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ABSTRACT
In this paper a new algorithm for segmentation of the foveal avascular zone in optical coherence tomography angiography im-
ages of the superficial capillary plexus is presented and evaluated. The algorithm is based on convolutional techniques, and for 
evaluation it has been compared with a collection of manual segmentations. Besides its performance, the main novelty presented 
is the ability to distinguish the purely avascular zone from the transitional environment whose importance has been recently 
pointed out. Its capability has been tested on images of patients with different types of diabetes mellitus, obtaining error rates be-
tween 1% and 1.5%. In addition, statistical data is shown for the segmented areas (including the transition zone, which had never 
been studied before) as a function of the type of diabetes. Moreover, a linear trend in outer and inner axis ratios is also observed. 
Overall, the algorithm represents a new approach in the analysis of optical coherence tomography angiography images, offering 
clinicians a new and reliable tool for objective foveal avascular zone segmentation of the superficial capillary plexus. Both the 
code and the dataset used are also made public in the cited repositories.

1   |   Introduction

Image acquisition plays a fundamental role in the diagnosis of 
ocular diseases process. A variety of techniques are employed 
to capture detailed images of ocular structures, with optical 
coherence tomography (OCT) standing out as a widely adopted 
approach. This non-invasive technique provides high-resolution 
cross-sectional images of internal ocular structures, enabling 
detailed visualization of retinal layers, including critical areas 
such as the fovea. In recent years, optical coherence tomogra-
phy angiography (OCTA) has emerged as a powerful imaging 
technique that enables the visualization of retinal vascular plex-
uses without the need for contrast dye injection, allowing for a 
detailed assessment of microvascular structures and blood flow 
dynamics in the retina. OCTA has become an essential tool in 
the diagnosis and monitoring of various retinal and choroidal 
diseases, offering a safer and more accessible alternative [1].

As OCT scans are three-dimensional, all the images obtained 
are, in fact, different projections of the scanned volume. 
Depending on which axis is used to make the projection, the 
obtained image is classified as A-scan or B-scan. A-scan im-
ages consist of transversal retinal planes, and are ideal for 
visualization of the Foveal Avascular Zone (FAZ) and the sur-
rounding capillaries, while B-scans show in-depth slices of the 
eye, making them useful for visualization of the different lay-
ers that make up the tissues. Both A-scans and B-scans can 
be retrieved at different depths, obtaining different projection 
results. In our case, we limited our analysis to A-scan images 
of the Superficial Capillary Plexus (SCP), so, from now on, all 
mention to any OCT scans refer to A-scans of this particular 
region of the eye fundus. The algorithm will be calibrated on 
this type of image; therefore, SCP images are the main scope 
of this proposal, eliminating the need to retrieve inner retinal 
slab or DCP scans.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any 
medium, provided the original work is properly cited and is not used for commercial purposes.

© 2026 The Author(s). International Journal of Imaging Systems and Technology published by Wiley Periodicals LLC.

https://doi.org/10.1002/ima.70282
https://doi.org/10.1002/ima.70282
mailto:
https://orcid.org/0009-0000-6038-0947
https://orcid.org/0000-0003-0349-9997
https://orcid.org/0000-0003-2710-1875
https://orcid.org/0000-0002-6048-310X
mailto:760104@unizar.es
http://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fima.70282&domain=pdf&date_stamp=2026-01-02


2 of 9 International Journal of Imaging Systems and Technology, 2026

Despite the widespread application of OCT in ophthalmology, 
particularly in diagnosing a broad range of retinal pathologies, 
the precise and objective delineation of specific retinal structures, 
such as the FAZ, remains a significant challenge. One of the main 
limitations is the lack of standardized guidelines for FAZ segmen-
tation, which introduces inconsistencies in analysis and reduces 
diagnostic reliability. This issue extends beyond image processing 
concerns, as FAZ segmentation plays a crucial role in the early 
detection and monitoring of various ocular diseases, including 
diabetes mellitus and its retinal complications, and glaucoma. 
Currently, FAZ segmentation is predominantly performed man-
ually by expert clinicians, a process that is time-consuming and 
subject to interobserver variability. Furthermore, the absence of a 
universally accepted segmentation protocol hinders repeatability 
and adds a subjective component to diagnostic assessments.

