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Abstract 

Alkylated furan derivatives, such as 2,5-dimethylfuran (2,5-DMF) and 2-methylfuran (2-MF), 

have shown, at laboratory scale, a relatively high tendency to form soot. However, soot 

emissions from diesel engines are lower when diesel/2,5-DMF and diesel/2-MF blends are 

used. This could indicate that the soot produced in the conversion of these compounds has 

high reactivity towards some gases present within the combustion chamber, reducing soot 

emissions in the exhaust gas. In this context, a study on the reactivity and the characterization 

of the soot generated in the pyrolysis of 2,5-DMF and 2-MF, under different experimental 

conditions, was performed in an effort to increase the understanding of the reactivity and 

physicochemical properties of the soot originated in the conversion of these furan derivatives. 

The soot samples analyzed were obtained in previous works using different concentrations of 

the alkylated furan derivatives (5000, 7500 and 15000 ppm of 2,5-DMF, and 9000 and 18000 

ppm of 2-MF), and at different temperatures (1275, 1375 and 1475 K). The reactivity 

experiments were performed at 1275 K with 500 ppm of O2 and 2000 ppm of NO, in a tubular 

quartz flow reactor. Different instrumental analysis techniques were employed to characterize 

the soot samples and to try to link the soot reactivity with its physicochemical properties. The 

dependence of soot reactivity and properties with soot formation conditions, namely 

temperature and inlet fuel concentration, is studied. 
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1. Introduction 

Diesel engines are known to be an important source of soot emissions due to the high working 

temperature and the poor mixing in the fuel-rich chamber areas. A possible strategy to control 

soot emissions requires the utilization of alternative fuels, such as biofuels obtained from 

biomass by biorefinery processes. 

2,5-dimethylfuran (2,5-DMF, C6H8O) and 2-methylfuran (2-MF, C5H6O) are alkylated furan 

derivatives. These compounds have been proposed in the literature for fuel reformulation. 

Their conversion has been largely studied in engines and at laboratory-scale. Alexandrino et 

al.1,2 studied the capacity to form soot of 2,5-DMF and 2-MF through pyrolysis experiments in a 

tubular flow reactor and found that these compounds  have a relatively high sooting tendency. 

In the 2-MF pyrolysis2, C4-species were found to play a significant role in the formation of 

intermediates that yield polycyclic aromatic hydrocarbons (PAH), well known as soot 

precursors. In the 2,5-DMF pyrolysis1, the high production of cyclopentadienyl radical (C5H5) 

can directly form naphthalene. Moreover, Sirignano et al.3 addressed the sooting tendency of 

furans by laser induced incandescense (LII) and laser induced fluorescence (LIF). Their results 

indicated that 2-MF had a greater capacity to originate soot particles than 2,5-DMF, although 

different combustion conditions may invert this trend. They also found that the 2-MF 

decomposition leads to the formation of large amounts of C4-species, which consequently 

increases the production of benzene and PAH. In the same way, they indicated that one of the 

main products of the decomposition of 2,5-DMF is phenol, which increases the production of 

cyclopentadiene and, therefore, the naphthalene formation. 

These results, together with others obtained in several works4-9, point out 2,5-DMF and 2-MF 

as non-environment-friendly renewable fuels due to their relatively high abilities to form soot 

precursors. Nevertheless, the use of these alkylated furan derivatives in diesel fuel blends has 

been shown to effectively reduce particulate matter10-13. These works were performed in 
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engines with diesel/2,5-DMF or diesel/2-MF blends, and the authors often state that the low 

cetane number of these fuels is the most important factor in reducing soot emissions, because 

it lengthens the ignition delay time, which results in a greater premixed combustion. 

Moreover, the capacity of these furans to reduce soot formation has also been verified at 

laboratory-scale, in the study carried out by Sirignano et al.14 on the conversion of 2,5-DMF 

and 2-MF in premixed ethylene-air flames at atmospheric pressure. 

