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ABSTRACT

In this paper a new algorithm for segmentation of the foveal avascular zone in optical coherence tomography angiography im-
ages of the superficial capillary plexus is presented and evaluated. The algorithm is based on convolutional techniques, and for
evaluation it has been compared with a collection of manual segmentations. Besides its performance, the main novelty presented

is the ability to distinguish the purely avascular zone from the transitional environment whose importance has been recently

pointed out. Its capability has been tested on images of patients with different types of diabetes mellitus, obtaining error rates be-

tween 1% and 1.5%. In addition, statistical data is shown for the segmented areas (including the transition zone, which had never
been studied before) as a function of the type of diabetes. Moreover, a linear trend in outer and inner axis ratios is also observed.
Overall, the algorithm represents a new approach in the analysis of optical coherence tomography angiography images, offering
clinicians a new and reliable tool for objective foveal avascular zone segmentation of the superficial capillary plexus. Both the

code and the dataset used are also made public in the cited repositories.

1 | Introduction

Image acquisition plays a fundamental role in the diagnosis of
ocular diseases process. A variety of techniques are employed
to capture detailed images of ocular structures, with optical
coherence tomography (OCT) standing out as a widely adopted
approach. This non-invasive technique provides high-resolution
cross-sectional images of internal ocular structures, enabling
detailed visualization of retinal layers, including critical areas
such as the fovea. In recent years, optical coherence tomogra-
phy angiography (OCTA) has emerged as a powerful imaging
technique that enables the visualization of retinal vascular plex-
uses without the need for contrast dye injection, allowing for a
detailed assessment of microvascular structures and blood flow
dynamics in the retina. OCTA has become an essential tool in
the diagnosis and monitoring of various retinal and choroidal
diseases, offering a safer and more accessible alternative [1].

As OCT scans are three-dimensional, all the images obtained
are, in fact, different projections of the scanned volume.
Depending on which axis is used to make the projection, the
obtained image is classified as A-scan or B-scan. A-scan im-
ages consist of transversal retinal planes, and are ideal for
visualization of the Foveal Avascular Zone (FAZ) and the sur-
rounding capillaries, while B-scans show in-depth slices of the
eye, making them useful for visualization of the different lay-
ers that make up the tissues. Both A-scans and B-scans can
be retrieved at different depths, obtaining different projection
results. In our case, we limited our analysis to A-scan images
of the Superficial Capillary Plexus (SCP), so, from now on, all
mention to any OCT scans refer to A-scans of this particular
region of the eye fundus. The algorithm will be calibrated on
this type of image; therefore, SCP images are the main scope
of this proposal, eliminating the need to retrieve inner retinal
slab or DCP scans.
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Despite the widespread application of OCT in ophthalmology,
particularly in diagnosing a broad range of retinal pathologies,
the precise and objective delineation of specific retinal structures,
such as the FAZ, remains a significant challenge. One of the main
limitations is the lack of standardized guidelines for FAZ segmen-
tation, which introduces inconsistencies in analysis and reduces
diagnostic reliability. This issue extends beyond image processing
concerns, as FAZ segmentation plays a crucial role in the early
detection and monitoring of various ocular diseases, including
diabetes mellitus and its retinal complications, and glaucoma.
Currently, FAZ segmentation is predominantly performed man-
ually by expert clinicians, a process that is time-consuming and
subject to interobserver variability. Furthermore, the absence of a
universally accepted segmentation protocol hinders repeatability
and adds a subjective component to diagnostic assessments.

Several computational approaches have been proposed for OCT-
based FAZ segmentation, ranging from edge-detection filters to
morphological operations. For instance, in a study carried out by
Schottenhamml et al. [2], the segmentation process is based on
identifying the vessels surrounding the FAZ. Another approach,
based on the method presented by Jia et al. [3], employs a decor-
relation algorithm, which enhances the swept-source OCT tech-
nique by reducing phase-induced noise. Alternative methods
also exist, one of which uses a shape that is gradually modified
[4]. A minimal area of one pixel is first initialized in the centre of
the image, which is progressively augmented until a boundary
on the intensity levels is found.

