3

[] [A, B] [A, C,D]
(d) (e) (f)

[A, C] [A] []

FIGURE 14 | Topological Exploration. a) Starting pose of the robot

(green). b-f) Exploration process. Blue nodes are unvisited while red
nodes are visited. The brackets contain the stack of unvisited nodes.
[Color figure can be viewed at wileyonlinelibrary.com]

disappear. We filter out these periods to avoid spurious
updates on the map. When entering/exiting a node, we
always know the gallery we are coming from/leaving
through, located at the back/front of the robot, respec-
tively. During this state, the only task of the mapping
system is to keep track of this exit. This state lasts as long
as the exit prediction is unstable. Once our filtering deems
the CNN output as stable, we know whether we are en-
tering a gallery or a node by the number of exits being
reported. If the latter, we know the identity of the con-
necting exit in the former and current node. This infor-
mation is used to update newly visited nodes as explained
in the Node state.

4. Start-up (Initialization): On startup, as explained, the
map initialization depends on being located at a gallery or
node. The Unstable state already discriminates for this
initial condition, so we can simply reuse it.

As can be seen, the only information that our proposed mapping
approach requires is the tracked exits and the level of stability of the
network's prediction. This makes it possible to generate the topo-
logical map even if the robot is navigating with a non-topological
system, or is being operated by a user. Note that, given its purely
topological nature, this mapping proposal is not yet capable of loop
closure. For loop closure to work, it would be necessary to store
some extra information about the nodes, like their position or some
distinguishable feature. Future work will explore the possibility of

performing loop closures without having to rely on accurate pose
estimation. As a final comment on this, it is important to note that,
even if the mapping system cannot create a map with loops, the
path-planning and navigation systems can use them without any
adjustments.

4.5 | Topological Exploration

The final module in our proposal is an autonomous exploration
method built on top of our mapping system. As mentioned in
the previous section, our mapping approach differentiates
between nodes that have been visited and nodes that have not.
This explicit difference makes it trivial to state the goal for the
exploration system: Navigate to every unvisited node, until
there are only visited nodes in the map.

To accomplish this task, the exploration system acts as a “direc-
tor,” that indicates to the navigation system where to go. More
specifically, it keeps track of all the unvisited nodes using a LIFO
stack data structure. This way, every time the robot arrives at an
unvisited node and sets its state to visited, all the new unvisited
nodes that are added to the map are also pushed to the stack.
Then, the exploration system pops an unvisited node from the
stack, and instructs the navigation system to head there. The
complete exploration process is shown in Figure 4, and can be
summarized as follows:

1. The exploration begins with an empty map (Figure 14a)
that has to be initialized as defined in Section 4.4. As a
result, the mapping system generates a partial map that
contains visited and/or unvisited nodes. The later ones are
pushed to the stack (Figure 14b).

2. The exploration system pops an unvisited node from the stack
and uses the already generated map to obtain a path to it.

3. The navigation system executes the generated path,
eventually reaching an unvisited node.

4. Once the robot reaches the unvisited node, it becomes
visited. If new unvisited nodes are detected, they are ad-
ded to the map and pushed into the stack (Figure 14c).

5. If the stack is not empty, the system goes back to step 2
(Figure 14d,e), otherwise the exploration is complete and
the process stops (Figure 14f).

This approach is equivalent to a depth-first exploration of a
graph. This means that the robot will explore as deep as possible
into each branch of the tunnel network, before backtracking to
explore a new branch, which is, as well known, the most effi-
cient way possible to completely traverse our target environ-
ments (in absence of loops). A simpler way of accomplishing
this would have been a strategy of “always go left,” as done in
Pereira et al. (2021); de S Thiago Filho et al. (2025), although
this would sacrifice the ability to prioritize unexplored branches
according to some criterion.

5 | Experimental Evaluation

Our proposal has been evaluated in both simulated and real
environments. While simulated environments allow for a
greater variety of scenarios, they lack some of the challenges
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associated with real underground environments, like truly
degraded odometry, dust particles or erroneous readings of the
LiDAR. In the simulated experiments a variety of environments
have been used, including some generated from the DARPA
SubT challenge scenario assets and a 3D reconstruction of a real
environment.

Regarding the implementation, all the components in the naviga-
tion stack were implemented using the Robot Operating System
(ROS) framework, with nodes written in both Python and C++. In
the real-world experiments, all computations where performed on
the onboard computer of the robotic platform. More specifically, we
used the Clearpath's Husky A200 UGV,? equipped with a Velodyne
VLP-16 3D LiDAR,* a picture of which can be found in Figure 22a.
A model of this exact robot configuration was also used for the
experiments in simulation.

5.1 | Simulated Experiments

Simulation allows for the execution of experiments that could not
be carried out in a real environment, due to limitations regarding
the battery life, or access to testing scenarios, which, in the case of
subterranean environments, can be difficult to obtain.