These apparently contradictory facts (high ability of the furan compounds to form soot 

precursors and capacity to reduce soot emissions) can also be related to physical and chemical 

properties of soot that may favour its reactivity. In fact, a recent study carried out in a 

diffusion flame15 showed that the use of diesel/2,5-DMF blends reduced soot emissions and 

increased the reactivity of soot particles towards O2. 

In this context, it is important to study the soot reactivity with gases present in the combustion 

chamber of an engine, as for example O2 and NO. The reactivity of soot with NO is of special 

interest, since both pollutants could be reduced simultaneously within the combustion 

chamber, and their emissions in the exhaust gases could decrease. Therefore, this work 

addresses the experimental reactivity study towards O2 and NO of soot samples obtained in 

our previous studies on the pyrolysis of 2,5-DMF1 and 2-MF2 under different inlet fuel 

concentration and temperature conditions. Moreover, different instrumental techniques have 

been used in order to characterize selected soot samples, because several works performed, 

both at laboratory scale15-20 and in engines21-26, have shown that the soot oxidation rate 

depends on its properties. In this way, the aim of this work is to provide information on the 

reactivity and physicochemical properties of the soot produced in the conversion of these 

alkylated furan derivatives. 
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2. Material and methods 

2.1. Soot formation and collection 

The soot samples were obtained in our previous works on the pyrolysis of 2,5-DMF1 and 2-MF2. 

The reaction system consists of an injection zone, into which the gases are fed, and a tubular 

quartz flow reactor, with a mobile probe that allows us to determine the volume of the 

reaction zone. In the experiments corresponding to this work, the reaction zone has a 

diameter of 45 mm and its length is 160 mm. The inlet total gas volumetric flow rate is 1 L 

(STP)/min. Therefore, the gas residence time is given as tr (s) = 4168/T (K). The soot produced 

in each experiment was collected using a quartz fiber filter, with a pore diameter lower than 1 

μm, located at the outlet of the reaction system. The soot amount collected in the filter (soot 

A) was obtained by the difference between the weight of the filter after and before the soot 

collection. Furthermore, when each experiment finished, the soot that remained on the walls 

of the reactor was also recovered (soot B). Thereby, the total amount of soot was the sum of 

soot A and soot B. Table 1 shows the experimental conditions employed in the formation of 

the soot samples for which reactivity experiments and characterization were performed. The 

corresponding nomenclature is also shown. 
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Table 1. Conditions of formation of soot samples for the reactivity study towards O2 and NO 

and for their characterization. “X” indicates the soot samples used for the reactivity 

experiments and characterization. 

 
Furan 

compound 

 
Set 

 Soot formation conditions Reactivity Characterization 

Nomenclature [Furan 
compound]in  

(ppm) 

[Carbon]in 
(ppm) 

T 
(K) 

  

2,5-DMF 1 2,5DMF5-1275  
5000 

 
30000 

1275 X X 
 2 2,5DMF5-1375 1375 X  
 3 2,5DMF5-1475 1475 X  

4 2,5DMF7-1275  
7500 

 

 
45000 

1275 X X 
5 2,5DMF7-1375 1375 X  
6 2,5DMF7-1475 1475 X  

7 2,5DMF15-1275  
15000 

 
90000 

1275 X X 
8 2,5DMF15-1375 1375 X X 

 9 2,5DMF15-1475 1475 X X 

2-MF 10 2MF9-1275  
9000 

 
45000 

1275 X  
 11 2MF9-1375 1375 X  
 12 2MF9-1475 1475 X  

13 2MF18-1275  
18000 

 
90000 

1275 X X 
 14 2MF18-1375 1375 X X 
 15 2MF18-1475 1475 X X 

 

