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Abstract— The efficiency of path-planning in robot navigation
is crucial in tasks such as search-and-rescue and disaster
surveying, but this is emphasized even more when considering
multi-rotor aerial robots due to the limited battery and flight
time. In this spirit, this work proposes an efficient, hierarchical
planner to achieve comprehensive visual coverage of large-
scale outdoor scenarios for small drones. Following an initial
reconnaissance flight, a coarse map of the scene gets built in
real-time. Then, regions of the map that were not appropriately
observed are identified and grouped by a novel perception-
aware clustering process that enables the generation of con-
tinuous trajectories (sweeps) to cover them efficiently. Thanks
to this partitioning of the map into a set of tasks, we can
generalize the planning to an arbitrary number of drones and
perform a well-balanced workload distribution among them.
We compare our approach against a state-of-the-art method for
exploration and show the advantages of our pipeline in terms of
efficiency for obtaining coverage in large environments. Video
– https://youtu.be/V2UIrM91oQ8

Aerial Systems: Perception and Autonomy; Path Planning
for Multiple Mobile Robots or Agents; Mapping.

I. INTRODUCTION

Recent advances in robot navigation and perception have
enabled the establishment of modern multi-rotor aircraft,
i.e., drones, as the best choice for autonomous 3D recon-
struction or visual coverage of large-scale outdoor scenarios.
Their flexibility allows them to move freely through the
environment and observe areas that are not visible from
the ground. However, time efficiency is critical for using
drones because of their short flight times (due to battery
limitations), usually well under 30 minutes. Therefore, the
efficiency and effectiveness of the planning algorithms are
essential to enable the deployment of drones in large-scale
outdoor environments. Similarly, using multiple drones as
advocated in this work promises to boost the efficiency of
the scene-coverage mission.

Deploying drones for mapping a large area from a high
altitude is an effective way to obtain a first estimation, as
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Fig. 1: Team of drones that sweep the area of interest by flying paths generated by
the proposed planner in order to achieve fast coverage. Using a rough prior map (e.g.
captured in a reconnaissance flight) to identify areas that require further observation,
this work generates efficient path planning and workload distribution for a team of
drones (three in this example) to cover the scene.

collisions with the environment can be more easily avoided.
However, this strategy does not provide informative enough
viewpoints for scene coverage and impacts the quality of the
scene captures. State-of-the-art exploration approaches [1],
[2] often lack efficiency because of problems such as over-
exploring local regions, and abrupt changes in motion due
to constant re-planning or the need for revisiting areas.

To overcome these limitations, this paper presents a hybrid
solution that uses the best of both types of strategy in a
synergetic way. In this work, we assume a team of drones
with cameras, each performing a fast, reconnaissance flight
at a high altitude capturing a rough map of the area of
interest using a coarse real-time mapping pipeline. Based
on this map, the proposed method computes a set of drone
trajectories for subsequent flights in order to efficiently
cover the area of interest completely. This process aims to
maximize the use of sweep lines to avoid constant changes
in the flight direction, while considering the visibility of
surfaces and, at the same time, managing the workload
distribution amongst the participating drones to minimize
the execution time. The main contribution of this paper is
the overall perception-aware global planning that is capable
of handling the initial, noisy and coarse map as well as
enforcing high-speed trajectories.

II. RELATED WORK

Aerial path planning for efficient exploration has been a
topic of extensive research in robotics and computer vision
due to its wide applicability.

A. Scene exploration and coverage
With the outlook of practicality, robotics approaches often

focus on fast scene exploration, by eliminating the unknown



space as quickly as possible. Frontier exploration methods
look for regions, where free and unknown space meet [3].
There are different criteria used to decide which frontier to
explore next, such as their proximity to the current field of
view [4], following a greedy selection strategy [5] or having
global planning dictate their selection [1]. All these methods
focus on volumetric representations of the map, whereas our
approach considers surfaces and their visibility.