We propose three sets of fully-autonomous experiments to test
the reliability of our solution and different use cases. The first
set of experiments will showcase the path-planning and navi-
gation stack, working on a user-defined map, in scenarios cre-
ated using the DARPA SubT challenge tunnel tiles. °.
The second and third experiments will exercise the system
while using its exploration capabilities; one of them will be
performed on a SubT challenge scenario while the other on a
modified 3D reconstruction of the Somport tunnel.

5.1.1 | Path Planning and Navigation in DARPA Subt
Environments

To carry out this set of experiments, a testing environment was
created using the models provided by DARPA for their SubT
challenge. These models consist of a set of tiles of different
sections of tunnels that can be connected to generate arbitrarily
complex environments. More specifically, the available tunnel
tiles are the straight section, the 3-way intersection, the 4-way
intersection, the curve, a ramp and a “block” figure to terminate
the tunnels in a dead-end.

With these tiles, we built an environment rich with intersec-
tions and tunnels at different heights, which is presented in
Figure 15a and the corresponding user-defined topological map
was made available to the robot (Figure 15c).

To test the repeatability of the results, three different missions
were devised: the first one going from the edge between nodes 4
and 1 (E4-1) to node 22 N22, the second one from E18-17
to N20 and the third one going from E16—-17 to N22. Each of
these tasks was repeated 5 times resulting in a total of 15 runs.
For each of the tasks, the path planner produced the following
instructions respectively:

« From E4-1 to N22:take [-1], take [2], take
[1], take [-1], advance_until_node

« From E18-17 to N20:take [-1], take [-2],
take [31, take [21, take [11,
advance_until_node

14
18 17716
157

8

FIGURE 15 | Environment for the path-planning tests in simula-
tion using a user-defined map. a) Complete environment in the Gazebo
simulation. b) Overlay with indications about the features of the en-
vironments. The green lines indicate tunnels at level 0, red lines indi-
cate tunnels at level +1, blue circles are intersections, pink circles are
dead-ends and arrows indicate ramps (pointing in the ascending
direction). c) User-defined topological Map of the environment that the
robot will use for path planning. [Color figure can be viewed at
wileyonlinelibrary.com|

« From E16-17 to N22:take [-3], take [-1],
take [-2], advance_until_node

In all of them, the robot successfully arrived at the target node by
following the topological instructions provided by the planner.

Figure 16 shows the trace of the robot for the first run of each of
the tasks.

5.1.2 | Topological Exploration in DARPA Subt Environment

For this experiment, a different, non-cyclical environment was
created using the assets provided for the DARPA SubT chal-
lenge (Figure 17a). In this scenario, there are tunnels present at
three different levels, as it can be seen in Figure 17b.

The robot was then placed at position (0, 0, 0), and tasked with
fully exploring the environment and obtaining the corre-
sponding topological map.

The robot took 65 min to fully explore the environment, doing so
without any errors. Figure 18a shows the topological map created
by the robot during exploration. It can be seen from this image that
the topological map correctly reflects the topological structure of the
target environment. It is worth noting that, geometrically, the
topological map is not fully consistent with the actual environment.
For example, several of edges that correspond to parallel tunnels are
not parallel in the map. This is due to the use of the raw odometry
to assign a position to each of the nodes. This is done exclusively for
the purposes of displaying the map in a more understandable form.
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FIGURE 16 | Traces of the first experiment for each of the path
planning tasks. a—c) Each trace has a color gradient, with red indicating
the initial positions, transitioning to green for the middle ones, and
ending in blue for the last ones. [Color figure can be viewed at
wileyonlinelibrary.com]|
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FIGURE 17 | Environment for the topological exploration experi-

ments. a) Complete environment in the Gazebo simulation. b) Overlay
with indications about the features of the environments. The green lines
indicate tunnels at level 0, red lines indicate tunnels at level +1, blue
lines indicate tunnels at level —1, blue circles are intersections, pink
circles are dead-ends and arrows indicate ramps from level 0 to levels
+1 or —1. [Color figure can be viewed at wileyonlinelibrary.com]

However, these geometrical inconsistencies do not have any impact
on the navigation, as the geometrical position of the nodes is
irrelevant to our fully topological approach. The storage require-
ments of the resulting map can be calculated by multiplying the
storage space of one edge by the number of edges. An edge is
composed of two integers, each weighing 8 bytes, so the space to
store one edge is 16 bytes. Given that the map contains 30 edges, it
can be stored in just 480 bytes.

5.1.3 | Topological Exploration of a 3D Reconstruction of the
Somport Tunnel

This final set of simulated experiments has been performed in a
modified 3D reconstruction of the Somport Tunnel. This en-
vironment consists of a 7 km long tunnel with 17 lateral gal-
leries, all on the same side.