Several computational approaches have been proposed for OCT-
based FAZ segmentation, ranging from edge-detection filters to 
morphological operations. For instance, in a study carried out by 
Schottenhamml et al. [2], the segmentation process is based on 
identifying the vessels surrounding the FAZ. Another approach, 
based on the method presented by Jia et al. [3], employs a decor-
relation algorithm, which enhances the swept-source OCT tech-
nique by reducing phase-induced noise. Alternative methods 
also exist, one of which uses a shape that is gradually modified 
[4]. A minimal area of one pixel is first initialized in the centre of 
the image, which is progressively augmented until a boundary 
on the intensity levels is found.

Recent advancements have introduced deep learning techniques 
to enhance the accuracy and efficiency of FAZ segmentation. For 
example, Heisler et al. developed a deep neural network for single-
zone automatic quantification of FAZ parameters and perifoveal 
vessel density [5]. Similarly, Díaz et al. proposed a fully automatic 
system combining image processing techniques to identify and 
segment the whole FAZ region precisely, achieving a high correla-
tion with manual measurements [6]. Moreover, Wang et al. intro-
duced a deep learning-based quality assessment and segmentation 
system, which processes OCTA images to assess quality and seg-
ment the FAZ area, facilitating clinical diagnosis and research [7].

Thus, in this context, we have recently presented a new seg-
mented image database [8] along with a rigorous definition 
of the FAZ, which discerns between inner and external zones 
[9]. Building upon this framework, the present study aims to 
develop an automatic segmentation algorithm based on these 
criteria. The proposed method seeks to enhance segmentation 
accuracy and consistency, facilitating applications such as large-
scale screening in at-risk populations and providing a reliable 
tool for clinical and research purposes.

2   |   Methods

The main method used in the algorithm is convolution, which 
is a fundamental mathematical operation with wide-ranging 
applications in fields such as signal processing and machine 
learning. At its core, convolution involves the integration of two 
functions to produce a third function that characterizes how one 
of them interacts with the other as it is shifted and overlapped. 
This operation plays an important role in understanding and 

manipulating data across various domains. In our case, convolu-
tion is utilized to recognize the pattern of the vessels surround-
ing the FAZ. Given a function defined in a 2D space, labeled 
f (x, y), and a convolutional kernel, labeled g(x, y), the convolu-
tion (f∗g)(x, y) is defined as follows

where (∗) denotes convolution. In the case of discrete functions 
(such as images, where the minimum step unit is a pixel), the in-
tegral is replaced by the sum over all pixels in the image. There 
are several properties associated with the convolution operation, 
such as the distributive property, which is particularly relevant 
and can be expressed as,

This property allows for the composition of multiple kernels into 
a single mask, reducing the need to perform multiple convolu-
tions separately. Another important property of convolution is 
commutativity,

In our case, convolution is used to detect the pattern depicted 
in the kernel across the OCTA image of the SCP. The result of 
the convolution of two images can be understood as the over-
lapping of the kernel g(x, y) across the input image f (x, y). That 
is, given an input image containing various patterns and a ker-
nel depicting the particular pattern to be detected, the resulting 
convolution produces an output image where the desired feature 
appears with high intensity, while unwanted patterns are sup-
pressed (Figure 1). Therefore, we need to adjust the kernel size 
to optimize the detection of specific structures.

In the first case, the most prominent feature in the output is the 
horizontal line, as it follows a pattern that matches the kernel (hor-
izontal line), whereas the vertical line tends to blur and disappear. 
In the second case, where the kernel is rotated to detect vertical 
lines, the reverse occurs. Finally, in the third case, the kernel is 
a sum of the previous two, and the resulting image confirms the 
expected behavior according to the distributive property.

2.1   |   Vascularity in the Fovea

Before proposing a segmentation algorithm, it is important to 
first describe the structural characteristics of the SCP. In general 
terms, the surrounding area of the fovea can be divided into two 
distinct regions: the vascularized area and the FAZ. However, 
as stated by our research group [9], the vascularized area is as-
sumed to extend slightly beyond the visibly present blood ves-
sels on the surface. This is due to the presence of capillaries in 
slightly deeper layers, which are not visible on the surface (al-
though the presence of light spots can be appreciated, denoting 
the circulation of blood in these areas). This distinction allows 
us to divide the FAZ into two different sections, the transition 

(1)
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(2)

(f ∗ g)(x, y) + (f ∗h)(x, y) = (f ∗ (g + h))(x, y) = (f ∗u)(x, y)

(3)(f ∗ g)(x, y) = (g ∗ f )(x, y)
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zone and the actual FAZ [9]. Nevertheless, the presence of these 
blood vessels in depth is not considered when segmenting the 
FAZ, resulting in predicted areas somewhat larger than the real 
ones. Some studies suggest using a combination of the SCP and 
DCP images of each patient to delineate the vascular-free zone 
[10]. In this article, we focus on the delineation of the FAZ using 
only superficial scans, as defined in [9], which is undoubtedly 
much simpler and faster in usual clinical practice.

