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ABSTRACT
This work presents a non‐geometrical navigation approach based on a purely topological understanding of underground 
environments. By conceptualizing subterranean scenarios as a set of tunnels that intersect with each other, and taking a 
navigation approach based on topological instructions, we simplify the navigation problem to the sequential execution of 
human‐understandable instructions. This approach is built on top of a lightweight Convolutional Neural Network 
(CNN) that processes the readings of a 3D LiDAR sensor and produces an estimation of the angular positions of the 
surrounding tunnels with respect to the robot. As a result of this approach, our method can navigate these underground 
environments by only being provided with the necessary topological instructions, without the need for a map, or for 
building one during navigation. Additionally, it can also rely on a lightweight graph representation of the environment. 
This graph can be either defined by the user, generated during navigation or explicitly built in an exploration task. To 
showcase these capabilities, this article provides an experimental evaluation of the method both in simulation and in a 
real environment.

1 | Introduction 

Subterranean environments are interesting targets for automa
tion, as they are an important part of our infrastructure and 
economic development, but, at the same time, they share cer
tain characteristics that make them hostile environments to 
human workers. One example of this are underground mining 
operations. In these environments, the presence of dust and fine 
particles greatly increases the risk of respiratory diseases in 
workers (Ross and Murray 2004), the operation of heavy 
machinery and explosives poses a significant risk of traumatic 
injury (Mitchell et al. 1998) and the oppressive environment can 
lead to a multitude of psycho‐social illnesses (Donoghue 2004). 
Other important examples are utility tunnels in cities, which 

carry crucial distribution lines, like electricity, gas, water etc., 
and are thus an important infrastructure for the functioning of 
any large urban area. Given their criticality, they require fre
quent inspection and maintenance by qualified operators, but, 
due to their scale (from the 10 s to 100 s of km), these inspec
tions are time consuming, expensive, and require special 
equipment—like ultrasonic sensors—to detect defects. These 
requirements imply that operators must be exposed to the 
hazards of these environments (e.g., gas and electricity lines) for 
long periods of time. The costs and hazards associated with this 
activity have motivated the development of robots adapted to 
execute these tasks. However, given the many challenges of 
autonomous navigation in these environments, they still require 
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the presence and supervision of human operators (Montero 
et al. 2015).

All these factors make the reduction of human presence in these 
environments a desirable goal and, given that most of the work is 
already done by machines operated by workers (heavy machinery 
in mines and inspection equipment in tunnels), the most straight
forward solution would be their remote operation. However, tele
communications in these environments are notoriously 
challenging, making teleoperation rarely viable, as connecting 
a robot with a base station (frequently outside the tunnel 
network) involves great effort, and might not even be possible. 
The use of cables, for example, is often unfeasible, due to the 
large scale of these environments, and because the operation of 
more than one robot would likely lead to tangles. The use of 
wireless technologies is also problematic. The structure of these 
environments, usually composed of long tunnels that intersect 
with each other, makes the wave propagation unpredictable, 
due to the destructive interferences that cause the fading effect. 
This often results in reduced bandwidth and unexpected losses 
of connection, even if a line‐of‐sight is still present, as demon
strated in Rizzo et al. (2013).

The drive for automation and the limitations of teleoperation 
have spurred efforts to create autonomous systems tailored 
specifically to these environments. For example, in 2018, 
DARPA1 launched the Subterranean Challenge2 with the 
objective of encouraging the development of new technologies in 
the field of autonomous underground exploration. In this 
challenge, 20 different teams worked on new solutions 
addressing the unique challenges that subterranean scenarios 
pose to autonomous robots, with special focus on the autonomy, 
perception, networking and mobility aspects

The goal of the competition was to autonomously explore an 
unknown underground environment with a team of robots, and to 
report back to base the location of certain pre‐defined elements 
(humans, cellphones, backpacks…) with a certain level of accuracy. 
During the 3 years that the competition lasted, the teams made 
important advancements in the field of underground robotics and 
pushed it forward significantly. However, given the constraints of 
the competition, there was an over‐representation of the ap
proaches best suited to the main objective. More specifically, the 
requirement to accurately report a precise location of each of the 
artifacts made the use of geometrical mapping methods implicitly 
necessary, and, given the limited size of the competition scenarios, 
minimal emphasis was put on the efficient representation of the 
environment. All these factors have meant that, while geometrical 
methods have been thoroughly explored and refined, topological 
approaches have received little attention.

Within this context, this work aims to explore the use of 
topological approaches to address the specific challenges that 
underground environments pose to autonomous systems as 
well as to exploit their underlying structure. With this in mind, 
what we propose is a complete framework that: 

• Makes use of a purely topological, graph‐based represen
tation of the environment that, without storing any metric 
data, is capable of producing high‐level topological plans 
based on simple, human‐readable instructions.

• Has a perception approach based on a Convolutional 
Neural Network that can detect the distribution of the 

galleries around the robot by processing a 3D LiDAR scan. 
This work provides detailed information about how this 
network has been trained using a fully procedurally gen
erated synthetic dataset but can be used in real‐world en
vironments with a zero‐shot transfer.

• Is capable of navigating by following high‐level topological 
instructions (e.g. take the second exit on the left and then 
the third on the right), operating in arbitrarily large en
vironments without the need for precise self‐localization. 
This removes one of the main challenges that underground 
environments pose, and allows a human operator with 
rough knowledge of the environment layout to define a 
mission as a set of topological instructions, without pro
viding a map to the robot.

• Can build topological representations of the environment 
during navigation (topological mapping), or explicitly ex
plore acyclic environments in a fully autonomous fashion.

This proposal is a direct evolution of two of our previous works 
(Cano et al. 2022), (Cano et al. 2024b), that have been enhanced 
and extended with the following contributions: 

• The topological representation has been simplified. In our 
previous works, tunnels were considered as nodes, which 
meant that the environmental representation was more 
complex, and the topological navigation task involved more 
instructions than necessary.

• The topological navigation has been enhanced with the 
introduction of hybrid instructions, that allow the user a 
finer control over the behavior of the robot.

• The dataset generation has been completely modified, sig
nificantly increasing its quality. This, in turn, has allowed 
for the reduction of network size, and thus the computa
tional requirements.

• In this work, the CNN has been trained in fully procedural 
environments generated using our own tool (Cano 
et al. 2024a), allowing for a greater diversity in the training 
dataset. In consequence, the trained model presents a zero‐ 
shot transfer learning capability from simulation to a real‐ 
world environment.

• This work introduces the concept of prediction stability with 
regards to the outputs of the CNN, improving its reliability 
in intersections, and removing tunable parameters that 
were present in our previous works.

• Finally, this work provides an experimental evaluation of 
both the navigation and mapping approaches in a chal
lenging real‐world environment, as reported in Section 5.2, 
in which conventional navigation solutions struggle.

2 | Motivation 

It is our view that, in many real‐world use cases, topological 
approaches offer significant advantages for navigating under
ground environments over geometric ones.

The main difference between geometrical and topological ap
proaches is how the environment is represented. In geometrical 
approaches the environmental representations consist on data 
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structures that store features with an associated pose. This way, 
when the robot detects a previously mapped feature it can infer 
its own position. Within this definition, there are two main 
families of mapping methods. The first one are the occupancy 
grids, which are based on the discretization of the environment 
into a 2D or 3D grid, where each cell of the grid typically 
contains occupancy information (whether a cell is free space or 
contains an obstacle). These methods tend to be used with 
range‐based sensors (LiDARs or Depth Cameras), and their 
memory footprint tends to increase with the volume of the 
explored environment (or horizontal surface if a 2D map is 
used). On the other hand, feature maps contain a set of features, 
each with an assigned location in the environment. These fea
tures are typically extracted from images, so they are necessarily 
associated with a surface, which means that these kinds of 
representations typically increase their memory footprint lin
early with the number of surfaces of the environment that have 
been seen.

In contrast to geometrical methods, topological approaches rep
resent the environment as a graph, which, from now on, will be 
referred to as a topological map. In this map, nodes represent a 
place or position in the environment and typically contain a set of 
coordinates along with additional information, such as a point 
cloud or an image, to assist in localizing the robot with respect to 
the node. Edges represent, instead, the traversability between 
nodes, typically meaning that a node is directly reachable from 

another node. As a general rule, this type of maps tend to provide 
less accurate position estimates, as they are more sparse than 
geometrical ones but they are more lightweight and computa
tionally efficient in path planning, which becomes more relevant 
as the size of the environment increases. Additionally, topological 
maps facilitate the inclusion of semantic information and re
lationships between semantic elements, so they are proven to be 
the preferred approach in semantically‐aware navigation ap
proaches (Kostavelis and Gasteratos 2015). There are a number of 
reasons why topological maps are a good fit for underground 
environments in comparison with geometrical ones, but the es
sential one is that most human‐made underground environments 
share an underlying structure of tunnels that intersect each other 
(Figure 1), that can be directly mapped into a graph representa
tion. By interpreting the tunnels as edges and the intersections 
and dead ends as nodes, a simple yet complete topological map of 
the environment is obtained, as seen in Figure 2. This simplified 
representation has some interesting consequences: 

• Given its simplicity, it is feasible for a human operator to 
define the layout of the environment. This could prove 
valuable in emergency situations, where the time needed to 
map the environment may not be available.