The original 3D model is an accurate representation of the real
environment; however, due to its large dimensions, and the
extreme aspect ratio (see Figure 23), displaying the results
would not be viable. Additionally, a complete exploration of the
original environment would take greater than 600 min. For
these reasons, some modifications have been performed to the

(b)

FIGURE 18 | Results of the exploration tasks in the DARPA SubT
environment. a) The obtained topological map. b) The trace of the path
followed by the robot during the experiment. The trace has a color
gradient, with red indicating the initial positions, transitioning to green
for the middle ones, and ending in blue for the last ones. [Color figure
can be viewed at wileyonlinelibrary.com]

FIGURE 19 | Modified 3D model of the Somport Tunnel, with eight
lateral galleries and a reduced main tunnel of 530 m in length. The
crossing galleries have different slopes, hence not really intersecting
each other. [Color figure can be viewed at wileyonlinelibrary.com]

model. First, of the original 17 lateral galleries, 8 have been
selected. Secondly, the distance between them has been subs-
tantially reduced. Finally, to avoid collisions between lateral
galleries, one of them (corresponding to the original 6th gallery)
has been flipped. The result of these modifications is shown in
Figure 19, where the main tunnel has a length of 530 m.

Three starting points have been defined, which will be referred
to as A, A" and A” (Figure 19). From each starting point, five
exploration tasks were executed, for a total of 15 exploration
runs. Of the 15, 14 were completed successfully, with the single
failure being caused by an intersection not meeting the stability
criteria and thus the lateral gallery not being explored.
Figure 20 shows the topological maps obtained after exploration
runs started from A and A’. By comparing the two, it is clear
that there are some differences between them. There are slight
variations between the positions of the nodes in each map,
which are caused by the accumulated errors of the odometry.
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FIGURE 20 | Topological maps obtained from explorations starting
from A (a) and A’ (b). [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 21 | Traces obtained during the exploration experiments in
the modified 3D model of the Somport Tunnel from three different starting
points (A, A" and A”). They present a color gradient starting in red, tran-
sitioning to green and finally ending in blue. The green letters enumerate
the order at which the robot has entered each of the branches from the main
tunnel. [Color figure can be viewed at wileyonlinelibrary.com]

Given that these maps contain 23 edges each, the map can be
stored in only 368 bytes of memory.

Additionally, the enumeration of the nodes depends on when
they are created, so they also vary between topological maps.
Regardless of these differences, the underlying topological
structure stays the same.

Finally, Figure 21 shows the traces of three different exploration
runs, each of them starting from a different point.

5.2 | Real-World Experiment

The main objective of this test was to validate the complete
framework in a real-world environment and to showcase the
zero-shot transfer from simulation to reality when using deep
learning on 3D LiDAR scans. It was performed in the Somport

Tunnel, which has been described previously. As can be seen in
Figure 22b, the tunnels have substantially degraded floors,
which make odometry much less reliable, and the main tunnel
has few geometrical features (Figure 22c), complicating the
process of scan matching of more traditional geometric meth-
ods. The complete environment is of significant size, so our
experiment is carried out in 3 of the 17 galleries (Figure 23).

For this experiment, the task that the robot had to perform was the
following: Starting from the end of G8, reach the end of G7. Then,
go to G9 and advance 30 m. Finally, return to the intersection of G8
and stop. During this process, the system also had to build a
topological map of the environment. This experiment aims to
showcase three different aspects of our proposal:

1. The capability to carry out missions specified using high-
level instructions, without the need to have a pre-built
map of the environment or build one.

2. The zero-shot transfer learning between simulation and
the real-world environment.

3. The mapping approach working on a real-world environment.

To perform the task defined above, we provided the navigation
system with the following set of topological instructions:

1. advance_to_node: To go from the end of G8 to the
main tunnel.

2. take [right]: To exit intersection in the direction of
G7.

3. take [right]: Will advance until reaching the
intersection with G7, and enter into G7.

4. advance_to_node: To reach the end of G7.

5. take [back]: To exit the end of G7 and face towards
the main tunnel.

6. take [left]: To reach the main tunnel and face to-
wards G8.

7. take [1]: Advance towards the intersection of G8 and
continue straight.

8. take [left]: Advance towards the intersection of G9
and enter G9.

9. advance_met 20: Advance 20 m into G9.
10. turn_around: To face the intersection of G9.

11. take [right]: To reach the intersection of G9 and
face the intersection of G8.

12. advance_to_node: To advance through the main
tunnel to the intersection of G8.

During the run, our mapping approach generated the topolog-
ical map shown in Figure 24. As mentioned before, for visual-
ization reasons, the position of each node is set using the raw
odometry from the robot, which accumulates error over time.
This is especially true in this context, where the floor is subs-
tantially degraded. For this reason, the poses of NO, N1, N2 and
N4 are much more consistent with the 3D model than the
position of N3, which is the last visited node.