Other works use Active SLAM in 2D environments for
indoors ground robot navigation using landmarks [6], [7] or
learning methods [8], [9]. In comparison, we consider aerial
robots in 3D outdoor environments to obtain comprehensive
visual coverage.

When considering the reconstruction of surfaces,
sampling-based approaches propose viewpoints based on
their expected information gain. For example, accurate
surface reconstructions [10] can be achieved in a Next-Best
View fashion [11]. In order to improve the efficiency
of the planning, Rapidly-exploring Random Trees are a
common approach [10], [11]. To improve the sampling
process, [2] applies informed sampling of configurations
by reasoning over the available reconstructed model. The
method in [12] considers voxels lying on the surface at a
frontier. In general, all of these methods use depth cameras
that allow for exploration or reconstruction in indoor and
small scenarios. The performance in large-scale outdoor
scenarios as considered in this work decreases as the sensor
range only allows for close observations. In [13], online
Multi-View Stereo (MVS) is used to incrementally assess
the surface reconstruction. In comparison, the proposed
approach executes a fast high-altitude reconnaissance flight
to obtain a global coarse map as a prior and provide an
insight into the structure of the whole scene at once.

B. Use of a prior map

Other works used priors for improving the view selection
for 3D reconstruction and generating a global plan. They an-
alyze a prior map obtained from a previous flight in order to
plan views that maximize heuristics for 3D reconstruction as
parallax angle [14] or matchability [15]. In [14], the problem
is addressed by using submodular optimization to improve
the proposed views in the free space and obtain the final
trajectory by solving an orienteering problem accounting for
a maximum allowed time budget. Submodular optimization
is also used by [16] to plan views based on volumetric
representations in an anytime optimization.

As discussed by [13], many of the previous methods obtain
theirs prior from MVS pipelines, which is time-consuming
and might require long waiting times for processing. In this
work, we obtain a prior map online using depth completion to
extract good estimates of the views to reconstruct the scene.
The work in [13] considers individual views without focusing
on the trajectory to connect them, which might generate path
redundancies. In contrast, we leverage the fact that many of
these views can be grouped in a single efficient trajectory in
order to cover large parts of the scene, e.g., building facades.

C. Multi-robot extension

All of the aforementioned methods assume a single robot.
While they can be extended to multi-robot setups by parti-
tioning the area of interest according to the number of robots,
this does not ensure efficient enough collaboration between
them. Cooperative frontier-based approaches have also been
proposed in a centralized [17] and decentralized [18] way.
These methods address the coordination problem in frontier-
based approaches but suffer from the aforementioned locality
problems. The work in [12] extends to the multi-robot case
by greedily assigning the view configurations [19]. The work
in [20] distributes the workload through continuous region
partitioning based on Voronoi components. By considering
the whole map and the set of regions to be covered (tasks)
as a Vehicle Routing Problem (VRP), the generalization to
multiple drones is straightforward in our pipeline, easily
accounting for collaboration between them and minimizing
the overall mission time.

III. METHOD

Our goal is the efficient mapping of a bounded 3D outdoor
space using a team of drones equipped with one monocular
camera each. We achieve this by developing a system that
computes smooth and straight flights for the drones to reduce
the execution time of a mission. These trajectories are dubbed
sweeps, as the maneuvers can be executed at higher speeds
and do not require changing the flight direction.

In order to follow good practices in MVS reconstruction,
we also search for trajectories that yield fronto-parallel views
of the scene surfaces to maximize the scene coverage and
quality of a posterior reconstruction.