• Another consequence of this representation is the signifi
cant decrease in computational complexity and memory 
footprint of the map. As mentioned before, geometrical 

FIGURE 1 | Man‐made underground environments share the same underlying structure of intersecting tunnels. a) Underground waterways in 
Argentina, b) Metro Network in Madrid c) 3D model of a mine in Cornwall, UK d) Map of a mine in Pennsylvania, US. [Color figure can be viewed at 
wileyonlinelibrary.com] 
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maps memory footprint increases with the size of the en
vironment. This is easily manageable in most indoor en
vironments, but can become an issue when reaching the 
order of tens, hundreds or even thousands of kilometers of 
tunnels. In contrast, our proposal increases in size linearly 
with the number of tunnels and intersections regardless of 
the length of the tunnels, which would be advantageous in 
large‐scale environments like mines. Additionally, this 
would reduce significantly the bandwidth requirements to 
exchange the map with the base station or among members 
of a hypothetical robot team.

• The final characteristic of our approach is that precise self‐ 
localization is no longer needed, and it is instead replaced 
with a system that detects when the robot is in a tunnel or 
intersection and can follow high‐level instructions of the 
sort “in the fifth intersection, take the tunnel to the right.” 
This can be a significant advantage over metric methods, as 
maintaining a consistent and precise enough self‐ 
localization is one of the main challenges that our target 
environments pose.

As a tradeoff of operating in such environments, our method 
is tailored to their particular characteristics and, conse
quently, cannot operate in more general environments whose 
structure cannot be recognized as a set of intersecting tunnels, 
galleries, or corridors. In this sense, the approach is not a 
general‐purpose method, but a specialized solution. Never
theless, this specialization makes it particularly useful, or 
even necessary, in parts of environments unsuited for more 
general approaches, be it because of lack of features, or 
because there is no map available to the robot, so defining a 
goal is not possible.

2.1 | Localization in Underground Environments 

One of the biggest challenges for mobile robotics in under
ground environments is reliable self‐localization (Tardioli 
et al. 2019). Self‐localization in robotics involves determining 
the robot's position by comparing detected environmental fea
tures with those in a reference map. In underground settings, 
this process is particularly challenging.

The localization process infers the robot's position based on 
detected features. When exploring new areas, the absence of pre‐ 
existing features can lead to discrepancies between the estimated 
and actual positions. In typical environments, these errors are 
corrected when the robot revisits a known location. However, in 
underground environments like tunnels, which can extend for 
kilometers, these errors accumulate, making accurate self‐ 
localization difficult and potentially unmanageable.

To illustrate this, we have tested five different SLAM 
(Simultaneous Localization And Mapping) systems on real‐ 
world data captured on the Somport Tunnel, a 7 km, feature‐ 
deprived tunnel with 19 lateral galleries (see Section 5 for 
details). This makes it especially challenging for traditional, 
geometry‐based localization methods. These methods are 
Gmapping (Grisetti et al. 2007), Hector‐SLAM (Kohlbrecher 
et al. 2011), Fast‐LOAM (Wang et al. 2020), Faster‐LIO (Bai 
et al. 2022) and Direct LiDAR Odometry (Chen et al. 2022).

In the first dataset, used for the Gmapping, Hector‐SLAM and Fast‐ 
LOAM methods, the robot starts at the end of one of the lateral 
galleries, advances to the main tunnel, and navigates to the end of 
the lateral gallery to the right. From there, it goes back to the main 
tunnel, advances to the original gallery, skips it, and enters into the 
next lateral gallery. Finally, it goes back to the main tunnel, ad
vances to the intersection between the original gallery and the 
main tunnel and stops there. The second dataset contains addi
tional IMU measurements and is used for the Faster‐LIO and 
Direct LiDAR Odometry methods. The robot starts from the main 
tunnel, advances skipping the first gallery, and enters the next two 
until reaching the end of both. Then it advances 100 m more 
through the main tunnel, before turning around and returning to 
the starting point. The results of these tests are shown in Figure 3.

In the case of Gmapping (Figure 3a). The result is the best of the 
three methods because it takes advantage of odometry readings, 
but ends up failing due to the accumulation of error, which 
causes the duplication of a lateral gallery and the creation of 
many duplicate niches on the map.

Figure 3b shows the result of using the hector‐SLAM system. 
This method relies exclusively on a LiDAR scan, and as such, is 
incapable of reliably detecting the advancement of the robot 
through the tunnel, resulting in an unusable map.

FIGURE 2 | Simplicity of our topological map. a) Layout of a real mine. b) Hand‐made topological representation of said mine where blue lines 
are the edges, red dots are the nodes associated to intersections and green dots are nodes associated with the dead‐end. [Color figure can be viewed at 
wileyonlinelibrary.com] 
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Figure 3c shows the results of using Fast‐LOAM. This method 
relies exclusively on a 3D LiDAR for localization, and, similarly 
to hector‐SLAM, fails to detect when the robot is advancing 
through the tunnel, and ends up super‐imposing all the lateral 
galleries at the same position.

The results of the Faster‐LIO simulation can be appreciated in 
Figure 3d. This method relies on IMU measurements and 3D 
LiDAR data. The IMU, as can be seen, helps significantly with 
regards to aligning the LiDAR measurements so that they are 
consistently placed. However, it also fails to detect the 
advancement of the robot through the tunnel, so the distance 
between lateral galleries, and the length of the lateral galleries 
themselves is significantly smaller than in reality.

The Direct LiDAR Odometry method is the most successful at 
accounting for the small features in the tunnel, and manages to 
detect the advancement of the robot through the tunnel. 
However, in the experiments conducted in our environment, it 
showed a tendency to “detach” from the map and oscillate 
violently back and forth when map‐to‐LiDAR matching fails.

This produces both a trajectory much larger than real, and an 
incorrect reconstruction of the environment, in which the main 
tunnel is much longer than in reality (Figure 3e).

These are problems recognized by the underground SLAM 
research community (Ebadi et al. 2022), and is still an active 
area of research, with substantial progress being made 
every year. In contrast, this work intends to explore an alter
native solution to these problems by removing the need for 
precise self‐localization and exploiting the inherently graph‐like 
structure of such underground environments.

The rest of this article is structured as follows: Section 3 pro
vides an overview of the field of underground navigation sys
tems and other topological navigation approaches, Section 4
contains a detailed explanation of our proposed method, 
Section 5 showcases the experimental evaluation that has been 
carried out, Section 6 comments on the results of the tests and 
the lessons learned, and in Section 7 we provide our conclusions 
and final thoughts.

3 | Related Work 

This work finds itself at the intersection between topological 
navigation and mapping, autonomous navigation in under
ground environments and CNN‐based perception for robotics.

As previously mentioned in this work, the tasks of self‐ 
localization and navigation in underground scenarios are 
challenging, especially in comparison to other more structured 
environments. This has motivated the robotics community to 
develop methods tailored to these types of environments, which 
generally rely on 3D LiDAR sensors, as cameras tend to perform 
poorly, due to the low‐light conditions. However, even with 
LiDAR sensors, the presence of long and featureless tunnels still 
presents a challenge, which typically requires the tuning and 
refining of established methods to work correctly (Prados Ses
mero et al. 2021; Ren et al. 2019; Yang et al. 2022; Chen 
et al. 2023)

It is generally recognized by the robotics community that rep
resenting an environment as a graph of places and connections 
can be more efficient than building a detailed, globally 

consistent geometrical map and be more resilient to error 
accumulation. Additionally, these representations allow for 
more efficient path computations, so they are commonly used 
in conjunction with geometrical SLAM approaches. In these 
hybrid systems, the robot constructs simultaneously a geomet
rical map using SLAM and a topological pose‐graph to aid in 
path‐planning, exploration or self‐localization (Dang et al. 2020; 
Duberg and Jensfelt 2022; Blochliger et al. 2018; Fredriksson 
et al. 2024; Montano‐Oliván et al. 2024; Xue et al. 2020; Placed 
et al. 2022).

These efficiencies become more pronounced in corridor‐based 
environments, as certain underground environments tend to be, 
reason why these approaches are more represented among 

FIGURE 3 | Results of geometrical mapping approaches in an en
vironment with long, feature‐deprived tunnels. The robot starts at the end 
of the central gallery, goes to the end of the right gallery, then enters 20 m 
into the left gallery, and comes back to the intersection between the 
central gallery and the main tunnel. a) Gmapping obtains the best result 
due to the use of odometry, but fails to maintain a correct localization, 
causing it to detect the lateral gallery at an incorrect location. b) Hector‐ 
SLAM fails to detect when the robot advances through the tunnels, 
resulting in large errors in map generation. c) In this run, the robot visits 
two lateral galleries, but Fast‐LOAM also fails to detect when the robot 
advances through the tunnel, and ends up superimposing the two inter
sections. d) Faster‐LIO fails to detect the advancement trough the corri
dors, making the main tunnel appear much shorter than in reality. It also 
has trouble with the estimation of the heading in the return, causing de‐ 
alignment. e) The Direct LiDAR Odometry method detects the advance
ment through the tunnel, however a combination of vibrations on the 
IMU and a detachment from the generated map cause the method to over‐ 
estimate the advancement trough the tunnel. [Color figure can be viewed 
at wileyonlinelibrary.com] 
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underground robotics applications. Another interesting prop
erty of the topological representation of environments is the 
flexibility that the graph structure provides, as nodes can con
tain any arbitrary type of information (geometric position, 
images, point clouds, neural embeddings, semantical labels, 
etc.) and edges can represent different relationships between 
nodes (distance, reachability, traversal time, distance, semantic 
relationship, etc.). This flexibility is especially useful in the case 
of hierarchical semantic graphs, where, starting from a 
semantically‐labeled occupational map, different clusters of 
semantically‐related nodes are grouped (Hughes et al. 2022).