For example, Figure  2a shows a lateral projection of the FAZ 
area. The central depression corresponds to the area strictly de-
void of vascularity, referred to as the inner FAZ. Adjacent to this 
zone, underlying blood vessels within the deeper layers of the 
fovea are marked in red, producing a faintly illuminated area. 
This region is referred to as the extended FAZ or outer FAZ. 
Figure 2b shows a top projection of the SCP obtained by OCTA, 
highlighting two manually segmented distinct zones of the FAZ. 

FIGURE 1    |    Graphical representation of convolution and its distributive property. Applying different kernels over the same input image, we obtain 
three different results.

FIGURE 2    |    (a) Schematic cross-section of the fovea. The yellow lines delimit non-vascularized zone (FAZ), and the green lines delimit the tran-
sition zone, where no vessels are observed on the surface, but vascularization is still present in layers below the surface. (b) Example of manual seg-
mentation distinguishing the inner and extended FAZ.
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With this understanding of the foveal structure, we turn our at-
tention to the automatic segmentation process.

2.2   |   Automatic Segmentation Algorithm

After these introductory notes, the workflow of the proposed 
FAZ segmentation algorithm can now be described. Our ap-
proach introduces a novel segmentation method based on the 
analysis of the bifurcations of the capillaries surrounding the 
FAZ. It is assumed that, on one hand, convolution detects the 
pattern present in the kernel across the input image, and on the 
other hand, that the sum of different convolutions can be con-
densed in a kernel with the sum of the different patterns in each 
one of the convolutions as stated in Equation (2).

A first proposed kernel consists of a simple blood vessel scheme 
that bifurcates into two branches. This is the pattern that is re-
peated throughout the image, making it a logical choice for the ini-
tial kernel design. However, pattern detection is dependent on the 
orientation of the kernel, meaning that in cases where the kernel 
is not rotation-invariant, only bifurcations aligned with the pro-
posed direction will be detected. In this context, Figure 3 shows 
an example of a SCP image obtained by OCTA. In the vascularized 
region, blood vessels branch out, covering the entire area. Within 
the FAZ, no vessels or branching points are present. Nevertheless, 
as mentioned before, convolving the image with only one kernel 
does not produce satisfactory results due to direction dependence. 
Therefore, the image needs to be scanned with the kernel oriented 
in different directions. This process can be simplified by using the 
distributive property of convolution, as explained in (2), allowing 
multiple kernels to be merged into one. By combining the four 

kernels shown and smoothing the sharp edges with a Gaussian 
profile, the final kernel is obtained, as illustrated in Figure 3.

The basic automatic segmentation proposed in our code [11], is 
based on the process outlined in Figure 4. First, the input image 
is convolved with the proposed kernel, producing a probability 
map for branching points in all directions. Since the FAZ is a 
non-vascular zone, the lowest values on the probability map 
are expected to appear where the FAZ is located. By applying a 
threshold, the image is divided into two black and white areas; 
this is, a binarized mask is created that outlines the FAZ. This 
mask is then superimposed on the original image. To segment 
the extended FAZ, the same process applies, changing the 
threshold parameter. Key parameters to optimize in this process 
include mask size, kernel line width, and threshold level.