A. System overview

Our planner is illustrated in Figure 3 and the results at
different steps of the pipeline are shown in Figure 2. First, an
initial down-looking (nadir) flight over the area is performed
by the drones (Figure. 2a). The aim of this reconnaissance
flight plan is twofold: to capture a large portion of the top
view of the area of interest flying at high speeds, and to
obtain a global overview of the scene online. This enables
better-informed reasoning over the subsequent drone trajecto-
ries to complete the coverage due to the detection of missing
and poorly observed surfaces on the map (Figure. 2b).
These surfaces are then grouped into clusters by a novel
perception-aware clustering algorithm (Figure. 2c), favoring
the generation of flights that sweep the scene to better capture
these surfaces with efficient maneuvers (Figure. 2d). The next
step computes global paths for all drones participating in the
mission, aiming to minimize the distance traveled and the
duration of the mission. This is achieved with a variation
of the classical Vehicle Routing Problem (VRP), assigning
surface clusters to the drones (Figure. 2e). The processing
of the initial map and the global plan is performed by a
central server that integrates the measurements obtained in
the initial reconnaissance flight. Finally, the flight plans are
assigned to the drones and a trajectory planner guides the
drones smoothly along the sweeps to obtain new relevant



(a) Reconnaissance flight (b) Analysis of the map (c) Perception-aware clustering

(d) Sweep generation (e) Global planning (f) Local trajectory execution

Fig. 2: The drones perform a down-looking flight to compute online a coarse initial map shown in (a), which is used to detect poorly observed or missing areas visualized in
(b); red voxels correspond to surfaces seen from an oblique point of view (i.e., poorly observed) and blue voxels represent missing areas. Using perception-aware clustering
these missing areas get clustered, shown in different colors in (c). The clusters are used to compute sweeps, visualized in (d), to observe them efficiently. The orange arrows
represent the surface normals and red lines, the computed sweeps. The global paths of each drone are shown in (e), as computed by a VRP aiming to minimize the mission
time and favor longer sweeps. These get smoothed out by a local planner to result in the final drone trajectories seen in (f).

Fig. 3: Proposed pipeline. The drones send measurements for the initial map integration
to a central server. This processes the information to generate an efficient plan for the
team of drones, which is communicated back to the drones.

views of the scene (Fig. 2f). This execution is carried
out without the need of exchanging information with the
server or between the drones, favoring the deployment of
small and low-powered platforms. In practice, one run of
the pipeline is enough to cover most of the scene. Only
complex concave surfaces, galleries, and narrow passages
could remain unexplored as they are not detected from the
top of the scene. A possible way to explore them would be
to integrate the local plans observations into the initial map
to repeat the process until the whole scene is covered.

B. Initial map

The reconnaissance flight captures top views of the scene
to obtain a first approximation of the map quickly. However,
the high altitude, together with the use of monocular cameras
onboard the drones render the generation of this map chal-
lenging without the use of MVS expensive reconstruction
methods. To compute it online, we use a depth completion

system [21] onboard the drones that provides dense depth
measurements from a sparse input, e.g., SLAM.

The depth measurements are integrated into a common
voxel-based Truncated Signed Distance Field (TSDF) map,
that incrementally builds a Euclidean Signed Distance Field
(ESDF) map [22], M. Voxels are organized in a uniform
grid, where each voxel, m ∈ M, contains a distance,
dm, to the closest surface and a weight, wm, that contains
the confidence about the depth measurement of that voxel.
Moreover, we denote by pm the centroid of the voxel and nm

its normal vector. Voxels that do not have any measurement
have an associated weight equal to w0.

The initial map is analyzed in order to detect voxels
that require additional observations. In particular, voxels that
belong to a poorly observed surface, Ms, and voxels without
measurements (i.e., are unobserved), Mu.

Surfaces are identified locating the voxels that satisfy

wm > w0 and |dm| < dv , (1)

where dv is the voxel size.
Aligning the sensor’s depth direction with the surface

normal, as shown in Figure 4, is key in enabling accurate
and high-quality scene reconstructions. With this in mind,
we identify poorly observed surface voxels, Ms, as

−om · nm > cos(θt) , (2)

where om is the observation direction of the camera for the
voxel and θt is the threshold angle to consider the observation
of the surface valid. We consider θt = 45◦ as a good
indication that the visibility of a surface is poor. During
the initial flight, the cameras are looking downward (i.e.,
−Z axis). Thus, vertical and oblique surfaces are considered



Fig. 4: The analysis of the initial map, visualized from a side view on the right with two
down-looking cameras, indicates the quality of the views of a building. An example on
a map obtained in the reconnaissance flight is shown on the left. Voxels on the left are
visualized as dashed lines on the right, with arrows indicating the estimated surface
normals. Red and green indicate poorly and well-captured surfaces, respectively, while
blue indicates accessible unknown areas, whose normals are estimated to point towards
free space.

poorly observed, while horizontal or low tilted surfaces are
considered as correctly observed.