An interesting approach to topological maps is presented in 
Chaplot et al. (2020), where nodes contain images and edges 
communicate traversability, but no explicit geometric infor
mation is stored, as the authors propose the use of a Neural 
Network to directly obtain the velocity commands to go from 
the current position to a certain node. In a similar way, the 
authors in Li et al. (2023) also store image data in each of the 
nodes to help with place recognition, although they rely on 
more classical image descriptors to determine similarity.

A more extended approach is the use of hybrid, topo‐metric 
methods (Blanco et al. 2008; Muravyev et al. 2025; Bosse 
et al. 2003), where nodes are considered local coordinate frames 
with a local map associated. This way, the robot can self‐localize 
only w.r.t the local map improving the resilience against noisy 
estimations. However, they do not explicitly deal with feature 
poor environments, as they still require a geometrical pose es
timation, whereas our proposal, by not depending on any type 
of geometrical pose estimation is not affected.

One of the first works exploring a mainly topological repre
sentation of an underground mine can be found in Morris et al. 
(2005), where the authors followed a similar representation as 
the one we propose (an acyclic graph with corridors as edges 
and dead‐ends and intersections and nodes). However this 
approach uses a geometrical approach for node detection that 
could become unreliable in presence of obstacles. Other authors 
defend that, in the case of robotic operations in underground 
mines, centimeter‐level accuracy is unnecessary, and that the 
focus must be put on safely traversing the tunnels and correctly 
exiting the intersections (Tampier et al. 2021; Mascaró 
et al. 2021). For these reasons, the authors propose the use of a 
two‐tiered level topological map that, on one level, contains the 
overall topological structure of the entire environment, while 
each of the intersection nodes also contain a sub‐graph that aids 
in executing the complex maneuvers that are needed when 
operating a large haul‐dumping vehicle through narrow tun
nels. These works serve as the foundation upon which our 
earlier research (Cano et al. 2022) was constructed, which in 
turn forms the basis for this current proposal.

One of the main benefits that comes from a lightweight repre
sentation of the environment is that sharing said map can be 
done in a much faster fashion (Cowley et al. 2011; Chang 
et al. 2007). This is especially relevant for underground sce
narios, where the communication between robot team members 
is one of the central challenges (Tardioli et al. 2016). For this 
reason, topological maps are being explored as a way of com
municating essential information about the structure of 
the environment among teams of robots without having to 
share the complete geometrical map. This becomes more 

advantageous if the robots operate in low‐bandwidth environ
ments, as is often the case in underground environments (Bayer 
and Faigl 2021).

Similar to our approach, the authors in Worley and Anderson 
(2025) use the inherently graph‐like structure of pipe networks to 
bypass the challenges they pose to self localization. By enforcing 
certain assumptions (the robot only turns in intersections, and 
only advances in pipes) over the possible evolution of the robot 
state, they manage to use the Viterbi algorithm to discriminate 
between multiple hypotheses of the robot trajectory.

Given the robustness that topological approaches provide against 
localization errors, they have also been used in sensing‐denied en
vironments, as is the case in underwater robotics. In Rossi et al. 
(2023), the authors used a pre‐built topological map to successfully 
navigate a flooded mine environment. They exploit the flexibility 
that graph representations provide to store relevant sonar data in 
each of the nodes of the map, which allows the robot to localize 
without the need of a precise geometric map, which is notoriously 
difficult to build with the use of sonar sensors (Ribas et al. 2006). Or 
in the case of (Morlana et al. 2024), they make use of topological 
mapping methods to deal with the severe uncertainty that visual 
mapping inside organic tissue imposes.

Additionally, the topological understanding of underground 
environments has been demonstrated to be useful for more than 
mapping and navigation, as is the case in Saroya et al. (2020), 
where the authors exploit the inherently topological nature of 
subterranean scenarios to predict how the graph structure is 
going to evolve, and therefore optimize the exploration task 
based on these predictions.

Another side of this proposal that has been previously explored is 
the use of Convolutional Neural Networks or other deep learning 
approaches as a perception system. In the case of (Mansouri 
et al. 2020, 2018), the authors explore the use of a CNN to process 
images from a front‐facing camera mounted onboard a drone. The 
CNN then predicts from the images the relative yaw of the robot 
with respect to the axis of the tunnel, allowing the drone to stay 
aligned with the tunnel, and navigate it safely without the need for 
a precise pose estimation. A similar approach was followed by a 
previous work of ours, (Cano et al. 2023), in which the CNN pro
cessed LiDAR‐based depth images to predict the necessary bearing 
of the robot so that it could safely and rapidly traverse tunnels while 
staying centered and avoiding obstacles.

An important part of our perception system is detecting certain 
features in the environment (corridors, intersections and dead‐ 
ends) that are assumed to be there. This is in the vein of, but 
more general than (Romeo and Montano 2006), where the au
thors use Principal Component Analysis to classify 2D laser 
readings as a priori features (T‐intersections, dead‐ends, corri
dors, left/right turns etc.) to aid in the self‐localization task.

4 | Approach 

As mentioned earlier, our proposed method interprets the en
vironment as a graph, where tunnels serve as edges connecting 
intersections and dead ends, which act as nodes. This approach 
is substantially different from geometrical approaches, so it has 
been necessary to rethink the typical mobile robotics stack 
(perception, navigation and mapping layers).
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In this section, we describe in detail how the topological map is 
implemented and how it is used to generate navigation plans 
based on topological instructions (Section 4.1). We also describe 
how the perception layer (Section 4.2) has been implemented 
with the use of a Convolutional Neural Network (CNN), which 
processes the point cloud data from a 3D LiDAR and provides 
an estimation of the distribution of the galleries around the 
robot. Thanks to this perception stack, it is possible to use a 
navigation approach based on the sequential execution of high‐ 
level topological instructions of the type "take the left exit on the 
third intersection" (Section 4.3).

4.1 | Topological Map and Path Planning 

The field of topological mapping in robotics has yielded many 
different approaches to the problem. As mentioned earlier, as a 
general rule, in these maps the nodes contain both a geometric 
pose, and some information that allows the robot to self‐localize 
(usually images or point clouds), so they are typically referred to 
as topo‐metric maps.

4.1.1 | Data Structure 

Instead, we aim to obtain a pure topological representation of 
the environment, which means that the only information that a 
node contains is to which other nodes it is connected by an edge 
of the graph and their relative angular order.

Figure 4 shows a topological map that contains seven nodes and its 
corresponding data structure. As mentioned, it consists, for each 
node, on a circular list of its neighbors ordered in a counterclockwise 
manner. By having the neighbors of each node ordered it is possible 
to look at their respective positions (index on the neighbor list) and 
know which edge should be chosen to go from one to another. This 
structure allows us to create topological plans without the need to 
store any explicit geometrical information, only the angular order
ing of neighbor nodes.

4.1.2 | Topological Path Planning 

Traditional path‐planning methods usually produce a 
(dynamic) plan consisting on a sequence of geometrical posi
tions that gradually take the robot from its initial position to a 
target position. In our case, this approach is not feasible, as we 
do not store geometric information in the topological map.

In our approach, instead of an origin pose and a target pose, we 
have an origin node or edge and a target node, and the topo
logical plan consists of a sequence of high‐level topological 
instructions of the type “take the first exit clockwise in the next 
intersection.” One characteristic of these instructions is that 

they are only relevant when entering an intersection, which 
allows us to make an important assumption: As our robot can 
only advance forward, every time it enters a node, it will have 
the guarantee that there is at least an exit at its back (from 
where it entered) and as such, this is taken as the reference 
point for the topological instructions, and will be henceforth 
referred to as the rear exit.

In a more specific fashion, these instructions take the form of a 
simple integer number that can be either positive, negative or 0. 
The value of 0 is the one corresponding to the rear exit, a 
positive value N , refers to the Nth counterclockwise exit and a 
negative value N refers to the Nth clockwise exit.

4.1.3 | Obtaining a Plan 

The process of obtaining this plan is divided into two steps. The 
first step consists in obtaining the sequence of nodes that need 
to be traversed to go from the initial node to the objective node. 
To do this, Dijkstra's algorithm is used (Dijkstra 1959). It is 
important to note that, as we aim for a purely topological 
method, no metric information is contained in the map, and as 
such all edges are set to have the same weight. This means that 
Dijkstra's algorithm will always provide the sequence with the 
least number of nodes possible, even if it is not the shortest in 
terms of real‐world metric distance or time of travel. However, 
this information could easily be added to the map (e.g., for 
visualization purposes, or to estimate faster paths) without loss 
of generality for the rest of the algorithm.

The second step is to take the sequence of nodes and transform 
it into a set of high‐level topological instructions, a process that 
is better illustrated with an example.

Consider again Figure 4. In this example, we want to obtain the 
topological path that corresponds to the set of exits the robot 
must take to go from node C to node G which will be repre
sented by a set of integer numbers. By applying Dijkstra's 
algorithm to the map, the sequence of nodes that is returned is 
C B D G[ , , , ]. Thanks to the enforced ordering of the node con

nections, this sequence can be mapped to topological instruc
tions using the data on the right of the figure that represent the 
nodes reachable from a given node ordered in a counter
clockwise manner as explained before.

This path must traverse two intersections (nodes B and D). In 
the case of B, it is known that the robot is coming from C (the 
previous node) and heading to D (the next node). By looking at 
their position in the neighbor array of B, we obtain that C has 
an index of 1 and D has an index of 2. From this information, 
we can obtain the corresponding instruction by subtracting the 
index of the previous node (C) to the index of the next node (D), 
obtaining 2 1 = +1. If we repeat this same reasoning with the 
intersection node D, we will see that the previous node (B) has 
an index of 1, and the next node (G) has an index of 4, so the 
instruction would be 4 1 = +3. This would result in the path 
[+1, +3], which would translate to: at the next intersection take 
the first exit counter‐clockwise and at the intersection after that, 
take the third counterclockwise exit.