2.2. Soot reactivity 

The soot reactivity measurements, towards O2 and NO, have been carried out in a set-up that 

has been used in previous works27-29. Schemes of the set-up and the reactor are presented in 

the supplementary material, Figure S1. The process is discontinuous for the solid and 

continuous for the gas. Briefly, the soot sample was mixed with silica sand and introduced in a 

tubular quartz reactor. The concentrations of both O2 and NO were 500 and 2000 ppm 

respectively, as used in previous works of our group16,30. The reaction temperature and the gas 

volumetric flow rate were 1275 K and 1 L (STP)/min, respectively. The concentrations of CO, 

CO2, and NO, the latter when applicable, were continuously analyzed in the output gas stream 

using ABB infrared analysers (uncertainty measurements below ±5%). 
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Previously to perform the reactivity experiments and characterization, the soot samples were 

conditioned by heating treatment for one hour in a N2 atmosphere, at the soot formation 

temperature to avoid possible structural changes30. 

The carbon complete conversion time ( ) value is used to analyze the soot reactivity. Thus, 

the lower the  value, the higher the soot reactivity. The values are determined through Eq. 

1, which relates the carbon conversion (Xc) and reaction time (t). In this way,  value is 

calculated as the reverse of the slope obtained from the representation of the   1/3
C1 (1 X )

values versus the corresponding reaction time values.  



t
XC  3/1)1(1      Eq. 1 

This equation corresponds to a non-catalytic gas-solid reaction using Shrinking Core Model for 

decreasing size particles and chemical reaction control and has already been used in previous 

soot reactivity studies16, 31-33. 

The carbon conversion is calculated using the following equations31-33: 

0

0
)(

c

cc

c
W

WW
X


      Eq. 2 




 
0

2

3

0
)(10 dtCCFMW COCOTcc    Eq. 3 

  

t

COCOTccc dtCCFMWW
0

2

3

0
)(10    Eq. 4 

Where, Wc0: initial reactive carbon weight (mg), Wc: carbon weight remaining in the reactor at 

a given time (mg), COC  and 
2COC : CO and CO2 concentrations (ppm) at the reactor outlet, 

respectively, Mc: carbon atomic weight (g/mol), FT: outlet gas flow (mol/s). 



 


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The carbon conversion results versus reaction time (Xc=f(t)) are presented in the 

supplementary material (Figures S2 and S3). 

The experimental procedure followed to perform the experiments, as well as the data analysis 

method for the calculation of the  value, have been applied in similar earlier studiese.g.16, 31-33. 

In the present work, the relative standard deviation (RSD) values, also known as coefficient of 

variation (CV), and defined as the ratio of the standard deviation to the mean value, are shown 

here for given experiments. For reactivity tests with NO for soot samples appointed as 2,5-

DMF5-1475 and 2,5-DMF7-1475 in Table 1, the results obtained have been: 

- Soot sample 2,5-DMF5-1475.  values: 17903 s and 18228 s, standard deviation: 229.8 s, 

mean value: 18065 s , relative standard deviation or coefficient of variation: 1.3 %. 

- Soot sample 2,5-DMF7-1375.  values: 16296 s and 17000 s, standard deviation: 497.8 s, 

mean value: 16648 s , relative standard deviation or coefficient of variation: 3 %. 

 

2.3. Physicochemical characterization of soot 

The characterization of soot by different instrumental techniques presents a clear interest, 

since it can provide information on the relationship between soot reactivity and its properties. 

Thus, elemental analysis (composition), nitrogen physical adsorption (surface area), 

Transmission Electron Microscopy (TEM) (morphology), X-Ray Diffraction (XRD) (crystallite 

structure), and Raman spectroscopy (degree of order) have been employed to characterize 

selected soot samples. The selected soot samples characterized are indicated in Table 1. 

 

3. Results and discussion 

3.1. Soot reactivity 

Figure 1 shows the τ values, in seconds, obtained in the experiments of interaction of soot with 

O2 and NO at 1275 K, for soot samples produced in the pyrolysis of different inlet fuel 

concentrations and temperatures. A Table with all the  values is also presented in the 








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supplementary material (Table S1). It is noted that the soot reactivity is higher with O2 than 

with NO, although the oxygen content in NO is higher than in O2 (2000 vs. 1000 ppm of oxygen 

atoms). This result coincides with those from literature27, 30, 34, 35. 