The robot took 35 min to traverse the 1572 m of the assigned task,
and managed to do so without any intervention. To provide an
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FIGURE 22 | Pictures taken inside the Somport tunnel during our experimental run. a) Close-up of our robotic platform, a Clearpath A200

equipped with a VLP-16 LiDAR sensor. b) Picture taken from the intersection of G7 with the main tunnel, where the floor is especially rough. c)

Picture taken in the main tunnel, between G8 and G7, it can be seen that the tunnel walls present few geometric features. d) Entrance to G8 seen

from the main tunnel. [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 23 | Ground-truth reconstruction of the Somport Tunnel made with the use of high-precision topographic equipment. The top image is

the complete environment while the bottom image is a zoom on the section where the experiment takes place. The distances, shown in blue, have
been measured using the ground truth data. [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 24 | Topological map generated during the real-world ex-
periment in the Somport Tunnel. Red circles indicate visited nodes, blue
circles indicate unvisited nodes while blue lines indicate edges. The
numbers are the ID of each of the nodes. The position of each node is
established using the raw odometry. [Color figure can be viewed at
wileyonlinelibrary.com]|

approximation of the route that the robot followed, Figure 25 shows
the best attempt at reconstructing a geometric map from the data
gathered during the experiment, which has some imperfections due
to the reasons presented in Section 2.1. The reconstructed path of
the robot is shown as a red line, which also presents some incon-
sistencies and jumps, but it does show how the robot stays close to
the center of the tunnel at all times.

6 | Discussion

Our experimental evaluation is aimed at demonstrating the viability
and usability of a fully topological approach for the tasks of navi-
gating, mapping and exploring underground tunnel networks.
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FIGURE 25 | Best geometrical attempt at reconstructing the experiment in the Somport tunnel. The rough floor degrades the odometry and the

lack of features in the walls are challenging for the scan matching. This results in the duplication of elements like galleries and sidings. The red line is

the reconstructed path of the robot, while the axes on the middle intersection represent the final position of the robot. [Color figure can be viewed at

wileyonlinelibrary.com]

Repeated experiments show a high degree of reliability, which is
accomplished in no small part by removing the necessity of having
a precise self-localization. It achieves a success rate of 100% in all
tasks in the DARPA-based environments, and of 93.3% in the 3D
reconstruction of the Somport Tunnel.

In the exploration tasks, it manages to create a very light rep-
resentation of substantially large environments, managing to
store all necessary information for navigation in maps that
occupy storage in the order of hundreds of bytes.

Regarding the real-world experiment, we demonstrate that,
even in a challenging real environment (Section 2.1), our
method is capable of following a set of simple instructions that
can be communicated directly by a human operator, and
operate autonomously for 40 min while it builds a topological
map of the traversed environment.

All these advantages come from exploring a purely topological
understanding of these environments. However, due in part to this
focus, and in part to the implementation details, our approach
presents some limitations. The CNN that our method relies on has
been tailored to work in scenarios composed of tunnels and inter-
sections. For this reason, if parts of the environment deviate
strongly from these assumptions, the perception pipeline will not
perform as intended. Additionally, the focus on the topological
aspect means that, for example, any position inside the same tunnel
is the same for our method, so if there is a requirement to operate in
a specific point along a tunnel, our method would be insufficient.
Additionally, as will be discussed in Section 4.4, using a purely
topological representation makes the loop-closure problem an ex-
tremely difficult one to solve. Even taking this into account, we
consider our solution a solid demonstration of how it can help with
some of the issues that these environments tend to pose.

6.1 | Lessons Learned

Lessons learned from navigating underground environments
highlight the many compounding challenges that make reliable
navigation extremely difficult.

It is well known that odometry, which often works well in
structured or predictable settings, becomes highly unreliable in
these environments due to uneven surfaces, wheel slip, and
sudden changes in terrain, causing accumulated errors that
rapidly degrade positional estimates.

General-purpose SLAM methods, used to correct such drift, work
extremely well in more structured environments but are themselves
problematic here: the high degree of auto-similarity and long
stretches of nearly identical tunnels or corridors cause frequent
mismatches, loop-closure errors and often map inconsistencies.
Additionally, SLAM algorithms are notably sensitive to parameter

tuning; settings that work in one section of the environment can fail
severely in another, making robust operation difficult without
careful, location-specific calibration.

IMUs, commonly used to provide short-term motion estimates
also struggle: potholes, uneven floors, and frequent rattling and
vibrations introduce significant noise, limiting their usefulness
for long-term localization.

Finally, neural network-based approaches, while attractive for their
potential to learn highly diverse patterns and features, show
sometimes inconsistent performance which makes it difficult to
know when the network is providing a reliable output and when is
not. In this specific case, this forced us to “engineer” a method to
manage the instability of the network output in critical areas of the
environment (mainly at intersections).