As an extra note, it is clear that two different numbers can 
result in the same behavior, as there is an equivalent counter
clockwise value for each clockwise one, and vice versa. For 
example, the previous plan [+1, +3] is equivalent to [ 2, 1].

FIGURE 4 | Data Structure of our Topological map. On the left, the 
graphical representation where the Black lines represent the walls of 
the environment, the red dots are the nodes and the blue lines are the 
edges. On the right there is the actual data structure used in our 
implementation. [Color figure can be viewed at wileyonlinelibrary.com] 
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4.2 | Perception 

The previous section details how the topological plan is gen
erated from the topological map. However, to be able to follow 
it, a robot needs to have a topological understanding of its 
surroundings. To be more specific, it is necessary to know 
whether the robot is in an intersection or in a tunnel, and how 
the galleries are distributed around the robot.

To accomplish this task we make use of the concept of exits. In 
our method, an exit is defined as the direction in which a tunnel 
advances. For example, when the robot is at a dead‐end, only one 
exit is present (Figure 5a). When the robot is in the middle of a 
tunnel, two exits are present (in opposite directions, Figure 5b). 
Finally, when the robot is at an intersection, there are as many 
exits as tunnels that meet at said intersection (Figure 5c).

By detecting these exits we address the two requirements: by 
counting the number of exits present around the robot, we 
know if it is in an intersection (more than 2 exits), tunnel (two 
exits) or the dead‐end (one exit), and thus, whether it is in a 
node or an edge.

4.2.1 | Exit Detection 

To solve this exit‐detection problem we have made use of a 2D 
CNN. The use of a Deep Learning solution, instead of one based 
in a geometrical analysis (eg. Voronoi Diagrams), was moti
vated by the difficulty to account for all possible variations in 
local geometry that do not affect the topological structure, such 
as, for example, the different shapes (square, circular, horse‐ 
shoe, arch, etc.), varying radii and cross‐section, different 
roughness (from smooth concrete walls to rough bare‐rock 
walls), or the presence of small obstacles, people or vehicles. 
The main reason to use a 2D CNN architecture over others (like 
3D CNN (Ji et al. 2012) or PointNets (Qi et al. 2017)), was the 
goal of reducing the computational cost to a minimum.

The detection pipeline is divided into four processes: First, we 
transform a 3D LiDAR point cloud into a depth image. Then, 
this image is fed into the CNN, that outputs a vector of 360 
numbers with values ranging from 0.0 to 1.0. In this vector, the 
galleries appear as peaks, so the next step is to process it to 
extract the angle at which the galleries are being detected, and 
the strength of the detection. The final step is to track how these 
exits behave over time as the robot moves and rotates, and the 
exits appear and disappear when the robot transitions from 
edges to nodes (or vice versa).

As previously mentioned, the first step is the transformation of 
the point cloud obtained from the 3D LiDAR (Figure 6b) into a 
depth image (Figure 6c). This begins by discarding all points 
that are further away than 50 m, maintaining only the points 
with the most useful information. Secondly, a blank image 
(filled with zeros) 16 px high (the number of beams of 
the LiDAR) and 720 px wide is created. Then, for each point in 
the cloud, we obtain the corresponding position in the image 
(according to its spherical coordinates), and assign the distance 
of that point as the value of the pixel. Finally, the image is 
divided by the max range of the LiDAR (50 m in our case, 
because of the cutoff) to normalize it in [0, 1].
This image is then fed into the CNN, whose architecture is 
displayed in Figure 7. This model is inspired on the VGG‐16 
architecture (Simonyan and Zisserman 2014), having multiple 
Convolutions + ReLU between the Pooling layers, but has some 
differences.

Specifically, our last‐layer activation is a ReLU layer, instead of 
the more commonly used Sigmoid, and the kernel depth is kept 
relatively low, reaching only 32 channels, while VGG‐16 
reaches 512. The use of ReLU activation instead of Sigmoid 
for the last layer was decided based on empirical results, as it 
resulted in a significant reduction of the loss during training. 
The number of channels was also reduced so that the resulting 
network was lightweight enough to run at high frequencies in 
compute‐constrained platforms. More details on how this net
work has been trained can be found in Section 4.2.2.

The output of the network (Figure 6d) is an array of 360 
numbers in the range [0, 1], where the position of each element 
corresponds to an angle around the robot in the z axis. As can 
be seen in the figure, this vector presents peaks; each of them 
corresponds to one exit.

The last step of the detection is the extraction of the angular 
position of the exits from the output of the CNN (Figure 6e). For 
this, we use two simple heuristics: 1) First, we extract all the 
local maxima in the vector and 2) we only keep the values that 
are over a certain threshold. This way, we ensure that only 
high‐confidence detections are used in the following processes.

4.2.2 | Training Dataset 

Given the specific nature of our approach, no previous datasets 
were available to train the CNN, so it was necessary to create a 
custom one.

Due to the close sim‐to‐real gap that LiDAR sensors have, it was 
decided to create a fully synthetic dataset using procedural 
environments that where generated using a tool that we pre
sented in Cano et al. (2024a). This tool allows tuning many of 
the generation parameters, like the number of tunnels and 
intersections, diameters and curvatures of tunnels and rough
ness of the tunnels' walls. This way, by using different combi
nations of these parameters, a varied set of environments where 
obtained, such that they contain the overall variability that real‐ 
world underground scenarios present (Figure 8).

For each individual training sample, the process is the follow
ing: 1) Since the axis of the tunnels in the environment are 
known (they are provided by the procedural generation tool, 
Figure 9a), the robot is placed in a random position on any of 
the axis (Figure 9b,c), 2) A random pose transformation is 

FIGURE 5 | What is an exit. The black lines are the walls of the 
environment, the red square is the robot and the blue lines indicate the 
exits present around the robot in each situation. a) Exits detected in a 
dead‐end. b) Exits detected in a gallery. c) Exits detected in an inter
section. [Color figure can be viewed at wileyonlinelibrary.com] 
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applied to the robot, adding rotations and displacements that 
ensure the robot stays within the tunnel (Figure 9d), 3) A 
LiDAR scan is captured for this position (Figure 9e) and the 
corresponding depth image is obtained (Figure 9g), and finally, 
4) The axis points that are at a specific distance from the robot 
(5 m has shown to be a value that generalizes well to smaller 
and larger tunnels) are selected (Figure 9f) These axis points are 
the ones used to create the label of this training sample. By 
calculating their relative position to the robot, we can obtain 
their respective heading w.r.t. the robot. These headings are the 

ideal output of our complete perception pipeline, but they need 
to be transformed into a format that can be produced by a CNN, 
meaning the 360‐element array that will be the label for train
ing. To do this, we start from a zeros‐only vector and place 
gaussian‐shaped “peaks” centered in each of the angles that 
correspond to the headings (Figure 9h).

For the training dataset, 50 different environments were gen
erated, and 10,000 data points were captured for each of them, 
for a total of 500,000 data points.

The network is trained with this dataset, using the Adam op
timizer (Kingma 2014), with a starting Learning Rate of 
4 × 10 5, a Learning Rate decay of 0.999 between epochs and 
the Mean Square Error cost function. It was trained for 512 
epochs, with a batch size of 64.

4.2.3 | Exit Tracking and Stability 

At this point, the perception pipeline provides only a series of 
values whose peaks indicate the presence of an exit. However, 
this information is not refined enough to navigate so it needs 
further processing.

One of the problems of using the raw angles is that, as the robot 
moves and rotates, the same exit will be detected at different 
angles, so it is necessary to track this change over time for all of 
the detected exits. Additionally, as the robot enters and leaves 
the nodes, some exits will appear while others will disappear.

To take this into account, we discriminate between detected and 
tracked exits. Detected exits are the output of the neural networks, 
and consist of an angle and a magnitude, while tracked exits are the 
result of the continuous processing of the detected exits, and consist 
of a unique ID, an angle and a confidence score.

For each prediction of the CNN, a new set of detected exits must 
be processed with the objective of: 1) updating the angles of the 
tracked exits, 2) checking if one of the tracked exits is no longer 
being detected and 3) checking if there is a new exit that needs 
to start being tracked.

FIGURE 6 | Perception pipeline. a) Robot and Environment. b) Point cloud from the VLP‐16. c) Rasterization of the point cloud into a depth‐ 
image. d) Raw output of the CNN. e) Detected galleries after analyzing the CNN's output. [Color figure can be viewed at wileyonlinelibrary.com] 

FIGURE 7 | Architecture of our Convolutional Neural Network. 
[Color figure can be viewed at wileyonlinelibrary.com] 

FIGURE 8 | Some of the environments used to train our CNN. 
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FIGURE 9 | Collection of a synthetic training sample. a) Procedural environment (black) and tunnel axis (blue). b) Selected axis point (black 
sphere). c) Robot aligned with tunnel (red, green and blue are the robot's x,y and z axis respectively). d) Transformation applied to the robot. e) 
Captured LiDAR point cloud (red dots). f) Axis points used to generate the label (red spheres). g) Training Image. h) Training Label. [Color figure can 
be viewed at wileyonlinelibrary.com] 
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To update the angles of the tracked exits, we first start by cal
culating the angular distances between each of the detected 
exits to each of the tracked exits, obtaining a triangular matrix 
where each row corresponds to a detected exit, each column to 
a tracked exit and each cell contains the angular distance 
between the corresponding tracked and angular distances. To 
consider that a specific detected exit is the same as a specific 
tracked exit, the angular distance between them must be the 
minimum in both its row and column. This ensures that a 
detected exit can only be associated to one tracked exit, and 
vice‐versa. Additionally, this distance must be smaller than a 
certain threshold, that is established depending on the robot's 
maximum angular speed and the frequency of the predictions. 
Once a detected exit is associated with a tracked exit, the angle 
of the tracked exit is updated to that of the latest detection.