It is observed that, for a given furan compound and a fixed inlet concentration, the higher the 

soot formation temperature, the lower the soot reactivity (τ value increases). Moreover, for a 

fixed temperature, the inlet concentration of the furan compound does not significantly 

influence the soot reactivity, except for the soot produced in the pyrolysis of 5000 ppm of 2,5-

DMF at 1275 K. In this case, the reactivity towards O2 and NO is slightly higher (  value is 

lower), with respect to other furan concentrations. 
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Figure 1. τ values (s) obtained in the reactivity experiments towards O2 and NO at 1275 K, for 

samples of sets 1-15 in Table 1. 

 


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A comparison between the  values obtained, both with O2 and NO, for the soot samples 

formed from pyrolysis of the two furan derivatives and selected for characterization (sets 7-9, 

13-15 in Table 1) versus soot formation temperature is presented in Figure 2. For a given 

temperature, the values obtained in the reactivity experiments with NO are very similar for 

the two compounds (around 11300 s for 1275 K, 17200 s for 1375 K, 18700 s for 1475 K), 

which confirms that the most influential variable is the soot formation temperature. Similar 

conclusions are obtained for the reactivity with O2 for 1375 and 1475 K (around 9300 and 

10000 s, respectively). The exception is for 1275 K, with significant differences in the values 

(9285 s for 2,5-DMF and 6996 s for 2-MF). 
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Figure 2.  values versus soot formation temperature (Sets 7-9, 13-15 in Table 1). 

 

It is worth mentioning that the soot samples produced in the pyrolysis of 2,5-DMF and 2-MF 

are more reactive (lower  value) than the soot samples produced in the pyrolysis of other 

oxygenated compounds with low tendency to form soot, such as DMC32 and DMM33. This fact 

is clear for the soot-NO interaction. Hence, it is possible that, although 2,5-DMF and 2-MF have 

a relatively high tendency to form soot, this soot could have properties that favour its 

reactivity, as it has been pointed out in the literature. For instance, Gogoi et al.15 in their study 













11 
 

on diffusion flame of diesel and diesel/2,5-DMF blends, indicated that the soot produced from 

diesel/2,5-DMF blends could be oxidized more rapidly in the bulk gas, and then, soot emissions 

would be lower. The same could be applied for 2-MF. 

 

3.2. Physicochemical characterization of soot 

Elemental analysis 

Table 2 presents the results of the elemental analyses performed. Carbon is the principal 

component of soot. The atomic ratio of carbon to hydrogen (C/H) can be used to analyze the 

material reactivity1,2. For a fixed inlet fuel concentration, the lower the soot formation 

temperature, the lower the C/H ratio (lower maturity, and the reactivity could be promoted). 

This trend is consistent with reactivity measurements (Figure 1 and Table S1), where the lower 

the soot formation temperature, the greater the soot reactivity (the  values decrease). On 

the other hand, at a fixed temperature, there is no clear trend between the C/H ratio and the 

inlet fuel concentration. 

Table 2. Content of C and H, and C/H ratio of the soot samples. 

Furan 
compound 

Set 
according  
to Table 1 

Sample C 
(wt%) 

H 
(wt%) 

C/H 
(molar 
basis) 

2,5-DMF 1 2,5DMF5-1275 93.18 0.27 28.76 
 4 2,5DMF7-1275 96.91 0.18 44.87 
 7 2,5DMF15-1275 98.39 0.23 35.65 
 8 2,5DMF15-1375 98.63 0.12 68.49 
 9 2,5DMF15-1475 98.01 0.09 90.75 

2-MF 13 2MF18-1275 95.08 0.27 29.35 
 14 2MF18-1375 99.00 0.09 91.67 
 15 2MF18-1475 98.96 0.06 137.44 

 