For this purpose, a dataset of 176 real OCTA images of the SCP 
was used. These 176 images correspond to 73 eyes from healthy 
subjects, 40 eyes from patients with type 1 Diabetes Mellitus 
(DM1) without visible signs of diabetic retinopathy, and 54 
eyes from type 2 Diabetes Mellitus (DM2) patients with non-
proliferative diabetic retinopathy (NPDR) without diabetic mac-
ular edema. DM2 patients with NPDR were diagnosed during 
the ophthalmology examination. The study was approved by the 
“Comité de Ética de la Investigación Clínica de la Comunidad 
de Aragón” (CEICA) with reference PI19/252 and complies 
with the principles of the Helsinki Declaration. Six scans where 
no clear FAZ is visible (Figure 5A) were discarded, in order to 
avoid calibration errors. The OCTA scans were performed using 
the DRI-Triton SS-OCT (Topcon Corporation, Tokyo, Japan). 
A 3 × 3 mm macular three-dimensional scan was obtained, 
along with a 3 × 3 mm OCTA scan, using IMAGEnet 6 software 
(Version 1.22.1.14101; Topcon Corporation, Tokyo, Japan).

In the design of new segmentation algorithms, it is common 
to compare the results with some other automatic method 
[12]. In our case we are unable to implement such a compari-
son, since there is no other method based on our definitions of 
FAZ. Therefore, we have had to do a statistical process based on 
manual segmentations. Thus, for each image in the dataset, six 
manual segmentations were performed by different experts, as 
Figure 5B shows. Computing the mean path of the six manual 
segmentations, we obtain a standard segmentation of each FAZ. 
We repeat the process with each image for the inner FAZ as well 
as for the outer border.

For each image, a mask containing the standard manual seg-
mentation is obtained adding the six manually segmented areas. 
Then we obtain a final mask with values between 0 and 6. Values 
larger than 3 are marked as white, and the rest of the pixels in 

FIGURE 3    |    Manual branching points detection in an OCTA image: 
A-scan of the Superficial Capillary Plexus (SCP) and matching filter for 
each case. Results of each convolution are also displayed below.

FIGURE 4    |    Scheme depicting the basic segmentation algorithm [11]. It is necessary to define a kernel to proceed with the segmentation.
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black. This process has been carried out for both inner and outer 
areas. Then, the automatic segmentation is performed, and the 
error is defined as

where Iauto and Imanual are the binarized masks with the areas 
segmented by the algorithm and the average of the manual seg-
mentations respectively. Nx and Ny are the pixel lengths (height 
and width) of the image (Nx = Ny = 320 pixels in our case), and 
255 is the maximum intensity level, (thus, each white pixel 
counts as 1). Finally, the result is multiplied by 100, so it rep-
resents a percentage. Such error function yields 0% if the auto-
mated mask and the manual one match pixel-by pixel and 100% 
in the case the resultant mask is the negative of the manual one.

For the calibration process, the dataset was checked, and six im-
ages with no apparent FAZ, such as those shown in Figure  5A 
were excluded, so segmentation errors on those images were 
avoided. Subsequently, each of the remaining 170 images was 
segmented using different parameter combinations to determine 
the set of values yielding the lowest accumulated error, which was 
then established as the standard configuration. The objective of 
this iterative analysis was to calibrate three parameters in the al-
gorithm: kernel size, kernel line width, and binarization thresh-
old. For each image, the kernel size varied from 5 to 100 pixels in 
increments of 5, the line width was adjusted from 10% to 90% of 
the total kernel width in increments of 5%, and the binarization 
threshold was tested from 0.05 to 0.95 (5% to 95%) in increments 

of 0.05. This process resulted in a total of 6460 possible param-
eter sets, from which the one minimizing the average error was 
selected. The optimization process converged to the following set 
of parameters: a kernel size of 45 pixels, a line width of 8 pixels, and 
a threshold value dependent on the FAZ region under analysis. To 
differentiate between the inner and outer FAZ, the algorithm was 
applied using two distinct threshold values (one for each region). 
By performing two thresholding operations, two binary masks per 
image were generated. The final calibrated threshold values were 
0.2 for the inner FAZ segmentation and 0.25 for the outer FAZ seg-
mentation. These optimized settings are employed throughout the 
remainder of this study.

Once the final set of parameters was defined, the error was com-
puted for the inner and outer segmentations, and a histogram 
for those values was generated, as shown in Figure 6. The error 
is computed in comparison to the manual segmentations used 
for calibration. Therefore, the presented errors do not relate to 
any automated segmentation method since there is no automatic 
method of segmentation using our new criteria.

It is observed that some cases exhibited errors greater than 
2%, reaching a maximum of 3.5%. Although these errors were 
not excessive, they corresponded to scans in which there was 
limited agreement among manual segmentations. While these 
cases could have been excluded, they were retained to enhance 
the robustness of the algorithm.