After this step there are two possible scenarios. The first one is 
that each of the detected exits has been associated to one of the 
tracked exits. If this is the case, the tracking is finished. In 
the second scenario, two possibilities exist: either some detected 
exits have not been associated with a tracked exit and/or some 
of the tracked exits have not been associated with a detected 
exit. These two possibilities translate to either a tracked exit that 
is no longer being detected, or a new exit that is not being 
tracked yet. To deal with the possibility of spurious detections, 
the creation and deletion of tracked exits is handled with a 
simple hysteresis method in which the important criterion is 
the number of consecutive observations or, equivalently, the 
time elapsed since an exit is detected for the first/last time.

Each tracked gallery has a confidence value ( ) that can be in 
the interval [0, ]max . When a detected exit is not associated 
with a tracked exit, a new tracked exit is created, with: 1) a 
unique ID, 2) the same angle as the detected exit and 3) a 
confidence score of = ,d d being the magnitude of the exit 
(the height of the peak in the CNN's output). After being cre
ated, every time a detected gallery is associated with it, its 
confidence is increased by the height of the detected gallery 

= min( , + )max d . However, if it is not, the confidence is 
decreased: = max(0, ),s s being a parameter that defines 
the rate at which the confidence decreases. If the the confidence 
reaches a certain threshold ( > t , it is considered reliable, 
however if it reaches 0 ( = 0), it is deleted. To ensure a 
behavior equivalent to hysteresis, the confidence should grow 
slower than it decreases, meaning >s d, and because 
E( ) ~ 0.8d , we have chosen the value = 1s . Regarding max
and t , their values have been set to 5 and 3 respectively, as they 
have shown to provide reliable results in our configuration.

4.2.4 | Dealing with Instability 

Even with the introduction of the tracking system, there are 
periods of substantial instability (especially in realistic en
vironments), when the output of the neural network presents 
significant inconsistencies between consecutive predictions. 
This occurs during the transitions between galleries and inter
sections, and vice versa. This can cause the quick creation and 
deletion of tracked galleries, making the decision process less 
reliable. In our previous work, this issue was addressed by 
starting an “instability timer” when a new tracked exit was 
created or removed which was used to wait for the output of the 
network to stabilize. However, this timer was a parameter that 

had to be adjusted from one environment to another, and was 
prone to failures if intersections or galleries of different 
dimensions where present in the same environment. For this 
reason in this work we introduce the concept of prediction 
stability.

To determine whether a CNN output qualifies as stable, we 
initially examined the attributes of predictions during both 
stable and unstable periods. One clear characteristic of stable 
periods is that subsequent predictions look very similar, 
meaning that they present the same number of peaks in close‐ 
by positions. From this observation, we can define two condi
tions for a prediction to be stable: 1) Every tracked exit has a 
high‐enough confidence level, 2) every detected exit is associ
ated to a tracked exit. Also, when the robot enters an inter
section, it tends to detect the new exits closer to already tracked 
exits, making their respective “bulbs” overlap, creating a valley 
between them. From this observation, we derive a third con
dition: 3) there are no local minima in the output. Finally, 
transitional phases often manifest minor peaks in the output 
that fall below the threshold for detection, leading to our final 
criterion: 4) there are as many local maxima in the output of the 
CNN as tracked exits.

If all these conditions are met, it means that there are well 
defined peaks in the output of the network, and that all present 
exits are tracked and reliable. Figure 10 shows how the exit 
tracking and prediction stability behave in the context of en
tering and exiting an intersection. In Figure 10a, the robot is 
beginning to detect the lateral gallery, so a small peak appears 
in the left side. This is a local maxima, but too small to be 
considered a detection, so it is considered unstable. As the robot 
fully enters the intersection (Figure 10b), the small peak grows 
and becomes a detection, and after being detected enough times 
(its confidence reaches 3, as explained before), it also becomes a 
reliably‐tracked gallery, so the situation is considered stable. 
Then, the robot begins to exit the intersection through the lat
eral gallery. As it does so, the exits 1 and 2 start to decrease in 
size, and a new exit with ID = 4 is tracked. However, the part of 
the network output corresponding to the back of the robot 
presents local maxima and local minima that make the pre
diction unstable (see in Figure 10c the network output in polar 
coordinates).

From this point onward, every time we refer to an exit, we will 
be referring exclusively to the tracked exits, which are the 
actual output of the perception pipeline.

4.3 | Navigation 

This section will showcase how the information that the robot 
has access to about its environment (odometry and tracked 
exits) is used to execute a sequential set of high‐level navigation 
tasks. Each task has some requirements on the initial condi
tions, and will provide information about the successful com
pletion or failure. We differentiate between two types of tasks: 
purely topological and hybrid tasks, due to the fact that limiting 
the navigation to purely topological commands would preclude 
some intuitive interactions with the robot.

The purely topological tasks are executed without using any 
extra information outside the perception system outlined in 
Section 4.2. They are the following: 
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• take <N>: This instruction works as described in 
Section 4.1, where N is the Nth exit to take. If N > 0, it 
means to take the Nth counterclockwise exit, if N < 0 it 
means to take the Nth exit clockwise, and if N = 0, it means 
to take the rear exit. If the instruction is received while in 
an intersection, it will take the specified exit and indicate a 
success. On the other hand, if this instruction is received 
while the robot is in a gallery or a dead‐end, it will advance 
until an intersection is found and, once there, if the node is 
an intersection it will take the specified exit.

• advance_to_node: If in a gallery or a dead‐end, the robot 
will advance through the tunnel following the exit closest to its 
front until either an intersection or a dead‐end is encountered.

• turn_around: The robot must be in a gallery (otherwise 
it will report a failure). Then, it will turn until it faces the 
exit originally closest to its back and report a success.

The hybrid tasks cannot be considered purely topological, as 
they make use of additional information like wheel odometry, 
time passed or angular values instead of angular ordering. 
However, they allow extra functionalities and more options for 
the user to interact with the robot: 

• take <leftrightfrontback>: This instruction 
behaves similarly to the "take [N]" one, but including 
the angles of the exits into the decision process. Each of the 
four directions is associated with an arch of 90 , centered in 
said direction. For example, if the robot is in an intersection 

FIGURE 10 | Instability stages when entering and exiting an intersection. Images on the left are the situation of the robot, images on the middle 
show the point cloud of the 3D LiDAR. The images on the right show: the network prediction in blue, the raw local maxima as a black line, the 
detected exits as a blue dot, the tracked exits as a red dot with a number (the ID) and the stability as the background color (red is instable and green is 
stable). The presented situations are: a) The robot enters the intersection, and the prediction is unstable. b) The robot fully enters the intersection, 
causing the prediction to become stable. c) The robot starts leaving the intersection, and the prediction becomes unstable again. [Color figure can be 
viewed at wileyonlinelibrary.com] 
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and receives the instruction take [right] it will check 
if there is an exit within the 90 arch centered in 270 . If that 
is the case, it will take said exit; however, if no exit is 
detected to the right of the robot, it will report a failure.

• advance_met <M>: The robot must be in a gallery or dead‐ 
end (if it is in an intersection it will report a failure), and will 
advance M meters (according to the odometry), unless it 
reaches a node, in which case it will stop and report a success.

• advance_sec <S>: This instruction behaves exactly 
like the previous one, except in this case the robot will 
advance S seconds.

The reporting of success or failure is used to address the mis
match between user expectations and reality. For example, in a 
hypothetical rescue operation inside a mine, the operator may 
have indicated a path that is no longer available because a 
gallery is now blocked. In this situation, the robot could have 
received a take <N> instruction, but instead of reaching the 
intersection, it finds the blocked gallery. If this was the case, it is 
important for the robot not to continue with the following 
instructions, as they would lose their intended meaning.

4.3.1 | Obstacle Avoidance 

During the execution of the previously detailed instructions, the 
robot is always advancing towards an exit and, as explained in 
Section 4.2.2, this means that the robot stays centered in the 
tunnel. This is true even if there is an obstacle in the middle of 
the tunnel, so it is necessary to add an avoidance system that 
prevents any collision with such obstacles.

Given that the navigation target is an angle w.r.t the robot, there 
is the need to use an obstacle avoidance system that can take 
this information, combine it with the information from the 
LiDAR, and output a new direction that, while avoiding the 
obstacle, keeps the robot advancing towards the objective.

We developed a specific solution (presented and validated in Cano 
et al. (2022)), which involves assigning a value to each of the 360 
angles around the robot and choosing the angle of highest value. 
This means that the value of each angle should be the highest if it 
points in the desired direction and is free of obstacles, and lower if it 
points in a different direction or towards an obstacle.

Each of these values are obtained by multiplying two weights, 
one derived from the desired angle of advancement 
(advancement weight), and the other one derived from the 
horizontal LiDAR scan (obstacle weight).

To derive the directional weight of any angle ( ) for given a 
specific angle of advancement ( ) the following formula is used:

W = 1 [( + 180) mod 360] 180 180 (1) 

This results in a linear decrease of W from 1 at the desired 
angle of advancement to 0 in the opposite direction, as can be 
seen in Figure 11d.