The second step is the analysis of the unobserved voxels.
Out of all the unobserved voxels in the map, with weight
equal to w0, we find those that are accessible (i.e., can
be observed). Unobserved voxels are accessible if they are
surrounded by free space voxels, mf , defined by

wm > w0 and dm > dv. (3)

The accessible unobserved voxels, Mu, are then formalized
as the voxels, such that

∃mf ∈ N26(m), (4)

where N26(m) is the set of 26-connected neighbors, around
the voxel m. Finally, the set of voxels that need further
observations is defined as

Mt = Ms ∪Mu . (5)

C. Perception-aware clustering

This step performs a novel perception-aware clustering
over Mt. In particular, voxels get grouped together, such
that can be observed by a drone in a single efficient sweep
trajectory by considering the distribution of their normals in
the cluster. This clustering also aims at generating a natural
partition of the scene into a set of tasks that can be assigned
to a team of drones. In the following, we explain how the
clustering works and how sweep paths are generated from
them.

The proposed clustering is based on the Density-Based
Spatial Clustering of Applications with Noise (DBSCAN)
method [23]. The basic method groups voxels1 that are
close together in space, and identifies isolated voxels in low-
density regions as noise. It works by iteratively expanding
clusters, Ci, to neighboring voxels that fulfill the following
density condition:

|Nσ(pm)| > ϵ , (6)

where |Nσ(pm)| is the number of neighboring voxels in a
radius σ of the voxel’s center, pm, and ϵ is the minimum
number of neighbors to include the voxel in that cluster.

1The original method refers to points.

Fig. 5: Sweep definition and refinement scheme (left). The gray area represents a
surface cluster. The dashed red line is the major eigenvector that will be covered by
the sweep (red solid line). The blue vector is the normal. An example in a real map
is shown on the right where the observation direction, ni, was adjusted to avoid an
obstacle.

Our goal is to group regions observable from a similar
point of view (i.e., surfaces). Thus, we extend DBSCAN
by adding a second condition for expansion. This condition
checks if the normal of a candidate voxel, nm, lies within the
distribution of normals in the cluster. The normals in Ms are
estimated from the gradient of distances in the ESDF initial
map. The normals of unobserved voxels are computed as the
average of all the directions that lead from pm to free space
voxels in N26(m) (Figure 4). We also smooth the estimated
normals using neighboring values to filter noise.

In particular, we focus on the distribution of the cosine
distance with respect to the mean normal of the cluster, nc,

dα(nm,nc) = 1− nm · nc

∥nm∥ ∥nc∥
. (7)

We then compute the average µd(Ci), and standard de-
viation σd(Ci) of the distances from all the normals of the
voxels in the cluster to nc. The normal direction condition
checks that the distance of the normal between the candidate
voxel and the cluster’s distribution is sufficiently small,

dα(nm,nc) < min(µd(Ci) + 2σd(Ci), τ). (8)

where τ is a fixed value.
We identify µd(Ci) + 2σd(Ci) as the relative tolerance to

the cluster’s distribution and τ as the absolute tolerance.
The aim of the relative tolerance is to adapt the expansion
of the cluster to the surface in question, e.g., allowing soft
curvatures. On the other hand, the absolute tolerance avoids
the cluster to expand through discontinuities such as edges.

Finally, we perform a merging step that fuses small
clusters with the most similar neighbor. If no neighbor is
found, these voxels are discarded.