The assessment of FAZ segmentation accuracy using manual 
segmentations as a reference has not been previously reported 

(4)� =
100 × |

|Iauto − Imanual||
NxNy × 255

FIGURE 5    |    (A) Example of an OCTA image (A-scan) of the Superficial Capillary Plexus (SCP) with no apparent Foveal Avascular Zone (FAZ). 
(B) Six manual segmentations of the external FAZ in one image. Both images are taken from [9].

FIGURE 6    |    Errors obtained from all segmentations. (A) Inner FAZ segmentation. (B) External FAZ segmentation.
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in other algorithm validations. The use of a ground truth dataset 
provides a reliable standard for evaluating segmentation pre-
cision, allowing for a more accurate assessment of the perfor-
mance of the algorithm [13–16]. To facilitate the reproducibility 
of this study, both the image database used and the developed 
code are made available to interested readers [11].

3   |   Results and Discussion

As a first application of the algorithm, data and statistics were 
extracted from the automatic segmentations, trying to identify 
potential differences between patient groups. First, the images 
set used for software calibration were split into three groups, 
that is, Healthy subjects (H) (87 images), patients with DM1 (58 
images), and patients with DM2 (25 images). Then, the error for 
each group was calculated according to Equation (4), using both 
the inner and outer FAZ definitions, and was plotted in the his-
tograms presented in Figure 7.

It can be observed that the average error in the inner FAZ is 
generally smaller for DM1 and healthy subjects. In contrast, the 
histogram for the DM2 group is noticeably wider, with a mean 
error nearly twice that of DM1 patients. This may be attributed 
to the fact that the FAZ in DM2 patients tends to be more ir-
regular, leading to greater variability among manual observers. 
While healthy subjects exhibit less variation in the inner FAZ, 
larger errors are observed in the outer FAZ segmentation.

Next, the relationship between the inner and outer FAZ was exam-
ined. First, the ratio between the inner and outer areas as a func-
tion of the inner area is shown in Figure 8a. It can be observed 
that, for larger values of inner area, the outer/inner area ratio tends 

to a stationary value around 1.25 (a reasonable result given that the 
outer threshold is set as 1.25 times the inner threshold). However, 
for smaller areas the ratio increases asymptotically as the inner 
FAZ area approaches a minimum. Thus, a large ratio (> 3) may 
indicate a wrong inner FAZ segmentation, while lower values can 
be related to successful segmentations. Figure 8a also shows the 
different ratio obtained for each group of patients, revealing that 
the DM2 group presents more cases that deviate from the general 
trend. This can be explained by samples where the transition zone 
has a relatively larger area compared to its inner region, which 
may serve as an indicator for the detection of diabetic retinopathy.

To consider it from a different perspective, in Figure 8b the outer 
area is shown instead of the ratio. Since the outer FAZ is calcu-
lated using the same method as the inner FAZ, a linear trend is 
naturally observed. However, there are instances that diverge 
from this trend, with these deviations being more pronounced in 
the DM2 group. This serves as a further indication of potential 
abnormalities in the blood flow within the transitional area on 
DM2 patients.

Regarding the measured area values, it is noteworthy that DM2 
and healthy subjects show inner areas greater than 0.3 mm2, 
which does not occur in the DM1 group. Given the high per-
centage of patients in other groups and the number of scans for 
each group, it cannot be discarded that DM1 patients present a 
smaller FAZ.

In addition, in Figure 8a, for smaller inner area values, the ratio 
tends to increase. This phenomenon occurs because, as the 
inner area approaches zero, the surrounding area (the external 
area of the outer FAZ) remains nearly constant. Consequently, 
as the inner area decreases, the quotient becomes larger.

FIGURE 7    |    Histogram depicting the errors obtained in the different series. Yellow graphs correspond to inner FAZ segmentations, while the 
green ones correspond to external FAZ segmentations. DM1: Type 1 Diabetes Mellitus patients without diabetic retinopathy. DM2: Type 2 Diabetes 
Mellitus patients with non-proliferative diabetic retinopathy without diabetic macular edema. H: healthy group.
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Next, the acircularity index is studied. Acircularity is a metric 
designed to further analyze the contour shape. While perimeter 
and area provide size-related information, acircularity analyzes 
the shape of the boundary comparing it to a perfect circle. Given a 
closed contour formed by a set of points, acircularity is defined as