Recent advancements have introduced deep learning techniques
to enhance the accuracy and efficiency of FAZ segmentation. For
example, Heisler et al. developed a deep neural network for single-
zone automatic quantification of FAZ parameters and perifoveal
vessel density [5]. Similarly, Diaz et al. proposed a fully automatic
system combining image processing techniques to identify and
segment the whole FAZ region precisely, achieving a high correla-
tion with manual measurements [6]. Moreover, Wang et al. intro-
duced a deep learning-based quality assessment and segmentation
system, which processes OCTA images to assess quality and seg-
ment the FAZ area, facilitating clinical diagnosis and research [7].

Thus, in this context, we have recently presented a new seg-
mented image database [8] along with a rigorous definition
of the FAZ, which discerns between inner and external zones
[9]. Building upon this framework, the present study aims to
develop an automatic segmentation algorithm based on these
criteria. The proposed method seeks to enhance segmentation
accuracy and consistency, facilitating applications such as large-
scale screening in at-risk populations and providing a reliable
tool for clinical and research purposes.

2 | Methods

The main method used in the algorithm is convolution, which
is a fundamental mathematical operation with wide-ranging
applications in fields such as signal processing and machine
learning. At its core, convolution involves the integration of two
functions to produce a third function that characterizes how one
of them interacts with the other as it is shifted and overlapped.
This operation plays an important role in understanding and

manipulating data across various domains. In our case, convolu-
tion is utilized to recognize the pattern of the vessels surround-
ing the FAZ. Given a function defined in a 2D space, labeled
f(x,y), and a convolutional kernel, labeled g(x,y), the convolu-
tion (f* g)(x,y) is defined as follows

(F)x,y) =/ /f(rl,rz) g(x =0y — 1) drydr,

—00 —00

@

where (%) denotes convolution. In the case of discrete functions
(such as images, where the minimum step unit is a pixel), the in-
tegral is replaced by the sum over all pixels in the image. There
are several properties associated with the convolution operation,
such as the distributive property, which is particularly relevant
and can be expressed as,

(f*9)x,y) + (f+h)(x,y) = (f * (g + W)(x,y) = (f *u)(x,y)
(@)

This property allows for the composition of multiple kernels into
a single mask, reducing the need to perform multiple convolu-
tions separately. Another important property of convolution is
commutativity,

(f*8)x,y) = (g*)x,y) €)

In our case, convolution is used to detect the pattern depicted
in the kernel across the OCTA image of the SCP. The result of
the convolution of two images can be understood as the over-
lapping of the kernel g(x,y) across the input image f(x,y). That
is, given an input image containing various patterns and a ker-
nel depicting the particular pattern to be detected, the resulting
convolution produces an output image where the desired feature
appears with high intensity, while unwanted patterns are sup-
pressed (Figure 1). Therefore, we need to adjust the kernel size
to optimize the detection of specific structures.

In the first case, the most prominent feature in the output is the
horizontal line, as it follows a pattern that matches the kernel (hor-
izontal line), whereas the vertical line tends to blur and disappear.
In the second case, where the kernel is rotated to detect vertical
lines, the reverse occurs. Finally, in the third case, the kernel is
a sum of the previous two, and the resulting image confirms the
expected behavior according to the distributive property.

2.1 | Vascularity in the Fovea

Before proposing a segmentation algorithm, it is important to
first describe the structural characteristics of the SCP. In general
terms, the surrounding area of the fovea can be divided into two
distinct regions: the vascularized area and the FAZ. However,
as stated by our research group [9], the vascularized area is as-
sumed to extend slightly beyond the visibly present blood ves-
sels on the surface. This is due to the presence of capillaries in
slightly deeper layers, which are not visible on the surface (al-
though the presence of light spots can be appreciated, denoting
the circulation of blood in these areas). This distinction allows
us to divide the FAZ into two different sections, the transition
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zone and the actual FAZ [9]. Nevertheless, the presence of these
blood vessels in depth is not considered when segmenting the
FAZ, resulting in predicted areas somewhat larger than the real
ones. Some studies suggest using a combination of the SCP and
DCP images of each patient to delineate the vascular-free zone
[10]. In this article, we focus on the delineation of the FAZ using
only superficial scans, as defined in [9], which is undoubtedly
much simpler and faster in usual clinical practice.