Nitrogen physical adsorption 

Specific surface area (SBET) of the soot samples was determined by nitrogen physical 

adsorption. Large specific surface area improves the contact between the gas oxidizer 

molecule and the particle promoting the oxidation reactions36-38. The results are reported in 


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Table 3. The soot samples with the highest specific surface area are those from the pyrolysis at 

1275 K of 2,5-DMF and 2-MF (samples 2,5DMF5-1275, 2,5DMF7-1275, 2,5DMF15-1275, and 

2MF18-1275). In this way, the SBET values are in accordance with the trend of the reactivity 

experiments, i.e., for a given fuel, the soot samples produced at the lowest temperature and 

with the lowest inlet fuel concentration are more reactive. 

 

Table 3. Specific surface area (SBET) of the soot samples produced in the  

pyrolysis of 2,5-DMF and 2-MF. 

Furan 
Compound 

Set according  
to Table 1 

Sample SBET 
(m2/g) 

2,5-DMF 1 2,5DMF5-1275 128.2 
 4 2,5DMF7-1275 66.7 
 7 2,5DMF15-1275 60.2 
 8 2,5DMF15-1375 30.7 
 9 2,5DMF15-1475 33.3 

2-MF 13 2MF18-1275 110.9 
 14 2MF18-1375 35.3 
 15 2MF18-1475 38.3 

 

The comparison between the SBET values obtained for the soot samples, formed from the 

pyrolysis of the two compounds, versus soot formation temperature is presented in Figure 3. 

For a given temperature, the SBET values are very similar for both compounds, except for 1275 

K, being higher the value corresponding to 2-MF, which causes its higher reactivity at this 

temperature (see Figure 2). 
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Figure 3. Specific surface area (SBET) of the soot samples versus soot formation temperature 
(Sets 7-9, 13-15 in Table 1). 

 

Transmission Electron Microscopy (TEM) 

Through the TEM images, the diameters of the soot samples were determined, and they were 

found to be close to those of the secondary particles, 100-1000 nm. As an example, Figure 4 

presents the TEM image of the 2,5DMF15-1475 soot sample (set 9 in Table 1). 

 

 

 

 

 

 

Figure 4. TEM image of the 2,5DMF15-1475 sample (set 9 in Table 1). 
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It is possible to observe the secondary particles that form the typical chain-like agglomerates. 

These secondary particles are formed by several primary particles composed of more or less 

ordered and amorphous domains. 

 

X-Ray Diffraction (XRD) 

Figure 5 shows, as an example, the X-ray diffractogram for the 2,5DMF15-1475 soot sample. 

The (002), (100) and (110) reflections of graphite are characterized by the peaks near 2θ = 24o, 

2θ = 44o and 2θ = 80o, respectively. The background intensity indicates the presence of 

amorphous carbon (non-aromatic carbon)39. The asymmetry in the (002) band suggests the 

occurrence of another band (ϒ) around 2θ = 20o, which indicates the presence of saturated 

structures, such as aliphatic side chains, attached to the edge of the crystallites16, 28, 40, 41. Thus, 

it can be concluded that the soot samples contain crystalline and amorphous carbon40. 

 

 

 

 

 

 

 

 

 

Figure 5. X-ray diffractogram of the 2,5DMF15-1475 sample (set 9 in Table 1). 

 

Table 4 shows the values of the most important structural parameters of interest determined 

from the X-ray diffractogram, such as the interlayer spacing (d002), the crystallite height (LC) and 

width (La), and the number of layers in a crystallite (k) (see references 32 and 33 for details in 
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the calculations). Table 4 also reports the aromaticity of soot samples, fa, which can be 

calculated according to Eq. 5. 

 

)()002(

)002(

AA

A
fa


     Eq. 5 

 

A(002)  is the area under the (002) band, and is equal to the number of aromatic carbon atoms 

per structure unit, and A(γ) is the area under the (γ) band, and is equal to the number of 

saturated carbon atoms per structure unit41. To determine the values of A(002) and A(γ), both 

(002) and (ϒ) bands were fitted with two Gaussian functions. 