Considering that each voxel cluster resembles a surface, a
sweep is defined as a linear trajectory that is orthogonal to
the normal of the cluster (Figure 5). Among all the possible
sweeps, we find the longest one through the inertia moments
of the cluster, li. Then, for each voxel in the cluster, we
compute the longest distance from the center, projected on
this axis,

d∗i = max
m∈Ci

∣∣lTi (pm − c̄i)
∣∣ , (9)

where pm is the centroid of the voxel and c̄i the centroid of
the cluster. The extension of this distance from the centroid
of the cluster in both directions of li generates the path that



traverses the cluster through its length. We name both ends
of this path, the entrance points of the cluster.

In order to guarantee that the whole surface is visible with
a single sweep, we compute its height in the direction of the
axis perpendicular to the sweep direction

hi = li × ni. (10)

The value of the height is computed in the same way as (9)
using the axis hi instead:

h∗
i = max

m∈Ci

∣∣hT
i (pm − c̄i)

∣∣ , (11)

where h∗
i if the half height of the cluster. Then, we use the

relationship between the field of view (FoV) angle of the
camera and h∗

i to compute the distance that is able to cover
the height of the cluster. The observation distance, do, along
the normal is computed as

do =
h∗
i

tan( FoV
2 )

(12)

Finally, if the sweep intersects an obstacle we perform a
rotation of the observation direction to refine it (Figure 5).

D. Global planner

In the next step, the objective is to compute high-level
paths for the drones to cover all the clusters. We propose
to solve this problem with an adaptation of the min-max
Vehicle Routing Problem (VRP).

Originally, this algorithm looks for optimal routes for a set
of agents, K, that visit once all the locations of a given set,
V . Denote by cij the cost to go from location i to location j,
which we consider is the same for all the agents, and define
X = {xk

ij}, for i, j ∈ V, and k ∈ K, the set of binary
variables that indicate whether agent k has traverse the route
from i to j or not. Then, the min-max VRP solves

min
X

max
k∈K

∑
i∈V

∑
j∈V

cijx
k
ij , s.t. (13a)

∑
k∈K

∑
i∈V

xk
ij = 1 ∀j ∈ V \ {0} (13b)

∑
k∈K

∑
j∈V

xk
ij = 1 ∀i ∈ V \ {0} (13c)

∑
k∈K

∑
i∈V

xk
i0 =

∑
j∈V

∑
k∈K

xk
0j = |K| (13d)

∑
i,j∈S

xk
i,j ≤ |S| − 1, ∀S ⊂ V \ {0}, S ̸= ∅ (13e)

xk
ij ∈ {0, 1} ∀i, j ∈ V (13f)

where (13a) is the cost function, which denotes the largest
cost among all the agents for a given assignment, constraints
(13b) and (13c) indicate that drones only visit each location
once. Constraints in (13d) impose the drones to start and
end at the initial point. Constraints (13e) are the sub-
tour elimination constraints. Finally, conditions (13f) impose
binary conditions on the decision variables.

In order to adapt the VRP to the clusters and their sweeps,
we propose a definition of the costs, cij , that considers them.
Given two clusters, i and j, we compute the path between
them, as the line that joins their closest entrance points with
distance, dij , if there are no obstacles. In case there are
obstacles, we consider the same path, but flying over the
top of the scene. This way we guarantee that all the clusters
are reachable from each other, but we favor assignments of
the nearby ones. Additionally, to account for the cost of
covering each cluster, we add the distance of the sweep to
all the costs with it as the destination. The distance of the
sweep generated for Ci is l∗i = 2d∗i , with d∗i defined in (9).
Therefore, the cost cij is defined as

cij = dij + l∗j . (14)

Lastly, to compute the solution of (13), we consider an
implementation with limited capacities. We simplify the
objective to minimize the total cost traveled by all the drones

min
X

∑
k∈K

∑
i∈V

∑
j∈V

cijx
k
ij , (15)

and we add a capacity constraint for each of them,∑
i∈V

∑
j∈V

cijx
k
ij < cmax ∀k ∈ K. (16)

Our solution searches for the minimum value of c∗max that
solves the problem using the bisection method.