For example, Figure 2a shows a lateral projection of the FAZ
area. The central depression corresponds to the area strictly de-
void of vascularity, referred to as the inner FAZ. Adjacent to this
zone, underlying blood vessels within the deeper layers of the
fovea are marked in red, producing a faintly illuminated area.
This region is referred to as the extended FAZ or outer FAZ.
Figure 2b shows a top projection of the SCP obtained by OCTA,
highlighting two manually segmented distinct zones of the FAZ.

Convolved Result
255
Kernel
0
| Resul
. LConvo ved Result 255
Input image
Kernel
0
Convolved Result
255
Kernel
0

FIGURE1 | Graphical representation of convolution and its distributive property. Applying different kernels over the same input image, we obtain

three different results.

(a)
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Underlying
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Underlying
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FIGURE 2 | (a) Schematic cross-section of the fovea. The yellow lines delimit non-vascularized zone (FAZ), and the green lines delimit the tran-

sition zone, where no vessels are observed on the surface, but vascularization is still present in layers below the surface. (b) Example of manual seg-

mentation distinguishing the inner and extended FAZ.
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With this understanding of the foveal structure, we turn our at-
tention to the automatic segmentation process.

2.2 | Automatic Segmentation Algorithm

After these introductory notes, the workflow of the proposed
FAZ segmentation algorithm can now be described. Our ap-
proach introduces a novel segmentation method based on the
analysis of the bifurcations of the capillaries surrounding the
FAZ. It is assumed that, on one hand, convolution detects the
pattern present in the kernel across the input image, and on the
other hand, that the sum of different convolutions can be con-
densed in a kernel with the sum of the different patterns in each
one of the convolutions as stated in Equation (2).

A first proposed kernel consists of a simple blood vessel scheme
that bifurcates into two branches. This is the pattern that is re-
peated throughout the image, making it a logical choice for the ini-
tial kernel design. However, pattern detection is dependent on the
orientation of the kernel, meaning that in cases where the kernel
is not rotation-invariant, only bifurcations aligned with the pro-
posed direction will be detected. In this context, Figure 3 shows
an example of a SCP image obtained by OCTA. In the vascularized
region, blood vessels branch out, covering the entire area. Within
the FAZ, no vessels or branching points are present. Nevertheless,
as mentioned before, convolving the image with only one kernel
does not produce satisfactory results due to direction dependence.
Therefore, the image needs to be scanned with the kernel oriented
in different directions. This process can be simplified by using the
distributive property of convolution, as explained in (2), allowing
multiple kernels to be merged into one. By combining the four
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FIGURE 3 | Manual branching points detection in an OCTA image:
A-scan of the Superficial Capillary Plexus (SCP) and matching filter for
each case. Results of each convolution are also displayed below.

Convolution

Inner binary
threshold (20%)

Outer binary
threshold (25%)

kernels shown and smoothing the sharp edges with a Gaussian
profile, the final kernel is obtained, as illustrated in Figure 3.

The basic automatic segmentation proposed in our code [11], is
based on the process outlined in Figure 4. First, the input image
is convolved with the proposed kernel, producing a probability
map for branching points in all directions. Since the FAZ is a
non-vascular zone, the lowest values on the probability map
are expected to appear where the FAZ is located. By applying a
threshold, the image is divided into two black and white areas;
this is, a binarized mask is created that outlines the FAZ. This
mask is then superimposed on the original image. To segment
the extended FAZ, the same process applies, changing the
threshold parameter. Key parameters to optimize in this process
include mask size, kernel line width, and threshold level.

For this purpose, a dataset of 176 real OCTA images of the SCP
was used. These 176 images correspond to 73 eyes from healthy
subjects, 40 eyes from patients with type 1 Diabetes Mellitus
(DM1) without visible signs of diabetic retinopathy, and 54
eyes from type 2 Diabetes Mellitus (DM2) patients with non-
proliferative diabetic retinopathy (NPDR) without diabetic mac-
ular edema. DM2 patients with NPDR were diagnosed during
the ophthalmology examination. The study was approved by the
“Comité de Etica de la Investigacion Clinica de la Comunidad
de Aragén” (CEICA) with reference PI19/252 and complies
with the principles of the Helsinki Declaration. Six scans where
no clear FAZ is visible (Figure 5A) were discarded, in order to
avoid calibration errors. The OCTA scans were performed using
the DRI-Triton SS-OCT (Topcon Corporation, Tokyo, Japan).
A 3x3mm macular three-dimensional scan was obtained,
along with a 3 X 3mm OCTA scan, using IMAGEnet 6 software
(Version 1.22.1.14101; Topcon Corporation, Tokyo, Japan).