where “r” is the set of radial coordinates of the contour points, 
measured from the mass center of the enclosed area. The results 
obtained from analyzing all the contours by patient groups are 
shown in Figure 9a. The outer perimeter progression in regard to 
inner perimeter is also shown in Figure 9b, where probably, the 
reduced number of atypical values is related to the low acircularity 
of the contours (< 0.2). Further examination of Figure 9a reveals 
that the DM2 group exhibits a higher deviation from the average 

value compared to the other groups. Specifically, the inner and 
outer FAZ acircularity values remain below 0.2 and 0.1, respec-
tively, in most cases, which is a noteworthy finding. Although the 
FAZ generally exhibits a circular shape, cases with acircularity 
below 0.1 are rare, indicating that the FAZ is not perfectly circular 
in any group or size. Figure 9b further supports this observation, 
as it demonstrates that the outer perimeter follows a linear trend 
relative to the inner perimeter, suggesting a similar shape for both 
inner and outer areas. However, DM2 patients exhibit a more ir-
regular FAZ morphology, as evidenced by the greater dispersion 
around the linear fit compared to the other groups.

Finally, the axis ratio can also be graphed. To obtain this measure-
ment, the contour is expressed in polar coordinates, and then fitted 
to the equation of an ellipse, where the free parameters are both 
axes. Comparing the axis ratio value between the outer and inner 
contours, the results presented in Figure 10 are obtained.

Acircularity =
𝜎(r)

< r >

FIGURE 8    |    (a) Evolution of the area ratio as a function of the inner area size. (b) Comparison of outer and inner area values. Again, the lower 
areas of the DM1 measurements of the patients can be observed, as well as the higher dispersion for the DM2 group measurements.

FIGURE 9    |    (a) Inner versus Outer acircularity measurements. It is observed that, for DM1 patients, outer acircularity tends to be lower than in 
the other groups. (b) Outer versus inner perimeter. The results obtained are very similar to those of the areas, but with less atypical values. Again, the 
DM2 group shows much higher dispersion than the other groups.
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In addition to reaffirming that DM1 patients tend to exhibit more 
circular FAZ shapes (if the axis ratio is closer to 1, the length of the 
axes is similar, so the ellipse tends to be a circle), an upward linear 
trend is observed. So, inner FAZ areas with high axis ratios tend 
to correspond to outer FAZ areas with similarly high axis ratios, 
and vice versa. Another notable observation, resulting from the 
low acircularity values, is the limited number of axis ratio values 
exceeding 1.3, as both parameters are interrelated.

Regarding both areas and perimeters, DM1 patients tend to pres-
ent lower values, indicating that this group presents a smaller FAZ 
area in both inner and outer regions compared to the other groups. 
Another pattern observed among the different graphs is that, while 
DM1 patients present lower areas in general, DM2 patients exhibit 
greater variability. This suggests a higher irregularity in the pre-
sented data, which could be attributed to a less standardized FAZ 
shape among the group. In other words, DM2 patients may present 
a wider range of FAZ shapes compared to the other groups, poten-
tially reflecting slight shape distortions in these individuals.

4   |   Conclusions

The development and refinement of image processing techniques, 
particularly in the field of ophthalmology, have increased our abil-
ity to diagnose ocular illnesses. OCT technology has emerged as 
an important tool for capturing detailed images of the eye fundus, 
particularly of the fovea, which is critical for monitoring retinal 
health. Despite the advancements in OCT, challenges persist, par-
ticularly in the objective delineation of the FAZ in the different 
retinal vascular plexuses. The absence of standardized guidelines 
and the reliance on manual segmentations introduce variability 
and subjectivity into diagnostic assessments. Various approaches, 
including those employing convolution algorithms, have been ex-
plored to address this challenge.

In this context, we proposed a novel algorithm for FAZ segmen-
tation in the SCP OCTA images [11], based on recent research on 
unified FAZ manual segmentation methods [9]. Our algorithm, 

based on convolution, aims to detect branching points on the 
surrounding vessels to segment the FAZ instead of analyzing the 
vasculature itself. To do so, a new kernel is introduced, based on 
three parameters: kernel size, line width, and thresholding per-
centage, which are then calibrated to minimize errors across all 
170 images. This method offers repeatability and performance im-
provements over other solutions without the need for costly com-
putational methods. By adopting this new segmentation approach, 
we aim to mitigate the variability inherent in single-segmentation 
methods due to the increased information provided. Not only do 
we propose the new algorithm workflow, but we also provide the 
full ready-to-use code, as well as all the images used for calibration 
and testing purposes as a complementary dataset.