E. Local planner

For the last step of the proposed pipeline, the local planner
by Zhou et al. [24] is used to plan in two stages: an initial
kinodynamic A∗ path search based on motion primitives
finds a safe, feasible and minimum-time initial path, and
a B-spline optimization generates smooth and collision-free
trajectories that use gradient information from the ESDF and
dynamic constraints.

In order to cover a surface efficiently and effectively, the
sweep direction needs to be orthogonal to the observation
vector. To enable safe and efficient navigation, while ob-
taining high-quality scene observations, we decouple the
problems of navigation and observation. We assume that
the observation camera is mounted on an actuated gimbal,
which is able to set the yaw and pitch directions. A second
sensor, such as a laser ranger or a depth camera is used for
navigation.

IV. EXPERIMENTS AND RESULTS

To assess the performance of the proposed method, the
pipeline is run on photo-realistic outdoor scenarios of varying
sizes and difficulty, namely on the Bunker, Wood Bridge,
Loarre Castle, and Zurich2 models visible in Figure 8. The
transfer of this simulation setup to real-world cases was
proved in previous work [21] [25]. The Gazebo RotorS
simulator is used with ground-truth odometry of the drones.
During the initial map construction, flying at a high altitude

2Model provided by wingtra.com



TABLE I: Execution times to complete a scene coverage mission. The reconnaissance
flight time, in parenthesis, is included in the total time. Ours (single) refers to our
pipeline using one drone, while Ours (multi) indicates the time taken by the longest
flight of any drone in a team (four in this case), indicating the end of the mission. For
[2], we report the time to reach the same extent of coverage achieved by each of our
methods (Table III). In larger maps, [2] is not able to achieve our coverage after one
hour of execution, so the total coverage by that time is reported. The ‘⋆’ indicates that
the global planner only assigned two drones to this map, as introducing more would
not reduce the total time.

Method Bunker Wood
Bridge

Loarre
Castle Zurich

Kompis et
al. [2] (single) 859.71 s 897.08 s

>3600 s
[67.08%]

>3600 s
[13.91%]

Ours
(single)

491.91 s
(183.06 s)

331.16 s
(122.54 s)

1474.95 s
(329.88 s)

2027.88 s
(588.56 s)

Kompis et
al. [2] (multi) 214.43 s 405.98 s 1440.59 s

>3600 s
[60.49%]

Ours
(multi)

126.26 s
(42.04 s)

172.09⋆ s
(53.31 s)

433.74 s
(117.11 s)

741.07 s
(269.53 s)

enables the use of accurate RTK GPS systems with small
odometry errors. The uncertainty in the successive flights
can be alleviated by overestimating the observation distance
and safety radius. As we target our application to consumer
platforms, problems such as aerodynamics or other electrical
and mechanical delays are assumed to be solved by their
system. The drones are equipped with a monocular camera
mounted on an actuated gimbal that can rotate independently
of the orientation of the drone. Its resolution is 752×480 and
FoV is 80◦× 55◦. The drones’ linear and angular maximum
velocity and acceleration are set to 2 ms−1 and 0.9 ms−2,
respectively, for fairness with the compared system and to
ensure safety at all times. During the reconnaissance flight,
the drones fly at a fixed height over the model in a grid
pattern with their cameras looking downward. The voxel size
used for the initial map and planning is 0.2 (Bunker and
Wood Bridge), 0.5 (Loarre) and 0.7 (Zurich).

The parameters for the clustering step depend on the reso-
lution of the prior map (i.e., voxel size vs). We set ϵ = 10vs,
σ = 6 (Eq. (6)) and τ = 0.4. We also apply an inflation factor
over the coarse map of 20vs to the observation and safety
distances for the sweep generation. Due to computational
resources required to simulate several drones, the local paths
are executed by a single drone sequentially, which starts from
and comes back to the same initial point. The simulation runs
until all the local trajectories have been executed.