In the design of new segmentation algorithms, it is common
to compare the results with some other automatic method
[12]. In our case we are unable to implement such a compari-
son, since there is no other method based on our definitions of
FAZ. Therefore, we have had to do a statistical process based on
manual segmentations. Thus, for each image in the dataset, six
manual segmentations were performed by different experts, as
Figure 5B shows. Computing the mean path of the six manual
segmentations, we obtain a standard segmentation of each FAZ.
We repeat the process with each image for the inner FAZ as well
as for the outer border.

For each image, a mask containing the standard manual seg-
mentation is obtained adding the six manually segmented areas.

Then we obtain a final mask with values between 0 and 6. Values
larger than 3 are marked as white, and the rest of the pixels in

Superposition

Superposition

FIGURE4 | Scheme depicting the basic segmentation algorithm [11]. It is necessary to define a kernel to proceed with the segmentation.
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black. This process has been carried out for both inner and outer
areas. Then, the automatic segmentation is performed, and the
error is defined as

ce 100 x |Iauto - Imanuall @)
NN, x 255

where I, and I,,,,,. are the binarized masks with the areas
segmented by the algorithm and the average of the manual seg-
mentations respectively. N, and N, are the pixel lengths (height
and width) of the image (N, =N, = 320 pixels in our case), and
255 is the maximum intensity level, (thus, each white pixel
counts as 1). Finally, the result is multiplied by 100, so it rep-
resents a percentage. Such error function yields 0% if the auto-
mated mask and the manual one match pixel-by pixel and 100%

in the case the resultant mask is the negative of the manual one.

For the calibration process, the dataset was checked, and six im-
ages with no apparent FAZ, such as those shown in Figure 5A
were excluded, so segmentation errors on those images were
avoided. Subsequently, each of the remaining 170 images was
segmented using different parameter combinations to determine
the set of values yielding the lowest accumulated error, which was
then established as the standard configuration. The objective of
this iterative analysis was to calibrate three parameters in the al-
gorithm: kernel size, kernel line width, and binarization thresh-
old. For each image, the kernel size varied from 5 to 100 pixels in
increments of 5, the line width was adjusted from 10% to 90% of
the total kernel width in increments of 5%, and the binarization
threshold was tested from 0.05 to 0.95 (5% to 95%) in increments

of 0.05. This process resulted in a total of 6460 possible param-
eter sets, from which the one minimizing the average error was
selected. The optimization process converged to the following set
of parameters: a kernel size of 45 pixels, a line width of 8 pixels, and
a threshold value dependent on the FAZ region under analysis. To
differentiate between the inner and outer FAZ, the algorithm was
applied using two distinct threshold values (one for each region).
By performing two thresholding operations, two binary masks per
image were generated. The final calibrated threshold values were
0.2 for the inner FAZ segmentation and 0.25 for the outer FAZ seg-
mentation. These optimized settings are employed throughout the
remainder of this study.

Once the final set of parameters was defined, the error was com-
puted for the inner and outer segmentations, and a histogram
for those values was generated, as shown in Figure 6. The error
is computed in comparison to the manual segmentations used
for calibration. Therefore, the presented errors do not relate to
any automated segmentation method since there is no automatic
method of segmentation using our new criteria.

It is observed that some cases exhibited errors greater than
2%, reaching a maximum of 3.5%. Although these errors were
not excessive, they corresponded to scans in which there was
limited agreement among manual segmentations. While these
cases could have been excluded, they were retained to enhance
the robustness of the algorithm.

The assessment of FAZ segmentation accuracy using manual
segmentations as a reference has not been previously reported

FIGURE 5 | (A)Example of an OCTA image (A-scan) of the Superficial Capillary Plexus (SCP) with no apparent Foveal Avascular Zone (FAZ).
(B) Six manual segmentations of the external FAZ in one image. Both images are taken from [9].
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FIGURE 6 | Errorsobtained from all segmentations. (A) Inner FAZ segmentation. (B) External FAZ segmentation.
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in other algorithm validations. The use of a ground truth dataset
provides a reliable standard for evaluating segmentation pre-
cision, allowing for a more accurate assessment of the perfor-
mance of the algorithm [13-16]. To facilitate the reproducibility
of this study, both the image database used and the developed
code are made available to interested readers [11].