Finally, we learned that using synthetic data to train networks that
rely on LiDAR readings often produces quite satisfactory results,
allowing zero-shot transfer from simulation to the real world.

7 | Conclusions

The interest in autonomous robotics in underground environ-
ments has increased substantially during the last decade, in part
thanks to the DARPA's SubT challenge. However, the progress
has concentrated on adapting geometrical approaches to these
environments, while topological methods have not received the
same interest. Topological methods represent their environ-
ments as a graph, which makes them especially well-suited to
handle underground environments, which typically consist of
tunnels and galleries that intersect.

In this article we have presented a purely topological method
for the navigation, mapping and exploration of subterranean
tunnel networks, which are environments especially suitable for
this approach. We begin by establishing a purely topological
representation of these these scenarios, where the tunnels are
interpreted as edges and the intersections and dead-ends as
nodes. To exploit this, we propose a perception system based on
a CNN, that can interpret 3D LiDAR data and obtain the dis-
tribution of the tunnels around the robot. This novel method of
perception is then used to create a navigation system based on
human-readable, high-level instructions. Finally, these percep-
tion and navigation approaches allow us to create a purely
topological mapping and exploration system.

Our purely topological approach provides some definite advantages
over traditional methods, as is the complete disregard for precise
self-localization (an especially challenging task in our target en-
vironments). Another important advantage is the substantial
reduction in the size of the maps, which can be of substantial
usefulness in such communication-degraded environments.
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This work also provides successful experimental demonstra-
tions of the system, both in simulation and in a real-world
environment. Simulation experiments have focused on the
path-planning, navigation and exploration capabilities of our
method. The real world experiment has shown how a user can
specify a mission using high-level instructions, without needing
to provide the robot with any information about the environ-
ment. Additionally, it has proven that our network presents a
zero-shot transfer learning from a completely synthetic dataset,
obtained in simulation, to a real-world environment.

In future work, our main priorities will be exploring methods for
purely topological loop-closure and implementing fallback strategies
that do not require human intervention in case of failure or mis-
match between the topological map and the actual environment.
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*https://www.darpa.mil/program/darpa-subterranean-challenge.

3https://www.clearpathrobotics.com/wp-content/uploads/2013/02/
HUSKY_A200_UGV_2013_TEASER_email.pdf.

“https://ouster.com/products/hardware/vlp-16.
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20Tech%20Repo.

References

Bai, C., T. Xiao, Y. Chen, H. Wang, F. Zhang, and X. Gao. 2022. “Faster-
Lio: Lightweight Tightly Coupled Lidar-Inertial Odometry Using Par-
allel Sparse Incremental Voxels.” IEEE Robotics and Automation Letters
7, no. 2: 4861-4868.

Bayer, J., and J. Faigl. 2021. “Decentralized Topological Mapping for
Multi-Robot Autonomous Exploration Under Low-Bandwidth Com-
munication.” In 2021 European Conference on Mobile Robots (ECMR),
1-7. IEEE.

Blanco, J.-L., J.-A. Fernandez-Madrigal, and J. Gonzalez. 2008. “Toward
a Unified Bayesian Approach to Hybrid Metric-Topological Slam.” IEEE
Transactions on Robotics 24, no. 2: 259-270.

Blochliger, F., M. Fehr, M. Dymczyk, T. Schneider, and R. Siegwart.
2018. “Topomap: Topological Mapping and Navigation Based on Visual
Slam Maps.” In 2018 IEEE International Conference on Robotics and
Automation (ICRA), 3818-3825. IEEE.

Bosse, M., P. Newman, J. Leonard, M. Soika, W. Feiten, and S. Teller.
2003. “An Atlas Framework for Scalable Mapping.” In 2003 IEEE
International Conference on Robotics and Automation (Cat. No.
03CH37422), 1899-1906. IEEE.

Cano, L., A. R. Mosteo, and D. Tardioli. 2022. “Navigating Underground
Environments Using Simple Topological Representations.” In 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 1717-1724. 1IEEE.

Cano, L., A. R. Mosteo, and D. Tardioli. 2024a. “Procedural Generation
of Tunnel Networks for Unsupervised Training and Testing in Under-
ground Applications.” In 2024 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE.

Cano, L., D. Tardioli, and A. R. Mosteo. 2023. “Fast Tunnel Traversal for
Ground Vehicles by Bearing Estimation With Neural Networks.” In
Iberian Robotics Conference, 284-296. Springer.

Cano, L., D. Tardioli, and A. R. Mosteo. 2024b. “Purely Topological
Exploration of Underground Environments.” In 2024 7th Iberian
Robotics Conference (ROBOT), 1-8. IEEE.

Chang, H. J,, C. S. G. Lee, Y. C. Hu, and Y.-H. Lu. 2007. “Multi-Robot
Slam With Topological/Metric Maps.” In 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 1467-1472. IEEE.