The process of obtaining the obstacle weights can be divided 
into two steps. In the first step, we discretize the angles around 
the robot into 360 sections, assigning the corresponding closest 
obstacle distance as the initial value of each angular sector. 
The second step is to cap all the values larger than a certain 
threshold. In our case this is 5 m, as the maximum speed of our 

robot is 1 m s 1, so that gives a time horizon of 5 s. Finally, the 
remaining values are inflated so that every obstacle appears 
wider than it is, depending on the desired safety distance, 
obtaining thus the obstacle weight of each angle (Figure 11e).

Then the two sets of weights are multiplied, obtaining the final 
values. These are then used to select the angle that contains the 
largest value. This angle is referred to as the corrected angle ( ), and 
it is the direction the robot should advance towards so that it avoids 
any obstacles (Figure 11f). The linear and angular velocities 
required to advance in this direction are calculated as follows:

A= max( × , ) ×max (2) 

v v= max( *( ) , 0)max max max (3) 

This results in the following behavior: A proportional controller 
for the angular speed with a cutoff maximum angular speed and 
a linear speed inversely proportional to the angular speed that 
drops to 0 if the angular speed is high. With this approach, if the 
corrected angle is large enough, the linear velocity is 0, allowing 
the robot to rotate in place, while if the corrected angle is 0, 
meaning the robot is perfectly aligned with it, the linear velocity 
is the maximum possible.

This behavior ensures that when the robot enters an intersec
tion and needs to take an exit at a considerable angular dis
tance, the robot will rotate in place, maintaining stable 
predictions from the network, and ensuring that the robot will 
stay in the intersection until it is aligned with the desired exit.

4.4 | Mapping and Exploration 

The final component of our proposal is the mapping frame
work. The goal is to enable the robot to build a topological map 
of the environment as it navigates through it.

FIGURE 11 | Proposed method for obstacle avoidance. a) Situation of 
the robot. b) Point Cloud captured by the LiDAR. c) Laser Scan extracted 
from the point cloud. d) Desired direction (red line) and directional weights 
(green dots). e) Scan in red and obstacle weights in purple. f) Combination of 
directional weights (green) and obstacle weights (purple) into the final 
weights (orange). The corrected angle (blue line) is different from the initial 
angle (red line), in a way that the robot avoids the obstacle. [Color figure can 
be viewed at wileyonlinelibrary.com] 
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At its core, every mapping approach revolves around a simple 
principle: Relate the robot's observations to specific elements in 
the map, use this relationship to determine the robot's current 
location within the map, and update the map with new relevant 
information as the robot explores the environment.

In our approach, the perception system provides the angular dis
tribution of detected exits around the robot, while the map is rep
resented as a graph where edges correspond to galleries, and nodes 
represent either intersections or dead‐ends. This means that the 
relationship between the observations and the topological map is 
that each detected exit corresponds to a unique edge in the graph. 
Consequently, the most critical task of our mapping approach is to 
maintain this correspondence, ensuring that each detected exit is 
accurately associated with the correct node in the map.

During mapping, we consider two types of nodes. The first one 
is the visited nodes, whose number of connections is known. 
The second type of node are the unvisited nodes, which are 
nodes that are known to exist, but have not yet been visited, and 
thus, whose number of exits is unknown.

The mapping process starts with an initialization step that varies 
depending on whether the mapping starts in a node or an edge. If 
the robot starts in an edge (meaning that only two exits are being 
detected, namely back and front exits), two unvisited nodes are 
added to the map and connected by an edge. Otherwise, if the 
robot starts in a node (either dead‐end or intersection), a visited 
node and as many unvisited nodes as exits are added to the map, 
with edges that connect each unvisited node to the visited node. 
This initialization step is shown in Figure 12, where three possible 
initial situations are illustrated.

After this initialization step, the initial map contains unvisited 
and/or visited nodes, and the relationship between the observed 
exits and nodes has been established. With this information, the 
mapping system can start. It has been implemented as a simple 
state machine formalized in a binary Petri net shown in Figure 13. 
The main motivation behind the implementation of the mapping 
system as a state machine was the need to account for the in
stabilities in the network prediction when moving between nodes 
and edges (as explained in Section 4.2.3). Both the fluctuations 
that the prediction has at node‐gallery boundaries, and the risk of 
spurious detections made it necessary to have an unstable state 

where these detections can be ignored until a fully stable state is 
reached.

The analysis of this Petri net shows that it is safe (1‐bounded), 
and conservative with an invariant total of one token. Struc
turally, it is a state machine (each transition has exactly one 
input and one output place). Its reachability graph is strongly 
connected, so markings can be revisited. The net is live (no 
transition can become permanently disabled) and, therefore, it 
is deadlock‐free from a structural point of view.

Since transitions have associated guards, the overall system 
correctness also depends on these guard conditions. The tran
sition inputs are mutually exclusive CNN outputs: stable (s) and 
unstable ( s¬ ) detection, and the number of detected galleries 
n = 2 and n 2. Since navigation will eventually produce a 
change from stable to unstable CNN output, or vice versa, each 
state will in due time trigger its output transition. (During ini
tialization, the robot can be manually driven to a stable place if 
not initially at one.)

The inner workings of each state are as follows: 
1. Stable Gallery State (Gallery in Figure 13): The robot is in 

a gallery, far enough from any node that the output of the 
CNN is stable. In this state, there are only two detected 
exits and the main task of the mapping system is to track 
to which node the robot is heading to. Given that the robot 
can only move forward, this node (the target node) is the 
one associated with the exit closest to the front. When 
there is a change in the number of exits, the mapping 
system transitions to the Unstable state.

2. Stable Node State (Node): When the robot fully enters an 
intersection or reaches a dead‐end, the prediction 
becomes stable again, with a number of exits n 2. If this 
is a previously unvisited node, we mark it as visited, and 
add new edges to unvisited nodes for each exit other than 
the one we are arriving from. The relative ordering of exits 
is preserved, as this is the only information required for 
navigation (Section 4.1).

3. Node‐Gallery Boundary Unstable State (Unstable): When 
entering or leaving a node, there is a period of instability 
of CNN output in which some exits can briefly appear or 

FIGURE 12 | Three possible initializations depending on the starting situation. From left to right, starting in a dead‐end, starting in the middle of 
a gallery or starting in an intersection. The upper figures illustrate the situation of the robot as well as the exits around it. The bottom figures illustrate 
the initial maps, with red nodes being visited and blue ones being unvisited. To the left of each bottom figure there is the correspondence between 
exits and nodes, and to the right, the data that the map contains, as in Figure 4. [Color figure can be viewed at wileyonlinelibrary.com] 
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disappear. We filter out these periods to avoid spurious 
updates on the map. When entering/exiting a node, we 
always know the gallery we are coming from/leaving 
through, located at the back/front of the robot, respec
tively. During this state, the only task of the mapping 
system is to keep track of this exit. This state lasts as long 
as the exit prediction is unstable. Once our filtering deems 
the CNN output as stable, we know whether we are en
tering a gallery or a node by the number of exits being 
reported. If the latter, we know the identity of the con
necting exit in the former and current node. This infor
mation is used to update newly visited nodes as explained 
in the Node state.

4. Start‐up (Initialization): On startup, as explained, the 
map initialization depends on being located at a gallery or 
node. The Unstable state already discriminates for this 
initial condition, so we can simply reuse it.

As can be seen, the only information that our proposed mapping 
approach requires is the tracked exits and the level of stability of the 
network's prediction. This makes it possible to generate the topo
logical map even if the robot is navigating with a non‐topological 
system, or is being operated by a user. Note that, given its purely 
topological nature, this mapping proposal is not yet capable of loop 
closure. For loop closure to work, it would be necessary to store 
some extra information about the nodes, like their position or some 
distinguishable feature. Future work will explore the possibility of 

performing loop closures without having to rely on accurate pose 
estimation. As a final comment on this, it is important to note that, 
even if the mapping system cannot create a map with loops, the 
path‐planning and navigation systems can use them without any 
adjustments.

4.5 | Topological Exploration 

The final module in our proposal is an autonomous exploration 
method built on top of our mapping system. As mentioned in 
the previous section, our mapping approach differentiates 
between nodes that have been visited and nodes that have not. 
This explicit difference makes it trivial to state the goal for the 
exploration system: Navigate to every unvisited node, until 
there are only visited nodes in the map.

To accomplish this task, the exploration system acts as a “direc
tor,” that indicates to the navigation system where to go. More 
specifically, it keeps track of all the unvisited nodes using a LIFO 
stack data structure. This way, every time the robot arrives at an 
unvisited node and sets its state to visited, all the new unvisited 
nodes that are added to the map are also pushed to the stack. 
Then, the exploration system pops an unvisited node from the 
stack, and instructs the navigation system to head there. The 
complete exploration process is shown in Figure 4, and can be 
summarized as follows: 

1. The exploration begins with an empty map (Figure 14a) 
that has to be initialized as defined in Section 4.4. As a 
result, the mapping system generates a partial map that 
contains visited and/or unvisited nodes. The later ones are 
pushed to the stack (Figure 14b).

2. The exploration system pops an unvisited node from the stack 
and uses the already generated map to obtain a path to it.

3. The navigation system executes the generated path, 
eventually reaching an unvisited node.

4. Once the robot reaches the unvisited node, it becomes 
visited. If new unvisited nodes are detected, they are ad
ded to the map and pushed into the stack (Figure 14c).

5. If the stack is not empty, the system goes back to step 2 
(Figure 14d,e), otherwise the exploration is complete and 
the process stops (Figure 14f).