3 | Results and Discussion

As a first application of the algorithm, data and statistics were
extracted from the automatic segmentations, trying to identify
potential differences between patient groups. First, the images
set used for software calibration were split into three groups,
that is, Healthy subjects (H) (87 images), patients with DM1 (58
images), and patients with DM2 (25 images). Then, the error for
each group was calculated according to Equation (4), using both
the inner and outer FAZ definitions, and was plotted in the his-
tograms presented in Figure 7.

It can be observed that the average error in the inner FAZ is
generally smaller for DM1 and healthy subjects. In contrast, the
histogram for the DM2 group is noticeably wider, with a mean
error nearly twice that of DM1 patients. This may be attributed
to the fact that the FAZ in DM2 patients tends to be more ir-
regular, leading to greater variability among manual observers.
While healthy subjects exhibit less variation in the inner FAZ,
larger errors are observed in the outer FAZ segmentation.

Next, the relationship between the inner and outer FAZ was exam-
ined. First, the ratio between the inner and outer areas as a func-
tion of the inner area is shown in Figure 8a. It can be observed
that, for larger values of inner area, the outer/inner area ratio tends

to a stationary value around 1.25 (a reasonable result given that the
outer threshold is set as 1.25 times the inner threshold). However,
for smaller areas the ratio increases asymptotically as the inner
FAZ area approaches a minimum. Thus, a large ratio (> 3) may
indicate a wrong inner FAZ segmentation, while lower values can
be related to successful segmentations. Figure 8a also shows the
different ratio obtained for each group of patients, revealing that
the DM2 group presents more cases that deviate from the general
trend. This can be explained by samples where the transition zone
has a relatively larger area compared to its inner region, which
may serve as an indicator for the detection of diabetic retinopathy.

To consider it from a different perspective, in Figure 8b the outer
area is shown instead of the ratio. Since the outer FAZ is calcu-
lated using the same method as the inner FAZ, a linear trend is
naturally observed. However, there are instances that diverge
from this trend, with these deviations being more pronounced in
the DM2 group. This serves as a further indication of potential
abnormalities in the blood flow within the transitional area on
DM2 patients.

Regarding the measured area values, it is noteworthy that DM2
and healthy subjects show inner areas greater than 0.3mm?,
which does not occur in the DM1 group. Given the high per-
centage of patients in other groups and the number of scans for
each group, it cannot be discarded that DM1 patients present a
smaller FAZ.

In addition, in Figure 8a, for smaller inner area values, the ratio
tends to increase. This phenomenon occurs because, as the
inner area approaches zero, the surrounding area (the external
area of the outer FAZ) remains nearly constant. Consequently,
as the inner area decreases, the quotient becomes larger.

H DM2 DM1
30{ ] 1Y 1
751 [
+ | 101
5 20 5.0
S
101 5 2.5
= TTT1 M <H_\ ,
00 2 00 2 O'00 2
Error(%) Error(%) Error(%)
H DM2 DM1
15
7.5 101
4-‘ 4
£ 10 5.0
S 51
=) 2.5
00 2 0'00 2 0O 2
Error(%) Error(%) Error(%)

FIGURE 7 | Histogram depicting the errors obtained in the different series. Yellow graphs correspond to inner FAZ segmentations, while the

green ones correspond to external FAZ segmentations. DM1: Type 1 Diabetes Mellitus patients without diabetic retinopathy. DM2: Type 2 Diabetes

Mellitus patients with non-proliferative diabetic retinopathy without diabetic macular edema. H: healthy group.
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Next, the acircularity index is studied. Acircularity is a metric
designed to further analyze the contour shape. While perimeter
and area provide size-related information, acircularity analyzes
the shape of the boundary comparing it to a perfect circle. Given a
closed contour formed by a set of points, acircularity is defined as

o(r)

