000168113 001__ 168113
000168113 005__ 20260210085434.0
000168113 0247_ $$2doi$$a10.1002/adfm.202532069
000168113 0248_ $$2sideral$$a147660
000168113 037__ $$aART-2026-147660
000168113 041__ $$aeng
000168113 100__ $$aTurriani, Marco
000168113 245__ $$aShape‐changing multiphase microparticles from complex liquid crystal emulsions
000168113 260__ $$c2026
000168113 5060_ $$aAccess copy available to the general public$$fUnrestricted
000168113 5203_ $$aComplex multiphase emulsions containing liquid crystals (LCs) offer precise morphological control and dynamic tunability, enabling applications in optics, sensing, and soft matter. Here, we report a simple and scalable bulk‐emulsification strategy that circumvents the reliance on microfluidic fabrication to produce liquid crystalline network (LCN) microparticles spanning single, double (Janus), and triple emulsion morphologies within a genuinely colloidal size regime (10–20 µm). By adjusting crosslinking density and interfacial conditions, we program the LC alignment within the droplets, thereby dictating the mode and direction of actuation after photopolymerization. Single emulsions, Janus particles—coupling an active LCN hemisphere to a passive PDMS compartment—and, for the first time, triple LC emulsions—incorporating a third immiscible phase (a fluorinated oil)—are obtained via this straightforward and scalable approach. Across all morphologies, the particles exhibit robust, reversible, large‐amplitude deformations under heating, as well as chemoresponsivity through anisotropic swelling in organic solvents. In addition, the Janus particles exhibit gravitational self‐orientation, while the triple LC emulsions retain their multiphase architecture and display tunable geometries. As a proof of concept, these responsive behaviors are exploited to realize adaptive microlenses with thermally tunable focal plane and magnification, establishing complex LC emulsions as a scalable platform for multifunctional microactuators.
000168113 536__ $$9info:eu-repo/grantAgreement/ES/MICIU/RYC2021-031154-I$$9info:eu-repo/grantAgreement/ES/MICIU/CEX2023-001286-S$$9info:eu-repo/grantAgreement/ES/DGA/E47-23R$$9info:eu-repo/grantAgreement/ES/AEI/PID2023-146811NA-I00
000168113 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttps://creativecommons.org/licenses/by-nc/4.0/deed.es
000168113 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000168113 700__ $$aParmeggiani, Camilla
000168113 700__ $$aMartella, Daniele
000168113 700__ $$0(orcid)0000-0002-8932-9085$$aConcellón, Alberto$$uUniversidad de Zaragoza
000168113 7102_ $$12013$$2765$$aUniversidad de Zaragoza$$bDpto. Química Orgánica$$cÁrea Química Orgánica
000168113 773__ $$g(2026), e32069 [12 pp.]$$pAdv. funct. mater.$$tAdvanced Functional Materials$$x1616-301X
000168113 8564_ $$s4997225$$uhttps://zaguan.unizar.es/record/168113/files/texto_completo.pdf$$yVersión publicada
000168113 8564_ $$s2362895$$uhttps://zaguan.unizar.es/record/168113/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000168113 909CO $$ooai:zaguan.unizar.es:168113$$particulos$$pdriver
000168113 951__ $$a2026-02-10-08:48:36
000168113 980__ $$aARTICLE