We run the experiments considering three different algo-
rithms. We name Ours (single) and Ours (multi) the solutions
obtained running our pipeline with one and four drones
respectively. In the multi version, we perform an ablation
study to show the difference in visual coverage obtained
after the reconnaissance flight and the successive flights
resulting from our pipeline. Even when our pipeline is not
directly comparable in terms of the sensor setup with other
exploration methods that use stereo pairs, the third method
uses the planning approach of Kompis et al. [2] for single and
multiple drones, which is among the state-of-the-art planners
with available implementation. In the version with multiple
drones, the environment is segmented equally among the

TABLE II: Computation time for the different map processing steps: analysis, clustering
and global planner. Mean and standard deviation for 10 runs.

Bunker Zurich

Analysis - 2.22± 0.082 s 6.96± 1.05 s

Clustering - 1.83± 0.045 s 7.12± 0.297 s

Global
planner

Ours (single) 0.99± 0.053 s 15.43± 0.689 s

Ours (multi) 0.94± 0.064 s 17.10± 0.737 s

drones. This comparison is not intended to rank the two
methods but to showcase the potential advantages of the
proposed planning approach in terms of efficiency.

A. Planning efficiency

The times for the execution of the plan are shown in
Table I. The times for the reconnaissance flight and initial
map construction with Voxblox are included in the total and
shown below. For the method of Kompis et al., we report the
times necessary to achieve the same coverage as our system.

The results for Ours (single) and Ours (multi) validate
that our setup can generalize to an arbitrary number of
drones. When using several drones instead of one, times are
a fraction of the number of drones with little overhead. In the
case of Wood bridge, the global planner assigned the tasks
to only two drones even if four were available. Due to the
scene structure, adding more drones would not reduce the
time of the mission as drones would have to return to the
initial point. Compared to Kompis et al., our method is able
to completely cover the maps faster in every case. For large
maps (i.e., Loarre Castle and Zurich), [2] is not able to cover
the environment after one hour of execution and we report
the amount of coverage obtained at that time.

There are two main reasons for this difference. Firstly, the
different approaches to drone dynamics in the planners. Stop-
and-go motions are necessary as the exploration process is
incremental. This limits the planning horizon of the system
to a local region. In their approach, the drone has to stop
in order to acquire each individual view and plan the next
(see Figure 6). In our case, the drone is able to keep
moving while observing a whole surface in a sweep. Notice
that our system could potentially use higher velocities and
accelerations for large trajectories in free space, as in the case
of the reconnaissance flight, further improving the planning
efficiency. The second reason for the time difference is that
their planner revisits areas in order to obtain thorough cov-
erage, committing resources to small regions with difficult
accessibility. The reason for their low coverage results in the
Zurich map is explained by their viewpoint proposal method,
which leads to larger re-planning times when the scale of the
map grows.

We also report the time for the initial map processing.
The times for the analysis and clustering steps depend on
the size and resolution of the map. The global planning step
depends on the number of generated clusters and the number
of agents. We show the results in Table II in the smallest
and biggest maps: Bunker and Zurich. The time is always



Fig. 6: Extract of the moving average for the velocity during the simulation in Loarre
Castle for Ours and [2]. While traditional methods stop to capture a view and plan
the next goal, our method is able to keep flying at higher speed.

TABLE III: For each method, we report the RMSE of the reconstructions and the
extent of the coverage for a threshold of 0.1 meters at the completion time of the
experiment as reported in Table I. Recon. indicates the metrics from a reconstruction
using only the images captured during the reconnaissance flights.

Method Bunker Wood Bridge Loarre Castle Zurich

Kompis et
al. [2] (single)

0.085 m 0.068 m 0.049 m 0.074 m

75.6 % 55.63 % 42.58 % 9.13 %

Ours (single)
0.027 m 0.043 m 0.048 m 0.09 m

97.35 % 93.23 % 97.92 % 95.96 %

Kompis et
al. [2] (multi)

0.076 m 0.074 m 0.059 m 0.087 m

89.10 % 60.29 % 50.20 % 20.90 %

Recon.
(ablation)

0.04 m 0.039 m 0.063 m 0.147 m

84.75 % 62.93 % 88.54 % 75.34 %

Ours (multi)
0.026 m 0.039 m 0.043 m 0.086 m

96.36 % 92.37 % 98.64 % 97.34 %

below one minute which is negligible for the total time of
the mission.