<r>

Acircularity =

7

where “r” is the set of radial coordinates of the contour points,
measured from the mass center of the enclosed area. The results
obtained from analyzing all the contours by patient groups are
shown in Figure 9a. The outer perimeter progression in regard to
inner perimeter is also shown in Figure 9b, where probably, the
reduced number of atypical values is related to the low acircularity
of the contours (<0.2). Further examination of Figure 9a reveals
that the DM2 group exhibits a higher deviation from the average

(@)
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2 f’c,
. TUT

0.0 0.2 0.4 0.6
Inner Area (mm?)

value compared to the other groups. Specifically, the inner and
outer FAZ acircularity values remain below 0.2 and 0.1, respec-
tively, in most cases, which is a noteworthy finding. Although the
FAZ generally exhibits a circular shape, cases with acircularity
below 0.1 are rare, indicating that the FAZ is not perfectly circular
in any group or size. Figure 9b further supports this observation,
as it demonstrates that the outer perimeter follows a linear trend
relative to the inner perimeter, suggesting a similar shape for both
inner and outer areas. However, DM2 patients exhibit a more ir-
regular FAZ morphology, as evidenced by the greater dispersion
around the linear fit compared to the other groups.

Finally, the axis ratio can also be graphed. To obtain this measure-
ment, the contour is expressed in polar coordinates, and then fitted
to the equation of an ellipse, where the free parameters are both
axes. Comparing the axis ratio value between the outer and inner
contours, the results presented in Figure 10 are obtained.
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FIGURE 8 | (a) Evolution of the area ratio as a function of the inner area size. (b) Comparison of outer and inner area values. Again, the lower

areas of the DM1 measurements of the patients can be observed, as well as the higher dispersion for the DM2 group measurements.
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FIGURE 9 | (a)Inner versus Outer acircularity measurements. It is observed that, for DM1 patients, outer acircularity tends to be lower than in

the other groups. (b) Outer versus inner perimeter. The results obtained are very similar to those of the areas, but with less atypical values. Again, the

DM2 group shows much higher dispersion than the other groups.
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FIGURE 10 | Comparison of axis ratio for outer and inner contours.
It can be observed that the DM1 group shows more circular FAZ areas
(as the ratios are closer to 1). The grid in this graph also proves all values
are over 1.

In addition to reaffirming that DM1 patients tend to exhibit more
circular FAZ shapes (if the axis ratio is closer to 1, the length of the
axes is similar, so the ellipse tends to be a circle), an upward linear
trend is observed. So, inner FAZ areas with high axis ratios tend
to correspond to outer FAZ areas with similarly high axis ratios,
and vice versa. Another notable observation, resulting from the
low acircularity values, is the limited number of axis ratio values
exceeding 1.3, as both parameters are interrelated.

Regarding both areas and perimeters, DM1 patients tend to pres-
ent lower values, indicating that this group presents a smaller FAZ
area in both inner and outer regions compared to the other groups.
Another pattern observed among the different graphs is that, while
DM1 patients present lower areas in general, DM2 patients exhibit
greater variability. This suggests a higher irregularity in the pre-
sented data, which could be attributed to a less standardized FAZ
shape among the group. In other words, DM2 patients may present
awider range of FAZ shapes compared to the other groups, poten-
tially reflecting slight shape distortions in these individuals.

4 | Conclusions

The development and refinement of image processing techniques,
particularly in the field of ophthalmology, have increased our abil-
ity to diagnose ocular illnesses. OCT technology has emerged as
an important tool for capturing detailed images of the eye fundus,
particularly of the fovea, which is critical for monitoring retinal
health. Despite the advancements in OCT, challenges persist, par-
ticularly in the objective delineation of the FAZ in the different
retinal vascular plexuses. The absence of standardized guidelines
and the reliance on manual segmentations introduce variability
and subjectivity into diagnostic assessments. Various approaches,
including those employing convolution algorithms, have been ex-
plored to address this challenge.