Through a calibration and validation process, we demonstrated 
the efficacy of our algorithm in accurately segmenting the FAZ 
and transition zone. The algorithm offers three adjustable pa-
rameters: kernel size (measured in pixels), line width (as a per-
centage of the total kernel size), and thresholding. The kernel 
size ranges from 5 to 100 in increments of 5, while the line 
width percentage also ranges from 0% to 100% of the total ker-
nel width, with 5% intervals. Certain impractical values, such as 
extreme thresholds or a 0%-line width, are excluded to optimize 
the calibration process. From the 6460 valid parameter combi-
nations, the one that minimizes the average error is selected. 
Specifically, the optimal parameters are 45 pixels for kernel size, 
20% of line width (8 pixels), and a 20% thresholding level for the 
inner FAZ and 25% for the outer FAZ.

Once the calibration process is completed, the results obtained 
from the automatic segmentation are analyzed. Our analysis of 
segmented areas revealed distinct patterns across patient groups, 
particularly in diabetic retinopathy cases, showing the potential 
for clinical applications. We observed that in all the area and pe-
rimeter measurements, patients in the DM1 group tend to pres-
ent lower area values. For the other groups, the inner FAZ area 
ranges from 0.05 to 0.5 mm2, while in the DM1 group, no values 
over 0.25 mm2 are observed. In addition, the DM2 group displayed 
greater dispersion in the measurements, with the linear fitting dis-
persion being noticeably larger in the DM2 group than in the other 
two, despite the DM2 group having half the number of samples.

Another result worth mentioning is that inner and outer FAZ 
areas tend to be proportional. For a large FAZ (understanding 
as large FAZ the one that shows an inner FAZ larger than the 
difference between inner and outer FAZ), it has been shown 
that the outer area is approximately 30% larger than the inner, 
which can be used as a measurement of FAZ standardization. 
In fact, images that show a substantially different ratio than the 
one mentioned tend to depict smaller FAZ areas, which may be 
indicative of DM1 patients, or distorted shapes, which could 
suggest DM2 patients. Apart from these results, both the code 
developed, and the collection of images used have been made 
publicly available.

While the proposed algorithm demonstrates clear advantages in 
terms of segmentation accuracy and repeatability, it is import-
ant to acknowledge some limitations. For instance, although 
the performance of the algorithm was tested across a variety of 
images, the generalizability to more diverse populations with 
different stages of retinal pathology remains uncertain. As it 

FIGURE 10    |    Comparison of axis ratio for outer and inner contours. 
It can be observed that the DM1 group shows more circular FAZ areas 
(as the ratios are closer to 1). The grid in this graph also proves all values 
are over 1.
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has been stated, the calibration of the algorithm was based on 
manual segmentation performed by six experts, but it does not 
imply that the segmentations constitute a ground truth or a per-
fect benchmark, but rather a simple guideline to start working 
with. Therefore, neither is the algorithm completely free of er-
rors, nor can we ensure that it will work correctly on any image 
since its behavior will depend on the quality of the scans, apart 
from possible errors in the six manual segmentations used in the 
calibration process. In this sense, Hassan et  al. [17] reviewed, 
for example, automatic models for retinal disease screening. 
They acknowledged challenges like generalizability across di-
verse populations and integration into clinical workflows. Thus, 
further testing on larger, more heterogeneous datasets would 
help to validate the robustness and reliability of our algorithm. 
Additionally, while the calibration parameters were optimized 
for the current dataset, it is also possible that other parameter 
configurations might yield improved results for specific patient 
groups or imaging conditions. Future work will focus on en-
hancing the algorithm's adaptability to a wider range of OCTA 
images, including those affected by more advanced stages of di-
abetic retinopathy with diabetic macular edema, or any other 
retinal condition. Furthermore, integrating this algorithm into 
clinical workflows may require additional considerations, such 
as compatibility with different OCT devices or the need for man-
ual verification in cases where segmentation results deviate sig-
nificantly from expected patterns. Despite these considerations, 
the presented algorithm offers a promising tool for the auto-
mated analysis of OCTA images, potentially improving diagnos-
tic accuracy and efficiency in ophthalmology.
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