Chaplot, D. S., R. Salakhutdinov, A. Gupta, and S. Gupta. 2020. “Neural
Topological Slam for Visual Navigation.” In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE.

Chen, J., H. Wang, and S. Yang. 2023. “Tightly Coupled Lidar-Inertial
Odometry and Mapping for Underground Environments.” Sensors 23,
no. 15: 6834.

Chen, K., B. T. Lopez, A.-A. Agha-mohammadi, and A. Mehta. 2022.
“Direct Lidar Odometry: Fast Localization With Dense Point Clouds.”
IEEE Robotics and Automation Letters 7, no. 2: 2000-2007.

Cowley, A., C. J. Taylor, and B. Southall. 2011. “Rapid Multi-Robot
Exploration With Topometric Maps.” In 2011 IEEE International Con-
ference on Robotics and Automation, 1044-1049. IEEE.

Dang, T., M. Tranzatto, S. Khattak, F. Mascarich, K. Alexis, and
M. Hutter. 2020. “Graph-Based Subterranean Exploration Path Plan-
ning Using Aerial and Legged Robots.” Journal of Field Robotics 37, no.
8: 1363-1388.

de S Thiago Filho, A. M., I. F. S. Amaral, N. C. P. de S Thiago Neto, et al.
2025. “Robotic Pipe Inspection: Low-Cost Device and Navigation Sys-
tem.” Journal of Control, Automation and Electrical Systems 36,
no. 1: 101-116.

Dijkstra, E. W. 1959. “A Note on Two Problems in Connexion With
Graphs.” Numerische Mathematik 1, no. 1: 269-271.

Donoghue, A. M. 2004. “Occupational Health Hazards in Mining: An
Overview.” Occupational Medicine 54, no. 5: 283-289.

Duberg, D., and P. Jensfelt. 2022. “Ufoexplorer: Fast and Scalable
Sampling-Based Exploration With a Graph-Based Planning Structure.”
IEEE Robotics and Automation Letters 7, no. 2: 2487-2494. https://doi.
0rg/10.1109/LRA.2022.3142923.

Ebadi, K., L. Bernreiter, and H. Biggie, et al. 2022. “Present and Future
of Slam in Extreme Underground Environments: The Darpa Subt
Challenge.” IEEE Transactions on Robotics 40, no. 1: 936-959.

Fredriksson, S., A. Saradagi, and G. Nikolakopoulos. 2024. “Grid-Fast: A
Grid-Based Intersection Detection for Fast Semantic Topometric Map-
ping.” Journal of Intelligent & Robotic Systems 110, no. 4: 154.

Grisetti, G., C. Stachniss, and W. Burgard. 2007. “Improved Techniques
for Grid Mapping With Rao-Blackwellized Particle Filters.” IEEE
Transactions on Robotics 23, no. 1: 34-46.

Hughes, N., Y. Chang, and L. Carlone. 2022. “Hydra: A Real-Time
Spatial Perception System for 3D Scene Graph Construction and Opti-
mization.” In Robotics: Science and Systems (RSS).

Ji, S., W. Xu, M. Yang, and K. Yu. 2012. “3d Convolutional Neural
Networks for Human Action Recognition.” IEEE Transactions on
Pattern Analysis and Machine Intelligence 35, no. 1: 221-231.

Kingma, D. P. 2014. Adam: A Method for Stochastic Optimization.” In
International Conference on Learning Representations (ICLR 2015).

Kohlbrecher, S., O. Von Stryk, J. Meyer, and U. Klingauf. 2011. “A
Flexible and Scalable Slam System With Full 3d Motion Estimation.” In

Journal of Field Robotics, 2026

21

85U8017 SUOLLLOD BATE81D 3(dedl|dde ay) Aq peusenob ae ss(ie O ‘8sn JO S9Nl 1o} ARiqiT8uljuO A1 UO (SUONIPUCD-PUR-SLLBYWOD AB 1M ARIq Ul UO//SdNy) SUORIPUOD pue SWis | 8L 88S *[9202/T0/92] uo AriqiTauliuo A8|iM ‘ezofelez aa pepsieAun AQ ZGTO. G04/Z00T OT/I0P/oo" A8 1M Ae.q1BulUo//Sdny woiy pepeojumod ‘0 ‘Z96795ST


https://www.darpa.mil
https://www.darpa.mil/program/darpa-subterranean-challenge
https://www.clearpathrobotics.com/wp-content/uploads/2013/02/HUSKY_A200_UGV_2013_TEASER_email.pdf
https://www.clearpathrobotics.com/wp-content/uploads/2013/02/HUSKY_A200_UGV_2013_TEASER_email.pdf
https://ouster.com/products/hardware/vlp-16
https://app.gazebosim.org/openrobotics/fuel/collections/SubT%20Tech%20Repo
https://app.gazebosim.org/openrobotics/fuel/collections/SubT%20Tech%20Repo
https://doi.org/10.1109/LRA.2022.3142923
https://doi.org/10.1109/LRA.2022.3142923

2011 IEEE International Symposium on Safety, Security, and Rescue
Robotics, 155-160. IEEE.

Kostavelis, I., and A. Gasteratos. 2015. “Semantic Mapping for Mobile
Robotics Tasks: A Survey.” Robotics and Autonomous Systems 66:
86-103.