 

Table 4. Structural parameters of the crystalline structure of the soot samples. 

Furan 
compound 

Set 
according to 

Table 1 

Sample d002 
(Å) 

Lc 
(Å) 

La 
(Å) 

k 
(layers) 

fa 

2,5-DMF 1 2,5DMF5-1275 3.60 14.29 44.12 3.97 0.84 
 4 2,5DMF7-1275 3.56 17.38 39.95 4.88 0.80 
 7 2,5DMF15-1275 3.51 24.94 40.39 7.11 0.85 
 8 2,5DMF15-1375 3.53 25.04 40.65 7.09 0.78 
 9 2,5DMF15-1475 3.53 25.40 49.46 7.19 0.80 

2-MF 13 2MF18-1275 3.63 14.14 30.50 3.90 0.89 
 14 2MF18-1375 3.54 23.30 42.50 6.59 0.72 
 15 2MF18-1475 3.52 27.62 47.91 7.84 0.76 

 

It is observed in Table 4 that for all soot samples, the d002 value is higher than 3.35 Å, which is 

the value corresponding to pure graphite. This suggests that there is a lower order due to the 

weaker forces of attraction between the carbon layers. The LC value is known to be directly 

related to the degree of order42. Therefore, it can be noted that as the soot formation 

temperature increases, the degree of order increases and, then, the soot reactivity decreases. 

This is in agreement with what is observed in reactivity experiments (Figure 1 and Table S1). In 

the same way, for a fixed soot formation temperature of 1275 K, the lowest LC value 
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corresponds to the soot obtained with the lowest inlet fuel concentration. This is also 

consistent because this soot has a higher reactivity. 

It is known that the soot reactivity decreases as the La value increases43. Observing Table 4, the 

trend of the La values, with respect to the soot formation temperature, coincides with the 

reactivity trend. The number of layers in a crystallite (k) seems to decrease with the decrease 

in temperature and inlet fuel concentration. 

With respect to the aromaticity, the more aromatic (higher fa value), the less reactive is the 

material16. There is no clear trend between the fa value in Table 4 and the soot formation 

conditions. 

The values of LC and La corresponding to the soot samples from the pyrolysis of 2,5-DMF and 2-

MF versus soot formation temperature are compared in Figure 6. For a given temperature, in 

general, these values are very similar for the two compounds except for 1275 K, being lower 

the values corresponding to 2-MF, which is related to a higher reactivity. 
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Figure 6. Crystallite height (LC) and width (La) of the soot samples versus soot formation 

temperature (Sets 7-9, 13-15 in Table 1). 
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It has also been considered interesting to relate the  values with LC and La ones (Figures 7). 

Relatively good correlations are obtained for the soot samples produced from both furan 

compounds, except the results corresponding to the reactivity with NO of the soot formed 

from the 2,5-DMF pyrolysis at 1275 K. 
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Figure 7.  values versus crystallite height (LC) and width (La) of the soot samples  

(Sets 7-9, 13-15 in Table 1). 

 

Raman spectroscopy 

The five-curve deconvolution model proposed by Sadezky et al.44 has been employed in the 

present work in order to determine the bandwidth (FWHM), band intensity, and peak position 




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of the bands G, D1, D2, D3, and D4. All these bands, except D3, have been modeled by a 

Lorentzian band shape. A Gaussian band shape has been used for the D3 band 43, 45-49. Figure 8 

shows, as an example, the band deconvolution of the Raman spectrum of the 2,5DMF15-1475 

soot sample. 