In this context, we proposed a novel algorithm for FAZ segmen-
tation in the SCP OCTA images [11], based on recent research on
unified FAZ manual segmentation methods [9]. Our algorithm,

based on convolution, aims to detect branching points on the
surrounding vessels to segment the FAZ instead of analyzing the
vasculature itself. To do so, a new kernel is introduced, based on
three parameters: kernel size, line width, and thresholding per-
centage, which are then calibrated to minimize errors across all
170 images. This method offers repeatability and performance im-
provements over other solutions without the need for costly com-
putational methods. By adopting this new segmentation approach,
we aim to mitigate the variability inherent in single-segmentation
methods due to the increased information provided. Not only do
we propose the new algorithm workflow, but we also provide the
full ready-to-use code, as well as all the images used for calibration
and testing purposes as a complementary dataset.

Through a calibration and validation process, we demonstrated
the efficacy of our algorithm in accurately segmenting the FAZ
and transition zone. The algorithm offers three adjustable pa-
rameters: kernel size (measured in pixels), line width (as a per-
centage of the total kernel size), and thresholding. The kernel
size ranges from 5 to 100 in increments of 5, while the line
width percentage also ranges from 0% to 100% of the total ker-
nel width, with 5% intervals. Certain impractical values, such as
extreme thresholds or a 0%-line width, are excluded to optimize
the calibration process. From the 6460 valid parameter combi-
nations, the one that minimizes the average error is selected.
Specifically, the optimal parameters are 45 pixels for kernel size,
20% of line width (8 pixels), and a 20% thresholding level for the
inner FAZ and 25% for the outer FAZ.

Once the calibration process is completed, the results obtained
from the automatic segmentation are analyzed. Our analysis of
segmented areas revealed distinct patterns across patient groups,
particularly in diabetic retinopathy cases, showing the potential
for clinical applications. We observed that in all the area and pe-
rimeter measurements, patients in the DM1 group tend to pres-
ent lower area values. For the other groups, the inner FAZ area
ranges from 0.05 to 0.5mm?, while in the DM1 group, no values
over 0.25mm? are observed. In addition, the DM2 group displayed
greater dispersion in the measurements, with the linear fitting dis-
persion being noticeably larger in the DM2 group than in the other
two, despite the DM2 group having half the number of samples.

Another result worth mentioning is that inner and outer FAZ
areas tend to be proportional. For a large FAZ (understanding
as large FAZ the one that shows an inner FAZ larger than the
difference between inner and outer FAZ), it has been shown
that the outer area is approximately 30% larger than the inner,
which can be used as a measurement of FAZ standardization.
In fact, images that show a substantially different ratio than the
one mentioned tend to depict smaller FAZ areas, which may be
indicative of DM1 patients, or distorted shapes, which could
suggest DM2 patients. Apart from these results, both the code
developed, and the collection of images used have been made
publicly available.

While the proposed algorithm demonstrates clear advantages in
terms of segmentation accuracy and repeatability, it is import-
ant to acknowledge some limitations. For instance, although
the performance of the algorithm was tested across a variety of
images, the generalizability to more diverse populations with
different stages of retinal pathology remains uncertain. As it
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has been stated, the calibration of the algorithm was based on
manual segmentation performed by six experts, but it does not
imply that the segmentations constitute a ground truth or a per-
fect benchmark, but rather a simple guideline to start working
with. Therefore, neither is the algorithm completely free of er-
rors, nor can we ensure that it will work correctly on any image
since its behavior will depend on the quality of the scans, apart
from possible errors in the six manual segmentations used in the
calibration process. In this sense, Hassan et al. [17] reviewed,
for example, automatic models for retinal disease screening.
They acknowledged challenges like generalizability across di-
verse populations and integration into clinical workflows. Thus,
further testing on larger, more heterogeneous datasets would
help to validate the robustness and reliability of our algorithm.
Additionally, while the calibration parameters were optimized
for the current dataset, it is also possible that other parameter
configurations might yield improved results for specific patient
groups or imaging conditions. Future work will focus on en-
hancing the algorithm's adaptability to a wider range of OCTA
images, including those affected by more advanced stages of di-
abetic retinopathy with diabetic macular edema, or any other
retinal condition. Furthermore, integrating this algorithm into
clinical workflows may require additional considerations, such
as compatibility with different OCT devices or the need for man-
ual verification in cases where segmentation results deviate sig-
nificantly from expected patterns. Despite these considerations,
the presented algorithm offers a promising tool for the auto-
mated analysis of OCTA images, potentially improving diagnos-
tic accuracy and efficiency in ophthalmology.
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