Li, X. S., T. Nguyen, A. G. Cohn, M. Dogar, and N. Cohen. 2023. “Real-
Time Robot Topological Localization and Mapping With Limited Visual
Sampling in Simulated Buried Pipe Networks.” Frontiers in Robotics and
AI 10: 1202568.

Mansouri, S. S., C. Kanellakis, G. Georgoulas, and G. Nikolakopoulos.
2018. “Towards Mav Navigation in Underground Mine Using Deep
Learning.” In 2018 IEEE International Conference on Robotics and
Biomimetics (ROBIO), 880-885. IEEE.

Mansouri, S. S., C. Kanellakis, D. Kominiak, and G. Nikolakopoulos. 2020.
“Deploying Mavs for Autonomous Navigation in Dark Underground Mine
Environments.” Robotics and Autonomous Systems 126: 103472.

Mascard, M., I. Parra-Tsunekawa, C. Tampier, and J. Ruiz-delSolar.
2021. “Topological Navigation and Localization in Tunnels-Application
to Autonomous Load-Haul-Dump Vehicles Operating in Underground
Mines.” Applied Sciences 11, no. 14: 6547.

Mitchell, R. J., T. Driscoll, and J. E. Harrison. 1998. “Traumatic Work-
Related Fatalities Involving Mining in Australia.” Safety Science 29,
no. 2: 107-123.

Montano-Olivan, L., J. A. Placed, L. Montano, and M. T. Lazaro. 2024.
“G-Loc: Tightly-Coupled Graph Localization With Prior Topo-Metric
Information.” IEEE Robotics and Automation Letters9, no. 11:
9167-9174.

Montero, R., J. G. Victores, S. Martinez, A. Jardén, and C. Balaguer.
2015. “Past, Present and Future of Robotic Tunnel Inspection.”
Automation in Construction 59: 99-112.

Morlana, J., J. D. Tardés, and J. M. Montiel. 2024. “Topological Slam in
Colonoscopies Leveraging Deep Features and Topological Priors.” In
International Conference on Medical Image Computing and Computer-
Assisted Intervention, 733-743. Springer.

Morris, A., D. Silver, D. Ferguson, and S. Thayer. 2005. “Towards Topo-
logical Exploration of Abandoned Mines.” In Proceedings of the 2005 IEEE
International Conference on Robotics and Automation, 2117-2123. 1EEE.

Muravyev, K., A. Melekhin, D. Yudin, and K. Yakovlev. 2025. “Prism-
Topomap: Online Topological Mapping With Place Recognition and
Scan Matching.” IEEE Robotics and Automation Letters 10, no. 4:
3126-3133.

Pereira, G., C. Duarte, D. Marques, H. Azpurua, G. Pessin, and G. Freitas.
2021. “Towards a Simple Navigation Strategy for Autonomous Inspection
of Ducts and Galleries.” In 2021 Latin American Robotics Symposium
(LARS), 2021 Brazilian Symposium on Robotics (SBR), and 2021 Workshop
on Robotics in Education (WRE), 336-341. IEEE.

Placed, J. A., J. J. G. Rodriguez, J. D. Tardoés, and J. A. Castellanos. 2022.
“Explorb-Slam: Active Visual Slam Exploiting the Pose-Graph Topol-
ogy.” In Iberian Robotics Conference, 199-210. Springer.

Prados Sesmero, C., S. Villanueva Lorente, and M. Di Castro. 2021.
“Graph Slam Built over Point Clouds Matching for Robot Localization
in Tunnels.” Sensors 21, no. 16: 5340.

Qi, C.R., H. Su, K. Mo, and L. J. Guibas. 2017. “Pointnet: Deep Learning
on Point Sets for 3d Classification and Segmentation.” Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition: 652-660.

Ren, Z., L. Wang, and L. Bi. 2019. “Robust Gicp-Based 3d Lidar Slam for
Underground Mining Environment.” Sensors 19, no. 13: 2915.

Ribas, D., P. Ridao, J. Neira, and J. D. Tardos 2006. “Slam Using an
Imaging Sonar for Partially Structured Underwater Environments.” In
2006 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, 5040-5045. IEEE.