Table 5 shows the presence of the defects (disordered graphitic lattices), calculated from the 

ID1/IG ratio, and the amorphous carbon content in soot particles, calculated from the ID3/IG 

ratio22, 50, 51. In general, for a fixed inlet concentration of a given fuel, the lower the soot 

formation temperature, the higher the ID1/IG and ID3/IG ratios. This means that the order is 

lower and the amorphous character is higher (i.e. the reactivity increases) as the soot 

temperature formation decreases, which is consistent with the reactivity results (Figure 1 and 

Table S1). This is in agreement with what is observed in literature50, related to the fact that the 

lower the combustion temperature at which soot is formed, the lower the degree of 

graphitization, and, consequently, the higher the active surface available for further oxidation. 

 

 

 

 

 

 

 

 

 

Figure 8. First-order Raman spectrum of the 2,5DMF15-1475 soot sample (set 9 in Table 1) 

with the five-curve deconvolution model proposed by Sadezky et al.44 

 

Raman shifft (cm-1) 
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Table 5. ID1/IG and ID3/IG ratio values of the soot samples. 

Furan compound Set according to 
Table 1 

Sample ID1/IG ID3/IG 

2,5-DMF 1 2,5DMF5-1275 2.58 0.64 
 4 2,5DMF7-1275 2.64 0.71 
 7 2,5DMF15-1275 2.70 0.65 
 8 2,5DMF15-1375 2.48 0.65 
 9 2,5DMF15-1475 2.37 0.38 

2-MF 13 2MF18-1275 2.56 0.64 
 14 2MF18-1375 2.34 0.64 
 15 2MF18-1475 2.22 0.40 

 

The values of ID1/IG and ID3/IG corresponding to the soot samples formed from 2,5-DMF and 2-

MF for different soot formation temperatures are compared in Figure 9. Again, for a given 

temperature, the values are very similar for both furan derivatives. 
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Figure 9. ID1/IG and ID3/IG values of the soot samples versus soot formation temperature (Sets 

7-9, 13-15 in Table 1). 

 

It has also been considered interesting to relate the  values with the values of ID1/IG and ID3/IG 

corresponding to the soot samples produced from both compounds, Figure 10. In general, a 
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relatively good correlation is obtained for ID1/IG values, while more dispersion is obtained for 

ID3/IG values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.  values versus ID1/IG and ID3/IG values of the soot samples  

(Sets 7-9, 13-15 in Table 1). 

 

4. Conclusions 

A study on the reactivity, towards O2 and NO, of soot samples produced in the pyrolysis of 2,5-

DMF and 2-MF under different experimental conditions, was performed in a tubular quartz 

flow reactor at 1275 K. Additionally, in order to link the reactive character of the soot samples 

with their physicochemical properties, selected soot samples were analyzed using different 

instrumental techniques. 



2.00 2.25 2.50 2.75 3.00
0

5000

10000

15000

20000

25000

30000

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5000

10000

15000

20000

25000

30000

                   2,5-DMF      2-MF
soot-O2                 

soot-NO                 

 

 




s
)

ID1/IG

 

 




s
)

ID3/IG



21 
 

According to the reactivity experiments, soot is more reactive to O2 than to NO, being more 

reactive as the temperature of the soot formation decreases. In general, no appreciable effect 

of the inlet fuel concentration was found on the soot reactivity. An exception was observed for 

the soot produced in the pyrolysis of the lowest 2,5-DMF concentration and temperature 

(5000 ppm and 1275 K) for which the highest reactivity was obtained. This soot sample 

presents the lowest C/H ratio, the highest specific surface area, the lowest LC and La values 

(obtained by XRD) and significant ID1/IG and ID3/IG values (obtained by Raman spectroscopy). 

These features are consistent with the higher reactivity of this soot sample. The 

physicochemical analyses showed that as lower the C/H ratio and the order degree are, and 

higher the surface area and the amorphous nature are, the more reactive the soot. In general, 

relatively good correlations are observed between the  values and the soot characterization 

parameters. The soot samples from the pyrolysis of 2,5-DMF and 2-MF appear to have a higher 

reactive character than those from the pyrolysis of other oxygenated compounds with lower 

sooting tendency, such as dimethylcarbonate and dimethoxymethane, especially towards NO. 
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