This approach is equivalent to a depth‐first exploration of a 
graph. This means that the robot will explore as deep as possible 
into each branch of the tunnel network, before backtracking to 
explore a new branch, which is, as well known, the most effi
cient way possible to completely traverse our target environ
ments (in absence of loops). A simpler way of accomplishing 
this would have been a strategy of “always go left,” as done in 
Pereira et al. (2021); de S Thiago Filho et al. (2025), although 
this would sacrifice the ability to prioritize unexplored branches 
according to some criterion.

5 | Experimental Evaluation 

Our proposal has been evaluated in both simulated and real 
environments. While simulated environments allow for a 
greater variety of scenarios, they lack some of the challenges 

FIGURE 13 | Petri net describing the state machine used in the 
mapping approach, with state‐changing inputs inside transitions. Places 
have associated actions described in the text. Input combinations not 
shown imply that the Petri net stays in the same state. n (a positive 
number) is the number of detected exits and s (a boolean) indicates 
whether the detection is stable, as explained in Section 4.2.4. 

FIGURE 14 | Topological Exploration. a) Starting pose of the robot 
(green). b–f) Exploration process. Blue nodes are unvisited while red 
nodes are visited. The brackets contain the stack of unvisited nodes. 
[Color figure can be viewed at wileyonlinelibrary.com] 
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associated with real underground environments, like truly 
degraded odometry, dust particles or erroneous readings of the 
LiDAR. In the simulated experiments a variety of environments 
have been used, including some generated from the DARPA 
SubT challenge scenario assets and a 3D reconstruction of a real 
environment.

Regarding the implementation, all the components in the naviga
tion stack were implemented using the Robot Operating System 
(ROS) framework, with nodes written in both Python and C++. In 
the real‐world experiments, all computations where performed on 
the onboard computer of the robotic platform. More specifically, we 
used the Clearpath's Husky A200 UGV,3 equipped with a Velodyne 
VLP‐16 3D LiDAR,4 a picture of which can be found in Figure 22a. 
A model of this exact robot configuration was also used for the 
experiments in simulation.

5.1 | Simulated Experiments 

Simulation allows for the execution of experiments that could not 
be carried out in a real environment, due to limitations regarding 
the battery life, or access to testing scenarios, which, in the case of 
subterranean environments, can be difficult to obtain.

We propose three sets of fully‐autonomous experiments to test 
the reliability of our solution and different use cases. The first 
set of experiments will showcase the path‐planning and navi
gation stack, working on a user‐defined map, in scenarios cre
ated using the DARPA SubT challenge tunnel tiles. 5. 
The second and third experiments will exercise the system 
while using its exploration capabilities; one of them will be 
performed on a SubT challenge scenario while the other on a 
modified 3D reconstruction of the Somport tunnel.

5.1.1 | Path Planning and Navigation in DARPA Subt 
Environments 

To carry out this set of experiments, a testing environment was 
created using the models provided by DARPA for their SubT 
challenge. These models consist of a set of tiles of different 
sections of tunnels that can be connected to generate arbitrarily 
complex environments. More specifically, the available tunnel 
tiles are the straight section, the 3‐way intersection, the 4‐way 
intersection, the curve, a ramp and a “block” figure to terminate 
the tunnels in a dead‐end.

With these tiles, we built an environment rich with intersec
tions and tunnels at different heights, which is presented in 
Figure 15a and the corresponding user‐defined topological map 
was made available to the robot (Figure 15c).

To test the repeatability of the results, three different missions 
were devised: the first one going from the edge between nodes 4 
and 1 (E4-1) to node 22 N22, the second one from E18-17 

to N20 and the third one going from E16-17 to N22. Each of 
these tasks was repeated 5 times resulting in a total of 15 runs. 
For each of the tasks, the path planner produced the following 
instructions respectively: 

• From E4-1 to N22:take [-1], take [2], take 

[1], take [-1], advance_until_node

• From E18-17 to N20:take [-1], take [-2], 

take [3], take [2], take [1], 

advance_until_node

• From E16-17 to N22:take [-3], take [-1], 

take [-2], advance_until_node

In all of them, the robot successfully arrived at the target node by 
following the topological instructions provided by the planner.

Figure 16 shows the trace of the robot for the first run of each of 
the tasks.

5.1.2 | Topological Exploration in DARPA Subt Environment 

For this experiment, a different, non‐cyclical environment was 
created using the assets provided for the DARPA SubT chal
lenge (Figure 17a). In this scenario, there are tunnels present at 
three different levels, as it can be seen in Figure 17b.

The robot was then placed at position (0, 0, 0), and tasked with 
fully exploring the environment and obtaining the corre
sponding topological map.

The robot took 65 min to fully explore the environment, doing so 
without any errors. Figure 18a shows the topological map created 
by the robot during exploration. It can be seen from this image that 
the topological map correctly reflects the topological structure of the 
target environment. It is worth noting that, geometrically, the 
topological map is not fully consistent with the actual environment. 
For example, several of edges that correspond to parallel tunnels are 
not parallel in the map. This is due to the use of the raw odometry 
to assign a position to each of the nodes. This is done exclusively for 
the purposes of displaying the map in a more understandable form. 

FIGURE 15 | Environment for the path‐planning tests in simula
tion using a user‐defined map. a) Complete environment in the Gazebo 
simulation. b) Overlay with indications about the features of the en
vironments. The green lines indicate tunnels at level 0, red lines indi
cate tunnels at level +1, blue circles are intersections, pink circles are 
dead‐ends and arrows indicate ramps (pointing in the ascending 
direction). c) User‐defined topological Map of the environment that the 
robot will use for path planning. [Color figure can be viewed at 
wileyonlinelibrary.com] 
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However, these geometrical inconsistencies do not have any impact 
on the navigation, as the geometrical position of the nodes is 
irrelevant to our fully topological approach. The storage require
ments of the resulting map can be calculated by multiplying the 
storage space of one edge by the number of edges. An edge is 
composed of two integers, each weighing 8 bytes, so the space to 
store one edge is 16 bytes. Given that the map contains 30 edges, it 
can be stored in just 480 bytes.

5.1.3 | Topological Exploration of a 3D Reconstruction of the 
Somport Tunnel 

This final set of simulated experiments has been performed in a 
modified 3D reconstruction of the Somport Tunnel. This en
vironment consists of a 7 km long tunnel with 17 lateral gal
leries, all on the same side.

The original 3D model is an accurate representation of the real 
environment; however, due to its large dimensions, and the 
extreme aspect ratio (see Figure 23), displaying the results 
would not be viable. Additionally, a complete exploration of the 
original environment would take greater than 600 min. For 
these reasons, some modifications have been performed to the 

model. First, of the original 17 lateral galleries, 8 have been 
selected. Secondly, the distance between them has been subs
tantially reduced. Finally, to avoid collisions between lateral 
galleries, one of them (corresponding to the original 6th gallery) 
has been flipped. The result of these modifications is shown in 
Figure 19, where the main tunnel has a length of 530 m.

Three starting points have been defined, which will be referred 
to as A, A' and A” (Figure 19). From each starting point, five 
exploration tasks were executed, for a total of 15 exploration 
runs. Of the 15, 14 were completed successfully, with the single 
failure being caused by an intersection not meeting the stability 
criteria and thus the lateral gallery not being explored. 
Figure 20 shows the topological maps obtained after exploration 
runs started from A and A’. By comparing the two, it is clear 
that there are some differences between them. There are slight 
variations between the positions of the nodes in each map, 
which are caused by the accumulated errors of the odometry. 

FIGURE 16 | Traces of the first experiment for each of the path 
planning tasks. a–c) Each trace has a color gradient, with red indicating 
the initial positions, transitioning to green for the middle ones, and 
ending in blue for the last ones. [Color figure can be viewed at 
wileyonlinelibrary.com] 

FIGURE 17 | Environment for the topological exploration experi
ments. a) Complete environment in the Gazebo simulation. b) Overlay 
with indications about the features of the environments. The green lines 
indicate tunnels at level 0, red lines indicate tunnels at level +1, blue 
lines indicate tunnels at level −1, blue circles are intersections, pink 
circles are dead‐ends and arrows indicate ramps from level 0 to levels 
+1 or −1. [Color figure can be viewed at wileyonlinelibrary.com] 

FIGURE 18 | Results of the exploration tasks in the DARPA SubT 
environment. a) The obtained topological map. b) The trace of the path 
followed by the robot during the experiment. The trace has a color 
gradient, with red indicating the initial positions, transitioning to green 
for the middle ones, and ending in blue for the last ones. [Color figure 
can be viewed at wileyonlinelibrary.com] 

FIGURE 19 | Modified 3D model of the Somport Tunnel, with eight 
lateral galleries and a reduced main tunnel of 530 m in length. The 
crossing galleries have different slopes, hence not really intersecting 
each other. [Color figure can be viewed at wileyonlinelibrary.com] 
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Given that these maps contain 23 edges each, the map can be 
stored in only 368 bytes of memory.

Additionally, the enumeration of the nodes depends on when 
they are created, so they also vary between topological maps. 
Regardless of these differences, the underlying topological 
structure stays the same.

Finally, Figure 21 shows the traces of three different exploration 
runs, each of them starting from a different point.

5.2 | Real‐World Experiment 

The main objective of this test was to validate the complete 
framework in a real‐world environment and to showcase the 
zero‐shot transfer from simulation to reality when using deep 
learning on 3D LiDAR scans. It was performed in the Somport 

Tunnel, which has been described previously. As can be seen in 
Figure 22b, the tunnels have substantially degraded floors, 
which make odometry much less reliable, and the main tunnel 
has few geometrical features (Figure 22c), complicating the 
process of scan matching of more traditional geometric meth
ods. The complete environment is of significant size, so our 
experiment is carried out in 3 of the 17 galleries (Figure 23).