Rizzo, C., D. Tardioli, D. Sicignano, L. Riazuelo, J. L. Villarroel, and
L. Montano. 2013. “Signal-Based Deployment Planning for Robot
Teams in Tunnel-Like Fading Environments.” International Journal of
Robotics Research 32, no. 12: 1381-1397.

Romeo, A., and L. Montano. 2006. “Environment Understanding:
Robust Feature Extraction From Range Sensor Data.” In 2006 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 3337-
3343. IEEE.

Ross, M., and J. Murray. 2004. “Occupational Respiratory Disease in
Mining.” Occupational medicine 54, no. 5: 304-310.

Rossi, C., A. Caro Zapata, Z. Milosevic, R. Suarez, and S. Dominguez.
2023. “Topological Navigation for Autonomous Underwater Vehicles in
Confined Semi-Structured Environments.” Sensors 23, no. 5: 2371.

Saroya, M., G. Best, and G. A. Hollinger. 2020. “Online Exploration of
Tunnel Networks Leveraging Topological CNN-based World Predic-
tions.” In 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 6038-6045. IEEE.

Simonyan, K., and A. Zisserman. 2014. “Very Deep Convolutional
Networks for Large-Scale Image Recognition.” In International Con-
ference on Learning Representations (ICLR 2015).

Tampier, C., M. Mascard, and J. Ruiz-delSolar. 2021. “Autonomous
Loading System for Load-Haul-Dump (LHD) Machines Used in Un-
derground Mining.” Applied Sciences 11, no. 18: 8718.

Tardioli, D., L. Riazuelo, D. Sicignano, et al. 2019. “Ground Robotics in
Tunnels: Keys and Lessons Learned After 10 Years of Research and
Experiments.” Journal of Field Robotics 36, no. 6: 1074-1101.

Tardioli, D., D. Sicignano, L. Riazuelo, A. Romeo, J. L. Villarroel, and
L. Montano. 2016. “Robot Teams for Intervention in Confined and
Structured Environments.” Journal of Field Robotics 33, no. 6: 765-801.

Wang, H., C. Wang, C. Chen, and L. Xie. 2020 F-Loam: Fast Lidar
Odometry and Mapping.” In 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE.

Worley, R., and S. R. Anderson. 2025. “Hybrid Metric-Topological
Localization for Robots in Pipe Networks.” Journal of Field Robotics 42,
no. 3: 806-826.

Xue, W., R. Ying, Z. Gong, R. Miao, F. Wen, and P. Liu. 2020. “Slam
Based Topological Mapping and Navigation.” In 2020 IEEE/ION Posi-
tion, Location and Navigation Symposium (PLANS), 1336-1341. IEEE.

Yang, X., X. Lin, W. Yao, H. Ma, J. Zheng, and B. Ma. 2022. “A Robust
Lidar Slam Method for Underground Coal Mine Robot With Degener-
ated Scene Compensation.” Remote Sensing 15, no. 1: 186.

Supporting Information

Additional supporting information can be found online in the
Supporting Information section.
Supplementary Information

22

Journal of Field Robotics, 2026

85U8017 SUOLLLOD BATE81D 3(dedl|dde ay) Aq peusenob ae ss(ie O ‘8sn JO S9Nl 1o} ARiqiT8uljuO A1 UO (SUONIPUCD-PUR-SLLBYWOD AB 1M ARIq Ul UO//SdNy) SUORIPUOD pue SWis | 8L 88S *[9202/T0/92] uo AriqiTauliuo A8|iM ‘ezofelez aa pepsieAun AQ ZGTO. G04/Z00T OT/I0P/oo" A8 1M Ae.q1BulUo//Sdny woiy pepeojumod ‘0 ‘Z96795ST



	Autonomous Navigation in Large-Scale Underground Environments Based on a Purely Topological Understanding of Tunnel Networks
	1 Introduction
	2 Motivation
	2.1 Localization in Underground Environments

	3 Related Work
	4 Approach
	4.1 Topological Map and Path Planning
	4.1.1 Data Structure
	4.1.2 Topological Path Planning
	4.1.3 Obtaining a Plan

	4.2 Perception
	4.2.1 Exit Detection
	4.2.2 Training Dataset
	4.2.3 Exit Tracking and Stability
	4.2.4 Dealing with Instability

	4.3 Navigation
	4.3.1 Obstacle Avoidance

	4.4 Mapping and Exploration
	4.5 Topological Exploration

	5 Experimental Evaluation
	5.1 Simulated Experiments
	5.1.1 Path Planning and Navigation in DARPA Subt Environments
	5.1.2 Topological Exploration in DARPA Subt Environment
	5.1.3 Topological Exploration of a 3D Reconstruction of the Somport Tunnel

	5.2 Real-World Experiment

	6 Discussion
	6.1 Lessons Learned

	7 Conclusions
	Acknowledgments
	Data Availability Statement
	Endnotes
	References
	Supporting Information