Fig. 7: Comparison of the coverage quality after the reconnaissance flight (left) and
the successive flights (right). Occluded regions under the Bunker are not reconstructed
(up). In addition, even though vertical surfaces such as Loarre’s walls are covered,
their observation yields poor scene reconstructions (down).

B. Coverage and surface quality

Besides the efficiency of our planner, we have also as-
sessed that the coverage and the quality of the views are
correct. The images captured from the monocular cameras
of the drones have been used to generate 3D reconstructions
of the scenes using COLMAP. The reconstructed models are
compared with the ground-truth (GT) virtual models. We
consider that a point in the GT surface is covered if the

closest distance to a point from the reconstructed mesh is
below a threshold of 0.1m. Our metric is the percentage of
covered points in the ground-truth mesh. We also measure the
accuracy of the reconstruction as the RMSE of the distances
from the reconstructed model to the ground truth mesh.
While we are mainly interested in the first two metrics,
the accuracy indicates that our method can be used to
obtain accurate 3D reconstructions of the environment. We
also report the coverage, its quality, and the reconstruction
accuracy from the Voxblox generated mesh of the pipeline in
[2]. The voxel size for their reconstruction is the same they
use in their experiments, 0.1, which is the threshold used
for considering a point covered in our setup. The results are
reported in Table III. For Kompis et al., the reported value
is the coverage achieved by the completion time of our plan.

The reconnaissance flight (Recon.) is able to cover a large
amount of surface. However, the coverage quality is low,
yielding poor scene reconstructions (Figure 7). After the
execution of our pipeline, we obtain images that ensure good
observation of surfaces. We can see similar coverage for the
case of single and multi-drone approaches as the drones
traverse similar sweeps. Compared to Kompis et al., our
system is able to achieve more coverage in less time. Notice
how the coverage difference is increased with the size of the
map. Qualitative results are shown in Figure 8 for all the
maps. It might be seen that our pipeline misses some areas
with difficult accessibility. In return, it is able to cover the
overall scene in a fraction of the time. This demonstrates
that a substantial amount of information can be extracted
from the map by planning more efficiently and shows the
advantage of using prior knowledge about the scene structure
for planning.

V. CONCLUSION

In order to improve the efficiency in large-scale deploy-
ments of drones for visual coverage, this article proposes
a multi-stage planner that generates long linear trajectories
(sweeps) that observe a large amount of surface in a continu-
ous motion. We accomplish this by leveraging a prior coarse
map to cluster these surfaces and improve the posterior
coverage trajectories. This approach is generalized to an arbi-
trary number of drones, managing the workload distribution
between them in order to minimize the completion time of
the mission. Comparison with alternative approaches to the
exploration of scenes shows the advantages of our pipeline
for large scenarios, where the overall coverage of the scene
in a minimal amount of time is necessary. We show that a
single run of our pipeline is able to obtain coverage of scenes
faster and with great accuracy.

Future work will explore the integration of the proposed
pipeline in a real platform, including a mapping framework
to ensure safe local navigation and additional coordination
systems to deploy a team of autonomous drones in large-
scale environments. Besides, exploring the extension to a
team of heterogeneous aerial drones (i.e., fixed-wing UAVs
for the nadir flight) could improve even further the efficiency
of the system by allocating each to different task modalities.



Kompis et al. [2] (single) Ours (single) Kompis et al. [2] (multi) Ours (multi)

Fig. 8: Qualitative comparison of the coverage obtained for all the maps considering a fixed time. In green are points in the ground truth (GT) mesh that have been covered during
the mission, while red indicates the opposite. Our planner is able to obtain more coverage of the overall scene, despite missing some some details in inaccessible/non-directly
visible surfaces. Detailed numbers of the coverage and accuracy of the reconstructions are provided in Table III.
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