For this experiment, the task that the robot had to perform was the 
following: Starting from the end of G8, reach the end of G7. Then, 
go to G9 and advance 30 m. Finally, return to the intersection of G8 
and stop. During this process, the system also had to build a 
topological map of the environment. This experiment aims to 
showcase three different aspects of our proposal: 

1. The capability to carry out missions specified using high‐ 
level instructions, without the need to have a pre‐built 
map of the environment or build one.

2. The zero‐shot transfer learning between simulation and 
the real‐world environment.

3. The mapping approach working on a real‐world environment.

To perform the task defined above, we provided the navigation 
system with the following set of topological instructions: 

1. advance_to_node: To go from the end of G8 to the 
main tunnel.

2. take [right]: To exit intersection in the direction of 
G7.

3. take [right]: Will advance until reaching the 
intersection with G7, and enter into G7.

4. advance_to_node: To reach the end of G7.

5. take [back]: To exit the end of G7 and face towards 
the main tunnel.

6. take [left]: To reach the main tunnel and face to
wards G8.

7. take [1]: Advance towards the intersection of G8 and 
continue straight.

8. take [left]: Advance towards the intersection of G9
and enter G9.

9. advance_met 20: Advance 20 m into G9.

10. turn_around: To face the intersection of G9.

11. take [right]: To reach the intersection of G9 and 
face the intersection of G8.

12. advance_to_node: To advance through the main 
tunnel to the intersection of G8.

During the run, our mapping approach generated the topolog
ical map shown in Figure 24. As mentioned before, for visual
ization reasons, the position of each node is set using the raw 
odometry from the robot, which accumulates error over time. 
This is especially true in this context, where the floor is subs
tantially degraded. For this reason, the poses of N0, N1, N2 and 
N4 are much more consistent with the 3D model than the 
position of N3, which is the last visited node.

The robot took 35 min to traverse the 1572 m of the assigned task, 
and managed to do so without any intervention. To provide an 

FIGURE 20 | Topological maps obtained from explorations starting 
from A (a) and A' (b). [Color figure can be viewed at wileyonlinelibrary.com] 

FIGURE 21 | Traces obtained during the exploration experiments in 
the modified 3D model of the Somport Tunnel from three different starting 
points (A, A' and A”). They present a color gradient starting in red, tran
sitioning to green and finally ending in blue. The green letters enumerate 
the order at which the robot has entered each of the branches from the main 
tunnel. [Color figure can be viewed at wileyonlinelibrary.com] 
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approximation of the route that the robot followed, Figure 25 shows 
the best attempt at reconstructing a geometric map from the data 
gathered during the experiment, which has some imperfections due 
to the reasons presented in Section 2.1. The reconstructed path of 
the robot is shown as a red line, which also presents some incon
sistencies and jumps, but it does show how the robot stays close to 
the center of the tunnel at all times.

6 | Discussion 

Our experimental evaluation is aimed at demonstrating the viability 
and usability of a fully topological approach for the tasks of navi
gating, mapping and exploring underground tunnel networks. 

FIGURE 22 | Pictures taken inside the Somport tunnel during our experimental run. a) Close‐up of our robotic platform, a Clearpath A200 
equipped with a VLP‐16 LiDAR sensor. b) Picture taken from the intersection of G7 with the main tunnel, where the floor is especially rough. c) 
Picture taken in the main tunnel, between G8 and G7, it can be seen that the tunnel walls present few geometric features. d) Entrance to G8 seen 
from the main tunnel. [Color figure can be viewed at wileyonlinelibrary.com] 

FIGURE 23 | Ground‐truth reconstruction of the Somport Tunnel made with the use of high‐precision topographic equipment. The top image is 
the complete environment while the bottom image is a zoom on the section where the experiment takes place. The distances, shown in blue, have 
been measured using the ground truth data. [Color figure can be viewed at wileyonlinelibrary.com] 

FIGURE 24 | Topological map generated during the real‐world ex
periment in the Somport Tunnel. Red circles indicate visited nodes, blue 
circles indicate unvisited nodes while blue lines indicate edges. The 
numbers are the ID of each of the nodes. The position of each node is 
established using the raw odometry. [Color figure can be viewed at 
wileyonlinelibrary.com] 
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Repeated experiments show a high degree of reliability, which is 
accomplished in no small part by removing the necessity of having 
a precise self‐localization. It achieves a success rate of 100% in all 
tasks in the DARPA‐based environments, and of 93.3% in the 3D 
reconstruction of the Somport Tunnel.

In the exploration tasks, it manages to create a very light rep
resentation of substantially large environments, managing to 
store all necessary information for navigation in maps that 
occupy storage in the order of hundreds of bytes.

Regarding the real‐world experiment, we demonstrate that, 
even in a challenging real environment (Section 2.1), our 
method is capable of following a set of simple instructions that 
can be communicated directly by a human operator, and 
operate autonomously for 40 min while it builds a topological 
map of the traversed environment.

All these advantages come from exploring a purely topological 
understanding of these environments. However, due in part to this 
focus, and in part to the implementation details, our approach 
presents some limitations. The CNN that our method relies on has 
been tailored to work in scenarios composed of tunnels and inter
sections. For this reason, if parts of the environment deviate 
strongly from these assumptions, the perception pipeline will not 
perform as intended. Additionally, the focus on the topological 
aspect means that, for example, any position inside the same tunnel 
is the same for our method, so if there is a requirement to operate in 
a specific point along a tunnel, our method would be insufficient. 
Additionally, as will be discussed in Section 4.4, using a purely 
topological representation makes the loop‐closure problem an ex
tremely difficult one to solve. Even taking this into account, we 
consider our solution a solid demonstration of how it can help with 
some of the issues that these environments tend to pose.

6.1 | Lessons Learned 

Lessons learned from navigating underground environments 
highlight the many compounding challenges that make reliable 
navigation extremely difficult.

It is well known that odometry, which often works well in 
structured or predictable settings, becomes highly unreliable in 
these environments due to uneven surfaces, wheel slip, and 
sudden changes in terrain, causing accumulated errors that 
rapidly degrade positional estimates.

General‐purpose SLAM methods, used to correct such drift, work 
extremely well in more structured environments but are themselves 
problematic here: the high degree of auto‐similarity and long 
stretches of nearly identical tunnels or corridors cause frequent 
mismatches, loop‐closure errors and often map inconsistencies. 
Additionally, SLAM algorithms are notably sensitive to parameter 

tuning; settings that work in one section of the environment can fail 
severely in another, making robust operation difficult without 
careful, location‐specific calibration.

IMUs, commonly used to provide short‐term motion estimates 
also struggle: potholes, uneven floors, and frequent rattling and 
vibrations introduce significant noise, limiting their usefulness 
for long‐term localization.

Finally, neural network‐based approaches, while attractive for their 
potential to learn highly diverse patterns and features, show 
sometimes inconsistent performance which makes it difficult to 
know when the network is providing a reliable output and when is 
not. In this specific case, this forced us to “engineer” a method to 
manage the instability of the network output in critical areas of the 
environment (mainly at intersections).

Finally, we learned that using synthetic data to train networks that 
rely on LiDAR readings often produces quite satisfactory results, 
allowing zero‐shot transfer from simulation to the real world.

7 | Conclusions 

The interest in autonomous robotics in underground environ
ments has increased substantially during the last decade, in part 
thanks to the DARPA's SubT challenge. However, the progress 
has concentrated on adapting geometrical approaches to these 
environments, while topological methods have not received the 
same interest. Topological methods represent their environ
ments as a graph, which makes them especially well‐suited to 
handle underground environments, which typically consist of 
tunnels and galleries that intersect.

In this article we have presented a purely topological method 
for the navigation, mapping and exploration of subterranean 
tunnel networks, which are environments especially suitable for 
this approach. We begin by establishing a purely topological 
representation of these these scenarios, where the tunnels are 
interpreted as edges and the intersections and dead‐ends as 
nodes. To exploit this, we propose a perception system based on 
a CNN, that can interpret 3D LiDAR data and obtain the dis
tribution of the tunnels around the robot. This novel method of 
perception is then used to create a navigation system based on 
human‐readable, high‐level instructions. Finally, these percep
tion and navigation approaches allow us to create a purely 
topological mapping and exploration system.

Our purely topological approach provides some definite advantages 
over traditional methods, as is the complete disregard for precise 
self‐localization (an especially challenging task in our target en
vironments). Another important advantage is the substantial 
reduction in the size of the maps, which can be of substantial 
usefulness in such communication‐degraded environments.

FIGURE 25 | Best geometrical attempt at reconstructing the experiment in the Somport tunnel. The rough floor degrades the odometry and the 
lack of features in the walls are challenging for the scan matching. This results in the duplication of elements like galleries and sidings. The red line is 
the reconstructed path of the robot, while the axes on the middle intersection represent the final position of the robot. [Color figure can be viewed at 
wileyonlinelibrary.com] 
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This work also provides successful experimental demonstra
tions of the system, both in simulation and in a real‐world 
environment. Simulation experiments have focused on the 
path‐planning, navigation and exploration capabilities of our 
method. The real world experiment has shown how a user can 
specify a mission using high‐level instructions, without needing 
to provide the robot with any information about the environ
ment. Additionally, it has proven that our network presents a 
zero‐shot transfer learning from a completely synthetic dataset, 
obtained in simulation, to a real‐world environment.

In future work, our main priorities will be exploring methods for 
purely topological loop‐closure and implementing fallback strategies 
that do not require human intervention in case of failure or mis
match between the topological map and the actual environment.
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